
Policy Learning for Continuous Space Security Games using Neural Networks

Nitin Kamra1, Umang Gupta1, Fei Fang2, Yan Liu1, Milind Tambe1
University of Southern California1, Carnegie Mellon University2

{nkamra, umanggup, yanliu.cs, tambe}@usc.edu1, feifang@cmu.edu2

Abstract

A wealth of algorithms centered around (integer) linear pro-
gramming have been proposed to compute equilibrium strate-
gies in security games with discrete states and actions. How-
ever, in practice many domains possess continuous state and
action spaces. In this paper, we consider a continuous space
security game model with infinite-size action sets for play-
ers and present a novel deep learning based approach to ex-
tend the existing toolkit for solving security games. Specif-
ically, we present (i) OptGradFP, a novel and general algo-
rithm that searches for the optimal defender strategy in a pa-
rameterized continuous search space, and can also be used
to learn policies over multiple game states simultaneously;
(ii) OptGradFP-NN, a convolutional neural network based
implementation of OptGradFP for continuous space security
games. We demonstrate the potential to predict good defender
strategies via experiments and analysis of OptGradFP and
OptGradFP-NN on discrete and continuous game settings.

1 Introduction
Stackelberg Security Games (SSGs) have been extensively
used to model defender-adversary interaction in protecting
important infrastructure targets such as airports, ports, and
flights (Tambe 2011; Rosenfeld and Kraus 2017; Cermák
et al. 2016; Basilico et al. 2017). In SSGs, the defender
(referred to as “she”) perpetually defends a set of targets
with limited resources. The adversary (referred to as “he”)
can surveil and learn the defender’s strategy and plan an at-
tack based on this information. Exact and approximate ap-
proaches have been proposed to maximize the defender’s
expected utility in SSGs given that the adversary will best
respond to her strategy (Conitzer and Sandholm 2006; Kiek-
intveld et al. 2009; Amin, Singh, and Wellman 2016). Most
approaches rely on linear programming (LP) and mixed in-
teger linear programming (MILP) which do not scale well to
large-scale and complex security games, despite techniques
such as column generation and cutting planes (Tambe 2011).

Recently, there has been an increasing interest in SSGs for
green security domains such as protecting wildlife (Kar et al.
2015; Wang, Zhang, and Zhong 2017), fisheries (Haskell et
al. 2014) and forests (Johnson, Fang, and Tambe 2012). Un-
like infrastructure protection domains which have discrete

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

locations, green security domains are categorized by con-
tinuous spaces (e.g., a whole conservation area needs pro-
tection). Previous works mostly discretize the area into grid
cells and restrict the players’ actions to discrete sets (Yang
et al. 2014; Haskell et al. 2014; Gan et al. 2017) to find the
equilibrium strategy using LP or MILP. However, a coarse
discretization may lead to low solution quality, and a fine-
grained discretization would make it intractable to com-
pute the optimal defender strategy using mathematical pro-
gramming based techniques, especially when there are mul-
tiple defender resources. Other approaches handle contin-
uous space by exploiting spatio-temporal structure of the
game (Fang, Jiang, and Tambe 2013; Yin, An, and Jain
2014) or by numerically solving differential equations for
special cases (Johnson, Fang, and Tambe 2012), which can-
not be extended to general settings.

In this paper, we provide a novel approach for solving se-
curity games based on policy learning, fictitious play and
deep learning. This approach extends the existing toolkit to
handle complex settings such as general games with contin-
uous spaces. We make the following major contributions:

• We present OptGradFP, a novel and general algorithm
which considers continuous space parameterized policies
for two-player zero-sum games and optimizes them using
policy gradient learning and game theoretic fictitious play.

• We provide a continuous space security game model for
forest protection, which incorporates infinite action sets
over two-dimensional continuous areas and asymmetric
target distributions. Existing approaches based on MILP
or differential equations fail to handle such games.

• We provide a convolutional neural network based imple-
mentation of OptGradFP (called OptGradFP-NN), which
after learning on various game states, shifts computation
in security games from online to offline, by predicting
good defender strategies on previously unseen states.

Our experimental analysis with OptGradFP and
OptGradFP-NN demonstrates the superiority of our
approach against comparable approaches such as StackGrad
(Amin, Singh, and Wellman 2016) and Cournot Adjustment
(CA) (Fudenberg and Levine 1998). Our approach gives a
good strategy for both players, even when the baselines fail
to converge.



2 Preliminaries
We use small letters (x) to denote scalars, bold small letters
(x) to denote vectors, capitals (X) to denote random vari-
ables and bold capitals (X) to denote random vectors. R
represents the set of real numbers. Saying x ∈ [a, b] implies
that all corresponding elements of x are ≥ those of a and ≤
those of b. N (µ, ν2) is the normal distribution with mean µ
and variance ν2.

The sigmoid function 1
1+exp (−z) is denoted by σ(z). The

logit function is defined as: logit(x) , log x
1−x ∀x ∈

[0,1]. Note that the sigmoid and logit functions are inverses
of each other i.e. σ(logit(x)) = x.

2.1 Stackelberg Security Games
A Stackelberg Security Game (SSG) (Kiekintveld et al.
2009; Korzhyk et al. 2011) is a leader-follower game be-
tween a defender and an adversary (a.k.a. opponent). Given
a game state (locations of targets), an action or a pure strat-
egy of the defender is to allocate the resources to protect a
subset of targets in a feasible way (e.g., assign each resource
to protect one target). A pure strategy of the adversary is to
attack a target. The mixed strategy of a player is a probabil-
ity distribution over the pure strategies. A player’s policy is
a mapping from the game state to a mixed strategy.

The payoff for a player is decided by the game state and
joint action of both players, and the expected utility function
is defined as the expected payoff over all possible states and
joint actions given the players’ policies. In this paper, we
restrict ourselves to zero-sum games while deferring inves-
tigation of general-sum games to future work.

An attacker best responds to a defender policy if he
chooses a policy that maximizes his expected utility, given
the defender’s policy. The optimal defender policy in SSGs
is one that maximizes her expected utility, given that the at-
tacker best responds to it and breaks ties in favor of the de-
fender. In zero-sum SSGs, the optimal defender policy is the
same as the defender policy in any Nash Equilibrium (NE).

2.2 Fictitious Play in Normal Form Games
Fictitious play (FP) is a learning rule where each player best
responds to the empirical frequency of their opponent’s play.
It converges to a NE under various settings including two-
player zero-sum games (Fudenberg and Levine 1998).

2.3 Policy Gradient Theorem
According to the policy gradient theorem (Sutton et al.
1999), given a function f(·) and a random variable X ∼
p(x|θ) whose distribution is parameterized by parameters
θ, the gradient of the expected value of f(·) with respect to
θ can be computed as

∇θEX [f(X)] = EX [f(X)∇θ log p(X|θ)] (1)

We can approximate the gradient on the right-hand side by
sampling B samples {xi}i=1:B ∼ p(X|θ), and comput-
ing ∇θEX [f(X)] ≈ 1

B

∑B
i=1 f(xi)∇θ log p(xi|θ). The

only requirement for this to work is that the density p(xi|θ)
should be computable and differentiable w.r.t. θ for all x.

We will use the policy gradient theorem to compute the gra-
dients of the defender and opponent utilities w.r.t. their pol-
icy parameters in our algorithm.

2.4 Logit-normal Distribution
Logit-normal is a continuous distribution with a bounded
support. A random variable X ∈ [0, 1] is said to be dis-
tributed according to a logit-normal distribution if logit(X)
is distributed according to a normal distribution. The density
function is given by:

pln(X;µ, ν) =
1√
2πν

1

x(1− x)
e−

(logit(x)−µ)2

2ν2 (2)

Unlike the normal distribution, logit-normal distribution
does not have analytical expressions for its mean and stan-
dard deviation. But we can still parameterize the distribution
by using the mean (µ) and standard deviation (ν) of the un-
derlying normal distribution. If X ∼ pln(X;µ, ν), a sample
of X can be drawn by sampling ε ∼ N (0, 1) and then out-
putting x = σ(νε+ µ).

3 Game Models
We will demonstrate our algorithm on two domains:
• Rock-Paper-Scissors: A small stateless zero-sum game

with three discrete actions. This serves as a pedagogical
running example to demonstrate convergence of our algo-
rithm to the Nash Equilibrium (NE), and get interesting
insights into its behavior.

• Forest Security Game: A continuous state, zero-sum se-
curity game with continuous actions space for both play-
ers. While this game model is the focus of the paper and
is used to illustrate our algorithm, the algorithm is general
and is also applicable to other domains such as wildlife,
fishery protection etc.

3.1 Rock-Paper-Scissors (RPS)
Rock-Paper-Scissors game is a classical stateless, zero-sum
game with two players each having an action set: {Rock,
Paper, Scissors}. Both players simultaneously choose their
actions and receive rewards as shown in Figure 1.

p1
p2 rock paper scissor

rock 0,0 -1,1 1,-1
paper 1,-1 0,0 -1,1

scissor -1,1 1,-1 0,0

Figure 1: Rewards for Rock-Paper-Scissor Game

3.2 Forest Security Game
Game model: We assume a circular forest with radius 1.0,
with an arbitrary tree distribution. All locations are repre-
sented in cylindrical coordinates with the forest center as
origin. The opponent (a.k.a. adversary) has n lumberjacks to
chop trees in the forests. The defender has m forest guards
to ambush the trespassing lumberjacks.



(a) (b)

Figure 2: (a) Forest state visualization as 120 × 120 image
(actual state used is grayscale), and (b) Forest game with 5
guards and 5 lumberjacks visualized. Trees are green dots,
guards are blue dots (blue circles show radius Rg) and lum-
berjacks are red dots (red circles show radius Rl).

State representation: One way of specifying the game state
(s) is via number and location of all trees. This leads to a
variable state-size, depending on the number of trees. Vari-
able length representations are hard to process for most
gradient-based optimization algorithms and we are mostly
concerned with the relative density of trees over the forest,
so we instead summarize the forest state s as a 120×120 ma-
trix containing a grayscale image of the forest. This makes
the defender and opponent policies invariant to the total
number of trees in the forest and additionally allows our ap-
proach to be used for learning policies with satellite images
of forests. An example input in RGB is shown in figure 2a
(players’ input is a grayscale version).
Defender action: The defender picks m locations, one for
each guard to remain hidden, and ambush lumberjacks. The
defender’s action aD ∈ Rm×2 is a set of m distances
d ∈ [0, 1]m and angles θ ∈ [0, 2π]m specifying the cylindri-
cal coordinates of the guards’ positions.
Opponent action: Following (Johnson, Fang, and Tambe
2012), we assume that lumberjacks cross the boundary and
move straight towards the forest center. They can stop at any
point on their path, chop trees in a radiusRl around the stop-
ping point and exit back from their starting location. Since
lumberjack trajectories are fully specified by their stopping
coordinates, the opponent’s action is to decide all stopping
points. The opponent’s action aO ∈ Rn×2 is a set of n dis-
tances ρ ∈ [0, 1]n and angles φ ∈ [0, 2π]n specifying the
cylindrical coordinates of all chopping locations.
Rewards: A lumberjack is considered ambushed if his path
comes within Rg distance from any guard’s location. An
ambushed lumberjack gets a penalty −rpen and loses all
chopped trees. The total utility for the opponent (rO ∈ R) is
sum of the number of trees cut by the lumberjacks and the
total ambush penalty incurred. The total utility for the de-
fender is rD = −rO.
Game play: In a single gameplay: (1) A game state is re-
vealed, (2) Defender gives m guard locations and adversary
gives n wood chopping locations, (3) Game simulator re-
turns rewards for players. A full game is shown in figure 2b.

4 Policies and Utilities
Policies: Conventionally, a player’s mixed strategy is a prob-
ability distribution over the player’s actions given the game
state (s). Most previous work in computational game the-
ory focuses on how to compute a mixed strategy given a
specific game state. Inspired by the recent advances in re-
inforcement learning, we focus on an understudied concept
in games: a player’s policy. A player’s policy is a mapping
from game states to mixed strategies. The concept of policy
can help a player model different mixed strategies for differ-
ent states that might be encountered in a game domain. The
defender maintains a learnable policy πD parameterized by
weights wD, from which she can sample the guards’ posi-
tions, given any game state. She also maintains an estimate
of the adversary’s policy πO parameterized by wO, which
helps her learn her own policy. Note that in case of Rock-
Paper-Scissors, the finally learnt πO will also be the oppo-
nent’s Nash Equilibrium policy. However in SSGs like the
forest game, a rational opponent will play a best response to
the defender’s deployed policy (computable separately with-
out same parameterization as that of πO).

We use the symbols πD(wD), πO(wO) to denote policies,
πD(·|s;wD), πO(·|s;wO) to denote mixed strategies for the
state s, and expressions πD(aD|s;wD), πO(aO|s;wO) to
denote the probability of a certain action (aD or aO) drawn
from the policy (πD or πO) given a state s. We sometimes
skip writingwD orwO to promote clarity. Note that with our
policy representation, functions of a policy (e.g. utilities) can
be directly written as functions of the policy weights.
Utilities: The utilities of the defender and the opponent (JD
and JO = −JD respectively) are the expected rewards ob-
tained given the players’ policies:

JD(wD,wO) = Es,aD,aO [rD(s, aD, aO)]

=

∫
s

∫
aD

∫
aO

P (s)πD(aD|s;wD)πO(aO|s;wO)

rD(s, aD, aO) ds daD daO (3)

Note that the integral over s can be removed if we only re-
quire mixed strategies for a given state, but our method also
allows learning policies over multiple states if needed.
Both the defender and the opponent want to maximize their
utilities. In SSGs, the defender has to deploy her policy first,
without knowing the opponent’s policy. The problem faced
by defender is to compute:

w∗
D ∈ argmax

wD

min
wO

JD(wD,wO) (4)

The opponent observes the defender’s policy and he can
use this information to react with a best response to the de-
fender’s deployed policy:

w∗
O ∈ argmin

wO

JD(w
∗
D,wO) (5)

However, to reach a Nash Equilibrium, both players face
a symmetric problem to find a policy in the set of best re-
sponses (BR) to the other player’s current policy:

π∗D ∈ BRD(π∗O) (6)
π∗O ∈ BRO(π∗D) (7)



Note that Nash and Stackelberg Equilibrium policies (and
policy weights) may not be unique. From here on, we use
best response to denote any policy which belongs to the best
response set and optimal policy (or weights) to denote any
policy (or weights) belonging to the set of policies which
optimizes the players’ utilities.

Since, it is known that every Nash Equilibrium is also
a Stackelberg Equilibrium for two-player zero-sum games
(Fudenberg and Levine 1998), we propose a common al-
gorithm to solve both types of games. We approach these
problems by taking a gradient-based optimization approach.
The gradient of JD w.r.t. the defender parameters wD can
be found using the policy gradient theorem (section 2.3) as:

∇wDJD = Es,aD,aO [rD∇wD log πD(aD|s;wD)] (8)

The exact computation of the above integral is prohibitive,
but it can be approximated from a batch ofB on-policy sam-
ples (w.r.t. πD) as pointed out in section 2.3. The gradient for
the opponent objective w.r.t.wO can be computed similarly.
Ideally one can use even a single sample to get an unbiased
estimate of the gradients, but such an estimate has a very
high variance. Hence, we use a small batch of i.i.d. samples
to compute the gradient estimate.

Lastly, we point out that gradient-based optimization only
finds locally optimum points in the parameterized search
space, so the term optimal from here on would refer to a lo-
cal optimum of the objective functions under consideration,
when optimized in a parameterized weight space.

5 OptGradFP: Optimization with Policy
Gradients and Fictitious Play

We propose our algorithm OptGradFP to solve security
game models. Our algorithm leverages the advances in pol-
icy gradient learning (Sutton et al. 1999) and those from
game theoretic fictitious play (Heinrich, Lanctot, and Sil-
ver 2015; Heinrich and Silver 2016), to find the optimal de-
fender parameters wD which maximize her utility. Policy
gradient theorem (Sutton et al. 1999) provides a way to make
soft updates to current policy parameters to get new policies.
Fictitious play involves best responding to the average of the
other players’ policies uptil now.

OptGradFP (algorithm 1) aims to approximate the Nash
Equilibrium policies for the players. It maintains estimates
of players’ policies πD, πO and samples ns actions from
each policy in every episode. The game state, and the sam-
pled actions (s, aD, aO) are stored in a replay memory. The
replay memory stores samples from all past policies of the
players and helps to emulate approximate fictitious play.

Every episode, the algorithm randomly samples a mini-
batch of size nb from the replay memory, containing actions
of both players from all their policies uptil then. To train a
player, it then plays games by resampling that player’s ac-
tions for those samples from his/her current policy (while
keeping the other player’s actions the same), and improves
the player’s policy using the policy gradient update.

Note that the policy gradient update made this way is ap-
proximately a soft update towards the best response to the

Algorithm 1: OptGradFP
Data: Learning rates (αD, αO), decays (βD, βO), batch

size (nb), sample size (ns), episodes (epmax)
Result: Parameters wD
Initialize policy parameters wD and wO randomly;
Create replay memory mem of size E = epmax × ns;
for ep in {0, . . . , epmax} do

/* Sample states and actions */
for ns times do

Obtain game state s;
Get aD ∼ πD(·|s;wD), aO ∼ πO(·|s;wO);
Store {s, aD, aO} in mem;

/* Train Defender */
Draw nb samples {si, aiD, aiO} from mem;
Play nb games si, ãiD, a

i
O with ãiD ∼ πD(·|si;wD)

to obtain rewards r̃iD, r̃
i
O;

∇wDJD = 1
nb

∑nb
i=1 r̃

i
D∇wD log πD(ã

i
D|si;wD);

wD := wD + αD
1+ep βD

∇wDJD;
/* Train Opponent */
Draw nb samples {si, aiD, aiO} from mem;
Play nb games si, aiD, ã

i
O with ãiO ∼ πO(·|si;wO)

to obtain rewards r̃iD, r̃
i
O;

∇wOJO = 1
nb

∑nb
i=1 r̃

i
O∇wO log πO(ã

i
O|si;wO);

wO := wO + αO
1+ep βO

∇wOJO;

other player’s average policy. We employ learning rate de-
cay to take larger steps initially and obtain a finer conver-
gence towards the end.

Also, playing all games with the player’s current policy
before the policy gradient step is required since policy gradi-
ents require on-policy sampling. If a game simulator, which
allows playing games by restoring arbitrary previous states
is not available, importance sampling can be a viable substi-
tute for this step.

Finally observe that OptGradFP can learn to find the op-
timal policies for a single game state s, if the game simula-
tor always gives out that state. However, it can also learn to
generalize over multiple input states, if the same simulator
gives it many different states s while sampling. Also, our al-
gorithm is very generic in the sense that it does not require
computing any best response functions specific to any game,
but rather learns directly from samples.

6 OptGradFP-NN: OptGradFP with Neural
Networks

Since OptGradFP does not depend on policy representation,
we can choose it freely according to domain so long as it is
differentiable w.r.t. its parameterization. For RPS, we simply
maintain the defender and opponent policies as 3×1 vectors
i.e. πD = [πD1, πD2, πD3], πO = [πO1, πO2, πO3]. Since
this is a stateless game, there is no distinction between policy
and mixed strategy.

For the forest game, we assume each element of the de-
fender’s and opponent’s actions (aD, aO) to be distributed



independently according to logit-normal distributions. Our
choice of logit-normal distribution meets the requirement of
a continuous distribution, differentiable w.r.t. its parameters
and having bounded support (since our players’ actions are
bounded and continuous).

To represent them, we need to generate the means and
standard deviations of the underlying normal distributions
for each element of aD = (d,θ) and aO = (ρ, φ). While
having a mean and variance would suffice to represent a
mixed strategy, we are aiming to find policies that map input
states represented by images to mixed strategies. Hence, we
use convolutional neural networks (CNNs) to map the input
images (states) to means and standard deviations for each
player, owing to their recent success in image processing
and computer vision applications (Krizhevsky, Sutskever,
and Hinton 2012; Zeiler and Fergus 2014).

  

Input
image

Dense: m
Linear

Dense: m
Linear

Dense: m
ReLU

Dense: m
Linear

Dense: m
ReLU

μd

μθ

νd

νθConv: 64, 8x8, (2,2)
ReLU

Conv: 32, 4x4, (2,2)
ReLU

Dense: 64m
Tanh

Figure 3: Defender’s policy represented via a CNN

Defender policy representation: The defender neural
network parameterized by weights wD takes as input an
image s of the forest tree locations and outputs means
(µd(s;wD) ∈ Rm,µθ(s;wD) ∈ Rm) and standard de-
viations (νd(s;wD) ∈ Rm,νθ(s;wD) ∈ Rm) for two
m-dimensional gaussians. For clarity we will skip writing
(s;wD) with these parameters. Each defender action coor-
dinate is then a logit-normal distribution and the probability
of taking action aD = (d,θ) is given by:

πD(d,θ|s) =
∏
i∈[m]

pln(di;µd,i, νd,i)pln

(
θi
2π

;µθ,i, νθ,i

)
(9)

where pln is the logit-normal distribution and the product
is over all m elements of the vector. The defender’s policy
network is shown in Figure 3.

Opponent policy representation: The opponent neural
network is similarly parameterized by weights wO out-
puts means (µρ ∈ Rn,µφ ∈ Rn) and standard deviations
(νρ ∈ Rn,νφ ∈ Rn) for two n-dimensional gaussians. The
probability of action aO = (ρ,φ) is similar to equation (9).

The network architectures for both players are provided in
the appendix. Finally, though all elements of aD (resp. aO)
are from independent logit-normal distributions, the means
and standard deviations for the underlying normal distribu-
tions are computed jointly via the CNNs, and allow the play-
ers to plan coordinated moves for their resources.

7 Experiments and Results
We now present experiments against several baselines.
Cournot Adjustment (CA), one of the early techniques used
to optimize players’ policies, makes the defender and the

opponent respond to each other’s policy with their best re-
sponses. This method can converge to the Nash Equilib-
rium for certain classes of games (Fudenberg and Levine
1998). Another method called StackGrad was recently pro-
posed (Amin, Singh, and Wellman 2016). It uses a best re-
sponse computation for the opponent’s updates, and a pol-
icy gradient update similar to ours for the defender (but no
fictitious play). We also augmented StackGrad with ficti-
tious play (using replay memory), and call it StackGradFP.
We compare our results against CA, StackGrad and Stack-
GradFP in our experiments. For more details of the baselines
and hyperparameters of all algorithms, refer to the appendix.

For forest game, we present results for m = 8 guards and
n = 8 lumberjacks where the numbers provide appropri-
ate forest coverage (since fewer guards leave too much open
space). We set the ambush penalty rpen = 10, guard radius
Rg = 0.1 and lumberjack radius Rl = 0.04 < Rg (since
guards can scout lumberjacks from long distances).

7.1 Rock-Paper-Scissors Results
Figure 4 shows the defender’s statistics as a function of the
number of episodes, when OptGradFP is applied. Note from
figure 4a, that the final policy of defender comes close to(
1
3 ,

1
3 ,

1
3

)
and converges slowly while oscillating around it.

The oscillations are because of minibatch sampling from the
replay memory and become smaller with larger batch sizes.
A faster convergence is achieved by the average policy of
defender (figure 4b) and we recommend computing the av-
erage policies if feasible. Note that average policies are eas-
ily computable in small settings like RPS, but in continu-
ous domains like the forest game, there is no clear way of
computing average policies and hence we will stick to the
parameterized policy in such cases. The defender’s utility
also converges to the Nash Equilibrium value = 0 as shown
in figure 4c. These results demonstrate the convergence of
OptGradFP. Results on RPS with other baselines have been
shown in the appendix.

7.2 Forest Security Game Results
Learned policy on a single state: We show a visualiza-
tion of the players’ final mixed strategies in figure 5, when
trained only on one randomly chosen forest state. The vi-
sualizations were generated by sampling 1000 locations for
each guard (blue dots) and each lumberjack (red dots) from
each algorithm’s final strategies. Note that training strategies
on a single forest state does not require a neural network,
since we only need to learn specific values ofµd,µθ,νd,νθ
as opposed to a mapping for every state s.

Clearly CA and StackGrad lead to highly concentrated
strategies for the defender and the opponent (figures 5a, 5b).
In fact, they do not generally converge and keep oscillating.
However, OptGradFP and StackGradFP (figures 5d, 5c) con-
verge well and give well-spread out strategies that provide
appropriate coverage of the forest for both players.

Note that both OptGradFP and StackGradFP contain a
few guards forming circular-band shaped densities centered
around the origin, which generally provide reasonable pro-
tection for the forest’s dense center. CA and StackGrad find



(a) (b) (c)

Figure 4: (a) Defender’s policy, (b) Defender’s average policy, (c) Defender’s utility

(a) (b)

(c) (d)

(e) (f)

Figure 5: Visualization of players’ policies. The blue and
red dots show sampled positions for guards and lumberjacks
respectively: (a) CA, (b) StackGrad, (c) StackGradFP, (d)
OptGradFP, (e) OptGradFP on a forest with a central core,
and (f) OptGrad.

local regions to guard, and leave enough space for the lum-
berjacks to chop wood without getting ambushed. Note that
placing the bands close to the forest center would leave a

huge area to be chopped by the lumberjacks. Also, placing
the guards at the boundary would distribute them sparsely
and lumberjacks would be able to come and go unam-
bushed. OptGradFP and StackGradFP find reasonable mid-
dle ground by inferring good radii to place the guards.

We also show the mixed strategy found by OptGradFP for
a forest containing a symmetric central core of trees similar
to (Johnson, Fang, and Tambe 2012). It covers the core with
6 out of 8 guards forming a dense ring, after which the re-
maining guards take blob-shaped densities since their pres-
ence/absence does not matter (local minima). This is similar
to the circular bands proposed as the optimal patrol strategy
for a uniform tree density.

Opponent’s best response utility: Another performance
indicator is the utility achieved by opponent’s final best re-
sponse strategy after the defender fixes her strategy (see ap-
pendix for opponent’s best response computation). Table 1
gives the opponent’s best response utility (OBU) for a single
forest state. OptGradFP and StackGradFP provide much bet-
ter utility than alternatives. CA and StackGrad do not con-
verge and hence their utility values keep fluctuating but are
in general much higher than those of OptGradFP and Stack-
GradFP. CA and StackGrad have a high opponent’s best re-
sponse utility which is in agreement with our observation
that they find local regions to guard, and leave the lumber-
jacks lots of space to chop wood without getting ambushed.

Algorithm OBU
CA 661.0± 92.7

StackGrad 596.0± 74.3
StackGradFP 399.4± 8.5
OptGradFP 398.2± 5.2

Table 1: Opponent’s best response utility (± std. error of
mean).

Replay memory: To emphasize the crucial role of ficti-
tious play, we removed fictitious play from OptGradFP (we
call this OptGrad). This means using a small replay memory
(E = ns = nb), containing games sampled only from play-
ers’ current strategies. On a single state, the utility achieved
by opponent’s best response strategy was 481.14, which is



slightly better than CA and StackGrad, but worse than Opt-
GradFP and StackGradFP. The resulting strategies (figure
5f) are not well spread-out anymore, since the method does
not have history of previous steps (similar to StackGrad).

In general, having a replay memory and large batch size
(nb � ns) gave us smoother convergence properties by
better approximating the best response to the other player’s
average strategy. However, having a large sample size re-
quires playing more games and becomes a bottleneck for
every training step. The trade-off between good approxima-
tion to fictitious play vs. computation time requires careful
balancing to achieve fast convergence.

Computation time: The time for computing the de-
fender’s mixed strategy on a single forest state using Algo-
rithm 1 is shown in Table 2. Clearly OptGradFP is slower
than OptGrad, CA and StackGrad (because they lack game
replays). However, it is faster than StackGradFP since it does
not require best response computation, unlike StackGradFP.
OptGrad is faster than CA and StackGrad for the same rea-
son. In the example domain of forest protection as well as
other security games, computing best responses (even ap-
proximately) is quite complex, often domain-dependent and
computationally expensive. Replacing it with a policy gradi-
ent step provides significant speedup.

Algorithm Computation time ± Std. dev. (in secs)
CA 8263.2± 76.4

StackGrad 5338.3± 120.1
OptGrad 3522.9± 98.3

StackGradFP 18426.5± 190.8
OptGradFP 12257.6± 187.2

Table 2: Computation time for all algorithms (in seconds).

Training on multiple forest states: Finally, we show that
OptGradFP can learn to predict good defender strategies on
unseen forest states, once trained on multiple forest states.
For this we trained the CNN policies (section 6) using Opt-
GradFP on 1000 randomly generated forest states. Then we
tested the learnt defender policies on 10 new forest states
which were not present in the training set. A good defender
strategy for each of the 10 test states was also computed in-
dependently using OptGradFP (without the CNN) using Al-
gorithm 1 to compare against the strategies predicted by the
learnt CNN policy.

The opponent’s best response utility (OBU) on each test
forest state is given in Table 3. We observe slightly higher
opponent utilities for predicted strategies than the ones di-
rectly computed, but the predicted strategies are fairly com-
petitive given that the neural network never saw those states
in training. Further it also predicts strategies very similar
to those found independently for each forest state (see ap-
pendix, Figure 6). This shows that in practice our algorithm
can train neural networks to learn about the structure of the
problem domain and predict defender strategies with low op-
ponent utilities on unseen states.

Lastly, though independent training on each state requires
about ≈ 12250 seconds (Table 2) and jointly training on

1000 states took about 7 days (i.e. 170.1 hours), the predic-
tion time on a new state (after training) is only about 90 ms
on average, thereby shifting the computation of strategies
from online to mostly offline.

State OBU (predicted) OBU (computed)
0 414.4± 7.7 375.6± 7.5
1 179.0± 3.8 126.5± 3.9
2 394.1± 7.8 383.9± 8.0
3 283.2± 6.6 224.9± 5.6
4 263.0± 5.4 241.8± 5.2
5 400.0± 8.2 297.5± 6.7
6 317.7± 6.9 232.3± 5.0
7 340.9± 7.4 278.0± 5.8
8 264.0± 5.2 190.7± 4.2
9 462.0± 9.6 451.5± 9.9

Table 3: Opponent’s best response utilities ± std. error of
mean for predicted strategies and independently computed
strategies.

8 Discussion
Why not discretize? Some previous works (Yang et al.
2014; Haskell et al. 2014; Gan et al. 2017; Xu et al. 2014)
discretize the state and action spaces to find equilibrium
strategies, but the attacker in particular, may not attack only
at discretized locations, which invalidates discretized solu-
tions in real settings.

Further, the computation after discretization can still be
intractable (esp. with multiple player resources). For in-
stance, even a coarse discretization of the forest game for
8 guards and 8 lumberjacks with angular grid size = 10 de-
gree (36 bins) and radial grid size = 0.1 (10 bins), gives an
intractable number of pure strategies ((36× 10)8 ≈ 2.82×
1020) for just the defender on a single forest state. While
column generation and double oracle based approaches can
somewhat improve computation efficiency, the memory and
runtime requirement still remains high (Xu et al. 2014).

Additionally, with discretization, the computation cost
would be paid independently for each individual game state.
In contrast, using our approach, the computation cost for a
new game instance after the neural network is trained, is
much lower than using a discretization-based approach.

Comparing all algorithms Since StackGrad plays ag-
gressive best responses for the opponent, the lumberjacks
keep jumping to far-off locations. The defender’s policy gra-
dient (PG) is a soft step and never catches up to the lumber-
jacks. OptGrad updates both players with a soft PG step and
hence outperforms StackGrad, but without replay memory,
neither of them converges.

After adding replay memory, both OptGradFP and Stack-
GradFP make the players respond to each other’s average
strategies. Even when the opponent changes its strategy ag-
gressively (in StackGradFP), responding to the average of
its strategies helps the defender converge. Both have similar
performance, however OptGradFP dominates because of its
lower computation time.



Limitations Gradient-based approaches rely on availabil-
ity of non-zero gradients throughout the state-action spaces
for both players, which may not always apply. In such cases,
the algorithm can sometimes stagnate prematurely if the
gradient of the utility w.r.t. the policy parameters becomes
zero. Hence, gradient-based approaches sometimes require
careful initialization to compute good mixed strategies for a
given state.

9 Conclusion
We have presented a neural network based approach to
address security games with continuous state and action
spaces. Our novel algorithm OptGradFP represents policies
by parameterizing in continuous space and learns the param-
eters using fictitious play and policy gradients. Our approach
is generic and can train the defender’s policy over multi-
ple distinct game states. This allows learning a generalized
model for the defender’s policy offline and predict good de-
fender strategies on previously unseen game states.

Acknowledgments
This research was supported in part by NSF Research Grant
IIS-1254206, MURI grant W911NF-11-1-0332, Harvard
Center for Research on Computation and Society fellowship
and USC Viterbi Graduate PhD fellowship.

References
Amin, K.; Singh, S.; and Wellman, M. P. 2016. Gradient
methods for stackelberg security games. In UAI, 2–11.
Basilico, N.; Celli, A.; De Nittis, G.; and Gatti, N. 2017. Co-
ordinating multiple defensive resources in patrolling games
with alarm systems. In Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, 678–686.
Cermák, J.; Bošanský, B.; Durkota, K.; Lisý, V.; and Kiek-
intveld, C. 2016. Using correlated strategies for computing
stackelberg equilibria in extensive-form games. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, AAAI’16, 439–445.
Conitzer, V., and Sandholm, T. 2006. Computing the Opti-
mal Strategy to Commit to. In Proc. of the ACM Conference
on Electronic Commerce (ACM-EC), 82–90.
Fang, F.; Jiang, A. X.; and Tambe, M. 2013. Optimal patrol
strategy for protecting moving targets with multiple mobile
resources. In AAMAS, 957–964.
Fudenberg, D., and Levine, D. K. 1998. The theory of learn-
ing in games, volume 2. MIT press.
Gan, J.; An, B.; Vorobeychik, Y.; and Gauch, B. 2017. Se-
curity games on a plane. In AAAI, 530–536.
Haskell, W.; Kar, D.; Fang, F.; Tambe, M.; Cheung, S.; and
Denicola, E. 2014. Robust protection of fisheries with com-
pass. In IAAI.
Heinrich, J., and Silver, D. 2016. Deep reinforcement learn-
ing from self-play in imperfect-information games. CoRR
abs/1603.01121.
Heinrich, J.; Lanctot, M.; and Silver, D. 2015. Fictitious
self-play in extensive-form games. In ICML, 805–813.

Johnson, M. P.; Fang, F.; and Tambe, M. 2012. Patrol strate-
gies to maximize pristine forest area. In AAAI.
Kar, D.; Fang, F.; Fave, F. D.; Sintov, N.; and Tambe, M.
2015. “a game of thrones”: When human behavior models
compete in repeated stackelberg security games. In AAMAS.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In AAMAS, 689–
696.
Korzhyk, D.; Yin, Z.; Kiekintveld, C.; Conitzer, V.; and
Tambe, M. 2011. Stackelberg vs. nash in security games: An
extended investigation of interchangeability, equivalence,
and uniqueness. JAIR 41:297–327.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., NIPS. 1097–1105.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Rosenfeld, A., and Kraus, S. 2017. When security games
hit traffic: Optimal traffic enforcement under one sided un-
certainty. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, 3814–
3822.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; Mansour, Y.;
et al. 1999. Policy gradient methods for reinforcement
learning with function approximation. In NIPS, volume 99,
1057–1063.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. New York, NY: Cam-
bridge University Press.
Wang, B.; Zhang, Y.; and Zhong, S. 2017. On repeated
stackelberg security game with the cooperative human be-
havior model for wildlife protection. In Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’17, 1751–1753.
Xu, H.; Fang, F.; Jiang, A. X.; Conitzer, V.; Dughmi, S.; and
Tambe, M. 2014. Solving zero-sum security games in dis-
cretized spatio-temporal domains. In AAAI, 1500–1506.
Yang, R.; Ford, B.; Tambe, M.; and Lemieux, A. 2014.
Adaptive resource allocation for wildlife protection against
illegal poachers. In AAMAS.
Yin, Y.; An, B.; and Jain, M. 2014. Game-theoretic resource
allocation for protecting large public events. In AAAI, 826–
833.
Zeiler, M. D., and Fergus, R. 2014. Visualizing and under-
standing convolutional networks. In European conference
on computer vision, 818–833.



10 Appendix
10.1 Baseline Implementations
Note that the actual specification of CA and StackGrad can-
not directly work in the same domain as OptGradFP. To
overcome this situation, we implemented CA, StackGrad
and StackGradFP in a way similar to OptGradFP. All the
baselines maintain a parameterized strategy representation
for both players (πD and πO). Each algorithm samples ns
actions for both players in every episode and store them in a
replay memory. Since CA and StackGrad lack fictitious play,
their replay memory is small and can only contain actions
sampled from the current strategy. OptGradFP and Stack-
GradFP both maintain long replay memories containing all
previous strategy samples.

For soft policy updates, we use policy gradient updates
(like in OptGradFP) on nb-size batches drawn from the re-
play memory. However, to emulate best responses we do not
actually compute best responses since that would make the
implementation specific to the domain. Instead, we generate
new randomly initialized neural network strategies and train
them multiple times with the soft gradient step on nb-size
batches of the other player’s actions drawn from the replay
memory. This approximately replicates a best response. If a
generic implementation is not required, this step can also be
replaced by game-specific best-response functions.

Brief descriptions of update rules for all baselines follow:
CA: Makes the defender and the opponent best respond to
each other’s strategy. StackGrad: Uses best response up-
date for the opponent, and policy gradient update similar to
ours for the defender (but no fictitious play). StackGradFP:
Same as StackGrad, except it uses a policy gradient update
with fictitious play for the defender (i.e. via a replay memory
like in OptGradFP).

10.2 Opponent’s Best Response Utility
The opponent’s final best response utility for the forest game
was computed approximately (computing the actual value
is extremely prohibitive), by sampling k random opponent
actions and k actions from the defender’s final strategy. k2
games were played with each combination of the defender’s
and opponent’s actions and the opponent action which led to
the maximum reward (averaged over all k defender actions)
was used to compute the opponent’s final utility. We use
k = 25 for all algorithms. Due to such evaluation, the oppo-
nent’s final action can be very different from that obtained
using πO, and it allows us to test our learnt defender strat-
egy without restraining the opponent’s final strategy shape
to logit-normal distribution thereby giving a more robust es-
timate of performance.

10.3 Hyperparameters
OptGradFP for Rock-Paper-Scissors uses maximum
episodes epmax = 1000, sample size ns = 50, batch size
nb = 500, learning rates αD = αO = 0.1, and decays
βD = βO = 9

epmax
. The baselines’ hyperparameters

for Rock-Paper-Scissors are the same as for OptGradFP
(except for E which is equal to ns for CA and StackGrad).
The forest game’s hyperparameters for the single forest

state case are summarized in Table 4. OptGradFP-NN for
multiple forest states uses the same parameters except
epmax = 20000 and E = 500000. The architectures of all
neural networks presented earlier and all algorithm hyper-
parameters were chosen by doing informal grid searches
within appropriate intervals.

CA StackGrad StackGradFP OptGradFP
epmax 400 400 400 400
ns 50 50 25 25
nb 50 50 250 250
E 50 50 10000 10000

α{D,O} 5e− 6 5e− 6 1e− 5 5e− 4
β{D,O}

9
epmax

9
epmax

9
epmax

9
epmax

Table 4: Hyperparameters

10.4 Neural Network Architectures
The defender neural network takes an image of size 120 ×
120 as input. First hidden layer is a convolutional layer with
64 filters of size 8× 8 and strides 2× 2. The second hidden
layer is convolutional with 32 filters of size 4×4 and strides
2× 2. Both convolutional layers have relu activations and
no pooling. Next layer is a fully-connected dense layer with
64m units (where m = number of guards) and tanh acti-
vation. Lastly we have four parallel fully-connected dense
output layers one each for µd,νd,µθ and νθ. These four
layers have m units each, with the layers for means having
linear activations and those for standard deviations hav-
ing relu activations. We add a fixed small bias of 0.1 to
the outputs of the standard deviation layers to avoid highly
concentrated or close to singular distributions. We also clip
all gradients to stay in the range [−0.5, 0.5] to avoid large
weight updates and potential divergence (Mnih et al. 2015).
The opponent neural network is also similar to the defender
network, except that the fully-connected hidden layer has
64n units (where n = number of lumberjacks) and the four
output layers for µρ,νρ,µφ and νφ have n units each.

10.5 Baseline Results on Rock-Paper-Scissors
Figures 7 and 8 show results for CA, StackGrad and Stack-
GradFP on the Rock-Paper-Scissors game. Note that CA and
StackGrad do not use fictitious play and hence mostly keep
oscillating, whereas StackGradFP converges to the Nash
Equilibrium (both final policy and average policy). We use
ns = 50 and nb = 500 for all baselines.

10.6 Policy Visualization for Multiple Forest
States

In section 7.2, we trained a CNN on 1000 randomly gener-
ated forest states. The predicted strategies and the indepen-
dently generated strategies for 4 randomly chosen test states
are visualized in Figure 6.



(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 6: Visualization of players’ strategies on randomly chosen test states (defender: blue, opponent: red): (a) Predicted: 1,
(b) Computed: 1, (c) Predicted: 7, (d) Computed: 7, (e) Predicted: 8, (f) Computed: 8, (g) Predicted: 9, and (h) Computed: 9.

(a) (b) (c) (d)

Figure 7: Results of CA and StackGrad on Rock-Paper-Scissors: (a) Defender’s actions with CA on RPS, (b) Defender’s utility
with CA on RPS, (c) Defender’s policy with StackGrad on RPS, (d) Defender’s utility with StackGrad on RPS.

(a) (b) (c)

Figure 8: Results of StackGradFP on Rock-Paper-Scissors: (a) Defender’s policy at each episode, (b) Defender’s average policy
at each episode, and (c) Defender’s utility at each episode.


