
Reminder

 Quiz for Lecture 3 (9/10, 10pm)

 Paper Bidding Result

 Paper Reading Assignment 1 (9/13, 10pm)

 Peer reviewed (Due 1 week after assignment due)

 Confirm group members for course project (9/13, 

10pm)
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Outline

 Security Games

 Double Oracle
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Security Games to Model Security Challenges

Physical Infrastructure Transportation Networks Cyber Systems

Environmental Resources Endangered Wildlife Fisheries
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Security Games

 Limited resource allocation

 Adversary surveillance

Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender
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Security Games

 Randomization make defender unpredictable

 Stackelberg game

 Leader: Defender; Commits to mixed strategy

 Follower: Adversary; Conduct surveillance and best 

responds

Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender

55.6%

44.4%
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Stackelberg Security Game (SSG)

 Leader: defender; Follower: attacker

 Defender allocate 𝐾 resources to protect 𝑁 targets

 Each target is associated with 4 values: 𝑅𝑖
𝑑 , 𝑃𝑖

𝑑 , 𝑅𝑖
𝑎 , 𝑃𝑖

𝑎

 If attacker attacks target 𝑖 and succeeds: attacker gets 𝑅𝑖
𝑎

and defender gets 𝑃𝑖
𝑑

 If attacker attacks target 𝑖 and fails: attacker gets 𝑃𝑖
𝑎 ≤ 𝑅𝑖

𝑎

and defender gets 𝑅𝑖
𝑑(≥ 𝑃𝑖

𝑑)

T1 T2

𝑅𝑖
𝑑

𝑃𝑖
𝑑

𝑅𝑖
𝑎

𝑃𝑖
𝑎

T1 T2

T1 5, -3 -1, 1

T2 -5, 4 2, -1D
ef

en
d

er

Adversary
T3

3

-2

6

-2T3

T3
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Stackelberg Security Game (SSG)

 Leader: defender; Follower: attacker

 Defender allocate 𝐾 resources to protect 𝑁 targets

 Each target is associated with 4 values: 𝑅𝑖
𝑑 , 𝑃𝑖

𝑑 , 𝑅𝑖
𝑎 , 𝑃𝑖

𝑎

 If attacker attacks target 𝑖 and succeeds: attacker gets 𝑅𝑖
𝑎

and defender gets 𝑃𝑖
𝑑

 If attacker attacks target 𝑖 and fails: attacker gets 𝑃𝑖
𝑎 ≤ 𝑅𝑖

𝑎

and defender gets 𝑅𝑖
𝑑(≥ 𝑃𝑖

𝑑)

T1 T2

𝑅𝑖
𝑑 5 2

𝑃𝑖
𝑑 -5 -1

𝑅𝑖
𝑎 4 1

𝑃𝑖
𝑎 -3 -1

T1 T2

T1 5, -3 -1, 1

T2 -5, 4 2, -1D
ef

en
d

er

Adversary
T3

3

-2

6

-2T3 -5, 4 -1, 1 3, -2

T3

-2, 6

-2, 6
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Quiz 1

 Let 𝑐𝑖 be the probability the defender will protect 

target 𝑖 in a Stackelberg security game, which ones of 

the following are the defender’s expected utility when 

attacker attacks target 𝑖?

 A: 𝑐𝑖𝑃𝑖
𝑎 + (1 − 𝑐𝑖)𝑅𝑖

𝑎

 B: 𝑐𝑖𝑅𝑖
𝑑 + (1 − 𝑐𝑖)𝑃𝑖

𝑑

 C: 𝑃𝑖
𝑑 + 𝑐𝑖(𝑅𝑖

𝑑 − 𝑃𝑖
𝑑)

 D: 𝑅𝑖
𝑎 + 𝑐𝑖(𝑃𝑖

𝑎 − 𝑅𝑖
𝑎)

 E: None of the above

9 9/13/2021

If attacker attacks target 𝑖 and succeeds: attacker gets 

𝑅𝑖
𝑎 and defender gets 𝑃𝑖

𝑑

If attacker attacks target 𝑖 and fails: attacker gets 

𝑃𝑖
𝑎 ≤ 𝑅𝑖

𝑎 and defender gets 𝑅𝑖
𝑑(≥ 𝑃𝑖

𝑑)



Compute SSE in SSG

 Strong Stackelberg Equilibrium
 Attacker break tie in favor of defender

 AttEU(1)=0.556*(-3)+0.444*4=0.11

 AttEU(2)=0.556*1+0.444*(-1)=0.11

 DefEU(1)=0.556*5+0.444*(-5)=0.56

 DefEU(2)=0.556*(-1)+0.444*2=0.332

 Equilibrium: DefStrat=(0.556,0.444), AttStrat=(1,0)

Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender

55.6%

44.4%

𝐴𝑡𝑡𝐸𝑈 𝑖 = 𝑐𝑖𝑃𝑖
𝑎 + (1 − 𝑐𝑖)𝑅𝑖

𝑎

𝐷𝑒𝑓𝐸𝑈 𝑖 = 𝑐𝑖𝑅𝑖
𝑑 + (1 − 𝑐𝑖)𝑃𝑖

𝑑
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Computing SSE

 General-sum

 Multiple LP (Conitzer & Sandholm, 2006)

 One LP for each target: Assume attacks target 𝑖∗

 Choose the solution of the LP with the highest optimal value

𝐴𝑡𝑡𝐸𝑈 𝑖 = 𝑐𝑖𝑃𝑖
𝑎 + (1 − 𝑐𝑖)𝑅𝑖

𝑎

𝐷𝑒𝑓𝐸𝑈 𝑖 = 𝑐𝑖𝑅𝑖
𝑑 + (1 − 𝑐𝑖)𝑃𝑖

𝑑
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This approach applies to general Stackelberg games



Computing SSE

 General-sum

 Multiple LP (Conitzer & Sandholm, 2006)

 One LP for each target: Assume attacks target 𝑖∗

 Choose the solution of the LP with the highest optimal value

max
𝐜

𝐷𝑒𝑓𝐸𝑈 𝑖∗

s.t. 𝐴𝑡𝑡𝐸𝑈 𝑖∗ ≥ 𝐴𝑡𝑡𝐸𝑈 𝑖 , ∀𝑖 = 1 …𝑁

 

𝑖

𝑐𝑖 ≤ 1

𝑐𝑖 ∈ 0,1

𝐴𝑡𝑡𝐸𝑈 𝑖 = 𝑐𝑖𝑃𝑖
𝑎 + (1 − 𝑐𝑖)𝑅𝑖

𝑎

𝐷𝑒𝑓𝐸𝑈 𝑖 = 𝑐𝑖𝑅𝑖
𝑑 + (1 − 𝑐𝑖)𝑃𝑖

𝑑
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This approach applies to general Stackelberg games



Computing SSE

 General-sum

 MILP

 Let 𝑞𝑖 ∈ {0,1} to indicate whether attacker attacks target 𝑖

 Let 𝑀 be a large constant, say 105

max
𝐜,𝐪,𝑣

 

𝑖

𝐷𝑒𝑓𝐸𝑈 𝑖 𝑞𝑖

s.t. 0 ≤ 𝑣 − 𝐴𝑡𝑡𝐸𝑈 𝑖 ≤ 1 − 𝑞𝑖 𝑀, ∀𝑖

 

𝑖

𝑐𝑖 ≤ 1

 

𝑖

𝑞𝑖 = 1

𝑐𝑖 ∈ 0,1 , 𝑞𝑖 ∈ {0,1}

𝐴𝑡𝑡𝐸𝑈 𝑖 = 𝑐𝑖𝑃𝑖
𝑎 + (1 − 𝑐𝑖)𝑅𝑖

𝑎

𝐷𝑒𝑓𝐸𝑈 𝑖 = 𝑐𝑖𝑅𝑖
𝑑 + (1 − 𝑐𝑖)𝑃𝑖

𝑑
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 Zero-sum

 Single LP

 SSE=NE=Minimax=Maximin

Computing SSE

min
𝐜,𝑣

𝑣

s.t. 𝑣 ≥ 𝐴𝑡𝑡𝐸𝑈 𝑖 , ∀𝑖 = 1 … 𝑁

 

𝑖

𝑐𝑖 ≤ 1

𝑐𝑖 ∈ 0,1

𝐴𝑡𝑡𝐸𝑈 𝑖 = 𝑐𝑖𝑃𝑖
𝑎 + (1 − 𝑐𝑖)𝑅𝑖

𝑎

𝐷𝑒𝑓𝐸𝑈 𝑖 = 𝑐𝑖𝑅𝑖
𝑑 + (1 − 𝑐𝑖)𝑃𝑖

𝑑
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ARMOR: Optimizing Security Resource Allocation [2007]

January 2009

•January 3rd Loaded 9/mm pistol

•January 9th 16-handguns, 

1000 rounds of ammo

•January 10th Two unloaded shotguns 

•January 12th Loaded 22/cal rifle

•January 17th Loaded 9/mm pistol

•January 22nd   Unloaded 9/mm pistol

First application: Computational game theory for operational security

15 9/13/2021



ARMOR for AIRPORT SECURITY at LAX [2008]

Congressional Subcommittee Hearings

ARMOR…throws a digital cloak of invisibility….

Commendations

City of Los Angeles

Erroll Southers testimony

Congressional subcommittee
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Protect Ferry Line

17 9/13/2021



Compute optimal defender strategy

 Polynomial time solvable in games with finite actions 

and simple structures [Conitzer06]

 NP-Hard in general settings [Korzhyk10]

 SSE=NE for zero-sum games, SSE⊂NE for games 

with special properties [Yin10]
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Outline

 Security Games

 Double Oracle
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Challenge: Scheduling Constraints and Scalability

 Mumbai Police Checkpoints

9/13/202120

http://www.chicagonow.com/blogs/dennis-byrne-barbershop/assets_c/2009/12/Mumbai-thumb-550x301-41266.jpg
http://www.chicagonow.com/blogs/dennis-byrne-barbershop/assets_c/2009/12/Mumbai-thumb-550x301-41266.jpg
http://gallery.mid-day.com/plog-content/images/specials/minutes-to-midnight/police-nakabandi.jpg
http://gallery.mid-day.com/plog-content/images/specials/minutes-to-midnight/police-nakabandi.jpg


Challenge: Scheduling Constraints and Scalability

 Defender: Choose 𝐾 checkpoints

 Attacker: Choose a target node (red) and a path from 

an entry node (green) to the target node 

 Exponentially many pure strategies

9/13/202121

Fully connected road network
20 intersections, 190 roads

5 resources, 1 target
~ 2 billion defender allocations

6.6 quintillion (1018) attacker paths

Real Problem:
~500 intersections

~2000 roads



Double Oracle

 Intuition: No need to consider all pure strategies

 Start with a small set of pure strategies

 Iteratively add new pure strategies to be considered

 Provably converge to equilibrium

in zero-sum games

9/13/202122



Payoff Matrix (When Zero-Sum)

23 / 44

Attacker Paths

Defender
Allocations



Minimax
Best Response

Defender

Best Response

Attacker

Double Oracle Algorithm

24 / 44

[McMahan et. al 2003]



Minimax Best Response

Defender

Best Response

Attacker
Minimax

Variation

25 / 44



s->e1->e2->t s->e5->t s->e4->e3->t

e1

e2

e3

e4

e5

Attacker Paths

Defender

Allocations

Example

26 / 44

Defender Payoff Attacker Payoff

Attack Successful -T T

Attack Failure 0 0

1 Defender Resource
source

target



s->e1->e2->t s->e5->t s->e4->e3->t

e1 -T,T -T, T

e2 -T, T -T, T

e3 -T, T -T, T

e4 -T, T -T, T

e5 -T, T -T, T

Attacker Paths

Defender

Allocations

Example
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Defender Payoff Attacker Payoff

Attack Successful -T T

Attack Failure 0 0

1 Defender Resource
source

target



s->e1->e2->t

e1 0,0

Attacker Paths

Defender

Allocations

Example

28 / 44

source

target

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

Minimax strategy:
Defender Strategy: [1.0]
Attacker Strategy: [1.0]



s->e1->e2->t

e1 0,0

Attacker Paths

Defender

Allocations

Example

29 / 44

source

target

Defender’s best response: e1 or e2

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

Minimax strategy:
Defender Strategy: [1.0]
Attacker Strategy: [1.0]

Best response already in the table, no change



s->e1->e2->t

e1 0,0

Attacker Paths

Defender

Allocations

Example

30 / 44

source

target

Minimax strategy: no change

Minimax
Best Response

Defender

Best Response

Attacker
Minimax



s->e1->e2->t

e1 0,0

Attacker Paths

Defender

Allocations

Example

31 / 44

source

target

Attacker’s best response: s->e4->e3->t or s->e5->t

Minimax strategy:
Defender Strategy: [1.0]
Attacker Strategy: [1.0]

Pick an arbitrary one, say s->e4->e3->t 

Minimax
Best Response

Defender

Best Response

Attacker
Minimax



Attacker Paths

Defender

Allocations

Example

32 / 44

source

target

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

Minimax strategy:
Defender Strategy: [1.0]

Attacker Strategy: [0.0, 1.0]

s->e1->e2->t s->e4->e3->t

e1 -T, T



Attacker Paths

Defender

Allocations

Example

33 / 44

source

target

Defender’s best response: e3 or e4

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

Minimax strategy:
Defender Strategy: [1.0]

Attacker Strategy: [0.0, 1.0]

Pick e3

s->e1->e2->t s->e4->e3->t

e1 -T, T



Attacker Paths

Defender

Allocations

Example

34 / 44

source

target

Minimax strategy: 
Defender Strategy: [0.5, 0.5]
Attacker Strategy: [0.5, 0.5]

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

s->e1->e2->t s->e4->e3->t

e1 -T, T

e3 -T, T



s->e1->e2->t

e1 0,0

Attacker Paths

Defender

Allocations

Example

35 / 44

source

target

Attacker’s best response: s->e5->t

Minimax strategy:
Defender Strategy: [0.5, 0.5]
Attacker Strategy: [0.5, 0.5]

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

s->e1->e2->t s->e4->e3->t

e1 -T, T

e3 -T, T



Attacker Paths

Defender

Allocations

Example

36 / 44

source

target

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

Minimax strategy:
Defender Strategy: arbitrary, say [1.0, 0.0]

Attacker Strategy: [0.0, 0.0, 1.0]

s->e1->e2->t s->e4->e3->t s->e5->t

e1 -T,T -T, T

e3 -T, T -T, T



Attacker Paths

Defender

Allocations

Example

37 / 44

source

target

Defender’s best response: e5

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

Minimax strategy:
Defender Strategy: [1.0, 0.0]

Attacker Strategy: [0.0, 0.0, 1.0]

s->e1->e2->t s->e4->e3->t s->e5->t

e1 -T,T -T, T

e3 -T, T -T, T



Attacker Paths

Defender

Allocations

Example

38 / 44

source

target

Defender Strategy: [1/3, 1/3, 1/3]
Attacker Strategy: [1/3, 1/3, 1/3]

Minimax
Best Response

Defender

Best Response

Attacker
Minimax

s->e1->e2->t s->e4->e3->t s->e5->t

e1 -T,T -T, T

e3 -T, T -T, T

e5 -T, T -T, T

No new best responses will be added in 

the next iteration. Terminate.



Quiz 2
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Attacker Paths

Defender
Allocations

 Assume the following table is the game matrix (zero-sum). At 
some point in the process of the double oracle algorithm,  a 
smaller game is being considered, with rows 1, 2 and columns 
3,4.  What action should be added in the next iteration?

 A: 𝐴1

 B: 𝐴2

 C: 𝑋1

 D: 𝑋2

 E: None



Quiz 2
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Attacker Paths

Defender
Allocations

 Assume the following table is the game matrix (zero-sum). At 
some point in the process of the double oracle algorithm,  a 
smaller game is being considered, with row 1, 2 and column 
3,4.  What action should be added in the next iteration?

 𝐴1

 𝐴2

 𝑋1

 𝑋2

 None

The minimax strategy of this smaller game is Def: (5/8, 3/8), Att: 

(3/8,5/8).  Expected utility for attacker of taking each of the 

action is 5*5/8, 8, 15*3/8, 9*5/8



Warm Start

 Initialize with some subset of pure strategies (e.g., for 

defender, 𝐾 edges in the min-cut)
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Better Responses

 No need to find the best response

 If you find a better response but not sure if it is the 
best response, it is OK to add it and move on

 If you cannot find a better response, it means the best 
response is already in the current support

 Impact on computation time varies

9/13/202142

Minimax
Better Response

Defender

Better Response

Attacker
Minimax



Attacker Paths

Defender

Allocations

Column Generation: Using One Oracle Only

43 / 44

source

target

Minimax
Best 

Response

Attacker

s->e1->e2->t

e1

e2

e3 -T, T

e4 -T, T

e5 -T, T



Discussion

 How Machine Learning can potentially be used 

together with Double Oracle for large-scale zero-

sum game solving?
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Summary

 Key take-aways

 Game theory can be used to model security challenges

 Equilibrium strategies in security games often has a small 

support

 Incrementally increase the support size to save time and 

memory

45 9/13/2021



Additional Resources

 A Double Oracle Algorithm for Zero-Sum Security 

Games on Graphs;

 An Exact Double-Oracle Algorithm for Zero-Sum 

Extensive-Form Games with Imperfect Information;

 Double-oracle sampling method for Stackelberg

Equilibrium approximation in general-sum extensive-

form games
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https://dl.acm.org/doi/pdf/10.5555/2030470.2030518?download=true
https://www.jair.org/index.php/jair/article/view/10924/26040
https://arxiv.org/pdf/1909.03934.pdf
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Backup Slides

9/13/202148



Column Generation for Linear Programs

 Column generation is an approach to solving large-
scale linear programs with a massive number of 
variables

 Recall:

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

 Optimal solution is at a vertex

 Simplex algorithm: Iteratively move to a neighboring vertex

9/13/202149

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏



Column Generation for Linear Programs

 Consider LP in the following form (all LPs can be 

converted into this form)

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

9/13/202150

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

If a variable , say 𝑧 is unrestricted in 

the original problem, then introduce 

two non-negative variables 𝑧+ and 𝑧−

substitute 𝑧 with 𝑧+ − 𝑧−



Column Generation for Linear Programs

 If 𝑛 ≫ 𝑚, many variables will be zero at the optimal 

solution

 What if 𝑛 ≪ 𝑚? Then the dual problem would have a 

lot of zero-valued variables. We can then try to solve 

the dual problem using column generation, which is 

called constraint generation.

9/13/202151

Why? The optimal solution is at a vertex. A vertex in the feasible space (which is 

a subset of ℝ𝑛) is determined by 𝑛 equalities. We can get at most 𝑚 equalities 

from boundary hyperplanes of constraints in 𝐴𝑥 ≤ 𝑏. So we need to use at least 

𝑛 − 𝑚 boundary lines of the inequality constraints 𝑥 ≥ 0, which means those 

corresponding variables are 0.



Column Generation for Linear Programs

 Column generation: Iteratively solve a main problem 

and a subproblem

 Main problem:  The original LP but with a subset of 

variables (assuming all other variables are zero)

 Subproblem: Identify a new variable to be added to 

the subset of variables considered by the main 

problem

9/13/202152

max
𝑥𝑖:𝑖∈𝐿

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

Main Problem Subproblem

Find a new variable 𝑥𝑖

and add 𝑖 to 𝐿



Column Generation for Linear Programs

 What is the goal of the subprolem?

 Add a variable that can increase the objective function the 
most

 Assume the optimal solution with only a set 𝐿 of variables 
considered is 𝑥𝐿

∗, the corresponding optimal dual solution is 𝑦𝐿
∗

 The new variable chosen, say 𝑥𝑖 , should have the highest 
“reduced cost”, calculated as 𝑐𝑖 − 𝐴𝑖

𝑇𝑦𝐿
∗ where 𝐴𝑖 is the 𝑖th

column of 𝐴, i.e., coefficients w.r.t. to 𝑥𝑖 . If the highest reduced 
cost is non-positive, then no variable will be added, 𝑥𝐿

∗ is the 
optimal solution of the original problem with all variables
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

Dual LP



Reduced Cost Explained

 Reduced cost is an important quantity in LP

 First, convert the LP into “canonical form” by adding slack variables 
𝑥𝑛+1, … , 𝑥𝑛+𝑚

 Assume we choose a set of “basic variables” from {1. . 𝑛 + 𝑚} of 
size 𝑚, called 𝐽. Set all variables not in 𝐽 as 0. The constraints will 
then be simplified to constraints w.r.t. basic variables only. Then solve 
this linear system with the 𝑚 basic variables and 𝑚 constraints. The 
solution corresponds to a vertex of the feasible region of the LP in 
the canonical form shown above. Subselect 𝑥1, … , 𝑥𝑛 from the 
solution + the zero-valued non-basic variables lead to a vertex of 
the feasible region of the original LP.

9/13/202154

max
𝑥1,….,𝑥𝑛+𝑚

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛

s.t. 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2

…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚

𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1. . 𝑛 + 𝑚}

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0



Reduced Cost Explained

 Formally, denote the new coefficient matrix with slack 

variables as  𝐴 = [𝐴 𝐼],  𝑐 =
𝑐
𝟎

 Let  𝐴𝐽 be the submatrix of  𝐴 containing only columns 

corresponding to variables in 𝐽

 Then 𝑥𝐽 =  𝐴𝐽
−1𝑏 and 𝑥𝑗 = 0, ∀𝑗 ∉ 𝐽 represents a 

vertex of the feasible region of the following LP
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max
𝑥1,….,𝑥𝑛+𝑚

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛

s.t. 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2

…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚

𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1. . 𝑛 + 𝑚}

max
𝑥∈ℝ𝑛+𝑚

 𝑐𝑇𝑥

s.t.  𝐴𝑥 = 𝑏

𝑥 ≥ 0



Reduced Cost Explained

 Given 𝑥 = (𝑥1, … 𝑥𝑛+𝑚) with 𝑥𝐽 =  𝐴𝐽
−1𝑏 and 𝑥𝑗 = 0, ∀𝑗 ∉ 𝐽

 Consider adjusting 𝑥 to 𝑥′ by setting 𝑥𝑗
′ = 𝛼 > 0 for some 𝑗 ∉

𝐽 while ensuring 𝑥𝑖
′ = 0 ∀𝑖 ∉ 𝐽, 𝑖 ≠ 𝑗 and  𝐴𝑥′ = 𝑏, 𝑥′ ≥ 0, i.e., 

introducing one variable to the current basic variable set

 All 𝑥𝑖 , 𝑖 ∈ 𝐽 has to change accordingly

 Denote 𝑥𝐽
′ = 𝑥𝐽 + 𝛼𝑑𝐽, then

 𝐴𝑥′ = 𝑏 ⇒  𝐴𝐽(𝑥𝐽 + 𝛼𝑑𝐽) + 𝛼  𝐴𝑗 = 𝑏

⇒  𝐴𝐽
 𝐴𝐽
−1𝑏 + 𝛼𝑑𝐽 + 𝛼  𝐴𝑗 = 𝑏

⇒ 𝛼  𝐴𝐽𝑑𝐽 + 𝛼  𝐴𝑗 = 0

⇒ 𝑑𝐽 = −  𝐴𝐽
−1  𝐴𝑗
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Reduced Cost Explained

 If 𝑗 ∈ 1. . 𝑛 , the new objective value is 

𝑓 𝑥′ =  𝑐𝑇𝑥′ =  𝑐𝑇𝑥 + 𝛼(  𝑐𝑗 +  𝑐𝐽
𝑇𝑑𝐽)

 Rewritten as 𝑓 𝑥′ =  𝑐𝑇𝑥 + 𝛼  𝑐𝑗 where 

 𝑐𝑗 =  𝑐𝑗 +  𝑐𝐽
𝑇𝑑𝐽 =  𝑐𝑗 −  𝑐𝐽

𝑇  𝐴𝐽
−1  𝐴𝑗

Therefore 𝑓 𝑥′ >  𝑐𝑇𝑥 if  𝑐𝑗 > 0

9/13/2021Fei Fang57

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

For 𝑗 ∈ {1. . 𝑛},  𝑐𝑗 is called reduced cost



Reduced Cost Explained

 If  𝑐𝑗 is non-positive for all non-basic variables of a vertex 

corresponding to basic variable set 𝐽, then the vertex is 

the optimal solution

 If  𝑐𝑗 is positive for some 𝑗, then moving from 𝑥 to 𝑥′ can 

lead to a higher objective value, the higher the value of  𝑐𝑗, 

the higher the increase rate. The Simplex algorithm move 

towards the neighboring vertex with the highest  𝑐𝑗

9/13/202158

𝑓 𝑥′ =  𝑐𝑇𝑥 + 𝛼  𝑐𝑗

 𝑐𝑗 =  𝑐𝑗 −  𝑐𝐽
𝑇  𝐴𝐽

−1  𝐴𝑗



Reduced Cost Explained

 If 𝑥∗ ∈ ℝ𝑛+𝑚 is the optimal solution of the primal LP in 
canonical form, and it corresponds to a set of basis 𝐽, then 
consider the corresponding optimal dual solution 𝑦∗ ∈
ℝ𝑚

 According to complementary slackness, if 𝑥𝑗 is in 𝐽, then the 

corresponding dual constraint is tight, i.e., 𝐴𝑗
𝑇𝑦∗ = 𝑐𝑗 if 𝑗 ∈ {1. . 𝑛}

and 𝑦𝑗−𝑛
∗ = 0 if 𝑗 ∈ {𝑛 + 1, … , 𝑛 + 𝑚}

 Together with the fact  𝐴 = [𝐴 𝐼],  𝑐 =
𝑐
𝟎

, we have 

 𝐴𝐽
𝑇𝑦∗ =  𝑐𝐽

 We can conclude: at optimal solution,  𝑐𝑗 =  𝑐𝑗 −  𝑐𝐽
𝑇  𝐴𝐽

−1  𝐴𝑗

can be rewritten as  𝑐𝑗 = 𝑐𝑗 − 𝐴𝑗
𝑇𝑦∗ for 𝑗 ∈ {1. . 𝑛}
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Reduced Cost Explained

 Assume that after you solved an LP and get 𝑥∗ and 

the corresponding 𝑦∗, you are asked to add a new 

variable 𝑥𝑗 to the LP with coefficient 𝑐𝑗 and matrix 

column 𝐴𝑗

 𝑥∗ still corresponds to a vertex in the augmented LP, 

but it may not be the optimal solution

 We need to check if we introduce 𝑗 to the basis, 

whether the objective value will increase

 This can be done by directly checking the reduced 

cost
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Subproblem and Reduced Cost

 Now consider the column generation process. 

 It can be viewed as add variables one by one.

 Again, whether and how much a new variable 𝑥𝑗 will 

improve the objective value depends on its reduced 

cost, computed as 𝑐𝑖 − 𝐴𝑖
𝑇𝑦𝐿

∗ where 𝑦𝐿
∗ is the optimal 

dual solution (without slack variables) before 𝑥𝑗 is 

added
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Double Oracle

 Double oracle is similar to applying column 

generation to the primal and dual problem of the 

minimax LP with alternation
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max
𝑥,𝑣

𝑣

s.t. 𝑣 ≤  𝑖 𝑥𝑖𝑈𝑖𝑗, ∀𝑗

 

𝑖

𝑥𝑖 = 1

𝑥𝑖 ≥ 0 𝑥𝑖: prob of for row 𝑋𝑖


