Reminder

» Quiz for Lecture 3 (9/10, 10pm)
» Paper Bidding Result

» Paper Reading Assignment | (9/13, 10pm)

Peer reviewed (Due | week after assighment due)

» Confirm group members for course project (9/1 3,
|Opm)
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» Security Games
» Double Oracle
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Security Games to Model Security Challenges

Environmental Resources Endangered Wildlife Fisheries
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Security Games

» Limited resource allocation

» Adversary surveillance

Adversary

Target #1 Target #2

Target #I 5, -3 -1, 1

Defender Target #2 -5,4 2, -1
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Security Games

» Randomization make defender unpredictable

» Stackelberg game
Leader: Defender; Commits to mixed strategy

Follower: Adversary; Conduct surveillance and best
responds |

Adversary

Target #1 Target #2

5.6%\ Target #I 5, -3 -1, 1

Defender \¢4-4%/ Target #2 5,4 2, -1
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Stackelberg Security Game (SSG)

» Leader: defender; Follower: attacker
» Defender allocate K resources to protect N targets

» Each target is associated with 4 values: R?, P%, R?, P

If attacker attacks target i and succeeds: attacker gets R}
and defender gets P}

If attacker attacks target i and fails: attacker gets P;*(< R{')
and defender gets R (= P{)

L Adversary

ks Tl T2 T3 pd 3

% TI | 5-3 -, - P! 3

A T2 | 54 2,-I R 6
T3 Pg 2

7 Q: how many numbers do we need to represent utility function? ~ /13/202



Stackelberg Security Game (SSG)

» Leader: defender; Follower: attacker
» Defender allocate K resources to protect N targets

» Each target is associated with 4 values: R?, P%, R?, P

If attacker attacks target i and succeeds: attacker gets R}
and defender gets P}

If attacker attacks target i and fails: attacker gets P;*(< R{')
and defender gets R (= P{)

Adversary

E
TI T2 T3 -

|-

S R 5 2 3

% T 53 <Ll 26 0 pa 5 . 2

A T2 |54 2,-1 2,6 R 4 1 6
T3 | 54 -I,1 3,2 PE 3 -l 2

8 Q: how many numbers do we need to represent utility function? ~ /13/202



If attacker attacks target i and succeeds: attacker gets
R? and defender gets Pf

QUiZ | If attacker attacks target i and fails: attacker gets
P*(< R%) and defender gets R4 (> P?)

» Let ¢; be the probability the defender will protect
target [ in a Stackelberg security game, which ones of
the following are the defender’s expected utility when
attacker attacks target i?

» A:c; P+ (1 — ¢;)Rf
» B:¢;R* + (1 — ¢;)Pf
» C: PP+ ¢;(R* — PP
» D: R + ¢;(P{! — R})
» E: None of the above
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AttEU(i) = ;P + (1 — ¢;)R}
Compute SSE in SSG DefEU(i) = ¢;R{ + (1 — ¢;)P}

» Strong Stackelberg Equilibrium
Attacker break tie in favor of defender
AttEU(1)=0.556*(-3)+0.444%4=0.1 |
AttEU(2)=0.556*1+0.444*(-1)=0.1 |
DefEU(1)=0.556*5+0.444*(-5)=0.56
DefEU(2)=0.556*(-1)+0.444*2=0.332
Equilibrium: DefStrat=(0.556,0.444), AttStrat=(1,0)

Adversary

Target #1 Target #2

5.6%\ Target #I 5, -3 -1, 1

Defender \¢4-4%/ Target #2 5,4 2, -1
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AttEU(i) = ;P + (1 — ¢;)R}
Computing SSE DefEU() = R + (1 — c)Pf!

» General-sum

Multiple LP (Conitzer & Sandholm, 2006)

One LP for each target: Assume attacks target ("

Choose the solution of the LP with the highest optimal value

This approach applies to general Stackelberg games
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AttEU(i) = ;P + (1 — ¢;)R}
Computing SSE DefEU() = R + (1 — c)Pf!

» General-sum
Multiple LP (Conitzer & Sandholm, 2006)

One LP for each target: Assume attacks target ("
max DefEU(i*)
C
s.t. AttEU(i*) = AttEU(i),Vi=1..N

ZCiS1

i

C; € [0,1]

Choose the solution of the LP with the highest optimal value

This approach applies to general Stackelberg games
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AttEU(i) = ;P + (1 — ¢;)R}
Computing SSE DefEU() = R + (1 — c)Pf!

» General-sum

MILP

Let g; € {0,1} to indicate whether attacker attacks target i
Let M be a large constant, say 10°

maxz DefEU(i)q;

c,qu

l
st.0 <v—-AttEU(i)) < (1 —qg;)M, Vi

ZCiS1
[
qu'=1

l
Ci € [O,l],C[i € {0,1}
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AttEU(i) = ;P + (1 — ¢;)R}
Computing SSE DefEU() = R + (1 — c)Pf!

» Zero-sum
Single LP
SSE=NE=Minimax=Maximin

min v
cv

s.t.v = AttEU(i),Vi=1..N

ZCiS].

i

Ci € [0,1]
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ARMOR: Optimizing Security Resource Allocation [2007]

First application: Computational game theory for operational security
| ad

January 2009
*January 3w Loaded 9/mm pistol
*January 9t | 6-handguns,

1000 rounds of ammo
*January |10t Two unloaded shotguns
*January 2% Loaded 22/cal rifle
*January | 7% Loaded 9/mm pistol

*January 22" Unloaded 9/mm pistol

15 9/13/2021



ARMOR for AIRPORT SECURITY at LAX [2008]
Congressional Subcommittee Hearings

Commendations Erroll Southers testimony
City of Los Angeles Congressional subcommittee

ARMOR...throws a digital cloak of invisibility....
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Protect Ferry Line
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Compute optimal defender strategy

» Polynomial time solvable in games with finite actions
and simple structures [Conitzer(06]

» NP-Hard in general settings [Korzhyk|0]

» SSE=NE for zero-sum games, SSECNE for games
with special properties [Yin|0]
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Outline

» Security Games
» Double Oracle
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Challenge: Scheduling Constraints and Scalability

» Mumbai Police Checkpoints

o Image ©2010/GeoEye
Image ©2010:TerraMetrics
©2010.Google
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http://www.chicagonow.com/blogs/dennis-byrne-barbershop/assets_c/2009/12/Mumbai-thumb-550x301-41266.jpg
http://www.chicagonow.com/blogs/dennis-byrne-barbershop/assets_c/2009/12/Mumbai-thumb-550x301-41266.jpg
http://gallery.mid-day.com/plog-content/images/specials/minutes-to-midnight/police-nakabandi.jpg
http://gallery.mid-day.com/plog-content/images/specials/minutes-to-midnight/police-nakabandi.jpg

Challenge: Scheduling Constraints and Scalability

» Defender: Choose K checkpoints

» Attacker: Choose a target node (red) and a path from
an entry node (green) to the target node

» Exponentially many pure strategies

Fully connected road network
20 intersections, 190 roads
5 resources, | target
~ 2 billion defender allocations
6.6 quintillion (10'8) attacker paths

Real Problem:

~500 intersections
~2000 roads
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Double Oracle

» Intuition: No need to consider all pure strategies

» Start with a small set of pure strategies

» Iteratively add new pure strategies to be considered
» Provably converge to equilibrium

In Zero-sum games

22 9/13/2021



Payoff Matrix (When Zero-Sum)

Attacker Paths
A1 AQ Ag A4
Defender Xl : _ —9 8 0 —J
Allocations <52 0 —8 —15 0




Double Oracle Algorithm

Al AQ Al A2
Xy [ =5 8] X : [—5 —8]
Xo : 0 -8
{ Minimax J — ’
Best Response
<X, a) Defender

A Ay Aj
Xi: [-5 -8 0
Xo: | 0 -8 —15

Best Response
Attacker [McMahan et. al 2003]
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Variation

{ Minimax J | > Best Response
Defender
(%, a) _
U \
Best Response ¢ 1 { Minimax J
Attacker

(X, a)

25/ 44



Example

source el

e5
e4 e2

6 °

target

| Defender Resource

Defender Payoff

Attacker Payoff

Attack Successful

Attack Failure

—_———— = ——

Attacker Paths

s->e|->e2->t

s->eb->t

s->e4->e3->t

el

Defender %

Allocations ;
e

e4

e5
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Example

source el

e5
e4 e2

6 °

| Defender Resource

Defender Payoff

Attacker Payoff

Attack Successful

Attack Failure

—_———— = ——

t t
TEe Attacker Paths
s->e|->e2->t s->eb5->t s->e4->e3->t
Defend ° S S
e en. er % IT IT
Allocations
e3 TT TT
4 TT TT
e5 TT TT

27 | 44




Example

source el

e5
e4 e2

6 °

target

Minimax => Best Response
Defender

H ﬂ

Best Response -
= M
[ Attacker ] nimax

Attacker Paths

s->e|->e2->t

el

0,0

Defender
Allocations

28 / 44

Minimax strategy:
Defender Strategy: [1.0]
Attacker Strategy: [1.0]



Minimax strategy:
Defender Strategy: [1.0]
Attacker Strategy: [1.0]

). Minimax ) Best Response
Defender

e5 H ﬂ
e4 e?
& ° [t ) =

Example

source el

t t
Ee Attacker Paths

s->e|->e2->t

el 0,0

Defender
Allocations

Defender’s best response: el or e2

Best response already in the table, no change
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Example

source el

). Minimax — Best Response
Defender

e5 ﬂ
e4 e2 H
& ° e

target

Attacker Paths

s->e|->e2->t

el 0,0

Defender
Allocations

Minimax strategy: no change
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Minimax strategy:
Defender Strategy: [1.0]
Attacker Strategy: [1.0]

). Minimax => Best Response
Defender

e5 H ﬂ
ed e?
o - e

Example

source el

t t
Ee Attacker Paths

s->e|->e2->t

el 0,0

Defender
Allocations

Attacker’s best response: s->e4->e3->t or s->e5->t

Pick an arbitrary one, say s->e4->e3->t

31 /44



Example

source el

e5
e4 e2

6 °

target

Minimax => Best Response
Defender

]

H ﬂ

Best Response -
= M
[ Attacker ] nimax

Attacker Paths

s->e|->e2->t

s->e4->e3->t

el

-T,T

Defender
Allocations

32/ 44

Minimax strategy:
Defender Strategy: [1.0]
Attacker Strategy: [0.0, 1.0]



Example

source el

e5
e4 e2

6 °

Minimax strategy:
Defender Strategy: [1.0]
Attacker Strategy: [0.0, 1.0]

Minimax r———) | BestResponse
Defender

U ﬂ

Best Response -
= M
[ Attacker ] nimax

rarget Attacker Paths
s->el->e2->t s->e4->e3->t
el T.T
Defender
Allocations

33/ 44

Defender’s best response: e3 or e4
Pick e3



Example

source el

e5
e4 e2

6 °

Minimax — Best Response
Defender

H ﬂ

Best Response -
e M
[ Attacker ] nimax

rarget Attacker Paths
s->e|->e2->t s->e4->e3->t
el T.T
Defender = IT
Allocations ’
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Minimax strategy:
Defender Strategy: [0.5, 0.5]
Attacker Strategy: [0.5, 0.5]



Minimax strategy:

Defender Strategy: [0.5, 0.5]
Example /
P Attacker Strategy: [0.5, 0.5]
source el
@ o e
e5 H
e4 e2
i . e —
target
& Attacker Paths
s->el|->e2->t s->e4->e3->t
el T.T
Defender 3
Allocations

35/ 44

Attacker’s best response: s->e5->t



Example

source el
® — ()
e5 H
el e?
& ° B
target
Attacker Paths
s->e I ->e2->t S'>e4'>e3->t S->€5->t
Defend °! TT TT
efender
. e3 T.T TT
Allocations

36 / 44

Minimax strategy:
Defender Strategy: arbitrary, say [1.0, 0.0]
Attacker Strategy: [0.0, 0.0, 1.0]




Minimax strategy:

Examp]e Defender Strategy: [1.0, 0.0]
Attacker Strategy: [0.0, 0.0, 1.0]
source o1
® e
e5 H
e4 e?2

Best Response -
= M
[ Attacker ] nimax

6 °

rarget Attacker Paths
s->e|->e2->t s->e4->e3->t s->eb5->t
el TT TT
Defensler = IT T
Allocations

Defender’s best response: e5

37/ 44



Example

source el

). Minimax — Best Response
Defender
e5

e4 e2 H ﬂ
Best Response : —
e 3 Attacker

t t
Ee Attacker Paths
s->e|->e2->t s->e4->e3->t s->eb5->t
Defend : 2 sl
e en. er 3 T IT
Allocations
e5 -T,T -T,T

Defender Strategy: [1/3, 1/3, 1/3]
Attacker Strategy: [1/3, 1/3, 1/3]
38/ 44

No new best responses will be added in
the next iteration. Terminate.



Quiz 2

» Assume the following table is the game matrix (zero-sum).At
some point in the process of the double oracle algorithm, a
smaller game is being considered, with rows |, 2 and columns
3,4. What action should be added in the next iteration!?

A: A4
B: A4,
C:X;
D: X,
E- None Attacker Paths

Al AQ Ag A4
Defender X1 : —5  —38 0 —9
Allocations X . 0 —-8&8 —15 0

vV Vv Vv VvV V9




Quiz 2

» Assume the following table is the game matrix (zero-sum).At
some point in the process of the double oracle algorithm, a
smaller game is being considered, with row |, 2 and column
3,4. What action should be added in the next iteration!?

The minimax strategy of this smaller game is Def: (5/8, 3/8), Att:
> AZ (3/8,5/8). Expected utility for attacker of taking each of the
action is 5*5/8, 8, 15*3/8, 9*5/8

Attacker Paths
» None i Al AQ A3 A4
Defender X1 ° -5 =3 0 —9
Allocations X, 0 -8 —-15 0




Warm Start

» Initialize with some subset of pure strategies (e.g., for
defender, K edges in the min-cut)

4] 9/13/2021



Better Responses

» No need to find the best response

» If you find a better response but not sure if it is the
best response, it is OK to add it and move on

» If you cannot find a better response, it means the best
response is already in the current support

» Impact on computation time varies

[ Minimax ] — Better Response
Defender

H ﬂ

Better Response -~
 — M
[ Attacker ] [ nimax ]

42 9/13/2021




Column Generation: Using One Oracle Only

source el

e5
e4 e2

6 °

:> Best
Minimax Response
<:] Attacker

Attacker Paths

target
s->e|->e2->t
el
Defender %
Allocations
e3 T.T
e4 T.T
e5 -T.T
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Discussion

» How Machine Learning can potentially be used
together with Double Oracle for large-scale zero-
sum game solving?

44 9/13/2021



Summary

» Key take-aways
Game theory can be used to model security challenges

Equilibrium strategies in security games often has a small
support

Incrementally increase the support size to save time and
memory

45 9/13/2021



Additional Resources

» A Double Oracle Algorithm for Zero-Sum Security
Games on Graphs;

» An Exact Double-Oracle Algorithm for Zero-Sum
Extensive-Form Games with Imperfect Information;

» Double-oracle sampling method for Stackelberg

Equilibrium approximation in general-sum extensive-
form games

46 9/13/2021


https://dl.acm.org/doi/pdf/10.5555/2030470.2030518?download=true
https://www.jair.org/index.php/jair/article/view/10924/26040
https://arxiv.org/pdf/1909.03934.pdf
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Column Generation for Linear Programs

» Column generation is an approach to solving large-
scale linear programs with a massive number of
variables

» Recall:

max cl x
X

st.Ax <b
c € R"

A € R™™ peR™
Optimal solution is at a vertex
Simplex algorithm: Iteratively move to a neighboring vertex

49 9/13/2021



Column Generation for Linear Programs

» Consider LP in the following form (all LPs can be
converted into this form)

T
man c X If a variable , say z is unrestricted in
the original problem, then introduce
st.Ax < b S’ proorem,
two non-negative variables z, and z_
x=0 substitute z with z, — z_

c € R"
A € R™ heR™

50 9/13/2021



Column Generation for Linear Programs

» If n > m, many variables will be zero at the optimal
solution

Why!? The optimal solution is at a vertex.A vertex in the feasible space (which is
a subset of R"™) is determined by n equalities.VWe can get at most m equalities
from boundary hyperplanes of constraints in Ax < b.So we need to use at least
n — m boundary lines of the inequality constraints x = 0, which means those
corresponding variables are 0.

» What if n < m? Then the dual problem would have a
lot of zero-valued variables.We can then try to solve
the dual problem using column generation, which is
called constraint generation.

51 9/13/2021



Column Generation for Linear Programs

» Column generation: Iteratively solve a main problem

and a subproblem

» Main problem: The original LP but with a subset of
variables (assuming all other variables are zero)

» Subproblem: Identify a new variab

the subset of variables considered by the main

problem

4 Main Problem )

max ¢’ x
Xji:lEL

st.Ax < b

\_ x=>0 )

52

—>
—

g Subproblem )

Find a new variable x;

andaddito L
I\ J

e to be added to

9/13/2021



Column Generation for Linear Programs

» What is the goal of the subprolem?
» Add a variable that can increase the objective function the

most Dual LP
max c! x min b’y
X y
st.Ax < b st. ATy > ¢
x =0 y=0

» Assume the optimal solution with only a set L of variables
considered is x;, the corresponding optimal dual solution is y;

» The new variable chosen, say x;, should have the highest
“reduced cost”, calculated as ¢; — A y; where A4; is the ith
column of 4, i.e,, coefficients w.r.t. to x;. If the highest reduced
cost is non-positive, then no variable will be added, x; is the
optimal solution of the original problem with all variables

53 9/13/2021



Reduced Cost Explained

» Reduced cost is an important quantity in LP
» First, convert the LP into “canonical form” by adding slack variables

Xn+1 - Xn+m
max c¢1xq + -+ Ccpxy,

X1, Xn+m
maX C X S.t. a11X1 + A12X9 + -4 alnxn + xn+1 == b1
a,1X1 + aAr7X~H + -4 AyxnX + X +2 = bz
st Ax < p EEEp i+
x=0 Am1X1 + AmaXz + -+ AppXn + Xpm = by

>0,Vie{l..n+ m}

» Assume we choose a set of “basic variables” from {1..n + m} of
size m, called /. Set all variables not in J as 0.The constraints will
then be simplified to constraints w.r.t. basic variables only. Then solve
this linear system with the m basic variables and m constraints. The
solution corresponds to a vertex of the feasible region of the LP in
the canonical form shown above. Subselect x4, ..., x;,; from the
solution + the zero-valued non-basic variables lead to a vertex of

the feasible region of the original LP.
54 9/13/202



Reduced Cost Explained

» Formally, denote the new coefficient matrix with slack
variables as A = [4 ], [O]

» Let /T] be the submatrix of A containing only columns
corresponding to variables in |
» Then x; = /Ij_lb and x; = 0,Vj & J represents a

vertex of the feasible region of the following LP
max c¢1xq + -+ cpxy,

X1, Xn+m ~T
S.t. ai1X1 + A12X9 + -+ A1nXn + Xn+1 = b1 xéﬁlgTali(m cC' X
Ap1X1 + AppXp + -+ AopXy + Xpyy = by “ st Ax = b
Am1X1 + AmaXa + o+ AnXn + Xpim = by x=0

x; = 0,Vi € {l..n+m}

55 9/13/2021



Reduced Cost Explained

» Given X = (X1, ... Xp4m) With X; = /Tj‘lb and x; = 0,V & ]
» Consider adjusting x to x' by setting x = a > 0 for some j &

J while ensuring x; =0Vi & J,i #j andAx =b,x' = 0,i.e,
introducing one variable to the current basic variable set

» All x;,i € ] has to change accordingly
» Denote x; = x; + ad,, then

Ax' =b=>A;(x;+ad)) +adj=b

= A](W— ad]) + aA7b/

= d; = —A; 1A]

56 Fei Fang 9/13/2021



maxclx min b’y

X y
st.Ax < b s.t. ATy > C

x=0 y=0

Reduced Cost Explained
» If j € |1..n], the new objective value is
flx") =¢"x" =¢"x + a(C + ¢/ d))
» Rewritten as f(x") = é"x + ac; where
G =C+¢d =6 = A4
Therefore f(x") > ¢"x if ¢; > 0

For j € {1..n}, ¢; is called reduced cost

57 Fei Fang 9/13/2021



Reduced Cost Explained

"N — ~xT —
fx') =¢"x+ ag
= _ x _ AT i-14
G = — A4

» If ; is non-positive for all non-basic variables of a vertex
corresponding to basic variable set J, then the vertex is
the optimal solution

» If ¢; is positive for some j, then moving from x to x’ can
lead to a higher objective value, the higher the value of ¢;,

the higher the increase rate.The Simplex algorithm move
towards the neighboring vertex with the highest ¢;

58 9/13/2021



Reduced Cost Explained

» If x* € R™™ js the optimal solution of the primal LP in
canonical form, and it corresponds to a set of basis /, then
consider the corresponding optimal dual solution y* €
R™

According to complementary slackness, if x; is in J, then the
corresponding dual constraint is tight, i.e.,A]-Ty* = ¢ ifj € {1..n}
andy;_, =0ifje{n+1,..,n+mj

. = . [C
» Together with thefact A = [A4 [],¢ = [O],we have
.
A1y" =¢
» We can conclude: at optimal solution, ¢; = ¢; — 6]TA]_1A]-
can be rewritten as ¢; = ¢j — AJ-Ty* forj € {1..n}

59 9/13/2021



Reduced Cost Explained

» Assume that after you solved an LP and get x™ and
the corresponding y*, you are asked to add a new
variable x; to the LP with coefficient ¢; and matrix

column Aj

» x* still corresponds to a vertex in the augmented LP,
but it may not be the optimal solution

» We need to check if we introduce j to the basis,
whether the objective value will increase

» This can be done by directly checking the reduced
cost

60 9/13/2021



Subproblem and Reduced Cost

» Now consider the column generation process.
» It can be viewed as add variables one by one.
» Again, whether and how much a new variable x; will

improve the objective value depends on its reduced

cost, computed as ¢; — A] y; where y; is the optimal
dual solution (without slack variables) before x; is

added

6l 9/13/2021



Double Oracle

» Double oracle is similar to applying column
generation to the primal and dual problem of the
minimax LP with alternation

maxv
X, . A Ay Az Ay ...
s.t.v < Ziinij’ Vj X1 -5 -8 0 =9 ...
Xo: 0 -8 =15 0
i :
x; =0 x;: prob of for row X;

62 9/13/2021



