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Stackelberg Game

 Defender (leader): use limited resources to protect critical targets

 Attacker (follower): long-term surveillance, well-planned (thus perfectly rational)

Flights Ferries Airports Road Networks
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 Attacker’s bounded rationality

 E.g., graphical model [Nguyen et al.’16], ensemble of decision trees [Kar et al.’17], 

Markov random field [Gholami et al.’17] . . .

Challenge 1: 

How to optimize patrolling against these complicated attacker models? 

Do we have to design a different algorithm for each attacker model?

⇒ intricate attacker (behavior) models



 Attackers may have partial real-time surveillance
 Can observe rangers’ current move and infer where they go next

Challenge 2: 

How to deal with attacker’s (partial) real-time surveillance?

“ Those (poachers) would simply observe the 

rangers and base their offending patterns on the 

schedules of the rangers ”



 A new patrol planning framework OPERA (Optimal patrol Planning with 

Enhanced RAndomness)

 Work for any attacker model (under mild assumptions)

 Mitigate negative effects of attacker’s real-time surveillance with enhanced randomness

 Test performances on real-world data from Uganda
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Forest Area: QEPA
 Covers 2520 sq. km

 Divided into grids of 1km×1km

Poachers:  set trapping tools (e.g., snare)

Collaborators:Wildlife Conservation Society, UgandaWildlife Authority,

Queen Elizabeth Park

Rangers:  conduct patrols

Our Goal:  maximize catches of snares
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Claim: a mixed strategy ⟺ one-unit fractional flow 

from 𝑣11 to 𝑣1𝑇

Def: patrol effort at cell 𝑖 =   the aggregated flow 

through cell 𝑖
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Observe: a pure strategy = a path from 𝑣11 to 𝑣1𝑇
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Timeline:

happened To be planned

. . . . . . 
Current periodPrevious period

Goal: maximize catches of snares against any given attacker model

 Attacker model:  (current patrolling effort + other features)  predicted snare presence



Graphical Model [Nguyen et al.’16]



Decision Trees [Kar et al.’ 17]



Markov Random Field [Gholami et al.’17]
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Deep Neural Networks ???

More are coming…



How to optimize over these complicated 
attacker models?



For each cell 𝒊:

Attacker 

Model

Prob. of detecting a snare at 

𝑖 in current period

Terrain features

Animal density

Previous effort at 𝑖
……

Current patrol 

effort at 𝑖



For each cell 𝒊:

Attacker 

Model

Prob. of detecting a snare at 

𝑖 in current period

Terrain features

Animal density

Previous effort at 𝑖
……

Current patrol 

effort at 𝑖 𝑔𝑖
Assumption: 𝑔𝑖 depends discretely on the current patrol effort

 Patrol levels in { 0 , 1 , 2 , … ,𝑚 }

 Thresholds to classify patrol efforts into levels

 𝑔𝑖 0 , 𝑔𝑖 1 ,… , 𝑔𝑖(𝑚) are the predicted probabilities for each level

 A good approximation when 𝑔𝑖 is Lipchitz continuous in effort and 𝑚
sufficiently large

effort 

value

𝑙 = 3

𝑙 = 2

𝑙 = 1

𝑙 = 0



Design patrol levels 𝑙1, … , 𝑙𝑚 (induced by patrol efforts) to 

 Main Challenge: black-box representation results in combinatorial decision 

making problem under constraints



Theorem: Computing optimal mixed strategy is NP-hard.
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Idea: reduction from Knapsack Problem

𝑚 patrol levels with thresholds: 𝛼0 < 𝛼1, … , < 𝛼𝑚

 𝑔𝑖 𝑖 = 𝑝𝑖 and 𝑔𝑖 𝑗 = 0, ∀𝑗 ≠ 𝑖

Goal: with 1 unit patrol budget, decide for each 𝑖 to 

patrol with 𝛼𝑖 (reward 𝑝𝑖) or patrol with 0 (reward 0)

⇔
Packing 𝑚 items (weight 𝛼𝑖, value 𝑝𝑖) to a 1 unit bag 
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Our Solution

A compact mixed integer linear program formulation for the 

optimization problem

 Involve a particular technique to linearize the problem

 Scalable to problems with, e.g., 100 targets and 5 patrol levels

However

 Output a mixed strategy randomizing over only a few paths

 Unavoidable – efficient solvers are designed to find small-support solutions

 Vulnerable to attacker’s (partial) real-time surveillance 



 Many mixed strategies implement the same patrolling effort

 We compute the one that maximizes (Shannon) entropy

 Usually support on a much larger set of paths

 Difficult to learn

 There is an efficient algorithm to compute max-entropy distribution here

 Convex analysis, combinatorial optimization, duality theory



Timeline:

Current periodPrevious period

happened To be planned

Next period

𝑙𝑖
1

𝑙𝑖
2

𝑔𝑖
1(𝑙𝑖

1) 𝑔𝑖
2(𝑙𝑖

1, 𝑙𝑖
2)

Goal: maximize aggregated total catch 

. . . . . . 
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Rangers record captures of snares 

 From 2003 – 2017

 39 patrol posts

 We test on post 11, 19, 24 (the mostly attacked) 

Collaborators:Wildlife Conservation Society, UgandaWildlife Authority,



OPERA:

Attacker Model
Optimal Patrol 

Strategy

Entropy 

Maximization

bagging ensemble model [Gholami et al.’17]
(two levels: 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ)

OPP: Optimal Patrol Planning

Another Two Baselines

 GREED: greedily pick the next reachable cell to patrol

 RAND: randomly pick the next reachable cell to patrol



Comparisons of Different Criteria for Patrol Post 11

 #Detection: 𝑎/𝑏  out of 𝑏 predicted attacks, the algorithm detects 𝑎 attacks

 #Cover: 𝑎/𝑏 out of 𝑏 cells, 𝑎 of them are covered with ℎ𝑖𝑔ℎ

P



Comparisons of Different Criteria for Patrol Post 19

P





 An efficient patrol planning tool that

 Optimize against very general class of attacker models 

 Mitigate attacker real-time surveillance by adding extra randomness 

Thank You

Special Thanks to Wildlife Conservation Society, UgandaWildlife Authority


