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PAWS: Game Theory Based Protection Assistant for Wildlife
Security

This chapter introduces Protection Assistant for Wildlife Security (PAWS) (Yang, Ford,
Tambe, & Lemieux, 2014) as a joint effort done by computer scientists, conservation
researchers, and conservation practitioners from two nongovernmental organizations—
Panthera, and Rimba. PAWS is a game theory based application to assist conservation
agency officials in planning wildlife ranger patrols to prevent wildlife crime. Reducing risks
to people and wildlife from wildlife crime ideally includes the combined effort of
practitioners worldwide and researchers in many different disciplines; PAWS demonstrates
the positive impact that research in computational game theory, an important topic within
the field of Artificial Intelligence (AI), can have in assisting wildlife conservation agencies to
prevent poaching. In recent deployment efforts, patrol planners mentioned that the routes
generated by PAWS came close to an actual planner's routes, a promising sign that PAWS
can suggest feasible routes and help reduce the significant burden of patrol planning.

Poaching directly threatens some species’ survival. For example, tigers, along with many
other endangered species, are in danger of extinction because of poaching risks (Global
Tiger Initiative Secretariat, 2013; National Wildlife Refuge Association, 2015; Montesh,
2013). The global population of tigers has dropped over 95% since the 1900s, resulting in 3
out of 9 species going extinct (Global Tiger Initiative Secretariat, 2013) in part to poaching.
In 2015, South African rhino poaching reached a rate of approximately 1 death every 8
hours (Save the Rhino International, 2015). Species extinction can destroy ecosystems and
weaken the communities and economies that depend on those ecosystems (Global Tiger
Initiative Secretariat, 2013). In some cases, such as with the illegal rhino and tiger trades,
poachers can be part of well-funded organized crime groups. Many other poachers, however,
are not part of organized crime syndicates but still threaten species with over-hunting by
snare poaching. Regardless of the scale, wildlife poaching poses negative risks to wildlife and

people.

Wotldwide, patrols are the most widespread method to combat and prevent wildlife
poaching. However, many conservation agencies suffer from a lack of law enforcement
resources to conduct these patrols over what are typically vast uninhabited protected areas.
One wildlife crime study reported an actual coverage density of 1 ranger per 167 square
kilometers (Holmern, Muya, & Roskaft, 2007) while current law enforcement density
statistics for New York City show approximately 28 officers per square kilometer (e.g.,
34,500 officers over a total land and sea area of 1,213 square kilometers) (City of New York,
2013). It would be impossible to adequately protect the entire protected areas at the same
density as in urban areas, increasingly the importance and necessity of planning efficient
patrols. However, current patrols in many protected or other conservation areas may not
make the most efficient use of their limited patrolling resources.



PAWS generates a set of strategically randomized patrol routes, based on a game-theoretic
analysis, such that a conservation agency can choose to execute any of these patrols with a
given probability. This game-theoretic approach provides a valuable degree of
unpredictability, and while this by itself would be useful for assisting agencies with the time-
consuming process of patrol route planning, PAWS also formalizes and incorporates two
important concepts in patrol planning:
1. Building models of human behavior to better predict where poachers will attack and
how they will react to any executed patrol routes.
2. Incorporating domain features such as terrain information into the game-theoretic
analysis so that patrollers can easily execute any of the patrols generated by PAWS.
PAWS was first tested at Uganda's Queen Elizabeth National Park (QENP) where poaching
is believed to be the most harmful and frequent illegal activity in the park. Now PAWS is
regularly deployed in a Southeast Asia protected area in support of tiger conservation. For
the security of animals and patrollers, no latitude/longitude information is presented about
this site.

Applying game theoretic analysis to poaching

Game theory is the study of strategic decision-making and, more specifically, the conflict and
cooperation between intelligent decision-makers (Myerson, 1997). In combating poaching,
there is a strategic interaction between the conservation agency (or wildlife ranger or other
patrollers) and the poachers. In this game, there are two types of players with conflicting
interests: the defender (i.e., conservation agency or patrollers) and the poachers. Each player
wants to take action(s) so that the outcome is in their best interest. For example, poachers
want to place snares and capture wildlife without having their snares confiscated by
patrollers, and on the other hand, patrollers want to find snares before they capture any
animals. To that end, each player needs to reason about his or her opponent's potential
actions and play intelligently. For example, if the patroller always takes the same patrol route
every day, the poachers will always be able to avoid the patroller and will always succeed in
placing snares in the unpatrolled locations. Thus, it is in the defendet's best interest to play
unpredictably (i.e., patrol somewhat randomly). Instead of simply “rolling a die” and
choosing which patrol route to take in a uniformly random way, a defender should choose
patrol routes that visit more important locations (e.g., areas with higher animal densities of
key species) more often. Which patrol routes to consider and how to randomly choose
among these patrol routes is called the defender strategy or the patrol strategy. Ideally, for
the defender, poachers would be deterred from locations with high animal density since they
are often patrolled, and the poachers would be reluctant to place snares in areas with low
animal density since the chance of successtully capturing an animal in those areas is low.

Even though this ideal case may not be achievable given the defender's limited patrolling
resources, it does not mean a game theoretic approach cannot have a positive impact.
Indeed, game-theory based decision supportt systems have been successfully deployed in the
real-world to protect critical infrastructure such as airports (Pita et al., 2008), aitline flights
(T'sai, Rathi, Kiekintveld, Ordonez, Tambe, 2009), seaports (Shich et al., 2012), and metro
trains (Yin, Jiang, Johnson, Kiekintveld, & Leyton-Brown, 2012). In each of these cases,
even though the defender also had a limited amount of patrolling resources, these works
aided defenders in more efficiently and effectively allocating their resources (Tambe, 2011).



PAWS was inspired by these successes and was the first of a new wave of proposed
applications in the subarea called Green Security Games (GSGs) (Fang, Stone, & Tambe,
2015; Kar, Fang, Delle Fave, Sintov, & Tambe, 2015), which focus on resource allocation
and scheduling problem in domains such as protecting forest, wildlife, and fisheries. PAWS
provides quantitative analysis of the game between the defenders and poachers and
calculates the optimal patrol strategy.

Modeling human behavior to create optimal patrol strategies

In generating an optimal patrol strategy (i.e., one that offers the best chance of stopping
poaching attacks), modeling poachers’ behavior is important. Without an accurate idea of
how the poacher is currently planning their attacks and how they will react to the defender’s
patrols, it is difficult to generate a patrol strategy performs well in practice. Because there is a
large number of poachers and poaching data potentially available, we can use this crime data
to build a model of the poachers' behavior. In the case of poaching, crime data can be
anonymous, or identified if it can be linked to confessed adversaries. Although the latter type
of data provides rich information about individual adversaries, it is sparse and hard to
collect. Indeed, it is very difficult to catch poachers on site since it requires the patrollers to
be at the same location as poachers at the same. The majority of collected data is evidence
on crimes committed by anonymous adversaries (e.g., a snare found on a trail). Compared to
identified data, anonymous data provides no information about the characteristics of the
adversary that committed the crime and therefore cannot be used to build accurate
behavioral models on the individual level. The open questions here are then, how do we
utilize both types of data to build and learn a better model of the large population of
criminals and moreover, how does the learned model help better predict future crime events
and thus help law enforcement officials to improve their patrols?

Domain feature modeling

To bring PAWS from theory to real-world deployment, we capture and integrate important
domain properties of wildlife crime into PAWS. By doing so, PAWS can generate optimal
patrol strategies that accurately reflect many of the factors that influence the creation of
patrols. First, we incorporate terrain information (e.g., elevation, ridgelines) and use a novel
hierarchical modeling approach to build a virtual street map of the protected area. This
virtual street map allows PAWS to scale-up to patrol large areas while simultaneously
providing fine-grained guidance. Essentially, the street map connects the whole protected
area through easy-to-follow route segments, where each segment could be a ridgeline,
stream, river bank, or other geographic feature. The rationale for this approach threefold:
1. Animals use these terrain features and are most easily trapped here.
2. Poachers use these features for trapping and moving about in general.
3. Patrollers can move along these features more efficiently than traversing across
ridges.
In other words, animals, poachers, and patrollers all use these features while moving. In
addition to incorporating terrain information, PAWS also accounts for incomplete
information regarding animal density. Finally, PAWS accounts for real-world patrolling
constraints such as time limits on patrolling and needing to start and end at a base camp. In
the rest of the chapter we discuss the related work of PAWS and provide a detailed



description of the wildlife poaching problem domain. We will then present an overview of
the PAWS system and explain how it works, in detail, with respect to game-theoretic
analysis, human behavior modeling, and domain feature modeling.

The Genesis of PAWS from Synthesizing Conservation, Computer
science, and Criminology

Poaching is increasingly studied by criminologists (Montesh, 2013; Pires, 2012) and
geographic information systems (GIS) experts (Hamisi, 2008; Ouko, 2013) in addition to
conservation practitioners (Wato, Wahungu, & Okello, 2006). A variety of methods are used
to identify critical points in the poaching system, such as GIS analysis and interviews with
apprehended poachers. In spite of all these efforts, returns on applied research investment
can be low because of a lack of law enforcement resources (Hamisi, 2008; Pires, 2012).

Conducting patrols is an important way to combat poaching. In recent years, data collection
and aggregation software such as MIST (Stokes, 2010) and SMART (Smart Collaboration,
2015) have enabled conservation managers to more effectively coordinate their protection
efforts. These tools are developed to help conservation managers record data and analyze
patrols retrospectively. However, these works do not create patrol routes or identify targets
to protect; the creation of patrols is still done by an experienced patrol manager. It is well
known that humans have an extremely difficult time generating feasible schedules that are
also unpredictable (Wagenaar, 1972). In contrast, PAWS builds on concepts and models
from game theory, in particular, security games and provides an automated approach that
generates efficient and randomized patrol schedules.

Research on security games focuses on overcoming the security and conservation agencies’
challenge of limited law enforcement resources. In optimizing security resource allocation,
previous work on Stackelberg Security Games (SSGs) has led to many successfully deployed
applications to improve the security of airports, ports and flights (Fang, Jiang, & Tambe,
2013; Pita et al., 2008; Tsai, Rathi, Kiekintveld, Ordonez, & Tambe, 2009). Based on the
early work on SSGs, recent work has focused on GSGs (Fang, Stone, & Tambe, 2015; Kar et
al., 2015) for domains such as protecting forest, wildlife, and fisheries resources (Haskell et
al., 2014; Qian, Haskell, Jiang, & Tambe, 2014). Unlike a standard SSG where the attack is
assumed to be cross sectional, interactions between the defender and their adversary in GSG
are repeated. For example, in the security domain of wildlife protection poachers conduct
illegal activities (e.g., place snares in a protected area as shown in Figure 10.1(c)) frequently
and repeatedly). Although some GSG research provides conceptual advances in integrating
learning and planning (Fang et al., 2015), PAWS is the first GSG application to combat
wildlife crime. PAWS models the interaction between the patroller (i.e., defender) and the
poacher (i.e., attacker) as a basic GSG. Every few months, collected poaching data is
analyzed, behavioral models of the poacher are updated and reparameterized. Improved
patrols are generated.

Describing the poaching domain to create patrols that prevent poaching



Wire snaring, shown in Figure 10.1(c), is one of the main techniques used by poachers.
Poachers can set and leave snares unattended and when they think an animal has been
captured they will come back and kill the animal. Snares can be designed to target many
species. The main targets of snares in Uganda’s QENP are hippo, kobs, and antelope. In
Southeast Asia where PAWS is now regularly deployed the main targets are elephants, tigers,
and Sambar deer (i.e., a key prey species of tigers).

Law enforcement officers, such as park rangers, or patrollers from NGOs and other
government agencies are responsible for patrolling a given protected area. One of their
primary goals is to reduce successful poaching activities as much as possible so as to protect
wildlife in that geographic area. During a given patrol patrollers will typically search for signs
of illegal activity inside the protected area, confiscate any poaching equipment found, and
apprehend any persons inside the area illegally (e.g., poachers). During their patrol all their
findings are recorded in a log book. In most cases, if patrollers find wire snares, they will not
find the poacher that set them because the poachers usually leave after setting the snares. If
patrollers do encounter and apprehend poachers, however, patrollers are sometimes able to
generate confessions from the poachers as to where they set their snares. Thus, among all
the records of wire snares found by patrollers, most of them are anonymous. Identified data
points, when a poacher is captured and divulges where they placed snares, are inherently
more useful as they can be used to obtain a complete behavioral model that can better
predict where future poachers will place their traps. If recording and monitoring tools such
as SMART and MIST are in use in a protected area, collected data are uploaded to a database
after the patrollers return to the outpost. Patrollers usually patrol in teams, and there can be
multiple teams of patrollers conducting patrols simultaneously, each team taking a different
patrol route.
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(a) QENP in Uganda (b) Outline of QENP  (c) A caught poacher holding up a
snare (photo by Andrew Lemieux).
Figure 10.1. Snare poaching in Queen Elizabeth National Park

Poachers can conduct surveillance on patrollers’ activities and patrol patterns. Wildlife
patrollers are well aware that some neighboring villagers will inform poachers of when
patrollers begin their patrols and where they are patrolling (Moreto, 2013). For any number
of reasons, such as changes that impact animal migration habits, patrollers may change their
patrolling patterns. Poachers, in turn, continually conduct surveillance on the patrollers’
changing patrol strategy and adapt their poaching strategies accordingly.



Within a given protected area, different locations may have different importance for animals
and people. Locations of high animal density are more important and attractive to poachers.
In the case of QENP, areas that contain fresh water (e.g., watering holes, lakes) are known
to be high-risk areas for poaching (Montesh, 2013; Moreto, 2013; Wato et al., 20006). In areas
with more hilly and complex terrains, such as tropical forests in Southeast Asia, areas along
ridgelines or streams serve as natural conduits for wildlife. Despite the available information
on animal ecology and ethology from natural science studies, there are still too many areas
for patrollers to patrol, and it is a huge cognitive burden to simultaneously account for
animal density factors, physical distance constraints and base camp locations while also
ensuring that the new patrols are unpredictable. PAWS aims to aid patrol managers by
generating an optimal strategy that accounts for all of these factors; PAWS will generate a
strategy that enables patrollers to effectively cover these numerous areas with their limited
resources.

The PAWS Model

PAWS is based on game theoretic analyses (Figure 10.2). Input data includes the following
information: contour lines that describe elevation, terrain information such as lakes and
drainage, base camp locations, previous patrol observations (e.g., animal signs, human
activities), and previous patrol tracks. Based on the input data, we estimate current animal
population distribution. It is necessary to estimate this distribution because individual
sightings of animals are not likely to be spatially representative of the population. To
estimate the distribution for tigers, the species of interest in recent deployments, we use Just
Another Gibbs Sampler (JAGS) (Plummer, 2003) to produce a posterior predictive density
raster derived from a spatially explicit capture-recapture analysis conducted in a Bayesian
framework.

Because wildlife patrols and poaching attacks happen frequently, we model this recurrent
behavior as a repeated game. PAWS first builds the game model, models the poachers’
behavior using wildlife crime data and then calculates the optimal patrol strategy according
to the game model, behavior model, and additional patrolling constraints (e.g., contour lines,
terrain information). When patrollers execute the PAWS patrols over a period of time, they
will collect more crime data and those data are fed into PAWS as inputs for the next set of
generated PAWS patrols. In the following sections, we focus on how the game model is
built, how the poachers’ behavior is modeled, and how the optimal patrol strategy is
generated.
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The basis of game-theoretic analysis in PAWS

The problem of combating poaching can be seen as a game with two types of players, the
defender (i.e., the conservation agency's wildlife patrollers) and the attacker (i.e., poachers).
The players have conflicting interests and there is a strategic interaction between the players.
The defender must account for the attacker’s actions and vice versa. To reduce successful
poaching activities so as to protect wildlife in the area, the defender conducts randomized
patrols against poachers while balancing the priorities of different locations with different
animal densities. If patrols are not randomized and are deterministic instead (i.e., no
randomization), poachers are able to exploit this predictability and thus citcumvent any
efforts by the defender. To decide which patrol routes need to be considered and how often
each of them should be taken so as to provide maximum protection to wildlife, PAWS
builds an evidence-based mathematical game model.

In PAWS, a protected area is discretized into a grid (e.g., 1km by 1km), where each grid cell
is viewed as a target location (i.e., targets) for poachers. The defender tries to protect these

T targets from poachers by optimally allocating a set of R patrolling resources (i.e., teams
of patrollers, where each team can take a different patrol route). Note that R is typically
much less than T ; there are typically many more targets to protect than there are resources
available to the defender. By executing a patrol route, patrollers can protect the targets along
that route. The assignment of resources to patrol routes (i.e., sending out patrollers to patrol)
is called the defender’s pure strategy. Since our goal is to randomize patrol routes, the
defender can choose to execute any of the patrol routes with a certain probability; this
probability distribution over pure strategies (i.e., patrol routes) is called the defender's mixed

strategy. We compactly represent the defender's mixed strategy as a coverage vector C = <Ci>

where C is the coverage probability for target i (i.e., the probability that target 1 is

protected) (Korzhyk, Conitzer, & Parr, 2010). After committing to a mixed strategy the
defender will then randomly select a pure strategy to execute (i.e., send patrollers out on



patrol). The adversary observes the defender's mixed strategy through surveillance and then
chooses a target to attack (i.e., places snares at a target). We provide an illustrative example
of the game model in Figure 10.3.
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Figure 10.3. Illustrative example for PAWS game model. Figure 10.3(a) shows an example
area that is discretized into four cells, i.e., four targets. Figure 10.3(b) shows three possible
patrol routes for the example area, each of which starts from the upper left cell (base camp
location) and protects two targets. Figure 10.3(c) shows a mixed strategy for the example
area when there is only one team of patrollers. The compact representation of the mixed
strategy in Figure 10.3(c) is shown in Figure 10.3(d).

Each target is associated with payoff values. Higher animal density implies higher payoffs,
which indicate separate reward and penalty values for the defender and the poachers. If a

poacher places snares in target 1, and | is protected by the patroller (i.c., the executed patrol

d
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goes through location 1), the defender gets a reward U, , and the poacher receives a penalty

U7 .. Conversely, if target | is not protected, the defender gets a penalty U g and the

poacher receives a reward U ;.
Given a defender mixed strategy (compactly represented by C = <Ci > ), the probability that
target | is protected by patrollers is C;, and the probability that target I is not protected is
1-c,. Thus, the poachet's expected payoff (also called expected utility) when he chooses
target 1 is
a _ a a

Ur=cU,; + L-c)U/;
On the other hand, the defender's expected utility with respect to target I is

U= CiUrd,i +@1-c)U g,i

Each player in the game seeks to maximize their expected utility; defenders want to
stop attacks as much as possible, and attackers want to successfully attack as much as
possible. In PAWS, the game is zero-sum, U:i =-U;,,U g’i =-U/,. In other words,
whatever the poacher gains by successfully poaching is also how much the defender loses.

Since placing snares in a location with high animal density has a higher chance to lead to a
successful capture of an animal (and is thus more rewarding to the poacher), the poacher's

reward U2,

+i is determined by animal density. When there are multiple poachers, the

defender's expected utility is the overall expected utility against all the poachers (see Table 1
for notions).



Table 1: Notations used in this chapter

Notation  Meaning

T Number of targets

R Number of defender resouces (teams of patrollers)

U r‘”i Reward for defender if target | is selected by poacher and is protected

U S,i Penalty for poacher if target I is selected by poacher and is protected

U g’i Penalty for defender if target I is selected by poacher and is not protected

U Reward for poacher if target | is selected by poacher and is not protected

u? Poacher's expected utility of selecting target I if strategy C is played by defender
u' Defender's expected utility of playing strategy C if target I is seclected by poacher
C Coverage probability on target 1. Probability that target | is protected by patroller
@ Parameter of the SUQR model. @ = (@, @,,®;) where @ ,®,,@; are the

coefficients for C, U/, and U S

ri i respectively

Modeling human behavior for PAWS

In SSGs, the adversary’s behavior model represents how he will choose a target to attack in
response to the defender’s mixed strategy. Past work has often assumed that the adversary
will act with perfect rationality and will always choose the target with the highest expected
utility for him (Pita et al., 2008). However, it is well known that humans do not act in such a
way (Camerer, 2003), and bounded rationality models seek to model how humans act (i.e.,
not always choosing the target with highest expected utility). PAWS is the first deployed
application that uses the Subjective Utility Quantal Response model (SUQR), which is aa
bounded rationality model. SUQR models the adversary's probabilistic response (i.e., with
some probability, attack a target) to the defender’s strategy and was shown to perform the
best in human subject experiments when compared with other bounded rationality models
(Nguyen, Yang, Azaria, Kraus, & Tambe, 2013). SUQR suggest adversaries evaluate targets
based on a linear combination of multiple observable features: the probability that a target
will be protected and thus the probability that the adversary will be caught, the reward for a
successful attack at a target for the adversary, and the penalty for being captured at a target

for the adversary. The value of @C + @ U/ +@U ] ; is denoted as the subjective utility
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where @, ,®,,®; are the parameters indicating the importance of the aforementioned

features. The intuition of the SUQR model is that the adversary will, with higher probability,
attack targets with higher subjective utility.

Incorporating learning into the behavioral model

Next, we discuss our method for incorporating past crime data to model the poachers’
behavior. Each poacher in the population is modeled with the SUQR model, and we use the

ctime data to learn the values of each poacher's SUQR model's parameters @ = (@, @,, @) .

Because we are modeling each poacher’s preferences individually and we need to create our
strategies with a population of poachers in mind, we compute a distribution of the poacher
population’s SUQR model parameters. We assume the distribution is normally distributed.
To learn this distribution, we must incorporate collected crime data. As discussed previously,
we have two types of data that are collected by patrollers: identified data and anonymous
data. When a poacher is captured, the patrollers question the poacher and get him to confess
to any previous attacks that he committed in the protected area. As such, an identified data
point can consist of attacks from multiple rounds and can be used to learn an accurate
(SUQR) model of the poacher's behavior. Unfortunately, this type of data is sparse, and we
thus cannot rely on using only identified data to construct the entire distribution. On the
other hand, there are abundant anonymous data. One potential approach is to assume that a
new poacher committed this single attack. Because we only have a single attack data point on
this “new poacher,”, it is impossible to learn that poacher's model in the same way we do
with identified data. While anonymous data provides a noisy estimation of an individual
poacher’s behavioral model, it gives a sufficiently accurate measurement of the crime
distribution of the poacher population due to its abundance.

Because each type of data has its strengths or weaknesses, we present the PAWS-Learn
algorithm that combines both types of data. By doing so, we can obtain a more accurate
distribution than if we just used one type or the other. More detailed explanations of the
PAWS-Learn algorithm can be found in Yang et al. (2014).

PAWS-Learn

The PAWS-Learn algorithm combines both identified and anonymous data together to
obtain a more accurate distribution of the poachers’ behavior than if just one type were used.
First, a distribution, f(@)’, is computed using the identified data, and this computation is
done via Maximum Likelihood Estimation (MLE). To summarize this process in the form of
a question: given the identified data, what distribution f (@)’ is most likely (as defined by a
likelihood function)? Next, we compute the proportion of anonymous crimes committed at
cach target. Finally, we compute a new distribution, f (@), such that the mean squared error
(MSE) is minimized between the identified data distribution ( f (@)") and the proportion of
anonymous ctimes. This new distribution, f (@), is then used by PAWS to compute a new

defender strategy for the next round. Combining the two types of data (i.e., identified,
anonymous) in a simulation helps the model learn the distribution of poacher behavior faster
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than using one or the other type of data (Figure 10.4). As can be seen, by combining both
types of data with the PAWS-Learn algorithm, we can learn a more accurate model of
poacher behavior and thus generate strategies according to that model.
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Figure 10.4. Strategy convergence simulation. The X-Axis shows the number of rounds that
have elapsed (i.e., the number of interactions between the defender and attacker, and also
the number of times a new strategy has been generated). The Y-Axis compares the generated
defender mixed strategy in that round to an “optimal” strategy which is generated from the
true distribution of poacher behavior (which, outside of a simulation, isn't known); lower
values on the axis indicate that the generated strategy is closer to the optimal strategy,
indicating that the learned distribution is of higher quality. The first two lines in the figure
correspond to learning a distribution with only one type of data available (only identified or
anonymous data, respectively) whereas the last line corresponds to the PAWS-Learn
algorithm (both data types are combined).
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Domain feature modeling

PAWS aims to generate optimal patrol strategies that accurately reflect the many factors that
influence the creation of patrols. To that end, providing the game-theoretic analysis and
modeling the poacher behavior is not adequate. A key missing piece is to capture and
integrate important domain features of wildlife crime into PAWS. In this section, we discuss
how domain features are incorporated, which leads to the regular deployment of PAWS in
the field.

Terrain information. The first important domain feature is the terrain information. The
critical importance of topographic information was ignored at the beginning when PAWS
was first proposed (Yang et al., 2014) and was identified by patrollers during first tests of
PAWS in the tropical forests in Southeast Asia. Topography can affect patrollers’ speed in
key ways. For example, lakes are inaccessible for foot patrols. Not considering such
information may lead to the failure of completing the patrol route. Also, changes in elevation
require extra patrol effort and extreme changes may stop the patrollers from following a
route. In addition, in areas with complex terrain, it is necessary to focus on terrain features
such as ridgelines and streams when planning routes for three reasons: (a) they are important
conduits for certain mammal species such as tigers; (b) hence, poachers use these features
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for trapping and moving about in general; and (c) patrollers find it easier to move around
here than on slopes. To incorporate terrain information we use a hierarchical modeling
approach to build a virtual “street map” of a protected area. This virtual street map allows
PAWS to scale-up to patrol large areas while providing fine-grained guidance. We first
discretize a protected area into 1km by 1km grid cells and treat every grid cell as a target. We
further discretize the grid cells into 50m by 50m raster pieces and describe the topographic
information such as elevation in 50m scale. The virtual street map is built in the terms of
raster pieces while aided by the grid cells in this abstraction as described below. With this
hierarchical modeling, the model keeps a small number of targets and reduces the number of
patrol routes while allowing for details at the 50m scale. The street map is a graph consisting
of nodes and edges, where the set of nodes is a small subset of the raster pieces and edges
are sequences of raster pieces linking the nodes. We denote nodes as Key Access Points
(KAPs) and edges as route segments. The street map not only helps scalability but also
allows us to focus patrolling on preferred terrain features such as ridgelines. The street map
is built in three steps

1. Determine the accessibility type for each raster piece.

2. Deftine KAPs.

3. Tind route segments to link the KAPs.

Patrolling constraint. In practice, total patrolling time is limited and the patrollers can only
move to nearby areas. Also, it is common that there is a base location where patrol routes
start from and end with. Such patrolling constraints should be taken into account when
designing the patrol routes. Given the street map, these constraints can be easily
incorporated to the model by restricting defendet’s pure strategy to be a patrol route on the
street map, starting from the base camp, walking along route segments and ending with base
camp, with its total distance satisfying the patrol distance limit.

Uncertainty in animal distribution. PAWS models a zero-sum game and the reward for
the attacker, and the penalty for the defender, is ultimately dictated by animal distribution.
However, key domain features such as animal density that contribute to the payoffs are
difficult to estimate precisely, leading to uncertainties in the payoff in the game model. Not
considering such uncertainty may lead to high degradation in patrol quality. PAWS considers
such uncertainty and calculates an optimal patrol strategy that is robust against the
uncertainty. In PAWS, the algorithm for calculating the optimal strategy is based on
algorithms from the rich security game literature. Specifically, we integrate an algorithm
ARROW (Nguyen et al., 2015) with another algorithm BLADE (Yang, Jiang, Tambe,
Ordonez, 2013) to fit the need of the problem: (a) we must generate patrol routes over the
street map over the entire conservation area region while; (b) simultaneously addressing
payoff uncertainty; and (c) bounded rationality of the adversary. To delineate the algorithm
in detail is beyond the scope of this chapter; interested readers may explore the
aforementioned references.

Discussion

Antipoaching patrols, while essential for combating wildlife poaching, are difficult to create
and introduce a large cognitive burden on patrol managers due to the large number of
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factors involved. In addition, it is challenging to create patrols that are randomized, but
without doing so, patrols run the risk of becoming predictable and will thus be less effective
at deterring and stopping poachers. Resolving these problems requires the efforts of people
in many different disciplines; this chapter describes the innovative SSG based application
PAWS, the result of joint efforts among computer scientists, conservationists, and
criminologists.

PAWS seeks to aid patrol managers by addressing the challenges of creating effective and
efficient wildlife patrols; PAWS patrols are intelligently randomized and incorporate many
important factors such as terrain information, poacher behavior, and time constraints.
Although PAWS cannot completely replace skilled patrol managers' experience and intuition,
PAWS provide sufficient aid to conservation agencies in making intelligent decisions. That
being said, PAWS represents a novel approach to generating patrols that highlights the
importance of: (a) modeling human behavior, so as to better predict where poachers will
attack and how they will react to patrols; (b) remaining unpredictable to poachers; (c)
modeling the strategic interaction between rangers and poachers.

PAWS poses multiple implications for conservation practice. First, PAWS brings in game-
theoretic perspective in designing and analyzing defender’s patrol strategy. This proactive
information about our adversaries is beneficial because they react to different policies
designed to reduce risks to biodiversity and livelthoods and change their behavior
accordingly. The overall approach may be applied to diverse conservation policies given the
common strategic interaction between conservation policy and noncompliant individuals or
groups..

The model emphasizes the importance of human behavior in understanding the effects of
conservation policies designed to reduce risk. Human beings are not perfectly rational in
most cases and their behavior can affect the effectiveness of conservation policy. PAWS
adopts the SUQR model for modeling poachers' bounded rationality and this model may
have more general applications in conservation problems. In addition, the method for
learning the parameters in SUQR also has broader applications where data is available.

PAWS is the first application of GSG-based research for protecting wildlife and conserving
global biodiversity. PAWS has been tested on grassy plains in QENP in Uganda and went
through a significant evolution to be deployed in a Southeast Asia protected area with
complex terrains; PAWS has proven capable at functioning in areas with diverse terrain,
ecosystems, species and human cultures. Based on this success, PAWS shows promise for
future deployments to different sites through collaborations with different organizations. It
should be noted that future deployments of PAWS will require initial investment by each site
and collaborating organization. For past deployments, this investment took the form of
aggregating past patrol data, past poaching data, and terrain information for the purpose of
training the PAWS models.

PAWS shows the potential that algorithms and techniques in computer science can have in
combatting poaching. Indeed, PAWS focuses on one facet of this large, complex problem,
namely how to make the most efficient use of foot patrols. Al-based solutions hold promise
for addressing additional facets of this issue, such as investigating and interfering with the
trafficking of illegal wildlife products.
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