Optimal Patrol Planning for Green Security Games with Black-Box Attackers

Haifeng Xu¹, Ben Ford¹, Fei Fang², Bistra Dilkina¹, Andrew Plumptre³, Milind Tambe¹, Margaret Driciru⁴, Fred Wanyama⁴, Aggrey Rwetsiba⁴, Mustapha Nsubaga⁴, Joshua Mabonga⁴

¹University of Southern California (USC) ²Carnegie Mellon University (CMU) ³Wildlife Conservation Society ⁴Uganda Wildlife Authority

The Classical Stackelberg Security Game Paradigm

Stackelberg Game

Defender (leader): use limited resources to protect critical targets

Attacker (follower): long-term surveillance, well-planned (thus perfectly rational)

Flights

Ferries

Airports

Road Networks

A Rapidly Growing Trend: Green Security Domains

Endangered Wildlife

Today	
≈ 3,200	
100 Wears ago	
≈ 60,000	

Fisheries

Environmental Resources

Challenges for Patrol Planning in Green Security Games

- > Attacker's bounded rationality \Rightarrow intricate attacker (behavior) models
 - E.g., graphical model [Nguyen et al.'16], ensemble of decision trees [Kar et al.'17], Markov random field [Gholami et al.'17]...

Challenge 1:

How to optimize patrolling against these complicated attacker models?

Do we have to design a different algorithm for each attacker model?

Challenges for Patrol Planning in Green Security Games

- Attackers may have partial real-time surveillance
 - Can observe rangers' current move and infer where they go next

"Those (poachers) would simply observe the rangers and base their offending patterns on the schedules of the rangers "

Challenge 2:

How to deal with attacker's (partial) real-time surveillance?

Our Contributions:

- A new patrol planning framework OPERA (Optimal patrol Planning with Enhanced RAndomness)
 - Work for any attacker model (under mild assumptions)
 - Mitigate negative effects of attacker's real-time surveillance with enhanced randomness
- Test performances on real-world data from Uganda

Outline

Motivation and Game Model

Optimal Patrol Planning Against Black-Box Attackers

Experimental Evaluation

Outline

Motivation and Game Model

- Optimal Patrol Planning Against Black-Box Attackers
- Experimental Evaluation

Motivation Domain: Wildlife Protection in Uganda

Forest Area: QEPA

- > Covers 2520 sq. km
- Divided into grids of 1km×1km

Poachers: set trapping tools (e.g., snare)

Rangers: conduct patrols

Our Goal: maximize catches of snares

Collaborators: Wildlife Conservation Society, Uganda Wildlife Authority,

Motivation Domain: Wildlife Protection in Uganda

Defender Strategy

<u>Observe</u>: a pure strategy = a path from v_{11} to v_{1T}

<u>Claim</u>: a mixed strategy \Leftrightarrow one-unit fractional flow from v_{11} to v_{1T}

<u>Def:</u> patrol effort at cell i = the aggregated flow through cell i

Outline

Motivation and Game Model

Optimal Patrol Planning Against Black-Box Attackers

Experimental Evaluation

The Single-Step Planning Task

Timeline:

Goal: maximize catches of snares against any given attacker model

Attacker model: (current patrolling effort + other features) \rightarrow predicted snare presence

Graphical Model [Nguyen et al.'16]

Decision Trees [Kar et al.' 17]

Markov Random Field [Gholami et al.'17]

More are coming...

Deep Neural Networks ???

How to optimize over these complicated attacker models?

Our Idea: Treat It as a Black-Box Function

For each cell *i*:

Our Idea: Treat It as a Black-Box Function

For each cell *i*:

- Patrol levels in { 0 , 1 , 2 , ... , m }
 - Thresholds to classify patrol efforts into levels
- > $g_i(0), g_i(1), \dots, g_i(m)$ are the predicted probabilities for each level
- > A good approximation when g_i is Lipchitz continuous in effort and m sufficiently large

The Optimization Task

Design patrol levels l_1, \ldots, l_m (induced by patrol efforts) to

maximize
$$\sum_{i=1}^{N} g_i(l_i)$$

Main Challenge: black-box representation results in combinatorial decision making problem under constraints

NP-Hardness

Theorem: Computing optimal mixed strategy is NP-hard.

Idea: reduction from Knapsack Problem

m patrol levels with thresholds: *α*₀ < *α*₁, ..., < *α_m g_i(i) = p_i* and *g_i(j) = 0*, ∀*j* ≠ *i*

Goal: with 1 unit patrol budget, decide for each *i* to patrol with α_i (reward p_i) or patrol with 0 (reward 0)

Packing m items (weight α_i , value p_i) to a 1 unit bag

Our Solution

A compact *mixed integer linear program* formulation for the optimization problem

$$\begin{array}{ll} \text{maximize } \sum_{i=1}^{N} \left(g_{i}(0) + \sum_{j=1}^{m} z_{i}^{j} \cdot [g_{i}(j) - g_{i}(j-1)] \right) \\ \text{subject to } x_{i} \geq \sum_{j=1}^{m} z_{i}^{j} \cdot [\alpha_{j} - \alpha_{j-1}], & \text{for } i = 1, ..., N. \\ x_{i} \leq \alpha_{1} + \sum_{j=1}^{m} z_{i}^{j} \cdot [\alpha_{j+1} - \alpha_{j}], & \text{for } i = 1, ..., N. \\ z_{i}^{1} \geq z_{i}^{2} ... \geq z_{i}^{m}, & \text{for } i = 1, ..., N. \\ z_{i}^{j} \in \{0, 1\}, & \text{for } i = 1, ..., N, j = 1, ..., m. \\ x_{i} = \sum_{t=1}^{T} \left[\sum_{e \in \sigma^{+}(v_{t,i})} f(e) \right], & \text{for } i = 1, ..., N. \\ \sum_{e \in \sigma^{+}(v_{t,i})} f(e) = \sum_{e \in \sigma^{-}(v_{t,i})} f(e), & \text{for } i = 1, ..., N; t = 2, ..., T - 1. \\ \sum_{e \in \sigma^{+}(v_{T,1})} f(e) = \sum_{e \in \sigma^{-}(v_{1,1})} f(e) = 1 \\ 0 \leq x_{i} \leq 1, & 0 \leq f(e) \leq 1, & \text{for } i = 1, ..., N; e \in E. \end{array}$$

Our Solution

A compact *mixed integer linear program* formulation for the optimization problem

- Involve a particular technique to linearize the problem
- Scalable to problems with, e.g., 100 targets and 5 patrol levels

However

- Output a mixed strategy randomizing over only a few paths
- Unavoidable efficient solvers are designed to find small-support solutions
- Vulnerable to attacker's (partial) real-time surveillance

Add Extra Randomness by Entropy Maximization

> Many mixed strategies implement the same patrolling effort

We compute the one that maximizes (Shannon) entropy
Usually support on a much larger set of paths
Difficult to learn

There is an efficient algorithm to compute max-entropy distribution here
Convex analysis, combinatorial optimization, duality theory

Extension: Multi-Step Planning

Goal: maximize aggregated total catch maximize $\sum_{i=1}^N g_i^2(l_i^2, l_i^1) + \sum_{i=1}^N g_i^1(l_i^1)$

Outline

Motivation and Game Model

Optimal Patrol Planning Against Black-Box Attackers

Experimental Evaluation

Real-World Data Set from QEPA

Rangers record captures of snares

- ➢ From 2003 − 2017
- > 39 patrol posts
- ➢ We test on post 11, 19, 24 (the mostly attacked)

Experiment 1: Compare with Baseline Algorithms **OPERA:** bagging ensemble model [Gholami et al.'17] (two levels: *low* and *high*) **Optimal Patrol** Entropy Attacker Model Strategy Maximization **OPP:** Optimal Patrol Planning

Another Two Baselines

- GREED: greedily pick the next reachable cell to patrol
- RAND: randomly pick the next reachable cell to patrol

Experiment 1: Compare with Baseline Algorithms

	#Detection	#Cover	#Routes	Entropy
OPERA	15/19	20/47	61	4.0
OPP	15/19	20/47	10	2.0
GREED	5/19	4/47	84	4.4
RAND	4/19	6/47	89	4.5

Comparisons of Different Criteria for Patrol Post 11

- \succ #Detection: $a/b \rightarrow$ out of b predicted attacks, the algorithm detects a attacks
- > #Cover: a/b → out of b cells, a of them are covered with high

Experiment 1: Compare with Baseline Algorithms

	#Detection	#Cover	#Routes	Entropy
OPERA	6/6	24/72	22	2.6
OPP	6/6	24/72	6	1.3
GREED	2/6	2/72	1	0
RAND	2/6	6/72	90	4.5

Comparisons of Different Criteria for Patrol Post 19

Experiment 2: Compare with Past (Real) Patrolling

Criteria	Post 11		Post 19		Post 24		
	OPERA	Past	OPERA	Past	OPERA	Past	
#Detections	15/19	4/19	6/6	5/6	4/4	3/4	
#Cover	20/47	6/47	24/72	11/72	20/59	14/59	

Take-Away Message

- > An efficient patrol planning tool that
 - Optimize against very general class of attacker models
 - Mitigate attacker real-time surveillance by adding extra randomness

Special Thanks to Wildlife Conservation Society, Uganda Wildlife Authority

Thank You

