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Abstract

Several competing human behavior models have been proposed to model boundedly
rational adversaries in repeated Stackelberg Security Games (SSG). However, these
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existing models fail to address three main issues which are detrimental to defender
performance. First, while they attempt to learn adversary behavior models from ad-
versaries’ past actions (“attacks on targets”), they fail to take into account adversaries’
future adaptation based on successes or failures of these past actions. Second, existing
algorithms fail to learn a reliable model of the adversary unless there exists sufficient
data collected by exposing enough of the attack surface — a situation that often arises
in initial rounds of the repeated SSG. Third, current leading models have failed to in-
clude probability weighting functions, even though it is well known that human beings’
weighting of probability is typically nonlinear.

To address these limitations of existing models, this article provides three main
contributions. Our first contribution is a new human behavior model, SHARP, which
mitigates these three limitations as follows: (i) SHARP reasons based on success or
failure of the adversary’s past actions on exposed portions of the attack surface to
model adversary adaptivity; (ii) SHARP reasons about similarity between exposed and
unexposed areas of the attack surface, and also incorporates a discounting parameter to
mitigate adversary’s lack of exposure to enough of the attack surface; and (iii) SHARP
integrates a non-linear probability weighting function to capture the adversary’s true
weighting of probability. Our second contribution is a first “repeated measures study”
– at least in the context of SSGs – of competing human behavior models. This study,
where each experiment lasted a period of multiple weeks with individual sets of hu-
man subjects on the Amazon Mechanical Turk platform, illustrates the strengths and
weaknesses of different models and shows the advantages of SHARP. Our third major
contribution is to demonstrate SHARP’s superiority by conducting real-world human
subjects experiments at the Bukit Barisan Seletan National Park in Indonesia against
wildlife security experts.

Keywords: Game Theory, Repeated Stackelberg Games, Human Behavior Modeling

1. Introduction

Whereas previous real-world deployments of Stackelberg Security Games (SSGs)
to protect airports, ports or flights have been one-shot game models [75], recent work
has focused on domains involving repeated interactions between defenders and adver-
saries. These domains include “Green Security Game” domains [31], i.e. security of
wildlife (repeated interactions between rangers and poachers) [80], security of fish-
eries (repeated interactions between coast guard and illegal fishermen) [40] and forest
protection. The above domains as well as other domains such as drug interdiction are
modeled via repeated SSGs. In a repeated SSG model, the defender periodically de-
ploys new patrol strategies (in “rounds” of the game) and the adversaries observe these
strategies and act accordingly.

Research in repeated SSGs has produced different approaches to address uncer-
tainty in key dimensions of the game such as payoff uncertainty (but assuming a per-
fectly rational adversary) [14, 54, 56] or uncertainty in adversary behavior model (but
assuming known payoffs) [40, 80]. Our work follows the second approach, learning a
model of boundedly rational adversaries with known adversary payoffs, as (arguably)
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it provides a better fit for domains of interest in this work. This is because (i) in real-
world settings such as wildlife or fishery protection, it is feasible to model adversary
payoffs via animal or fish density in different locations and we can get a reasonable
estimation of these densities from animal census data collected by patrolling rangers or
conservation drones; and (ii) there is significant support in the literature for bounded
rationality of human adversaries [81, 62].

Unfortunately, despite the promise of Bounded Rationality models in Repeated
Stackelberg Games (henceforth referred to as BR-RSG models), existing work in this
area [40, 80] suffers from three key limitations which are extremely detrimental to de-
fender performance. First, existing models reason about the adversary’s future actions
based on past actions taken but not the associated successes and failures. Our analysis
reveals that the adversaries adapt in future rounds based on past successes and failures.
Hence, failing to consider an adaptive adversary leads to erroneous predictions about
his1 future behavior, and thus significantly flawed defender strategies.

Second, existing approaches for learning BR-RSG models require significant amount
of data to be collected in the initial rounds to learn a reliable adversary model. Further-
more, our analysis reveals that the issue is not just the amount of data, but insufficient
exposure of attack surface [45, 55] in the initial rounds which prevents the defender
from collecting sufficient information about adversary responses to various strategies
and learn a reliable model. Here we define an attack surface as the n-dimensional fea-
ture space used to model the attacker’s behavior (detailed definition in Section 8). This
issue of limited attack surface exposure leads to erroneous learned results as the learn-
ing is biased towards the limited available information and hence significant losses
are incurred by the defender until enough of the right kind of data becomes avail-
able. This degraded performance in initial rounds may have severe consequences for
three reasons: (i) In domains like wildlife crime or fisheries protection, each round
lasts for weeks or potentially months and so initial round losses (if massive) could im-
ply irrecoverable losses of resources (e.g., animal populations). (ii) Following heavy
losses, human defenders may lose confidence in recommendations provided by the
game-theoretic approach. (iii) Given the nature of these domains, re-initialization of
the game may periodically be necessary and thus initial rounds may be repeated; in
domains such as wildlife crime, re-initialization can stem from man-made or natural
changes in parks, e.g., changes in vegetation, water bodies, or possible developmental
activities. The construction of an oil-refinery [1] and the simultaneous re-introduction
of rhinos in the Murchison Falls National Park in Uganda is an example. In other words,
re-initializing the game after a year or so would mean repeating the initial rounds after
four to five rounds, adding to the importance of addressing initial rounds.

Finally, BR-RSG models have failed to include probability weighting functions
(how humans “perceive” probabilities), even though it is well known that probability
weighting curves for humans – e.g., in prospect theory [77] – are typically nonlinear.
In light of this, we show that direct application of existing models such as SUQR
[62] which assume a linear probability model, provide results that would be extremely
detrimental to defender performance.

1By convention in security games literature, the defender is referred to as “she” and the adversary as “he”.
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The primary contribution of this article is a new model called SHARP (Stochastic
Human behavior model with AttRactiveness and Probability weighting) that mitigates
these three limitations: (i) Modeling the adversary’s adaptive decision making process,
SHARP reasons based on success or failure of the adversary’s past actions on exposed
portions of the attack surface; (ii) Addressing limited exposure to significant portions
of the attack surface in initial rounds, SHARP reasons about similarity between ex-
posed and unexposed areas of the attack surface, and also incorporates a discounting
parameter to mitigate adversary’s lack of exposure to enough of the attack surface;
(iii) Addressing shortcomings of existing models in learning the adversaries’ weight-
ing of probabilities, we incorporate a two parameter probability weighting function in
existing human behavior models.

Our second main contribution is to provide evidence from the first “repeated mea-
sures study” of competing models in repeated SSGs. A repeated measures study is an
observational research method in which data is gathered for the same subjects repeat-
edly over a period of time, sometimes spanning years or even decades. In our study, a
suite of well-established models and SHARP are compared in human subjects experi-
ments on the Amazon Mechanical Turk (AMT). In conducting these repeated measures
experiments with AMT, we also provide a procedural contribution – specifically an em-
pirically validated study of the process of conducting repeated measures experiments
on AMT. We address challenges faced while conducting several 2.3 week long (on av-
erage) repeated measures studies, 46 weeks in total, with various behavioral models and
show that our methods help maintain high retention rates of the participants throughout
the course of the study and therefore enables valid comparison of the various models.

Our third contribution is to analyze and show results from our human subjects
experiments on repeated SSGs. We show that: (i) SHARP outperforms existing ap-
proaches consistently over all rounds, most notably in initial rounds. (ii) As discussed
earlier, existing approaches perform poorly in initial rounds with some performing
poorly throughout all rounds. (iii) Surprisingly, simpler models which were originally
proposed for single-shot games performed better than recent advances which are geared
specifically towards addressing repeated SSGs. We also conducted a different set of hu-
man subjects experiments on AMT to examine the extent to which past successes and
failures affect the adversary’s future decisions in repeated Stackelberg game settings.

In order to validate the findings from our AMT experiments, we conducted one
repeated measures study for SHARP in the real world: with wildlife security experts
from the provinces of Lampung and Riau, Sumatra, Indonesia. Participants were from
the local government and from the following NGOs: Yayasan Badak Indonesia (YABI),
World Wildlife Fund (WWF) and Wildlife Conservation Society (WCS). The experi-
ments were conducted at the Bukit Barisan Seletan National Park in Indonesia. The
results are consistent with the findings from our experiments on AMT. In fact, the
performance for SHARP is better against experts as compared to those obtained from
AMT. Taken together, given the critical importance of the repeated ‘initial rounds’ as
discussed above, these results indicate that SHARP should be the model of choice in
repeated SSGs.

The rest of the article is organized as follows. In Section 2, we first provide back-
ground for our work, followed by related work in Section 3. In Section 4, we discuss
our wildlife poaching game which was used to conduct the repeated measures experi-
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ments. This is followed by a description of our payoff structures for the wildlife game
in Section 5. In Section 6, we briefly highlight the results of our methodological con-
tributions towards conducting our repeated measures experiments on AMT. In Sections
7, 8, 9 and 10 we discuss in detail the three modeling considerations of SHARP, the
process of generating the optimal defender strategy against SHARP and an analysis of
various modeling considerations of SHARP. In Section 11 we first discuss the results
of our AMT experiments and then in Section 12 we provide real-world experimental
results against security experts to validate our AMT findings. Finally, we conclude
with a summary and directions for future work in Section 13.

2. Background

In this section we first introduce Stackelberg Security Games (SSG) and key so-
lution concepts and existing human behavioral models used to model the boundedly
rational adversaries in SSGs.

In an SSG, the defender plays the role of a leader who protects a set of targets
from the adversary, who acts as the follower [20, 65, 51]. The defender’s pure strategy
is an assignment of a limited number of security resources M to the set of targets T .
An assignment of a resource to a target is also referred to as covering a target. A
defender’s mixed-strategy x̂ (0 ≤ x̂j ≤ 1;∀x̂j , j ∈ P ;

∑P
j=1 x̂j = 1) is then defined

as a probability distribution over the set of all possible pure strategies P . An equivalent
description [51, 81] of these mixed strategies is a probability distribution over the set
of targets: x (0 ≤ xi ≤ 1;∀xi, i ∈ T ;

∑T
i=1 xi = M). In the rest of this article, we

will refer to this latter description as the mixed strategy of the defender.
A pure strategy of an adversary is defined as attacking a single target. The adversary

receives a reward Rai for selecting i if it is not covered and a penalty P ai for selecting
i if it is covered. Similarly, the defender receives a reward Rdi for covering i if it is
selected by the adversary and penalty P di for not covering i if it is selected. Then,
the expected utility for the defender (while playing mixed strategy x) when target i is
selected by the adversary to attack is:

Udi (x) = xiR
d
i + (1− xi)P di (1)

Similarly, the expected utility for the adversary for attacking target i is:

Uai (x) = (1− xi)Rai + xiP
a
i (2)

Although a perfectly rational adversary would choose to attack the target with the
highest expected utility, more recent work has focused on modeling boundedly rational
adversaries in SSGs [62, 80, 40, 81, 34, 22], thus developing models, some of which
are discussed in Sections 2.2, 2.3 and 2.4.

2.1. Repeated Stackelberg Security Games

As introduced earlier in Section 1, in this article we focus on a repeated Stackel-
berg Security Game (SSG) consisting of multiple rounds. A repeated SSG setting is
different from the traditional repeated game setting [63] in the following ways. First, in
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a repeated SSG, in one round, one player acts first by deploying a mixed strategy and
then the other player responds. Intuitively, one round in a repeated SSG corresponds
to several (>> 1) consecutive rounds in a repeated game. Second, in a repeated SSG,
the mixed strategy of the defender may change at the end of one round leading to a
new mixed strategy, while such a concept of a change of mixed strategy is not part of a
traditional repeated game [63]. In other words, just as a Stackelberg Security Game fo-
cuses on commitment to a mixed strategy in a round, rather than commitment to a pure
strategy as done in earlier literature on Stackelberg games [8], repeated SSG focuses
on mixed strategies in each round.

2.2. Subjective Utility Quantal Response (SUQR)

SUQR [62] builds upon prior work on quantal response [58] according to which
rather than strictly maximizing utility, an adversary stochastically chooses to attack
targets, i.e., the adversary attacks a target with higher expected utility with a higher
probability. SUQR proposes a new utility function called Subjective Utility, which is
a linear combination of key features that are considered to be the most important in
each adversary decision-making step. This is based on the Lens model in psychol-
ogy which is a framework for modeling prediction based on observable cues [15, 39].
Usually these observable cues are combined in a weighted fashion to get the utility of
the decision maker. Nguyen et al. [62] experimented with three features: defender’s
coverage probability, adversary’s reward and penalty at each target. Thus, according to
this model, the probability that the adversary will attack target i is given by:

qi(ω|x) =
eSU

a
i (x)∑

j∈T
eSU

a
j (x)

(3)

where SUai (x) is the Subjective Utility of an adversary for attacking target i when
defender employs strategy x and is given by:

SUai (x) = ω1xi + ω2R
a
i + ω3P

a
i (4)

The vector ω = (ω1, ω2, ω3) encodes information about the adversary’s behavior and
each component of ω indicates the relative importance the adversary gives to each
attribute in the decision making process. The weights are computed by performing
Maximum Likelihood Estimation (MLE) on available attack data.

2.3. Bayesian SUQR

SUQR assumes that there is a homogeneous population of adversaries, i.e., a single
ω is used to represent an adversary in [62]. However, in the real-world we face an entire
population of heterogeneous adversaries. So Yang et al. [80] introduces a set Ω ⊂ R3

to represent the range of all possible ω, i.e. the entire set of adversaries. Therefore
Bayesian SUQR is proposed to learn a particular value of ω for each attack. It assumes
that there is a prior distribution F over Ω. Bayesian updates are performed on F as
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more data becomes available. Then the following stochastic optimization problem is
solved to obtain the optimal strategy x:

max
x∈X

∫
Ω

[∑
t∈T

Udt (x) qt (ω |x)

]
F (dω) (5)

Protection Assistant for Wildlife Security (PAWS) is an application which was origi-
nally created using Bayesian SUQR. Recent work by Fang et al. [31] has also used this
notion of a heterogeneous population of boundedly rational adversaries and applied
Bayesian updating based algorithms to learn models of these adversaries.

2.4. Robust SUQR

Robust SUQR [40] combines data-driven learning and robust optimization to ad-
dress settings where not enough data is available to provide a reasonable hypothesis
about the distribution of ω. It does not require a specific distribution F over the ad-
versary population parameters. Given an uncertainty set Ω̂, Robust SUQR solves the
following robust optimization problem:

max
x∈X

min
ω∈Ω̂

∑
t∈T

Ut (x) qt (ω |x) , (6)

We now explain Eqn. 6 starting with the uncertainty set Ω̂. There are various ways
to construct the uncertainty set Ω̂. Haskell et al [40] suggests combining the robust
optimization in Eqn. 6 with a data-driven approach by using the set of all ω learned
from each attack by the adversary as the uncertainty set Ω̂. Therefore, Robust SUQR
computes the worst-case expected utility over all previously seen SUQR models of
the adversary and deploys the optimal strategy against the adversary type that reduces
the defender’s utility the most. Robust SUQR has been applied to fisheries protection
domain [40].

3. Related Work

We have already discussed related work in SSGs in the previous section, including
key behavioral models. Here we discuss six additional areas of related work:

3.1. Related research in repeated games

Here we discuss past work on repeated games which are relevant to our setting.

3.1.1. Learning in repeated Stackelberg games
The problem of learning the adversary’s payoffs to alleviate uncertainty in an SSG

by launching a minimum number of games against a perfectly rational adversary is
studied in [54, 14]. Letchford et al. [54] propose an approach to learn a single at-
tacker’s payoffs by making a number of best-response queries which is polynomial in
the number of pure strategies. A query here refers to the defender’s execution of a
mixed strategy, and letting an adversary respond, thereby providing information about
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adversary’s payoffs. This work was the first in the security game context for learn-
ing adversary payoffs. They extend their results to Bayesian Stackelberg games with
a known distribution over attacker types by running the single-attacker learning algo-
rithm, where they repeat each best response query until the response of the desired
attacker type is observed.

Noticing that Letchford et al. [54] may still lead to a large number of queries,
particularly given that number of pure strategies may grow exponentially, Blum et al.
[14] design an algorithm that learns an ε-optimal strategy for the defender with a certain
probability by asking a significantly lower number of queries. However, Blum et al.
[14] only study the interaction between the defender and a single attacker.

Building upon previous work [14, 54] as described above, Balcan et al. [9] provides
two contributions in terms of learning the randomized defender strategy to commit to
in each round against perfectly rational adversaries: (i) an online learning algorithm
where the defender observes the adversary type that is attacking a particular target (full-
information); and (ii) an online learning algorithm where the defender only observes a
particular target being attacked in each round (partial information). In each interaction,
the attacker is assumed to be adversarially chosen from a set of known attacker types.

Additionally, Marecki et al. [56] focused on optimizing the defender’s overall util-
ity during the learning process when faced with a perfectly rational adversary with
unknown payoffs. Their analysis is focused on the repeated interaction between the
defender and a single attacker type drawn initially from a distribution. Although their
algorithm is shown to converge in the long-term, they do not provide any guarantees
for the convergence of their algorithm.

3.1.2. Robust strategies in repeated games
In cases where the opponent cannot be successfully modeled, McCracken et al.

[57] proposed techniques to generate ε-safe strategies which bound the loss from a safe
value by ε. Johanson et al. [47, 46] studied the problem of generating robust strategies
in a repeated zero-sum game while exploiting the tendency in the adversary’s decision
making and evaluated their technique in a game of two-player, Limit Texas Hold’em.
Following up on this work, Johanson et al. [46] proposed methods to minimize losses
due to limited data while also exploiting an unknown opponent’s weaknesses and eval-
uated their technique in a game of two-player, Limit Texas Hold’em. Recently, Ponsen
et al. [68] proposed techniques to compute robust best responses in partially observable
stochastic games using sampling methods.

All of the above work differs from ours in three ways: (i) They do not model
bounded rationality in human behavior; (ii) They do not consider how humans weigh
probabilities; and (iii) None of these existing work address the important problem of
significant initial round losses. Initial round losses is a critical problem in domains
such as wildlife security as explained above; requiring a fundamental shift at least in
the learning paradigm for SSGs. Work on learning in SSGs differ because in our game,
the payoffs are known but we are faced with boundedly rational adversaries whose
parameters in their behavioral model are to be learned.
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(a) Prospect Theory (b) Gonzalez & Wu, 99 (c) Prelec, 98

Figure 1: Probability Weighting Functions

3.2. Probability Weighting Functions

Probability weighting functions model human perceptions of probability. Perhaps
the most notable is the weighting function in Tversky and Kahneman’s Nobel Prize-
winning work on Prospect Theory [48, 77], which suggests that people weigh proba-
bility non-uniformly, The empirical form of the probability weighting function π(pi),
where pi is the actual probability, from [48] is shown in Fig. 1(a). It indicates that peo-
ple tend to overweight low probabilities and underweight high probabilities. The diag-
onal straight line in the figure indicates the linear weighting of probability. However,
other works in this domain propose and experiment with parametric models which cap-
ture both inverse S-shaped as well as S-shaped probability curves [3, 37] (Fig. 1(b)).
We build on this research, incorporating probability weighting functions in SHARP
that allow for both S-shaped and inverse S-shaped curves; however, in our work, data
supports S-shaped probability curves. Further discussions about this function are in
Section7.

There are other popular probability weighting functions in the literature, such as
Prelec’s one-parameter model [69], where the weighted probability is

w(p) = exp(−(− ln p)α); 0 < α < 1 (7)

Although this model has been shown to perform well in the literature, the functional
form does not allow for an S-shaped curve to be learned given the allowed range of
parameter values– it is only capable of learning an inverse S-shaped curve as shown
in Fig. 1(c) when 0 < α < 1. This parameter range of α is due to the necessity
that the function satisfies certain properties such as sub-proportionality and compound
invariance, which will get violated if α > 1. However, it can account for S-shaped
curves if we allow α > 1. Later in Section 12.2.1, we allow α to be greater than 1
so as to allow learning both an S-shaped as well as an inverse S-shaped curve with
this function– our results show that an S-shaped curve is learned on our data. In other
words, no matter whether we use Prelec’s function or Gonzalez and Wu’s function,
if we allow for learning both S-shaped as well as inverse S-shaped curves, our data
fits an S-shaped probability weighting curve. We conduct further analysis to show
in Section 12.2.1 that, even though both generate S-shaped curves on our data, using
the probability weighting function by Gonzalez and Wu [37] in our model gives us
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better prediction accuracy as compared to the case when we use Prelec’s function, thus
justifying our choice of the probability weighting function in Section 7.

3.3. Repeated Measures Studies

Repeated measures studies are conducted to measure a set of variables over a period
of time. Repeated measures studies are usually conducted in psychology, political
sciences and social sciences and the duration of the experiments can span from a few
weeks [71] to even a few years [16] 2 . Recently, AMT has become a more favorable
choice of conducting these experiments due to the ease of collecting data from a huge
and diverse subject pool [64, 12]. One of the most important problems in conducting
repeated measures studies is handling participant attrition (i.e., people dropping out).
While researchers often use imputation and sampling techniques to fill missing data
due to participant attrition [78, 36, 23], for our repeated measures study of comparing
human behavior models this may result in extremely biased estimates of the modeling
parameters due to the influence of the retained participants’ game plays and therefore
may generate biased defender strategies.

3.4. Learning from Reinforcements

Skinner [72, 73, 74] first proposed the theory of operant conditioning in which he
explained through experiments that behavior which is reinforced tends to be repeated
(i.e. strengthened) and behavior which is not reinforced tends to die out-or be extin-
guished (i.e. weakened). This reinforcement or lack thereof, happens due to actions
and its associated consequences. More specifically, Skinner identified three types of
responses or operants that can alter behavior, the most relevant among them are: (i) Re-
inforcers: Responses from the environment that increase the probability of a behavior
being repeated; and (ii) Punishers: Responses from the environment that decrease the
likelihood of a behavior being repeated. Since this early research, such behavior where
the subject learns based on “superstitious” beliefs due to past actions and consequences
has come to be known as superstitious learning [24, 84] in psychology. The influence
of superstitious learning on the adaptive behavior of humans has also been studied in
the literature [10]. We will show later how superstitious learning, induced by these
reinforced/punished responses plays a crucial role in predicting human subject behav-
ior in repeated Stackelberg security games. More specifically, SHARP models this
phenomenon and that leads to a significant improvement in SHARP’s performance.

“Superstitious Learning”, as it is widely known in the psychology literature, is
closely related to “Reinforcement Learning” in the computer science literature. Re-
inforcement learning has been widely studied in the context of game theory [28, 33,
43, 11, 19, 17]. Erev and Roth [28] describes one such popular Reinforcement Learn-
ing (RL) model that predicts people’s behaviors while playing repeated, simultaneous
move games. However, the paper has major differences as compared to our game set-
ting. First, the models in Erev and Roth’s paper were developed for simultaneous move

2Whereas “repeated measures study” is often used to describe research that spans years – in which measurement oc-
casions are conducted every X years – we use the term repeated measures study because our study included multiple (5)
measurement points with a single population.
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games without any notion of prior commitment to a mixed strategy by any player. This
is different from our leader-follower setting where one player moves first by playing a
mixed strategy and the other player moves next by playing a pure strategy after having
observed the first player’s mixed strategy. Therefore, the notion of surveillance and re-
acting to a mixed strategy by the adversary is missing in [28]. Second, in our games, the
defender responds after each round by playing an optimal mixed strategy based on the
learned adversary model from past rounds’ data. Assuming an adversary who follows
an RL model as described in [28], the optimal defender response would then be to play
a pure strategy in each round given the fixed adversary strategy in each round. This will
have significantly detrimental effects in terms of the defender utilities obtained in each
round, as shown in Section 7.1. Therefore, while not directly applicable, we attempt
to translate the main concept of the RL model to our setting of leader-followers with
mixed strategies. To that end, in Section 11, we have adapted the basic RL model in
[28] to compute optimal mixed strategies for the defender in repeated SSG settings.
In Section 12, we also show results of conducting human subjects experiments with
this model. Specifically, the RL based approach performs poorly as compared to other
models in our experiments. Therefore, significant new work would need to be done to
understand how the RL models in the literature [28, 33, 43, 11, 19] could be adapted
more efficiently for our Stackelberg Security Game setting.

4. Wildlife Poaching Game

We conducted repeated measures experiments with human subjects to test the effec-
tiveness of existing behavioral models and algorithms against our proposed approach
on repeated SSGs. In order to conduct these experiments, we developed an online
simulated game. Below is an overview of our experimental game and its properties.

4.1. Game Overview

In our game, human subjects play the role of poachers looking to place a snare to
hunt hippopotamus in a protected park. The game interface is shown in Fig. 2. In
the game, the portion of the park shown in the map is divided into a 5*5 grid, i.e. 25
distinct cells. Overlaid on the Google Maps view of the park is a heat-map, which
represents the rangers’ mixed strategy x — a cell i with higher coverage probability xi
is shown more in red, while a cell with lower coverage probability is shown more in
green. As the subjects play the game, they are given the following detailed information:
Rai , P ai and xi for each target i. However, they do not know the exact location of the
rangers, i.e., they do not know the pure strategy that will be played by the rangers,
which is drawn randomly from the mixed strategy x shown on the game interface.
Thus, we model the real-world situation whereby poachers have knowledge of past
patterns (mixed strategies) of ranger deployment but not the exact location of ranger
patrols when they set out to lay snares.

In our game, there were M = 9 rangers protecting this park, with each ranger
protecting one grid cell. Therefore, at any point in time, only 9 out of the 25 distinct
regions in the park are protected. The players know before they play (place a snare)
that only 9 out of the 25 regions will be protected, but as mentioned earlier, they do
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Figure 2: Game Interface for our simulated online repeated SSG (Reward, penalty and coverage
probability for a selected cell are shown)

not know which 9 beforehand. In other words, in a particular round, a player can only
know about the presence or absence of a ranger at the location he attacks only after he
attacks. A player succeeds if he places a snare in a region which is not protected by a
ranger and hence captures a hippo, else he is unsuccessful.

We make two modeling choices in this game. First, we focus on situations where
there is no collusion or coordination between poachers in placing of snares as is true
in most cases in a large forest area; accordingly, a player in our game can only see
his/her snare, but not that of other players and thus cannot coordinate with other play-
ers. Second, we assume in our experiments that the defender is able to observe all the
attacks conducted by the poachers and hence learn the adversaries’ preferences from
the complete attack data set. However, later in this article we also provide analysis of
defender strategies generated when this assumption is violated, i.e., when the defender
can only observe fractions of the entire attack dataset.

4.2. Computation of Poacher Reward

A key factor in this game is determination of rewards for poachers and rangers. For
poachers animal density is a key factor determining their rewards. In addition to animal
density, which is strongly correlated with high-risk areas of poaching [61, 60, 38],
distance is another important factor in poaching, e.g., recent snare-density studies have
found that significant poaching happens within 5 kilometers of South Africa’s Kruger
National Park border [53] and significantly decreases more than 4 kilometers away
from the international border in Ksavo West National Park in Kenya [79]. Therefore,
the reward obtained by a poacher in successfully placing a snare at target i is calculated
by discounting the animal density by a factor of the distance traveled and is calculated
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as follows:
Rai = int(φi − ζ ∗

Di

max
j

(Dj)
) (8)

Here, φi and Di refer to, respectively, the animal density at target i and the distance to
target i from the poacher’s starting location. For simplicity, we consider the adversary’s
reward as an integer. So, int(y) rounds the value y to the closest integer value. The
parameter ζ is the importance given to the distance factor in the reward computation
and may vary based on the domain. Intuitively, the reward for successfully placing a
snare in a region i near the starting location and which has animal density φi, is higher
than the reward obtained by successfully placing a snare in a region with the same
animal density but which is at a greater distance from the starting location as compared
to i. We used ζ = 2 in our experiments because the use of ζ = 1 did not introduce
substantial impact of distance while computing the actual rewards and ζ = 3 was not
used to prevent the overwhelming impact distance had on the actual rewards computed.

4.3. Non-zero sum game

In our games, the minimum and maximum animal density at each cell were 0 and
10 units respectively. The poacher received a flat penalty of -1 if he was caught at any
target. We vary the adversary’s actual reward based on the amount of distance traveled
because he has to carry the captured animal back to the edge of the forest. However,
there is no burden of carrying the animal back when the poacher is caught by the ranger
(or equivalently his snare is confiscated), and therefore, in our games we do not vary the
penalty based on distance and assume a constant value of -1. Also in our game, when
the poacher successfully poaches, he may obtain a reward that is less than the animal
density (Eqn. 8), but the defender loses a value equal to that of the animal density, i.e.,
the game is non-zero-sum3.

5. Payoff Structures

The payoff structures used in our human subject experiments vary in terms of the
animal densities and hence the adversary rewards. We henceforth refer to payoff struc-
tures and animal density structures interchangeably in this article. The total number of
animals in all the payoffs we generate is the same (= 96). However, the variation in
these payoffs is in the way the animals are spread out in the park. In payoff structure
1 (i.e., Animal Density structure 1 or ADS1), the animal density is concentrated to-
wards the center of the park, whereas the animal density is higher towards the edges of
the park in payoff structure 2. These represent scenarios that might happen in the real
world. The animal density for both payoffs is symmetric, thus eliminating any bias due
to the participant’s starting point in the game.

3Note that in terms of real-world interpretation of the payoff to the adversary in this game, it is to be
interpreted as taking into account the probability of catching a hippo. Therefore, higher density leads to a
higher payoff. That is, it is the expected reward (in the absence of the defender) in attacking a particular cell
— the expected number of hippos captured without the defender.
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(a) ADS1 (b) ADS2 (c) ADS3 (d) ADS4

Figure 3: Animal density structures (ADS)

Contrary to the above, animals in the park may be randomly scattered without
any particular orientation. So, we randomly generate two additional animal density
structures (payoffs 3 and 4) and test our proposed model on these payoffs. To generate
a random structure, one out of 25 cells was chosen uniformly at random and then an
animal was allocated to it until the total number of animals in all the cells was 96,
keeping in mind that if a cell total reached 10 (maximum animal density in a cell),
that cell was not chosen again. Figs. 3(a)– 3(d) show heatmaps of four animal density
structures, denoted as ADS1, ADS2, ADS3 and ADS4 respectively.

6. Online Repeated Measures Experiments

Repeated measures studies are research studies which are typically conducted to
observe and understand the changes in and effects of a particular set of variables over
a period of time [59, 32, 42]. In our work the key variable is the adversary’s strategy
and we show that the adversary’s strategy does indeed change over time due to his
adaptive nature (as explained later in Section 8) and hence we model such behavior
with a novel model called SHARP. Such studies can be conducted with a subject pool
at a University lab or by recruiting participants in an online setting like AMT. We
conducted our experiments on AMT. We tested a variation (Section 7) of the set of
behavioral models introduced in Section 2 and our new model SHARP by deploying
the mixed strategy generated based on each of these models repeatedly over a set of
five rounds [49]. We observed the strategies employed by the participants in each
round, i.e., where they attacked and whether they succeeded or failed, and used that to
determine the optimal ranger strategy for the next round. For each model, we recruited
a new set of participants to eliminate any learning bias.

We took necessary steps to ensure that participants completely remember the game
details and the procedures to play the game during each round of the experiment, as
otherwise we may lose significant time and effort in collecting poor quality data, es-
pecially because each setting would take more than two weeks to be completed. This
was done by setting up proper validation and trial games in each round of the exper-
iment, while not over-burdening the participants with many games and thus keeping
their cognitive overload at a minimum. This is discussed next in Sec. 6.1, followed by
a discussion of participant retention rates in our study in Sec. 6.2.

6.1. Validation and Trial Games
After viewing the instructions at the beginning, the participants were first asked

to play two trial games in round 1, with an option to view the instructions again after
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Table 1: Experiment Details
Average time

taken per
model per

payoff
structure (all

5 rounds)

Average time
taken for a set

of
participants to

play each
round

Number of
participants
who played

round 1
(minimum,
maximum)

Average
number of

participants
who played
all 5 rounds

Average
retention rate
from round 2

to round 5

2.3 weeks 4 days (42 , 49) 38 83.69%

each game. After the trial games, they played one validation game, and finally the
actual game. The players could choose to stop playing at any point during this process.
The validation game consisted of a cell with maximum animal density (=10) and the
coverage probability of that cell was zero, while other cells had an animal density of 1
and non-zero but equal coverage probability. The participants were expected to select
the target with the maximum animal density and zero coverage. Data from subjects
who played the validation game incorrectly were discarded and they were not allowed
to participate in future rounds of the experiment.

From second round onwards, participants were only asked to play one trial game
and then the actual game. The trial game was kept in order to remind them of the game
and its details and the playing procedures. Showing only the actual game without any
trial games might have resulted in the participants not playing the game properly due
to forgetfulness about the game details.

6.2. Participant Retention Rate

For our repeated measures experiments, due to unavailability of data, the strategy
shown for each first round of the real game to the participants who passed the vali-
dation game was Maximin. We then learned the model parameters based on previous
rounds’ data, recomputed and redeployed strategies, and asked the same players to
play again in the subsequent rounds. For each model, all five rounds were deployed
over a span of weeks. When we started conducting the experiments, we observed that
there were very high attrition rates (i.e. people dropped out) for the number of partici-
pants between rounds of the game. We observed that a delayed compensation scheme
along with prior participant commitment and repeated reminders throughout the course
of the experiment helped in achieving a high average retention rate of 83.69%. This
is also shown in Table 1 along with other experiment details. For interested readers, a
detailed discussion of the set of challenges that we faced during our experiments and
our methodological contributions towards mitigating those challenges are presented in
Appendix 4.

7. SHARP: Probability Weighting

This article contributes a novel human behavior model called SHARP for BR-RSG
settings. SHARP has three key novelties: (i) SHARP reasons based on success or fail-
ure of the adversary’s past actions on exposed portions of the attack surface to model
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adversary adaptivity; (ii) SHARP reasons about similarity between exposed and un-
exposed areas of the attack surface, and also incorporates a discounting parameter to
mitigate adversary’s lack of exposure to enough of the attack surface; and (iii) SHARP
integrates a non-linear probability weighting function to capture the adversary’s true
weighting of probability. In this section we cover the probability weighting aspect
of SHARP and also discuss possible causes for the surprising results of incorporating
probability weighting in our models. Other aspects are covered in Section 8.

7.1. Probability Weighting Mechanism

The need for probability weighting became apparent after our initial experiments.
In particular, initially following up on the approach used in previous work [62, 82, 80,
40], we applied MLE to learn the weights of the SUQR model based on data collected
from our human subject experiments and found that the weights on coverage proba-
bility were positive for all the experiments. That is, counter-intuitively, humans were
modeled as being attracted to cells with high coverage probability, even though they
were not attacking targets with very high coverage but they were going after targets
with moderate to very low coverage probability. Examples of the learned weights for
SUQR from data collected from the first round deployment of the game for 48 hu-
man subjects on ADS1 and ADS2 are: (ω1, ω2, ω3)=(2.876, -0.186, 0.3) and (ω1, ω2,
ω3)=(1.435, -0.21, 0.3). Here w1 provides the SUQR code on coverage probability.

We prove a theorem (Theorem 7.1) to show that, when the weight on the cover-
age probability in the SUQR model (ω1) is found to be positive, the optimal defender
strategy is a pure strategy. The proof of the theorem can be found in Appendix 2.

Theorem 7.1. When ω1 > 0, the optimal defender strategy is a pure strategy.

Employing a pure strategy means that there will be no uncertainty about the de-
fender’s presence. Several cells will always be left unprotected and in those cells, the
attackers will always succeed. In our example domains, even if the top-valued cells are
covered by a pure strategy, we can show that such a strategy would lead to significantly
worse defender expected utility than what results from the simplest of our defender
mixed strategies deployed. For example, if cells of value 4 are left unprotected, the
defender expected value will be -4, which is much lower than what we achieve even
with a simple strategy like Maximin. In repeated SSG domains like wildlife crime,
this would mean that the poachers successfully kill animals in each round without any
uncertainty of capture by rangers.In order to show that playing a pure strategy does
indeed lead to poor defender utility, we conducted an experiment with human subjects
by deploying a SUQR based pure strategy on ADS1. Results and comparisons with
other models that are introduced later in the paper are shown in Section 12.1.

We hypothesize that this counter-intuitive result of a model with ω1 > 0 may be be-
cause the SUQR model may not be considering people’s actual weighting of probabil-
ity. SUQR assumes that people weigh probabilities of events in a linear fashion, while
existing work on probability weighting (Section 3.2) suggest otherwise. To address
this issue, we augment the Subjective Utility function (Eqn. 4) with a two-parameter
probability weighting function (Eqn. 9) proposed by Gonzalez and Wu [37], that can
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be either inverse S-shaped (concave near probability zero and convex near probability
one) or S-shaped.

f(p) =
δpγ

δpγ + (1− p)γ
(9)

The SU of an adversary denoted by ‘a’ can then be computed as:

SUai (x) = ω1f(xi) + ω2R
a
i + ω3P

a
i (10)

where f(xi) for coverage probability xi is computed as per Eqn. 9. The two param-
eters δ and γ control the elevation and curvature of the function respectively. γ < 1
results in an inverse S-shaped curve while γ > 1 results in an S-shaped curve. We will
henceforth refer to this as the PSU (Probability weighted Subjective Utility) function
and the models (SUQR, Bayesian SUQR and Robust SUQR) augmented with PSU will
be referred to as P-SUQR, P-BSUQR and P-RSUQR respectively. Our SHARP model
will also use PSU. We will use these PSU-based models in our experiments. We did
not explicitly deploy and compare models without probability weighting (for example,
SUQR) against PSU-based models (for example, P-SUQR) because we have already
shown in Theorem 1 that models without probability weighting may result in pure de-
fender strategies being generated for subsequent rounds and would thus perform poorly
in repeated SSG experiments.

One of our key findings, based on experiments with the PSU function is that the
curve representing human weights for probability is S-shaped in nature, and not inverse
S-shaped as prospect theory suggests. The S-shaped curve indicates that people would
overweight high probabilities and underweight low to medium probabilities. Some
learned curves will be shown in Section 12.2. Recent studies in economics [5, 44, 30]
have also found S-shaped probability curves which contradict the inverse S-shaped ob-
servation of prospect theory. In addition, other recent work on security games, specif-
ically Opportunistic Crime Security Games, has also found the existence of S-shaped
probability weighting curves [2]. Furthermore, in previous literature [48, 77] where
they experimented with insurance and lotteries, they dealt with smaller number of al-
ternatives (2 or 3 alternatives). In addition to the domain, one possible reason for
observing S-shaped curves in our games could be that the participants are shown larger
number of alternatives, i.e. they have to choose one from a set of 25 targets. To the best
of our knowledge, participants’ weighting of probabilities in such games with larger
number of alternatives has not been studied before.

Given S-shaped probability weighting functions, the learned ω1 was negative as it
accurately captured the trend that a significantly higher number of people were attack-
ing targets with low to medium coverage probabilities and not attacking high coverage
targets.
Feature Selection and Weight Learning: In Section 4.1, we introduced a new fea-
ture – distance – that affected the reward and hence the obvious question for us was
to investigate the effect of this new feature in predicting adversary behavior. We con-
sidered several variations of PSU with different combinations of features. Notice that
each combination of the features could be used in each of our models, like P-SUQR, P-
BSUQR, etc. In addition to Eqn. 10, three more are discussed below (Eqns. 11,12,13).
Recall that φi denotes the animal density at target i. Now, although it is true that the
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subjects were explicitly told the values of rewards and penalties at each cell and not the
animal densities, the animal densities were still visually observable. φ has been used in
Eqn. 11 to check if the participants may have been considering animal densities only
and ignoring the effect of distance while playing the game, thus not paying attention
to the effective reward. φ was used in Eqn. 13 to check if participants may have been
considering animal density and distance as two separate features and weighting them in
a linear fashion instead of the way we provided them the reward values. These models
are designed and compared against each other to verify possible ways in which partic-
ipants may actually have considered the features of the game while making decisions.

SUai (x) = ω1f(xi) + ω2φi + ω3P
a
i (11)

SUai (x) = ω1f(xi) + ω2R
a
i + ω3P

a
i + ω4Di (12)

SUai (x) = ω1f(xi) + ω2φi + ω3P
a
i + ω4Di (13)

To compare these variations, we need to learn the behavioral parameters for each of
the variations (e.g, for Eqn. 13, a 6-tuple b =< δ, γ, ω1, ω2, ω3, ω4 > is to be learned; δ
and γ due to inclusion of Eqn. 9) from available data and evaluate their effectiveness in
predicting the attack probability. To learn the behavioral parameters b from available
data, we propose an algorithm based on Repeated Random Sub-sampling Validation
(Algorithm 2 – see Appendix 1). For P-SUQR , we learn a single b, while for P-BSUQR
and P-RSUQR we learn a set of b ∈ B for each attack. Note that, for our probability
weighting function, we use all possible combinations of δ and γ, with values of each
ranging from 0 to 4, at an interval of 0.1. Therefore, our analysis also contains δ = 1
and γ = 1, which correspond to linear weighting of probabilities — the probability
weights used in SUQR.

To test the performance of Algorithm 2 against a non-linear solver (Microsoft Ex-
cel’s Generalized Reduced Gradient (GRG) nonlinear solver function) and also to com-
pare between models with various feature sets, we learned the weights of the four
behavioral models (Eqn. 10 to 13 in the article) using both Algorithm 2 and our non-
linear solver. In order to do this, we deployed P-SUQR on ADS1 and then collected
participants’ responses to the deployed strategy. Then, we performed the following
steps, which conform to standard practices in machine learning for splitting data into
training-validation-test sets [41, 13]:

1. We divided the first round data for the experiment with P-SUQR on ADS1 into
10 random train-test splits.

2. For each of the 10 training sets, we performed 10-fold cross-validation to obtain
the best model weights that give the lowest validation error on the corresponding
validation sets. That is, each of the 10 training sets was randomly partitioned into
10 equal sized subsamples. Of the 10 subsamples for each training set, a single
subsample was retained as the validation data for validating the model, and the
remaining 9 subsamples were used as training data. The cross-validation process
was then repeated 10 times (the 10 folds), with each of the 10 subsamples used
exactly once as the validation data, and the model weights that gave the lowest
validation error (out of the 10 validation errors) was chosen after the cross vali-
dation process. Since we did this for each of the 10 training splits, we obtained
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10 best learned model weights after applying 10-fold cross validation on each of
the training splits.

3. Each of these 10 best learned model weights was then tested on the correspond-
ing hold-out test data set by computing the sum of squared errors (SE) of pre-
dicting the attack probability over all the targets.

4. Finally, we computed the average of these SE values over the 10 test data sets.
We computed this average SE for each of the four behavioral models using the
best model weights learned by Algorithm 2 and the non-linear solver.

We report these average SE values for both the weight learning approaches on all the
four behavioral models in Table 2. Results in boldface indicate significant differences
(with two-tailed t-tests at confidence=0.05) in the performance of Eqn. 13 as compared
to all other feature combinations. We can see that Eqn. 13 achieves the lowest average
SE as compared to all other feature combinations.

Our approach helps to significantly improve the robustness of our results. Note that,
we used 10-fold cross-validation in our approach not to compute the average error over
all the validation sets and using it to compare against other models (other feature com-
binations in our case), but instead to select the best parameters for a particular model,
and using those model parameters to test on independent test data sets. We do this mul-
tiple times and report the average test set error, thus making the process of comparison
between different behavioral models more robust. That is, instead of applying 10-fold
cross validation once on one random train split of the original dataset, we performed
10-fold cross-validation on 10 separate training data sets randomly constructed from
the original dataset. Cross-validation is in itself a well established model validation
technique in machine learning and statistics to assess the generalizability of learned
models on independent test data sets. The effectiveness of this approach to derive an
accurate estimation of model prediction performance is well established in the machine
learning literature [50, 70, 41, 13]. Our approach of not just performing 10-fold cross
validation once to select the best model weights, but multiple (10) times and then tak-
ing an average of the test set errors of the best learned model weights is also similar to
what is traditionally adopted in machine learning literature [25] to improve robustness.

Our results show that we can achieve higher accuracy in modeling by generalizing
the subjective utility form used in [62] that relied on just three parameters, by adding
more features as shown in Eqn. 13. This opens the door to novel subjective utility
functions for different domains that exploit different domain features. Results accom-
panied by * imply significant differences in performance of Algorithm 2 as compared
to the non-linear solver. Thus, Algorithm 2 is more efficient in learning model weights
as compared to the GRG non-linear solver.

We also present in Tables 3 and 4 the mean and standard deviations of the weights
learned on the 10 training datasets for the best model (Eqn. 13) on both the payoff
structures ADS1 and ADS2 and for both the learning algorithms (Algorithm 2 and
Non-linear Solver). Based on our detailed experiments, in addition to ω1 < 0, we
found that ω2 > 0, ω3 < 0 and ω4 < 0. The rest of the formulations in this article will
be based on these observations about the feature weights.
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Table 2: Performance (Squared Errors) of various feature sets. Results accompanied by * imply significant
differences (with two-tailed t-tests at confidence=0.05) in performance of Algorithm 2 as compared to the
non-linear solver. Results in boldface indicate significant differences in the performance of a particular
feature combination with respect to other feature combinations.

Eqn. 10 Eqn. 11 Eqn. 12 Eqn. 13
P-SUQR ADS1 Algorithm 2 0.1965* 0.2031* 0.1985 0.1025*

P-SUQR ADS1 Non-linear Solver 0.2545 0.2589 0.2362 0.1865
P-SUQR ADS2 Algorithm 2 0.2065* 0.2156* 0.2625 0.1136*

P-SUQR ADS2 Non-linear Solver 0.2546 0.2935 0.3062 0.1945

Table 3: Mean of the weights learned for the 10 training sets for the model in Eqn. 13 and all algorithm and
payoff combinations in Table 2

Eqn. 13
P-SUQR ADS1 Algorithm 2 < 2.36, 2.78,−2.3, 0.688,−0.3,−0.286 >

P-SUQR ADS1 Non-linear Solver < 3.88, 2.86,−4.3, 0.38,−0.3,−0.4 >
P-SUQR ADS2 Algorithm 2 < 2.62, 2.92,−1.57, 0.38,−0.3,−0.34 >

P-SUQR ADS2 Non-linear Solver < 3.92, 3.02,−4.3, 0.34,−0.3,−0.28 >

7.2. Discussions:

Section 7.1 provides an S-shaped probability weighting curve (learned curves are
shown in Figs. 12(a) and 12(b) Section 12.2) as one explanation of the human players’
behavior data. Given the surprising nature of this result, it is important to discuss
other possible hypotheses that may explain why those human behaviors may have been
observed. This section shows however that evidence does not support these alternatives
to S-shaped probability weighting curve discussed earlier.

One potential hypothesis is that the participants may have misinterpreted aspects of
the game interface design shown in Figure 2. However, we took several steps to guard
against such misinterpretations: (i) we asked the participants to play two trial games
and one validation game in the first round and one trial game in each subsequent round;
and (ii) we explained key facets of the game in the instructions and the participants
could switch to the instructions after playing each of the trial and validation games to
verify their understanding before they played the actual game. In addition to ensuring
that the participants were given clear instructions and provided enough practice through
trial games, we also checked the results of the validation game and it showed that 860
out of 1000 participants passed the validation game — indicating an understanding
of the game. Note that we then discarded data from 140 out of 1000 participants (an
average of 7 participants per group) who played the validation game incorrectly.

Another hypothesis could be that the validation game had introduced some mis-
interpretations. Specifically, in our validation game the participants had to choose
between an option which is good on two scales (highest animal density of 10 and
zero coverage) and other options which are bad on both scales (lowest animal den-
sity of 1 and non-zero but equal coverage of 0.375). Therefore, this could potentially
have caused the participants to incorrectly interpret the scales in the actual games they
played and hence they may have misinterpreted the coverage probabilities in the ac-
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Table 4: Standard Deviation of the weights learned for the 10 training sets for the model in Eqn. 13 and all
algorithm and payoff combinations in Table 2

Eqn. 13
P-SUQR ADS1 Algorithm 2 < 0.279, 0.4, 0.9, 0.41, 0, 0.18 >

P-SUQR ADS1 Non-linear Solver < 0.139, 0.32, 0.88, 0.09, 0, 0.07 >
P-SUQR ADS2 Algorithm 2 < 0.19, 0.39, 0.69, 0.37, 0, 0.12 >

P-SUQR ADS2 Non-linear Solver < 0.1, 0.34, 0.88, 0.02, 0, 0.08 >

tual games. However, there is little support for this hypothesis as well. Note that the
validation game is one of three games being played by each participant before the ac-
tual game in the first round. Also, the validation game is only played once in the first
round and never played again in future rounds. However, the participants played two
trial games in the first round and one trial game in the future rounds before playing the
actual game in each round, and these trial games do not have the same “two scales”
property as the validation game as discussed earlier.

Another possible hypothesis for such an S-shaped curve for the probability weight-
ing function could potentially be that we use the weighted probabilities as a separate
additive feature in our model — P-SUQR implies that we take a weighted sum of the
different model features. This is contrary to how the probability weighting function is
used in the prospect theory literature [48, 77]. In that literature, the weighted probabili-
ties are used to weight the values of outcomes; could that perhaps explain the S-shaped
curve in our results? Unfortunately, evidence does not support this hypothesis as well.
First, note that there have been existing works in the literature that show learning of S-
shaped probability weighting curves even when conforming to the traditional prospect
theoretic model, i.e., when the prospect theoretic values of outcomes are weighted
by transformed probabilities [2, 52]. Thus, there already exists evidence of S-shaped
probability curves in other domains even for the traditional prospect theoretic function.
Furthermore, to verify the shape of the probability weighting curve in our game setting
when we consider values of outcomes to be weighted by the transformed probabilities,
we explored an alternate form of our P-SUQR model, called PWV-SUQR (Probabil-
ity Weighted Values SUQR). In PWV-SUQR, the rewards and penalties are weighted
by the transformed coverage probabilities, as shown in Eqn. 14. In Section 12.2.2,
we show that even while learning adversary behavior using Eqn. 14, we get S-shaped
probability curves. This result indicates that the learned S-shape of the probability
curves is not merely the outcome of the additive nature of our P-SUQR model.

SUai (x) = ω1(1− f(xi))R
a
i + ω2f(xi)P

a
i (14)

8. SHARP: Adaptive Utility Model

A second major innovation in SHARP is the adaptive nature of the adversary and
addressing the issue of attack surface exposure. First, we define key concepts, present
evidence from our experiments, and then present SHARP’s innovations.
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Definition The attack surface α is defined as the n-dimensional space of the features
used to model adversary behavior. Formally, α =< F 1, F 2, ..., Fn > for features
F j(∀j; 1 ≤ j ≤ n).

For example, as per the PSU model in Eqn. 13, this would mean the space represented
by the following four features: coverage probability, animal density, adversary penalty
and distance from the starting location.

Definition A target profile βk ∈ α is defined as a point on the attack surface α and
can be associated with a target. Formally, βk =< F 1

k , F
2
k , ..., F

n
k > denotes the kth

target profile on the attack surface.

In our example domain, the kth target profile can be represented as
βk =< xβk , φβk , P

a
βk
, Dβk >, where xβk , φβk , P aβk and Dβk denote values for cov-

erage probability, animal density, attacker penalty and distance from starting location
respectively4. For example, < 0.25, 2,−1, 4 > is the target profile associated with the
top-leftmost cell of ADS1 in round 1. We can add more features like terrain informa-
tion, vegetation, etc. if available. Exposing the adversary to a lot of different target
profiles would therefore mean exposing the adversary to more of the attack surface and
gathering valuable information about their behavior. While a particular target location,
defined as a distinct cell in the 2-d space, can only be associated with one target profile
in a particular round, more than one target may be associated with the same target pro-
file in the same round. βik denotes that target profile βk is associated with target i in a
particular round.

8.1. Observations and Evidence

Below is an observation from our human subjects data, based on the above con-
cepts, that reveal interesting trends in attacker behavior in repeated SSGs.

Observation 1. Consider two sets of adversaries: (i) those who have succeeded in
attacking a target associated with a particular target profile in one round; and (ii)
those who have failed in attacking a target associated with a particular target profile
in the same round. In the subsequent round, the first set of adversaries are significantly
more likely than the second set of adversaries to attack a target with a target profile
which is ‘similar’ to the one they attacked in the earlier round.

In order to provide evidence in support of Observation 1, we show results from our
data highlighting these trends on ADS1 and ADS2 in Figs. 4(a) - 4(h). In each plot,
the y-axis denotes the percentage of (i) attacks on similar targets out of the total suc-
cessful attacks in the previous round (ζss) and (ii) attacks on similar targets out of the
total failed attacks in the previous round (ζfs). Here, by similar, we mean the k nearest
neighbors to the target profile under consideration and these are determined by com-
puting the Euclidean distances between the target profiles on the attack surface. In this
case, we have set k=5, i.e., 5 nearest neighbors. The x-axis denotes pairs of rounds for

4In our experiments, φβi > 0, Paβi < 0 and Dβi > 0
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which we are computing the percentages, for example, in R23, 2 corresponds to round
(r− 1) and 3 means round r in our claim. Thus, ζss corresponding to R23 in ADS2 is
80%, meaning that out of all the people who succeeded in round 2, 80% attacked simi-
lar target profiles in round 3. Similarly, ζfs corresponding to R23 in ADS2 is 33.43%,
meaning that out of all people who failed in round 2, 33.43% attacked similar target
profiles in round 3.

From Figs. 4(a)-4(h), we can observe that, as opposed to the failed attackers, a
statistically significant number of successful attackers returned to attack the same or
similar targets in the subsequent round. The average (over all four models on two
payoffs and for all round pairs) of ζss is 75.2% and the average of ζfs which is 52.45%.
This difference is statistically significant (two-tailed t-tests at confidence=0.05), thus
supporting Observation 1.

One might however argue that successful poachers return to attack the same or
similar targets in future rounds due to some inherent bias towards specific targets and
not because they succeeded on such targets in the previous rounds. Therefore, we
conducted additional human subjects experiments to test the extent to which successes
and failures alone affect their decision making process.

We recruited two groups of human subjects and conducted two rounds of repeated
experiments with each group. We showed the Maximin strategy to both groups in both
rounds of the experiment. We ensured that all the participants of Group 1 succeeded
in round 1, i.e., even though there were coverage probabilities shown, no rangers were
actually “deployed”. In round 2, Maximin strategy was again deployed and the same set
of players were asked to play. We observed that 96% of the human subjects attacked
the same or similar (k=5) target profiles. We observed that out of the 96%, 70.83%
attacked the exact same target profile as they had attacked in round 1. Group 2 was
shown Maximin strategy in round 1 and all the participants were made to fail in round
1, i.e., despite the coverage probabilities, there was a “ranger” deployed in every cell.
In round 2, Maximin strategy was again deployed and the same set of players were
asked to play. We observed that only 36% of the participants attacked the same or
similar (k=5) targets in round 2. This shows that successes and failures are important
factors that players take into account while deciding on their strategy in subsequent
rounds. Similarly, when k=6, we observe that 38% of the participants from Group 2
who failed in round 1, had actually attacked the same or similar target profiles. In Fig.
5, we show for various values of k, the percentage of successful participants in round
1 who returned to attack the same or similar targets in round 2 and the percentage of
failed participants in round 1 who returned to attack same or similar targets in round 2.

Notice that failure does not lead all attackers to abandon their target profile (and
vice versa with successful attacker). This shows that attackers have some inherent
weights for defender coverage, animal density, penalty and distance, as is captured by
the PSUweight vectors, but they do adapt their strategies based on their past successes
and failures. Therefore, we will observe later in Section 12 that even though P-SUQR
is outperformed by our model SHARP in the initial rounds, P-SUQR is still a valuable
model.
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(a) Maximin ADS1 (b) Maximin ADS2

(c) P-SUQR ADS1 (d) P-SUQR ADS2

(e) P-RSUQR ADS1 (f) P-RSUQR ADS2

(g) P-BSUQR ADS1 (h) P-BSUQR ADS2

Figure 4: Evidence for adaptivity of attackers
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Figure 5: For various values of k (the number of nearest neighbors), percentage of people who attacked
similar targets in round 2 after succeeding or failing in the previous round

These observations about successes and failures on the adversary’s future behavior
are also consistent with the “spillover effect” in psychology [27], which in our case
suggests that an adversary will tend to associate properties of unexposed target profiles
with knowledge about similar target profiles to which he has been exposed, where sim-
ilarity is expressed in terms of the Euclidean distance between two points on the attack
surface. Smaller distance indicates higher similarity. The above aspects of adversary
behavior currently remain unaccounted for, in BR-RSG models. Based on observa-
tions above, we define two key properties below to capture the consequences of past
successes and failures on the adversary’s behavior and reason based on them.

Definition The vulnerability associated with a target profile βi which was shown to
the adversary in round r, denoted V rβi , is defined as a function of the total number
of successes and failures on the concerned target profile in that round (denoted by
successrβi and failurerβi respectively). This is shown in Eqn. 15:

V rβi =
successrβi − failure

r
βi

successrβi + failurerβi
(15)

Therefore, more successful attacks and few failures on a target profile indicate that
it was highly vulnerable in that round. Because multiple targets can be associated with
the same target profile and the pure strategy generated based on the mixed strategy x in
a particular round may result in a defender being present at some of these targets while
not at others, there may be both successes and failures associated with the same target
profile in that round.

Definition The attractiveness of a target profile βi at the end of round R, denoted
ARβi , is defined as a function of the vulnerabilities for βi from round 1 to round R. It is
computed using Eq. 16.

ARβi =

∑R
r=1 V

r
βi

R
(16)

Therefore, we model the attractiveness of a target profile as the average of the
Vulnerabilities for that target profile over all the rounds till round R. This is consistent
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with the notion that a target profile which has led to more successful attacks over several
rounds will be perceived as more attractive by the adversary5.

8.2. SHARP’s Utility Computation
Existing models (such as SUQR, which is based on the subjective utility function

(Eqn. 4)) only consider the adversary’s actions from round (r − 1) to predict their
actions in round r. However, based on our observation (Obs. 1) it is clear that the ad-
versary’s actions in a particular round are dependent on his past successes and failures.
The adaptive probability weighted subjective utility function proposed in Eq. 17 cap-
tures this adaptive nature of the adversary’s behavior by capturing the shifting trends
in attractiveness of various target profiles over rounds.

ASURβi = (1− d ∗ARβi)ω1f(xβi) + (1 + d ∗ARβi)ω2φβi

+(1 + d ∗ARβi)ω3P
a
βi + (1− d ∗ARβi)ω4Dβi (17)

There are three main parts to SHARP’s computation: (i) Adapting the subjective
utility based on past successes and failures on exposed parts of the attack surface; (ii)
Discounting to handle situations where not enough attack surface has been exposed;
and (iii) Reasoning about similarity of unexposed portions of the attack surface based
on other exposed parts of the attack surface.

The intuition behind the adaptive portion of this model is that, the subjective utility
of target profiles which are highly attractive to the adversary should be increased, and
that of less attractive target profiles should be decreased, to model the adversary’s future
decision making. Hence, for a highly attractive target profile βi, the attacker would
view the coverage xβi and distance from starting location Dβi to be of much lower
value, but the animal density φβi to be of higher value, as compared to the actual
values. The contribution of the penalty term would also increase the utility (recall that
P aβi < 0 and ω3 < 0).

Let us take an example from our game. Suppose we take the target profile βi =<
0.25, 2,−1, 4 >. This profile had A1

βi
= 1 after round 1, because successrβi = 9 and

failurerβi = 0, i.e., the target was highly attractive to the attacker. The weights learned
were b =< δ, γ, ω1, ω2, ω3, ω4 >=< 2.2, 2.4,−3, 0.9,−0.3,−0.5 >, P-SUQR would
compute the subjective utility as -0.29, while (assuming d (explained later) = 0.25, for
example) SHARP’s adaptive utility function would compute the subjective utility as
0.855. In comparison to the original subjective utility function, this function is adap-
tive due to the positive or negative boosting of model weights based on the defender’s
knowledge about the adversary’s past experiences. Here, learning the model parame-
ters b has been decoupled from boosting the model parameters for future prediction to
ensure simplicity in terms of both the model formulation as well the weight learning
process. This also ensures that the linearity in terms of the features of the model (as in

5Although here we give equal weight to the vulnerability values in each round, we can modify this easily
to consider the recency effect in human decision making by discounting vulnerability values of earlier rounds
and giving more importance to recent rounds. Such models of human discounting of past actions, such as
hyperbolic discounting and exponential discounting, have been explored in [6, 18, 35]. Exploring such
models in our formulation would be an interesting area for future work.
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the original SUQR model) remains intact. Through an example in Section 10, we show
the effect of this design decision on the defender mixed strategy generated.

Now we turn to the next aspect of SHARP’s utility computation. Recall the problem
that the defender does not necessarily have information about the attacker’s preferences
for enough of the attack surface in the initial rounds. This is because, the attacker is
exposed to only a limited set of target profiles in each round and the defender progres-
sively gathers knowledge about the attacker’s preferences for only those target profiles.
We provide evidence in support of this observation in Section 12.3.

The parameter d (0 ≤ d ≤ 1) in Eqn. 17 mitigates this attack surface exposure
problem. It is a discounting parameter which is based on a measure of the amount of
attack surface exposed. d is low in the initial rounds when the defender does not have
enough of the right kind of data, but would gradually increase as more information
about the attacker’s preferences about various regions of the attack surface become
available. For our experiments, we varied d based on Eqn. 18:

d =
1

Nr − r
(18)

where Nr is the total number of rounds and r is the round whose data is under consid-
eration. For example, Nr = 5 and r = 1 for data collected in round 1 of an experiment
conducted over five rounds. The intuition behind this formulation is that, as more
rounds are played, more cumulative information about the adversary’ preferences for a
lot of the attack surface will be available and hence d will increase from a very small
value gradually as rounds progress.

Finally, we look at how we reason about unexposed portions of the attack surface
based on the exposed areas. If a target profile βu was not exposed to attacker response
in round r, the defender will not be able to compute the vulnerability V rβu . Therefore,
we will also not be able to estimate the attractiveness for βu and hence the optimal
defender strategy. So, in keeping with our analysis on available data and based on the
spillover effect introduced earlier, we use the distance-weighted k-nearest neighbors
algorithm [26] to obtain the Vulnerability V rβu of an unexposed target profile βu in
round r, based on the k most similar target profiles which were exposed to the attacker
in round r (Eqns. 19 and 20).

V rβu =

∑k
i=1 θi ∗ V rβi∑k

i=1 θi
(19)

θi ≡
1

d(βu, βi)2
(20)

where, d(βu, βi) denotes the Euclidean distance between βu and βi in the feature space.
We use k = 5 for our experiments.

9. Generating Defender Strategies Against SHARP

While SHARP provides an adversary model, we must now generate defender strate-
gies against such a model. To that end, we first learn the parameters of SHARP from
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available data (See Section 7). We then generate future round strategies against the
boundedly rational adversary characterized by the learned model parameters by solv-
ing the following optimization problem:

max
x∈X

[∑
i∈T

Udi (x) qRi (x|ω)

]
(21)

qRi (ω|x) is the probability that the adversary will attack target i in round R and is
calculated based on the following equation:

qRi (ω|x) =
e
ASUR

βi
k

(x)

∑
i∈T
e
ASUR

βi
k

(x)
(22)

βik denotes that target profile βk is associated with target i. ASUR
βik

and Udi (x) are
calculated according to Eqns. 17 and 1 respectively.

To solve the non-linear and non-convex optimization problem in Eqn. 21 and gen-
erate the optimal defender strategy, we use PASAQ [83] as it provides an efficient
approximated computation of the defender strategy with near-optimal solution quality.

10. SHARP in action: An example

In this section we give an example to show the effectiveness of SHARP in terms
of the design of each component: (i) adaptive utility, (ii) similarity learning, and (iii)
confidence based discounting. Figs. 6(a), 6(b) and 6(c) show second round strategies
generated by SHARP with discounting of Eqn. 18 but without Attractiveness, SHARP
without discounting, i.e., d = 1 but with Attractiveness, and SHARP, based on parame-
ters learned (b =< δ, γ, ω1, ω2, ω3, ω4 >=< 1.2, 1.6,−3.2791, 0.1952,−0.3,−0.8388 >)
from first round data collected for the experiment with SHARP on ADS1 (shown in
Fig. 6(d)). The strategy generated by SHARP with discounting but without Attrac-
tiveness (see Fig. 6(a)) can be easily exploited due to several unprotected cells with
positive animal density. SHARP without discounting but with Attractiveness (see Fig.
6(b)) generates a comparatively more robust strategy than SHARP with discounting
but without Attractiveness (Fig. 6(a)) due to its adaptive utility function and similar-
ity learning mechanism. SHARP generates the best strategy (see Fig. 6(c)) due to its
capability to model all the design parameters together into one single framework.

11. RL-SSG: A Descriptive Reinforcement Learning Algorithm for SSGs

In this section, we translate the basic Reinforcement Learning (RL) model proposed
by Erev and Roth [28] to our setting; we use their RL approach to compute the optimal
mixed strategy for the defender in repeated SSGs. The primary reason for adapting an
existing RL based approach for our problem is to compare our models against another
popular learning framework which has been used earlier in the context of two-player
games. However, as explained in Section 3.4, the main challenge of using the same
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(a) SHARP with discounting but without
Attractiveness

(b) SHARP without discounting but with
Attractiveness

(c) SHARP (d) ADS1

Figure 6: (a,b,c): Round 2 strategies generated by SHARP (with discounting without Attractiveness),
SHARP (no discounting but with Attractiveness) and SHARP respectively; (d) ADS1

framework as in [28] is that the models in Erev and Roth’s paper were developed for
simultaneous move games without any notion of prior commitment to a mixed strategy
by any player. Therefore, we developed a new RL model for our leader-follower setting
where the defender moves first by playing a mixed strategy and the other player moves
next by playing a pure strategy after having observed the first player’s mixed strategy.
Since we deploy and compute optimal mixed strategy responses for the defender per
round based on all the attacks observed in the earlier rounds, we do not explicitly
require a lot of defender and attacker pure strategy combinations to be deployed. We
describe below the RL based algorithm (Algorithm 1) to compute the optimal mixed
strategy.

The algorithm first starts with an initial propensity for the defender to play any pure
strategy k (Line 1). The probability distribution over all possible pure strategies is then
computed by normalizing the propensities (Line 2). The defender then computes the
mixed strategy and deploys this strategy (which results in a coverage probability for
each target as discussed in Section 2.1), and collects all pure strategy responses of the
attacker to the defender’s mixed strategy in the corresponding round (Line 2). Using
this data collected in a particular round, the defender computes her utility of playing
each pure strategy k (Line 3). More specifically, this utility is computed for each pure
strategy as the reward that would result to the defender given the observed adversary
response if the defender were playing only this pure strategy. The reinforcement of
playing each pure strategy is then computed as the difference between the correspond-
ing utility and the minimum possible utility over all the pure strategies (Line 4). The
defender then updates her propensities of playing each pure strategy by adding the re-
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inforcements to the propensities computed in the earlier round (Line 5). The mixed
strategy to be deployed in the next round is then computed in the same way as Line 2,
and the game proceeds to future rounds in this fashion.

In our game, starting from an equal initial propensity for each pure strategy (as
proposed in [28]) would result in a mixed strategy with equal coverage probability
at each target. Due to the differences in animal densities, if we start from a uniform
mixed strategy, it would leave many of the targets of high animal density to be at-
tacked in round 1 (as evidenced from other human subject experiments conducted in
the past [66]) and that would result in a defender utility which is much lower than the
cumulative utility for any of our models over five rounds (see Section 12 for details).
Therefore, for our experiment with the RL approach, we assumed that the defender
starts with the robust Maximin strategy in round 1. The use of Maximin as the ini-
tial strategy also ensures that we allow the RL model to start from the same starting
point as all other models, and that it does not have an initial advantage or disadvantage
compared to other models. Thus, we used Maximin to compute the initial propensities
for pure strategies in this setup; we used Comb Sampling on the Maximin mixed strat-
egy [76] to compute the probability of playing each pure strategy and considered those
to be the initial propensities for each pure strategy. We then updated the propensities
based on round 1 attack data for Maximin on ADS1 and computed the corresponding
mixed strategy and deployed that as the round 2 strategy. Based on this experiment,
results and comparisons of the RL based approach against other models are shown in
Section 12.1.

12. Results with Human Subjects on AMT

This section shows the results of our human subjects experiments on AMT, while
the next section shows results against security experts, based on the experimental set-
ting discussed in Sections 4, 5 and 6. In Section 12.1 we show average defender ex-
pected utilities for five models (P-SUQR, P-BSUQR, P-RSUQR, SHARP and Max-
imin) against actual human subjects, for various rounds of our experiment on two pay-
off structures (ADS1 and ADS2). In Section 12.2, we show results of learning the
shape of the probability weighting function for the adversaries on ADS1 and ADS2

for three different scenarios: (i) when Gonzalez and Wu’s probability weighting func-
tion Eqn. 9 is used in Eqn. 13; (ii) when Prelec’s probability weighting (Eqn. 7) is used
in Eqn. 13; and, (iii) when transformed probabilities with Gonzalez and Wu’s function
is used to weight the values of outcomes (Eqn. 14). In the same section, we also show
prediction performances of models for cases (ii) and (iii) above. Section 12.3 shows the
effect of attack surface exposure on the performance of P-SUQR. In Section 12.4 we
show the adaptiveness of SHARP based strategies over rounds while P-SUQR based
strategies converge to a particular strategy at the end of a few rounds. Plots for all the
analysis on payoff structures ADS3 and ADS4 are reported in Appendix 6.

12.1. Defender Utilities
In Figs. 7(a)-7(b) we show actual defender utilities obtained over 5 rounds for

P-SUQR, P-BSUQR, P-RSUQR, SHARP and Maximin on ADS1 and ADS2 respec-
tively, with an average of 38 human subjects playing per round. Similar to human
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Algorithm 1 Algorithm to learn RL based defender strategy for repeated Stackelberg
games
INPUT: Set of Targets T ; Number of security resources M .
OUTPUT: Optimal defender strategy for any round r.

1: In round r = 1, the defender has an initial propensity to play pure strategy k,
denoted by qk(1);∀k ∈ P , where P is the set of all possible pure strategies as
described earlier in Sec. 2. (1) denotes round 1.

2: The defender computes the probability of playing a particular pure strategy k in
round r based on the propensities as follows:

pk(r) =
qk(r)∑

j∈P
qj(r)

(23)

The defender can then directly compute the mixed strategy x(r) for round r from
the pk(r)’s, deploy x(r) and collect attack data for round r.

3: The defender uses data collected in round r, i.e. Dr, to compute the expected
utility of playing pure strategy k in round r + 1 as follows:

Uk(r + 1) =

∑
i∈T

Di(r) ∗Bk,i∑
i∈T

Di(r)
(24)

Here, Di(r) denotes the number of attacks on target i in round r, Bk,i denotes the
payoff to the defender if she plays pure strategy k and the adversary plays pure
strategy i (i.e. attacks target i). It is calculated as follows:

Bk,i =

{
Rd

i if ‘i’ is protected in pure strategy ‘k’
Pd

i if ‘i’ is not protected in pure strategy ‘k’

Here, Rdi is the defender’s reward for covering i if it is selected by the adversary
and P di is the penalty for not covering i.

4: The reinforcement of playing pure strategy k is then computed as:

Ik = Uk(r + 1)−min
k

(Uk(r + 1)) (25)

Here, min
k

(Uk(r+ 1)) denotes the minimum utility over all the computed utilities.

5: The propensities of the defender for pure strategy k(∀k ∈ P ) in round (r + 1) is
then updated as follows:

qk(r + 1) = qk(r) + Ik (26)

6: Repeat Step 2 to Step 5.

subjects experiment results in previous work [67, 81, 62], in the plots, y-axis corre-
sponds to defender expected utility. However, what is different here is that, we are now
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reporting results on repeated rounds and hence the round numbers are shown on the
x-axis. For example, in Fig. 7(b), P-SUQR performs worst in round 2 with a utility of
-5.26. In Fig. 7(b), we also show (inset) zoomed in results of the second round to high-
light the difference in performance between Maximin (= -0.18) and SHARP (= -0.1).
Figs. 8(a)-8(b) show cumulative defender utility over five rounds on ADS1 and ADS2

respectively. Note that the first round utilities for all models are same as Maximin
strategy was played due to absence of data. All significance results reported below are
computed with bootstrap t-test. Following are key observations from our experiments.

• Heavy initial round losses: For all models except SHARP, there is statistically
significant (p=0.05) loss in defender utility as compared to Maximin in sec-
ond round on all the payoffs. P-SUQR recovers from initial round losses and
outperforms Maximin in rounds 3, 4 and 5 for ADS1 (statistically significant
at p=0.05), and in round 4 (statistically significant at p=0.15) and round 5 for
ADS2. P-SUQR also outperforms Maximin in rounds 3, 4 and 5 on ADS3 and
ADS4 (see Appendix 6). P-RSUQR, which is a robust model, also outperforms
Maximin in rounds 4 and 5 (statistically significant at p=0.05) for ADS1, ADS3

and ADS4 after initial round losses. Surprisingly, P-BSUQR, which is the basis
for wildlife security application PAWS [80], performs worst on all payoffs over
all rounds.

From Fig. 8(a) , we can observe that it takes five rounds for P-SUQR to recover
from initial round losses and outperform Maximin in terms of cumulative de-
fender utility for ADS1. P-SUQR does not recover from initial round losses and
outperform Maximin on any other payoffs. None of the other models recover
from the initial round losses on any of the payoffs in five rounds, thus highlight-
ing the impact initial round losses have on model performance for a long period
of time.

• Performance of SHARP against other models: SHARP consistently outper-
forms (statistically significant at p=0.05) all the models over all rounds (Figs.
7(a)-7(b), and 27(a)-27(b)), most notably in initial rounds (round 2) and ends up
with significantly high cumulative utility at the end of all rounds (Figs. 8(a)-8(b)
and 28(a)-28(b)).

Therefore, our results on extensive human subjects experiments on repeated
SSGs show SHARP’s ability to perform well throughout, including the important
initial rounds.

• Performance of SHARP (with and without discounting):To test the effective-
ness of the design decisions in SHARP, we considered SHARP both with and
without discounting. SHARP with d = 1 is compared against SHARP and P-
SUQR onADS1 andADS2 in Figs. 9(a) and 9(b). SHARP(d = 1) outperforms
P-SUQR (statistically significant at p=0.05) because it captures the adaptive na-
ture of the adversary. However, it performs worse than SHARP (statistically
significant at p=0.01) as SHARP also trusts the data less when we don’t have
enough information about the adversary’s responses to most of the attack sur-
face; in this case the initial rounds.
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• Comparison with SUQR (w1 > 0): As mentioned earlier in Section 7.1, we
conduct additional human subjects experiments on ADS1 to show that the per-
formance of SUQR without probability weighting is worse than any of the other
models. We deployed an experiment on AMT with the defender strategy com-
puted based on the SUQR model learned from round 1 data ofADS1. The result-
ing SUQR weight vector had a positive weight on coverage probability and thus
resulted in a defender pure strategy. The game was deployed with this strategy
on AMT. 60 people played the game, and out of them 48 participants passed the
validation test. For our experimental results, we considered the data from only
the participants who passed the validation test. The average expected defender
utility obtained was -4.75. This average expected defender utility obtained by de-
ploying a pure strategy based on a learned SUQR model is significantly less than
that of all the other models on ADS1 in Round 2 (Figure 10(a)). Furthermore,
the SUQR (Pure Strategy) model’s average expected defender utility in this one
round is significantly less than the cumulative average expected defender utility
of all the other models after five rounds (Figure 10(c)). Given that this strat-
egy performs worse in one round than the cumulative average expected defender
utility of all the other models, it demonstrates the point that the performance of
SUQR without probability weighting is worse than any of the other models that
include probability weighting.

Notice that the reason this SUQR pure strategy performs so poorly is that it leaves
16 out of 25 targets completely exposed, and among these targets are ones with
animal densities 4 and 5. Pure strategies for other reward structures similarly
leave other targets of high value completely exposed. Also, as mentioned in
Section 1, degraded performance in initial rounds may have severe consequences
for the reasons outlined there. Thus, the poor performance in this initial round
of the pure strategy on ADS1 and its leaving targets of high value completely
exposed illustrates that pure strategy SUQR is completely useless as a strategy
for deployment. Therefore, we did not conduct any further experiments for future
rounds with this model.

• Comparison with RL based approach: We conducted human subjects experi-
ments on ADS1 with the RL based approach (Algorithm 1) to compare its per-
formance against our behavioral models. We deployed an experiment on AMT
with the defender strategy computed based on the RL model learned from round
1 data of Maximin on ADS1 (as explained earlier in Section 11). 63 partici-
pants played the game, out of which 49 participants passed the validation test.
For our experimental results, we considered the data from only the participants
who passed the validation test. The average expected defender utility obtained
was -4.139. This average expected defender utility obtained by deploying the
defender strategy based on a learned RL model is significantly less than that
of all the other models on ADS1 in Round 2 (Figure 10(b)). Furthermore, the
RL model’s average expected defender utility in this one round is significantly
less than the cumulative average expected defender utility of all the other mod-
els after five rounds (Figure 10(d)). Given that this strategy performs worse in
one round than the cumulative average expected defender utility of all the other
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models, it has very little chance of ever recovering and outperforming the other
models we have discussed earlier after more rounds.

In addition, we show the deployed defender strategy for round 2 on ADS1 in
Figure 11. Based on Figure 11, notice that the reason the RL based approach
performs so poorly is that after learning from attacks in the previous round, it
places a significant amount of coverage on target cells with high number of at-
tacks (the cell with a resultant coverage probability of 0.492 in round 2 had an
animal density of 6 and was attacked 7 times in round 1), while it reduces the cov-
erage on cells with very few attacks (the middlemost cell with a resultant round
2 coverage probability of 0.371 had an animal density of 10 and only 1 attack in
round 1). This is because, for cells with zero or very few attacks, the propensities
for playing strategies that correspond to protecting those targets are not updated
as much as cells which have been attacked more frequently and have simulta-
neously resulted in higher gains for the defender. This leaves cells with high
rewards but very few attacks in the past rounds less protected in the subsequent
round and therefore completely exposed to a lot of attacks. RL based strategies
for other reward structures similarly leave other targets of high value (but very
attacks) with little protection and therefore open to exploitation by the attacker
in the subsequent round. Thus, the poor performance in this initial round of the
RL model on ADS1 and its leaving targets of high value exposed to exploita-
tion in the subsequent round illustrates that significant new work would need to
be done to adapt the proposed RL framework (based on the model by Erev and
Roth [28]) for our Stackelberg Security Game setting. As mentioned in Section
1, degraded performance in initial rounds may have severe consequences for the
reasons outlined there. Therefore, given the poor initial round performance of
the RL model on ADS1, we did not conduct any further experiments for future
rounds.

(a) Results on ADS1 (b) Results on ADS2

Figure 7: Defender utilities for various models on ADS1 and ADS2 respectively.
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(a) Results on ADS1 (b) Results on ADS2

Figure 8: Cumulative defender utilities for various models on ADS1 and ADS2 respectively.

(a) Results on ADS1 (b) Results on ADS2

Figure 9: (a) Comparison of defender utilities between P-SUQR, SHARP and SHARP(d=1) on ADS1 and
ADS2 respectively

12.2. Learned Probability Curves

Figs. 12(a)-12(b) and 29(a)-29(b) show human perceptions of probability in rounds
1 to 4 when the participants were exposed to P-SUQR based strategies on ADS1,
ADS2, ADS3 and ADS4 respectively. Learned curves from P-SUQR on all payoffs
have this S-shaped nature, showing that even though there is a little change in the cur-
vature between rounds, it retains the same S-shape throughout all rounds. The curves
indicate that people weigh high probabilities to be higher and low to medium probabil-
ities to be lower than the actual values. Even though this is contrary to what Prospect
theory [77] suggests, this is an intuitive result for our Stackelberg Security Games do-
main because we would expect the adversary to be deterred from targets with very high
coverage probabilities and that they would prefer to attack targets with low to medium
coverage probabilities.
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(a) Comparison of SUQR (Pure Strategy) Utility in
Round 2 against other models in Round 2

(b) Comparison of RL Model Utility in Round 2
against other models in Round 2

(c) Comparison of SUQR (Pure Strategy) Utility in
Round 2 against Cumulative Utility of other
models after Round 5

(d) Comparison of RL Model Utility in Round 2
against Cumulative Utility of other models after
Round 5

Figure 10: Comparison of various models with SUQR (Pure Strategy) and the RL model on ADS1 respec-
tively.

Figure 11: RL model based defender strategy for round 2 on ADS1.
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(a) ADS1 (b) ADS2

Figure 12: Learned probability curves for P-SUQR on ADS1 and ADS2 respectively.

12.2.1. Comparison with Prelec’s probability weighting function

(a) ADS1 (b) ADS2

Figure 13: Learned probability curves with Prelec’s probability weighting function for P-SUQR on ADS1

and ADS2 respectively.

As mentioned earlier in Section 3.2, we also experiment with Prelec’s one-parameter
model while allowing α to be any value greater than zero. In this case too, we learn
S-shaped curves on all of our payoff structures as shown in Figs. 13(a)-13(b) and
30(a)-30(b). This indicates that the shape of the learned curve is not dependent on the
probability weighting function used, as long as the function allows for learning both
an S-shaped and an inverse S-shaped curve. In addition, the prediction performance
(average of the sum of squared errors for all rounds and animal density structures) of
P-SUQR with Gonzalez and Wu’s probability weighting function (Eqn. 9 and Eqn. 13)
and P-SUQR with Prelec’s probability weighting function (Eqn. 7 and Eqn. 13) are
0.072 and 0.09 respectively and this is statistically significant at p=0.02. The sum of
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squared errors in prediction for each of the four rounds (round 2 to 5) and each ani-
mal density structure are shown in Figure 14(a), where the x-axis shows each possible
combination of animal density structures and rounds, and the y-axis shows the sum of
squared errors.

(a) Gonzalez and Wu vs Prelec

(b) P-SUQR vs PWV-SUQR

Figure 14: (a) Comparison of the sum of squared errors for P-SUQR with Gonzalez and Wu, and P-SUQR
with Prelec’s probability weighting function respectively; (b) Comparison of the sum of squared errors for
P-SUQR and PWV-SUQR respectively

12.2.2. Comparison with PWV-SUQR
As mentioned earlier in Section 7.2, the adversary behavior model PWV-SUQR

is one plausible alternative that could be considered for comparison with our models.
Therefore, in this section, we first show the probability weighting curves learned (Figs.
15(a)-15(b) and 31(a)-31(b)) when we consider Eqn. 14 (see Section 7.2) as the subjec-
tive utility function in our adversary model. We observe that the curves are S-shaped
in nature and this indicates that the shape of the probability weighting curves in our
domain is not dependent on our use of the P-SUQR model 6.

Nonetheless, PWV-SUQR does raise an intriguing possibility as a plausible alter-

6Note that, instead of Eqn. 14, even if we use prospects where the transformed probabilities weight the
transformed values [48, 77], we still get S-shaped curves in our game setting.
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(a) ADS1 (b) ADS2

Figure 15: (a) - (d) Learned probability curves for PWV-SUQR on ADS1 and ADS2 respectively.

native for P-SUQR and thus the performance of PWV-SUQR should be compared with
P-SUQR. Therefore, we compare the performance of P-SUQR (with the PSU function
in Eqn. 10) and PWV-SUQR in terms of predicting future round attacks. We show
that P-SUQR (with the PSU function in Eqn. 10) performs better (with statistical sig-
nificance) as compared to PWV-SUQR. The sum of squared errors in prediction for
each of the four rounds (round 2 to 5) and each animal density structure are shown
in Figure 14(b), where the x-axis shows each possible combination of animal density
structures and rounds, and the y-axis shows the sum of squared errors. The prediction
performance (average of the sum of squared errors for all rounds and animal density
structures) of P-SUQR (with the PSU function in Eqn. 10) and PWV-SUQR are 0.128
and 0.155 respectively and this is statistically significant at p=0.01. This justifies the
use of P-SUQR and its variants while modeling the adversary.

12.3. Attack surface exposure

In our repeated SSG, the only variation in terms of feature values for our model
(Eqn. 17) from round to round is the mixed strategy x and hence the coverage xi at
each target. Hence, exposure to various regions of the attack surface means exposure
to various values of xi for fixed values of the other model parameters. Fig. 16(a)-16(b)
and Fig. 32(a)-32(b) show how the adversary was exposed to more unique values of
the coverage probability, and hence attack surface, when conducting experiments with
P-SUQR over the five rounds for ADS1, ADS2, ADS3 and ADS4 respectively. We
discretize the range of xi, i.e. [0,1] into 10 intervals (x-axis) and show the total number
of unique coverages exposed till a particular round (y-axis) for each interval. Observe
that more interval ranges and more unique coverage probabilities get exposed in rounds
3 to 5, thus exposing more of the attack surface. Based on our earlier discussion in Sec-
tion 8, this phenomenon of revealing more of the attack surface would lead to improved
gain in information about the adversary and would thus help us to perform better in the
future rounds. As we showed in Figs. 7(a)-7(b) and 27(a)-27(b), the defender perfor-
mance for P-SUQR improves significantly in rounds 4 and 5.
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(a) ADS1

(b) ADS2

Figure 16: Total number of unique exposed target profiles till the end of each round for each coverage
probability interval for ADS1 and ADS2.

12.4. Adaptiveness of SHARP

Recall that P-SUQR assumes the presence of a homogeneous adversary type and
attempts to learn that adversary type from past attack data. So we should expect that as
we learn the model parameters over various rounds, the learned parameters and hence
the generated defender strategy should converge. On the contrary, SHARP models
the adaptive nature of a homogeneous adversary type based on his past successes and
failures. Hence the convergence of the defender strategy generated based on SHARP
in each round is not guaranteed. Figs. 17(a)-17(b) and 33(a)-33(b) show the 1-norm
distance between defender strategies generated by SHARP (and P-SUQR) over rounds
with respect to the strategy generated by P-SUQR in round 5. While P-SUQR con-
verges to a particular strategy in round 5 for all four animal density structures, SHARP
does not converge to any strategy. To further illustrate that the SHARP based strategy
does indeed change over rounds, we show SHARP based strategies on ADS2 from
rounds 2 to 5 in Figs. 18(a) - 18(d). For ADS2, the 1-norm distances between the
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defender strategies in rounds 2 and 3, rounds 3 and 4, and rounds 4 and 5 are 2.324,
2.19 and 1.432 respectively, showing that the strategies are changing from round to
round. All these results demonstrate the adaptivity of SHARP over rounds based on
the successes and failures of the adversaries in the past.

(a) ADS1 (b) ADS2

Figure 17: Adaptivity of SHARP and Convergence of P-SUQR on payoff structures ADS1 and ADS2

respectively.

(a) Round 2 (b) Round 3

(c) Round 4 (d) Round 5

Figure 18: SHARP based strategy for the defender on payoff structure ADS2.

13. Validation and Testing Robustness of AMT findings

While in general findings from AMT have been validated with human subject ex-
periments in the lab, the first question we ask is whether domain experts would perform
similarly to what was observed of human subjects in AMT studies, i.e., we wish to fur-
ther validate the findings from AMT. To that end, we deploy SHARP-based strategies
against security experts at a national park in Indonesia and analyze the results (Section
13.1) by comparing them with our observations on human subjects data from AMT. A
second question that may be raised is with regard to our assumption that all attack data
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is perfectly observed in AMT studies. Therefore, we analyze SHARP-based strategies
with only a fraction of the entire data (Section 13.2).

13.1. Results with Security Experts in Indonesia
In order to validate our AMT findings, we also conducted human subjects experi-

ments for SHARP in the real world: with wildlife security experts from the provinces
of Lampung and Riau, Sumatra, Indonesia. The 33 participants were from the local
government, and from the following NGOs YABI, WWF and WCS. Each of the 33
participants played SHARP based strategies over 4 rounds. As in our AMT experi-
ments, the first round strategy was Maximin.

In Fig. 19 we show actual defender utilities obtained over 4 rounds for SHARP
on ADS3. Interestingly, the defender utility obtained in round 2 was not only signifi-
cantly higher than other rounds, but is also significantly higher than the utility obtained
in round 2 for the same animal density structure for AMT participants (see Fig. 27(a)).
This is because 96% of the experts who were successful in round 1 had attacked the
same or similar targets in round 2. This is comparatively higher than the number of
successful participants on AMT on ADS3 in round 1 who returned to attack the same
or similar targets in round 2: it was 78%. Hence, our model SHARP which captures
the adversary’s adaptiveness based on their past successes and failures, completely
outperforms the experts. The defender’s utility drops in round 3 as compared to that in
round 2, because the experts, now aware of SHARP’s adaptiveness, adjust their strat-
egy. However, SHARP is robust enough to still generate high utility for the defender.

Figure 19: Defender utility for SHARP against security experts in Indonesia

Similarity between AMT and Indonesia experts data: We earlier conducted a set
of analyses and made certain observations based on our human subjects experiments
data from AMT. We conducted the same analysis on the attack data obtained from
real-world experts to validate our AMT results.

First, in our human subjects experiments on AMT we made Observation 1. We con-
ducted analysis on the security experts data to see if we observe the same phenomenon
in this data. Fig. 20 shows how the adversaries (security experts in this case) adapted
to SHARP based strategy depending on past successes and failures. The x-axis denotes
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Figure 20: Evidemce for adaptivity of attackers (security experts in Indonesia)

Figure 21: Total number of unique exposed target profiles till the end of each round for each coverage
probability interval for Indonesia experts data.

pairs of rounds for which we are computing the percentages; for example, in R23, 2
corresponds to round (r − 1) and 3 means round r in our claim. The results obtained
are consistent with the ones obtained from our AMT data (see Figs. 4(a) - 4(h)), i.e.,
successful adversaries tend to return to attack the same or similar targets in the subse-
quent round while failed adversaries will not tend to return to attack the same or similar
targets in the subsequent round.

Second, we conducted analysis to see how the attack surface is exposed to the
adversary over various rounds. The amount of attack surface exposed to the adversary
over the four rounds in the wildlife experts data is shown in Fig. 21. This is consistent
with similar plots obtained from our AMT data (see Fig. 16(a)-16(b) and Fig. 32(a)-
32(b)) which show that as rounds progress, more number of coverage probability values
from various intervals are exposed to the adversary.

Third, we show in Fig. 13.1, the human perceptions of probability in rounds 1 to
4 when the security experts were exposed to SHARP based strategies on ADS3. The
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learned curves have an S-shaped nature for each of the rounds, which is consistent with
our AMT findings (Section 12.2).

Figure 22: Learned probability curves for SHARP on ADS3 on the security experts dataset.

13.2. Results with fraction of complete attack data
In our human subjects experiments, we assume that the defender can observe all

the attacks that occurred in each target region of the park at the end of every round.
However, this may not be true in reality, i.e., defenders may miss some large fraction
of the attacks. Therefore, we conduct additional analysis to understand the effects of
considering a fraction of the original dataset on our defender strategy.

We generated round 2 defender strategies for all four payoffs with 50% of the data
sampled randomly to test the robustness of our model. Here, by robustness we mean
that the deviation of the strategy generated will be very similar to the original one, i.e.,
the 1-norm distance of the strategy generated with a fraction of the data will be very
small when compared with the strategy generated with the full dataset. We randomly
sampled several such fractional datasets but show results for four different sampled
datasets (0%, 5%, 10% and 15% deviations from original attack data) for each payoff
for the fraction size of 50%. By random sampling, we mean that, if there were |χ|
attacks in the original dataset, we randomly picked a target cell and removed one attack
data point and repeated this until 50% of the attack data (i.e. round(|χ|/2) attack data
points) remained. Therefore, by 0% deviation, we mean that we removed 50% attacks
from each target cell to make the new dataset. Similarly, by 5% deviation, we mean
that the 1-norm distance between the new dataset obtained by removing 50% of the
attack data and the original dataset is 0.05, and so on.

For each payoff structure we show (Figs. 23(a) and 24(b)) the average 1-norm dis-
tances between the round 2 defender strategies generated when datasets with various
deviations (0%, 5%, 10% and 15%) from the original dataset were used to learn the
model parameters, as opposed to learning from the complete dataset. We can observe
from Figs. 23(a)-24(b) that the average 1-norm distance between the coverage proba-
bility xi; 0 ≤ xi ≤ 1 for any target i between the original and 5% deviation datasets
is no more than 0.044 for any of the payoffs. However, when the deviation from the
original dataset increases to 15%, the average 1-norm distance also increases. Note that
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if the proportion of attacks over the targets were same as that of the original dataset,
then the defender strategy generated would also be exactly the same modulo rounding
errors.

(a) Average 1-norm distance for ADS1 (b) Average 1-norm distance for ADS2

Figure 23: (a) and (b): Average 1-norm distances between defender strategies generated by SHARP when
the model is learned based on randomly sampled 50% data (0%, 5%, 10% and 15% deviation from actual
data) and when the model is learned from the complete data set. Results are shown for ADS1 and ADS2

respectively.

(a) Average 1-norm distance for ADS3 (b) Average 1-norm distance for ADS4

Figure 24: (a) and (b): Average 1-norm distances between defender strategies generated by SHARP when
the model is learned based on randomly sampled 50% data (0%, 5%, 10% and 15% deviation from actual
data) and when the model is learned from the complete data set. Results are shown for ADS3 and ADS4

respectively.

14. Conclusions and Future Work

Although several competing human behavior models have been proposed to model
and protect against boundedly rational adversaries in repeated Stackelberg security
games, no study has yet been conducted against actual human subjects to show which
is the best model in such repeated settings. This article provides three major contribu-
tions towards answering that question and therefore, provides an advancement to the
field of ”security games”, a key area of research in Artificial Intelligence. Given the
important applications of security games in areas such as protecting wildlife and fish-
eries, where there are repeated interactions between the defenders and adversaries, our
contributions are critical for such domains.
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First, we introduce a novel human behavior model called SHARP for repeated SSG
settings. SHARP has three major novelties: (i) It models the adversary’s adaptive de-
cision making process by reasoning based on success or failure of the adversary’s past
actions on exposed portions of the attack surface. (ii) It accounts for lack of informa-
tion about the adversary’s preferences due to insufficient exposure to attack surface by
reasoning about similarity between exposed and unexposed areas of the attack surface,
and also incorporating a confidence based discounting parameter to model the learner’s
trust in the available data. (iii) It integrates a non-linear probability weighting function
to model the adversary’s perception of probabilities.

Second, we provide empirically supported methodological contributions towards
conducting human subjects experiments in repeated measures settings on AMT. We
provide analysis of the contribution of our approaches that help maintain high partici-
pant retention rates throughout the course of 2.3 week-long studies (46 weeks in total)
and thus providing the grounds for fair comparison of various human behavior models
in repeated Stackelberg Security Games.

Third, we provided results from the first repeated measures study of competing
models in repeated SSGs to test the performance of SHARP along with existing ap-
proaches. We conducted experiments on four different payoff structures on the Ama-
zon Mechanical Turk platform and also on one payoff structure in the real world, at the
Bukit Barisan Seletan National Park in Indonesia, with security experts from the local
government as well as various NGOs (WWF, WCS, YABI, etc.) who are in charge of
protecting wildlife in the national park. Our results show that: (i) Human perceptions of
probability are S-shaped, contradicting the inverse S-shaped observation from prospect
theory. (ii) Existing human behavior models and algorithms perform poorly in initial
rounds of repeated SSGs, with P-BSUQR which was earlier proposed as the basis for
wildlife security application PAWS, performing poorly throughout all the rounds; (iii)
a simpler model, P-SUQR , which was originally proposed for single-shot games re-
covers significantly after initial round losses; and (iv) SHARP performs significantly
better than existing approaches consistently over all the rounds, most notably in the
initial rounds.

Whereas in our work we have found support for S-shaped probability weighting
curves, there are existing works that demonstrate inverse S-shaped curves in their do-
mains [48, 77]. As mentioned earlier in Section 7.1, one hypothesis is that human
probability weighting could be context dependent, for example, results may vary de-
pending on the number of alternatives available to the decision maker in the domain
under consideration. Therefore, in the future, we would like to conduct further studies
to identify settings when people may exhibit an S-shaped probability weighting curve
as opposed to an inverse S-shaped one. We would also want to explore existing models
of human discounting as we mentioned earlier in Section 8.1. Furthermore, while we
have treated the reward to the poacher as a fixed reward (See Section 4.3, footnote 3) if
the ranger does not capture the poacher, in reality, the poacher has to further take into
account the uncertainty over capturing a hippo. This is a further layer of uncertainty
that may need to be investigated in the future.
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16. Appendix 1: Algorithm to learn PSU model parameters

The algorithm first randomly divides all data from past rounds into training and
testing data (Line 2), and then splits the training data intoK training and validation data
sets (Line 3). Considering a set of {δ , γ} combinations, we learn the other parameters
of the model and compute the average validation error over all the validation datasets
for each {δ , γ} combination (Line 14). We then choose the {δ , γ} combination with
the minimum average validation error (Line 16) and using that combination we re-learn
the other model parameters and that forms our final weight vector (Line 17).

Algorithm 2 Algorithm to learn the weights of P-SUQR and its variations in repeated
Stackelberg games
INPUT: Data from R rounds: D1, D2, ... , DR.
OUTPUT: Learned weights (δp, γp, ω1, ω2, ω3, ω4).

1: for r=1 to R do
2: Randomly divide the collected data Dr into 1 training (Trr) and 1 test (Ter)

set.
3: Take the training samples (Trr) and randomly divide it into K training (kTrvr)

and validation (kV alr) splits (1 ≤ k ≤ K).
4: end for
5: Consider a range of values for both δ and γ (Eqn. 9 in the article).
6: Discretize each range and consider all possible {δ , γ} pairs in that range. Let there

be M such pairs.
7: for i=1 to M do
8: for k=1 to K do
9: Given training splits kTrv1, kTrv2, ... , kTrvR, learn the weights kω=(kω1,

kω2, kω3, kω4) of Eqn. 10 in the article by using MLE to maximize the sum
of log-likelihoods over all such training splits [62].

10: Predict using the learned weights kω on the corresponding validation splits
kV al1, kV al2, ... , kV alR.

11: Calculate the prediction errors kErr1, kErr2, ... , kErrR on the validation
sets kV al1, kV al2, ... , kV alR respectively.

12: Calculate the sum of all prediction errors kErr1, kErr2, ... , kErrR and let
it be kErr.

13: end for
14: Calculate the average of all K prediction errors kErr (1 ≤ k ≤ K) and let that

be denoted by AvgErri.
15: end for
16: Let p be the index of the {δ , γ} pair with the minimum AvgErri (i=1 to M ).

Choose {δp , γp} as the parameter values of the probability weighting function
that best describes the probability weights of the adversary population.

17: Given training sets Tr1, Tr2, ... , TrR and {δp , γp}, learn the weights ω=(ω1,
ω2, ω3, ω4) of Eqn. 10 in the article by using MLE to maximize the sum of log-
likelihoods over all such training splits [62]. The final learned weight set is then
(δp, γp, ω1, ω2, ω3, ω4).
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17. Appendix 2: Proof of Theorem 1

PROOF. Assume Rdi (> 0), P di (< 0), Rai (> 0) and P ai (< 0) Also assume that the
defender has M ∈ N+ defender resources. Let qi be the attacking probability for
target i. According to SUQR model,

qi =
eω1xi+ω2R

a
i +ω3P

a
i∑

j e
ω1xj+ω2Raj+ω3Paj

We rewrite the defender’s expected utility Udi (x) as: Udi (x) = (Rdi − P di )xi + P di .
Then defender’s overall expected utility can be represented as

f(x) =
∑
i

qiU
d
i (x)

and the optimization problem is to maximize f(x) under the constraints
∑
i xi ≤ K

and 0 ≤ xi ≤ 1.
Assume x̄ is the optimal defender strategy and opt is the optimal value of defender’s

overall expected utility. Let S̄ be the set of targets with positive coverage probability,
i.e., S̄ = {i|x̄i > 0}. Then ∀i ∈ S̄, ∂f

∂xi
|x̄ ≥ 0. Otherwise, a defender strategy

with a lower coverage probability on target i will achieve a higher defender expected
utility than x̄, contradict with the optimality. Formally, let ∆i = (0, 0, ..., δ, 0, 0) be a
vector with an infinitesimal positive value in ith row. If ∂f

∂xi
< 0, then f(x̄ − ∆i) =

f(x̄)− δ ∂f∂xi |x̄ > f(x̄).
Further, the targets in S̄ can be devided into two subsets S̄1 and S̄2 where S̄1 =

{i|x̄i = 1} and S̄2 = {i|0 < x̄i < 1}. Then ∀i, j ∈ S̄2, ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄ ≥ 0.

Otherwise, a defender strategy that moves a little bit coverage probability from a target
with higher partial derivative to a target with a lower partial derivative will achieve a
higher defender expected utility than x̄, contradict with the optimality. Formally, if
∂f
∂xi
|x̄ > ∂f

∂xj
|x̄,

f(x̄+ ∆i −∆j)− f(x̄) = f(x̄+ ∆i −∆j)− f(x̄+ ∆i) + f(x̄+ ∆i)− f(x̄)(27)

= −δ ∂f
∂xj
|x̄+∆i + δ

∂f

∂xi
|x̄ (28)

= −δ( ∂f
∂xj
|x̄ + δ

∂f2

∂xi∂xj
|x̄) + δ

∂f

∂xi
|x̄ (29)

= δ(
∂f

∂xi
|x̄ −

∂f

∂xj
|x̄)− δ2 ∂f2

∂xi∂xj
|x̄ (30)

> 0 (31)

The last inequality is achieved by neglecting the second order term. So f(x̄ + ∆i −
∆j) > f(x̄).

Moreover, when ω1 > 0, ∀i, j ∈ S̄2, ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄ = 0. Select two targets

i, j ∈ S̄2. As ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄, f(x̄ + ∆i −∆j) − f(x̄) = −δ2 ∂f2

∂xi∂xj
|x̄ according to
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line (4). The partial derivative of function f is

∂f

∂xi
|x̄ = ω1qi(U

d
i − f) + qi(R

d
i − P di )

If ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄ > 0, then we have

ω1(f − Udi ) < Rdi − P di (32)

and
ω1(f − Udj ) < Rdj − P dj (33)

Thus

∂2f

∂xi∂xj
= ω2

1qiqj(2f − Udi − Udj )− ω1qiqj(R
d
i − P di +Rdj − P dj ) (34)

= ω1qiqj(ω1(f − Udi ) + ω1(f − Udj )− (Rdi − P di +Rdj − P dj ))(35)

< ω1qiqj(R
d
i − P di +Rdj − P dj − (Rdi − P di +Rdj − P dj )) (36)

= 0 (37)

The inequality in line (10) comes from (6) and (7) and the fact the ω1 > 0. So we
have f(x̄ + ∆i − ∆j) − f(x̄) > 0, which means moving some coverage probability
from target i to target j in S̄2 leads to a defender strategy with higher expected utility.
It contradicts with the optimality.

We now prove that ‖S̄2‖ < 2. As we know∀i, j ∈ S̄2, ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄ = 0

and ∂f2

∂xi∂xj
= 0, so f(x̄ + ∆i − ∆j) − f(x̄) = 0 and we can move some coverage

probability from target i to target j to get another optimal strategy x̂ with the same
expected defender utility opt while i, j ∈ Ŝ2. As the x̂ is also an optimal strategy, it
also satisfies ∂f

∂xi
|x̂ = ∂f

∂xj
|x̂ = 0. So we have

ω1(opt− Udi (x̂i)) = Rdi − P di (38)

ω1(opt− Udi (x̄i)) = Rdi − P di (39)

From (12)-(13), we get
(Rdi − P di )(x̂i − x̄i) = 0 (40)

As x̂i 6= x̄i, we get Rdi = P di , which contradicts with the payoff structure of the game.
Next, we prove ‖S̄2‖ 6= 1. Assume target i is the only element in S̄2. If ∂f

∂xi
|x̄ > 0,

we can increase xi to get a better defender strategy without violating the constraint
of total number of resources as K ∈ N and all targets other than i are covered with
probability 0 or 1. This contradicts with optimality. So ∂f

∂xi
|x̄ = 0, i.e., ω1(f −

Udi (x̄i)) = Rdi − P di . Then

∂2f

∂x2
i

= ω1qi(ω1(1− 2qi)(U
d
i − f) + 2(Rdi − P di )(1− qi))

= 3ω1qi(R
d
i − P di )

> 0
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So xi is a minimum point and increasing xi can get a better defender strategy. Again,
this contradicts with optimality.

So S̄2 = ∅ and the coverage probabilities of the optimal strategy are chosen only
from 0, 1, i.e., the optimal defender strategy is a pure strategy. 2

18. Appendix 3: Sample Email

Hi,
Thank you for participating in our experiment. Your base compen-

sation for round 3 has been paid to you via AMT. Thank you also for
your valuable comments and suggestions about the game and its strate-
gies. We will definitely take those into account later on. Now, we would
want you to participate in the 4th round of our experiment. Please fol-
low the link below to participate: http://cs-server.usc.edu:
16568/gamelink/index.jsp

In the first page, please read carefully the compensation details.
You will be starting with the performance bonus that you earned in the
last round. The last date to participate in this round of our experiment
is Wednesday (November 6 2014) 4 pm PST. Please try to complete the
experiment by the deadline because otherwise deployment of the next
round gets delayed.

You are very important to the study and your continued participa-
tion is critical. Don’t be discouraged if you got caught by a ranger in
this round. The chance to play again and earn performance and com-
pletion bonuses are coming in a few days. We look forward to your
continued participation.

Thank you.

19. Appendix 4: Challenges and Remedies of Online Repeated Measures Experi-
ments

In this section we discuss a set of challenges that we faced during our repeated mea-
sures experiments on AMT and our methodological contributions towards mitigating
those challenges.

For our repeated measures experiments, due to unavailability of data, the strategy
shown for each first round of the real game was Maximin. We then learned the model
parameters based on previous rounds’ data, recomputed and redeployed strategies, and
asked the same players to play again in the subsequent rounds. For each model, all
five rounds were deployed over a span of weeks. Such repeated measures studies on
AMT are rare in game-theoretic studies; and certainly none have been conducted in the
context of SSGs. Indeed, while the total time of engagement over our 20 experimental
settings was 46 weeks, each setting required on average 2.3 weeks (See Table 1). One
interesting statistic to note is that the average amount of time taken by the participants
to play the actual game based on which the results in our experiments are generated,
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Table 5: Average time (in seconds) taken to play the actual game per round
Round 1 Round 2 Round 3 Round 4 Round 5

61 52 47 43 39

is 45 seconds, as obtained by computing from the data over all four payoff structures.
The average time spent on the actual game per round is shown in Table 5. This, in ad-
dition to comments and feedback from the participants (Appendix 5), indicates that the
participants were spending time considering the trade-offs between the risk of getting
captured and obtaining high rewards.

When we started conducting the experiments, we observed that there were very
high attrition rates (i.e. people dropped out) for the number of participants between
rounds of the game. The varying number of participants from one round to another
made it difficult to not only compare between the performance of the model between
rounds but also at the end of the five rounds. We hypothesized that the low participant
retention rates were due to the following reasons: (i) our initial payment scheme for the
participants did not have a large payout at the end of all the rounds of the experiment
and therefore participants could potentially leave the experiment at any time depending
on how much money they were satisfied with; (ii) initially, each round on average lasted
3.5 weeks as some participants would complete the experiments quickly while others
would take a long time to respond: hence several participants may have been dropping
out due to such lengthy rounds; and (iii) the lack of commitment to complete a few
weeks long repeated measures experiment could also be an issue, as has previously
been found in similar repeated measures studies [29].

To mitigate the above challenges, we took the following steps: (i) We set up the
payment scheme to consistently reward participation in each round plus offering a rela-
tively high completion incentive at the end of the experiment; (ii) Although we allowed
respondents sufficient time (3-4 days on average) to respond [59], as giving them an
immediate deadline to finish a particular task can result in high attrition rates, we also
maintained persistent contact by sending repeated reminders [21] to the participants,
especially to participants who did not respond immediately; (iii) Prior to beginning the
first round of our experiment, we asked participants to commit to completing all five
rounds, i.e, remain in the study through completion, to be eligible for study enrollment.

The problems addressed by the development of each of our strategy (for example,
the choice of concrete metrics, payoffs and incentive mechanisms) does indeed lead
to the development of some methodological contributions towards conducting such re-
peated measures experiments on crowdsourcing platforms like AMT. Since we did not
find any related research in this area which specifies a minimum accepted participant
retention rate for a repeated measures study, in our work we attempted to achieve a
retention rate of at least 80%. this also ensured sufficient number of participants for
statistical significance tests. We therefore implemented the steps mentioned above, in
order, and measured the effect of the implementation of the corresponding strategy
until we achieved the desired participant retention rate. Next, we discuss the imple-
mentation details of each of the steps taken (in the order they were implemented) to
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reduce attrition rates and also provide results showing the improvements due to our
approaches.

19.1. Step 1: Payment Scheme
In our initial payment scheme, shown in Table 6, column 2, participants were paid

a fixed ‘base compensation’ (=$0.50) for participation in each round of the experiment
and a ‘performance bonus’ based on the points earned (or lost) in each round by attack-
ing a particular target region in the game. The participants started with an initial amount
of $0.50 as the ‘performance bonus’ in each round. For each reward point earned in
a particular round (i.e., if they successfully poached), $0.10 was added to the initial
‘performance bonus’. For each point lost (i.e., if they were captured by the ranger),
$0.10 was deducted from their current ‘performance bonus’. The bonus at the end of
a particular round was not carried forward to the next round and was paid along with
the fixed ‘base compensation’ for that round. For example, for an experiment with two
rounds and $0.50 as the ‘base compensation’ for each round, if a participant earned a
reward point of 9 in the first round and got a penalty of 1 in the second round, (s)he was
paid $(0.50+(0.50+9*0.10)) = $1.90 at the end of round 1 and $(0.50+(0.50-0.10*1))
= $0.90 at the end of round 2. With this payment scheme in place, we observed that
there were very high attrition rates, i.e., very few people returned to play in each round,
thus making it difficult to compare the performances on various models on a varying
number of participants for each model. This is shown in Fig. 25(a), where the x-axis
shows rounds of the game and the y-axis shows retention rates. Note that we had to
abandon the experiments due to high attrition rates (low retention rates) in round 5 for
one of the models (PSUQR) in the first trial and rounds 4 and 5 for PSUQR in the
second trial. The failure of this method led us to implement a new payment scheme
which is discussed below.

We made three changes to our first method of compensation. First, we introduced a
‘completion bonus’ (=$2.50) for completing all the rounds of the experiment. Second,
like before, to motivate the subjects, the participants were incentivized based on the
reward/penalty of the region they chose to attack, i.e., ‘performance bonus’. However
now, while the base compensation was paid after each round was completed, the ‘per-
formance bonus’ was carried forward from one round to the next and paid along with
the ‘completion bonus’ at the end of all the rounds of the experiment. Third, the players
now started with an initial ‘performance bonus’ of $1.50 in round 1 and they could win
up to a maximum and a minimum amount in each round and hence a very high ‘per-
formance bonus’ at the end of all the rounds, based on how successful they were. We
still had the same ‘base compensation’ for each round as $0.50, thus resulting in a total
base compensation of $2.50 over 5 rounds. However, the maximum amount they could
potentially earn at the end of all the rounds from only the performance and completion
bonus was as high as $7.60. The performance and completion bonus together at the end
of all the rounds was much higher as compared to the total base compensation earned
for playing all the 5 rounds. This ensured that majority of the participants remained
motivated and returned to play all the rounds. A detailed comparison of the initial and
modified payment schemes are shown in Table 6.

To better understand the impact of our new payment scheme, let us take the previous
example of a two-round experiment where a participant earned a reward point of 9 in
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Table 6: Comparison between payment schemes
Types of

Compensation
Initial Payment Scheme Modified Payment Scheme

Base Compensation
per round

0.50$
— paid after each round

0.50$
— paid after each round

Performance Bonus
per round

0.50$ + 0.10$ per reward
point (or -0.10$ per penalty

point)
— paid after each round

start with 1.50$ in round 1,
then 0.10$ per reward point
(or -0.10$ per penalty point)

in every round
— added to previous

rounds’ performance bonus
and gets caried forward;

total accumulated amount is
paid after 5 rounds

Completion Bonus 0$ 2.50$
—paid after 5 rounds

the first round and a penalty of 1 in the second round. According to our new payment
scheme, (s)he was paid $0.50 at the end of round 1 (the bonus compensation for round
1). (S)he also earned a performance bonus of $(1.50+9*0.1) = $2.40 in round 1 which
was carried forward to round 2 and not paid at the end of round 1. Then at the end of
round 2 she was paid $(0.50+(2.40-1*0.1)+2.50) = $5.30 (base compensation for round
2 (=$0.50) + performance bonus at the end of round 2 (=$2.30) + completion bonus
(=$2.50)). As mentioned before, as compared to our initial payment scheme, this high
amount at the end of all the five rounds of our experiments ensured that a relatively
high number of participants were retained till the end of the study. On an average,
including all the compensations, each participant was paid $7.60 upon completion of
our five-round experiments. There were also participants who earned as high as $9 at
the end of the five rounds including all the compensations. The effect of this payment
scheme on participant retention rate can be seen in Fig.25(b).

Although the new payment scheme proved effective in retaining more participants,
one possibility to be considered is that the performance bonus should not have caused
any bias such that the subjects who performed well are more likely to participate in
future rounds but who performed poorly are more likely to drop off. We observe from
our data that the average retention rates over all games for people who succeeded in
the previous round and those who failed in the previous round are 90% and 92% re-
spectively. Therefore, we conclude based on our data that no bias was introduced due
to the design of our payment schemes.

19.2. Initial Study Enrollment

Even though the implementation of the new payment scheme saw an increase in
retention rate as shown in Fig. 25(b), there was still a decrease in retention rates over
rounds. Therefore, we implemented an approach where the participants had to commit
to completing all five rounds before starting the first round of the game. Commitment
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(a) before payment scheme (b) after payment scheme and before initial study
enrollment

(c) after payment scheme and after initial study
enrollment

Figure 25: Retention Rates for various models (a) before implementation of our payment scheme, and (b) af-
ter implementation of our payment scheme and before implementation of initial study enrollment procedure,
and (c) after implementation of our payment scheme and initial study enrollment.

has been shown to be effective in the past in various scenarios [4, 7]. In our game,
the participants were asked to either ‘agree’ or ‘disagree’ to this commitment. On an
average, 96% of the participants who enrolled in AMT for our study agreed to this
commitment. These participants were then allowed to proceed towards playing the
first round of the game. On the other hand, if they did not agree, they were thanked
for their interest in our study, but not allowed to participate any further. The effect of
this on the retention rate can be seen in Fig. 25(c). This clearly shows that a significant
number of participants with prior commitment towards completing all the rounds of
the experiment, returned and completed all the rounds.

19.3. Reminder Emails

Even though the implementation of the payment scheme and initial study enroll-
ment procedures increased the retention rate as shown in Fig. 25(c), the retention rate
still decreased over rounds for some of the experiments, even though at a slower rate.
Therefore, we sent repeated reminders to the participants with clearly stated deadlines
to ensure that they (i) do not forget to participate in the current round, and (ii) also re-
main motivated throughout the study. The emails were worded carefully and a sample
email is shown in Appendix 3. Results are shown in Figs. 26(a) and 26(b).
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(a) ADS1 (b) ADS2

Figure 26: Retention Rates for various models over 4 rounds, starting from round 2 to round 5, on (a)ADS1

and (b) ADS2 respectively.

In this section, we gave an overview of our trial and validation games, tested a set
of hypothesis to improve participant retention rates for our AMT repeated measures
experiments and showed the results of the deployment of each of our strategies to miti-
gate the challenges in retaining participants. We observed that a delayed compensation
scheme along with prior participant commitment and repeated reminders throughout
the course of the experiment helped in achieving an average retention rate of 83.69%,
which is above the 80% retention rate. In Section 12, we will show results from the
comparison of our models based on the data obtained from the corresponding number
of participants retained per round.

20. Appendix 5: Participant Feedback

After the actual game was over, we asked the participants for feedback regard-
ing the games they played. We asked them two specific questions regarding: (i) their
experiences playing the game; and (ii) any strategy they employed while playing the
actual game. For point (i), participants primarily mentioned that they enjoyed playing
the game and that the instructions were easy to understand while some even mentioned
that it was interesting to play a game that involved taking decisions while balancing risk
and reward. For point (ii), most participants mentioned that they tried to balance risk
and rewards by looking for target areas close to their starting point that had relatively
high animal density but still a reasonable probability of success. This risk-reward bal-
ance is consistent with the model we learned which put different weights on defender
coverage and adversary reward and penalty. This feedback in essence supports formu-
lations such as SHARP studied in this article. Few participants mentioned that they
took risks by attacking target areas with high animal density even if the coverage prob-
abilities in that target area was relatively high. Below we share some key feedback by
the participants regarding their game playing experiences. Note that these are actual
comments from the participants and have not been modified in any way.
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20.1. Feedback for ”Please tell us about your experience playing the game”:

(a) Easy to understand and the visual indications make it even easier, (b) The game
was enjoyable and easy to understand, (c) The game was interesting, no bugs encoun-
tered, (d) I thought it was fun, very clearly laid out and enjoyable to play, (e) It was fun
and kind of exciting. I liked the opportunity and it was interesting to balance risk and
reward.

20.2. Feedback for ”Did you use a particular strategy in playing the game? If yes,
please specify.”:

(a) Find a greenish square with many hippos, as close as possible to the starting
location, (b) I would only target areas with greater than 50% success rate, (c) My basic
strategy was to find the most populated, greenest and closest square, (d) I stayed away
from the darker red areas, (e) I tried to balance the risk and reward factors. That is,
what would be acceptable as a loss versus what I could possibly gain, (f) I tried to get
the maximum payoff while minimize the risk of getting caught to an acceptable level,
(g) I decided to risk it and set traps in areas that payed well, even though there is high
chance that I will get caught.

21. Appendix 6: Experimental Results on ADS3 and ADS4

21.1. Defender Utilities

(a) Results on ADS3 (b) Results on ADS4

Figure 27: Defender utilities for various models on ADS3 and ADS4 respectively.
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(a) Results on ADS3 (b) Results on ADS4

Figure 28: Cumulative defender utilities for various models on ADS3 and ADS4 respectively.

21.2. Learned Probability Curves

(a) ADS3 (b) ADS4

Figure 29: Learned probability curves for P-SUQR on ADS3 and ADS4 respectively.

(a) ADS3 (b) ADS4

Figure 30: Learned probability curves with Prelec’s probability weighting function for P-SUQR on ADS3

and ADS4 respectively.
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(a) ADS3 (b) ADS4

Figure 31: Learned probability curves for PWV-SUQR on ADS3 and ADS4 respectively.

21.3. Evidence of Attack Surface Exposure

(a) ADS3

(b) ADS4

Figure 32: Total number of unique exposed target profiles till the end of each round for each coverage
probability interval for ADS3 and ADS4.
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21.4. Adaptiveness of SHARP

(a) ADS3 (b) ADS4

Figure 33: Adaptivity of SHARP and Convergence of P-SUQR on payoff structures ADS3 and ADS4

respectively.
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