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Learning Objective

» Understand the concept of
Multi-Armed Bandit (MAB)
Zero-regret strategy

Upper Confidence Bound (UCB)
Probably approximately correct (PAC)

» Describe how ecosystem management problems are
modeled as MDPs and the key challenges

» Describe the key ideas in the solution approaches for
these problems
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Multi-Armed Bandit (MAB)

» K arms

» Each arm k is associated with
a reward distribution Ry,
with expected reward p,

» Gambler does not know Ry,

Ui

» Ineachround t € {1...T},
gambler chooses one arm k;,
and observe a reward 7}
drawn from the distribution
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Multi-Armed Bandit (MAB)

» Let u™ = Max p

» Define regret p = Tu* —Y1_. 7}

» A typical research problem in MAB: find zero-regret
strategy

lim 2 =0

T—oo T
» Probably approximately correct (PAC): with high
probability, it is close to being correct
Pr(error <e)=>1-9§

» PAC version of zero-regret strategy

Pr(limBSE)Zl—c?

T — o0
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Quiz |

» If we model MAB as an MDP, which of the following
representation of the state allows for the highest
level of expressiveness of a policy!?

» A:sp =< 1 >,i.e, single state MDP

» B:s; =<, ..., g > where i, =average reward
when k is chosen inrounds 1, ..., t — 1

» C:s; =< N(1),uy, ..., N(K), ix > where N(k) =
number of rounds that k is chosen in rounds
1, .., t—1

» Disy =< ky,71,ky, 75, ..., kg_1,77_1 > Where k. =
arm chosen in round T
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Multi-Armed Bandit (MAB)

» Model MAB as an MDP

» State s; =< kq,7q,ky, 75, e, K 1,151 >

» Action k; € {1...K}

» Transition matrix: P(S¢411S¢, ke) = pg, (7)) if Sp4q =<
Se, ke, 77 >

» Reward 1y = R(s¢, a4, S¢41) = 77
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Binary MAB

» K arms
» Reward is either 0 or 1, R,: Pr(r = 1) = py,, Pr(r =
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Upper Confidence Bound in Binary MAB

» Let N(k) be the number of times that k is chosen

» Let H(k) be the number of times that k is chosen
and reward is 1

» Let i = H(k)/N(k), average reward when k is
chosen

» Given N(k), H(k), iy, 0, we can estimate the range
of Uy, i.e., we can compute iz and ufg such that

Pr(ufs < m < pgp) 21-46
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Upper Confidence Bound in Binary MAB

» Chernoff-Hoeffding Bound: Let X, X5,..., X,, be
independent random variables in the range |0, 1] with
E|X;] = u.Then fora > 0

n

1 2
Pr(gz Xi = U + Cl) < e‘za n
=1

1% :
Pr(gz X, <u—a)<e2am
=1

» That is, with high probability, the observed average
value of X; is very close to the expected value of X;
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Upper Confidence Bound in Binary MAB

— 1 2 _ 1 2
» So ufp = iy — \/ZN(R) ln(E), Ufp = iy + \/ZN(R) ln(g) ensures Pr(ufB < U =
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Invasive Species Management

TRAVELERS: AVOID

FINES AND DELAYS

L }v Fruits & Vegetables

< \j’;‘ Plants & Cut Flowers

—
(&) %% Meat & Animal Products

g V Live Animals

Foreign insects, plant and animal diseases,
and invasive plants can be harmful
to United States agriculture.

www.cbp.gov

https://www.cbp.gov/travel/clearing-cbp/bringing-
agricultural-products-united-states

» Invasive Species
Reduce biodiversity

E.g., Tamarisk: Native in Middle
East, Outcompete native
vegetation in US for water

https://www.nasa.gov/vision/earth/environ
ment/invasive_species_MM.html
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Invasive Species Management

» Manage spatially-spreading organism
» Tamarisk spread along rivers
» Seed travel along rivers (mostly downstream)

» Interventions: eradicate the invasive species and/or
plant native species
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Published Rule of Thumb Policies

» Intuition: upstream is important, severity of invasion is
important

» Triage policy
Treat most-invaded edge (river reach) first
Break ties by treating upstream first
» Leading edge
Eradicate along the leading edge of invasion
» Chades, et al.

Treat most-upstream invaded edge first
Break ties by amount of invasion
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MDP Model for Invasive Species Management

» State s; € S:current status of invasion

Tree-structured river network
Directed

Each edge e € E has H sites for trees to grow

Status of each site € {empty, occupied by native, occupied by
invasive}

s¢: status of all sites
» Action a; € A: management action for the invasive
species
Action for each edge € {do nothing, eradicate, plant, eradicate +
plant}
a;:action on all edges

Practical constraint: at most one edge has a non “do-nothing”
action — Feasible action set A
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MDP Model for Invasive Species Management

» Transition probability P(s;,1|S¢, a;): describes the change of
state due to the management action and natural dynamics

Nature
Natural death
Seed production: every occupied site may generate seed

Seed dispersal: generated seeds dispersed to downstream sites (upstream also
possible, but less likely)

Seed competition: seeds dispersed to the same site compete to become
established

Couple all edges together
Make probabilistic inference intractable: with current observation, infer status of sites

Encapsulated with an (expensive) simulator

» Reward r; = R(S¢, a;): cost of action + penalty of invasion
More Tamarisk trees — higher penalty

» Policy m: S5 — A:
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Quiz 2

» If we use a table to store the non-zero transition
probabilities P(S;41|S¢, a;) in this model, at least how
many entries are needed (roughly)?

» A:32EH . gl
» B:32EH . 4F
» C: 354 . EH - 37
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MDP Model for Invasive Species Management

» Optimization problem: choose optimal policy T* to
maximize discounted cumulative reward

J@ =EL) y7r, |5, 7]
=0

» Value function V™ (s,) = E[X2,y" tr, |s,, 1]
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MDP Model for Invasive Species Management

» Why MDP is an appropriate model for the problem?

MDP policy balances short-term and long-term impact of
intervention

We can set the discount factor y to control the balance: US Forest
Service set the discount factor to be 0.96

MDP models uncertainty of environment
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Solve the MDP

» If all elements are known:Value iteration

» Challenge: P(st41]|S¢, ap) is not given in a table,
instead, we only have access to a simulator

Simulator: given s, a, provide a sample of s’

» Option |:run enough simulations to get P, then run
value iteration

Too slow, Too many samples needed (exponential)

» Option 2: directly interact with the simulator when
update policy
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Solve the MDP with Access to Simulator

» Slightly change the goal: Find policy 7 that is near
optimal with high probability without running too
many simulations

Pr( V*(sg) — V’AT(SO)| < 6) >1-6

Draw a polynomial number of samples from the simulator

Called PAC-RL (Probably approximately correct
reinforcement learning)

4 Equivalently: VUB (So) — VLB (S()) <€
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Solve the MDP with Access to Simulator

» Key problem: How to sample from the simulator to
reduce confidence level?

» Algorithm |: DDV
» Algorithm 2: LGCV
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DDV Algorithm

» Idea |: Optimism Principle

For every state s, only consider action with highest upper
confidence level Qy (s, a) (similar to MCTYS)

» Idea 2:Value of Information
AV (so) = Vyp(So) — Via(So)
DDV=A; AV (50)=AV (s9)-AsaV" (s0)
For every (s, a), how much AV (sy) will change as a result of sampling
(s,a)
Compute/Estimate DDV for every (s, a) pair satisfying
Optimism Principle, choose (s, a) with highest DDV

» The key is to estimate V(s;)!
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DDV Algorithm

» Idea 3: Optimal Sampling for Policy Evaluation

Goal: Estimate V" (sy) through simulator so that the
estimated value V" (sy) satisfy

Pr(|I7”(SO) — V”(SO)| <e€)=1-96
Compute occupancy measure u’(s): the discounted
probability that a policy 7 visits state s
Use Extended Value Iteration: Sample (s, a) in proportion to
u (s);
Or use Monte Carlo Trials: Sample (s, a) in proportion to
u"(s)
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DDV Algorithm

» Repeat
Sample (s, a) with highest estimated DDV

» Until width of estimated confidence interval < €

» Confidence interval is estimated using Extended Value
Iteration algorithm based on optimal sampling
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LGCV Algorithm

» Key idea: Improve DDV by improving the way to compute
confidence intervals

» Two different ways to compute confidence interval

Extended Value Iteration (EVI)
Monte Carlo (MC) samples drawn according to a fixed policy

» LGCV
Use EVI to compute Vy5(sp)
Use EVI+MC to compute V;5(sp)

In each iteration
Either Draw a minibatch of samples to improve EVI interval
Or Draw a minibatch of samples to improve MC interval

26 Fei Fang 5/8/2018



Evaluate the algorithms

» Evaluate different policies with the simulator: MDP
based policies improves rule-of-thumb policies by ~

25%!
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Wildfire Management

» ldeal state: a natural state with large pine trees, open understory, frequent
ground fires that remove understory plants but do not damage trees

» Lack of controllable fires leads to densely distributed pine trees, heavy
accumulation fuels in understory, high risk of large catastrophic fires that kill
all trees and damage soils

» Selectively extinguish natural wildfires or even conduct prescribed burns to
reduce risk

https://www fs.usda.gov/detail/r6/landmanagement/res https://www.tahoedailytribune.com/news/lake-tahoe-forest-service-to-conduct-fall-
ourcemanagement/?cid=stelprdb5423597 prescirbed-burns-and-wildfire-management/
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Wildfire Management

» Study area: Deschutes National Forest

» Management question:VWhen lightning ignites a fire,
should we let it burn or extinguish it?
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Wildfire Management

» How can Al help!?
Develop simulators
Evaluate rule-of-thumb policies
Design better policies
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Wildfire Management

» Formulate the problem as an MDP

State s;:
Grid representation of the area (4000 cells)

For each grid cell: # and age of trees, fuel load
s;: state of all cells, 254990 states!

Action a;: {LetBurn, Suppress} when there is a fire ignition

Reward 1 = R(s¢, a;, l;): cost of lost timber value, cost of
fire suppression

Transition function P(St+1|St' at) — P(ltlst, at)P(St+1|St)
Optimization goal: max E[>.; y'r]
T
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Solve the MDP

» Possible approaches
Policy Gradient

Represent policy as a parameterized function 7 (s; )
Estimate gradient Vg /(1 (s; 8)) via Monte Carlo trials
Perform gradient ascent

Does work well: noisy gradient, hard to stabilize with limited samples

Bayesian Optimization with regression tree (SMAC)
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Practical Challenge

» Visualize rollout policies of MDP (MDPVis.github.io)

How Cumulative Timber Loss increases over time in
different trials given the policy

Debug the system

Interpret policies and communicate with stakeholders
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Extensions

» Multiple owners of forest, multiple fire mangers
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