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Outline

 Partially Observable Markov Decision Process 

(POMDP)

 Monte Carlo Tree Search (MCTS)

 Partially Observable Monte Carlo Planning (POMCP)

 MCTS for POMDP
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Learning Objective

 Understand the concept of

 Partially Observable Markov Decision Process (POMDP)

 Belief state

 Compute belief state distribution

 Construct belief-state MDP

 Describe

 Monte Carlo Tree Search (MCTS)

 Particle filtering
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Recall: Markov Chain

 Markov Chain definition

 S: set of states, 𝑠𝑡 ∈ 𝑆

 Transition function (Markov property): 𝑃(𝑠𝑡+1|𝑠𝑡)
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Recall: Markov Decision Process

 MDP definition

 S: set of states, 𝑠𝑡 ∈ 𝑆

 A: set of actions, 𝑎𝑡 ∈ 𝐴

 Transition function (Markov property): 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

 Reward function 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡), 𝛾 ∈ [0, 1]
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Recall: Hidden Markov Model

 HMM definition

 S: set of states, 𝑠𝑡 ∈ 𝑆

 Transition function (Markov property): 𝑃 𝑠𝑡+1 𝑠𝑡
 𝒃𝟎: Initial state distribution, i.e., 𝑃(𝑠0)

 O: Observation likelihoods / Emission probabilities: 𝑃 𝑜𝑡 𝑠𝑡
with 𝑜𝑡 ∈ 𝑂
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Partially Observable Markov Decision Process

 POMDP definition

 S: set of states, 𝑠𝑡 ∈ 𝑆

 A: set of actions, 𝑎𝑡 ∈ 𝐴

 Transition function (Markov property): 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

 Reward function 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡), 𝛾 ∈ [0, 1]

 𝒃𝟎: Initial state distribution, i.e., 𝑃(𝑠0)

 O: Observation likelihoods / Emission probabilities: 𝑃 𝑜𝑡 𝑠𝑡
with 𝑜𝑡 ∈ 𝑂
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Belief Update

 𝑏𝑡 𝑠 : probability of 𝑠𝑡 = 𝑠

 Updated using Bayesian Rule given action 𝑎𝑡 and 

observation 𝑜𝑡+1 in the next time step

 𝑏𝑡+1(𝑠′) ∝ 𝑝 𝑜𝑡+1 𝑠  𝑠 𝑝 𝑠
′ 𝑠, 𝑎𝑡 𝑏𝑡(𝑠)

 Exp 1
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Quiz 1

 Transition graph same as Exp 1

 𝑃 𝑠2 𝑠1, 𝑎1 = 1, 𝑃 𝑠1 𝑠1, 𝑎2 = 1

 𝑃 𝑠1 𝑠2, 𝑎1 = 1, 𝑃 𝑠2 𝑠2, 𝑎2 = 1

 Emission probability
 𝑃 𝑜1 𝑠1 = 1, 𝑃 𝑜2 𝑠2 = 1

 𝑏0 = 0.5,0.5

 What is 𝑏1 given 𝑎0 = 𝑎
1 and 𝑜1 = 𝑜

1?

 [1,0]

 0,1

 0.5,0.5

 [0.25,0.75]
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History and Policy

 History

 ℎ𝑡 = {𝑎1, 𝑜1, … , 𝑎𝑡 , 𝑜𝑡}

 Sequence of actions and observations

 POMDP Policy

 Option 1: define on belief state: a = 𝜋(𝑏)
 Given 𝑏0 and 𝜋, we can execute a POMDP for many steps, getting 

reward for every step

 Option 2: define on history: a = 𝜋(ℎ)
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POMDP as belief MDP

 POMDP can be converted into an MDP with belief state

 POMDP: 
 S: set of states, 𝑠𝑡 ∈ 𝑆
 A: set of actions, 𝑎𝑡 ∈ 𝐴
 Transition function (Markov property): 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)
 Reward function 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡), 𝛾 ∈ [0, 1]
 𝒃𝟎: Initial state distribution, i.e., 𝑃(𝑠0)
 O: Observation likelihoods / Emission probabilities: 𝑃 𝑜𝑡 𝑠𝑡 with 𝑜𝑡 ∈ 𝑂

 Corresponding belief state MDP
 State: Belief state 𝑏, set of states ℬ ⊂ ℝ|𝑆|

 Action: at ∈ 𝐴
 Transition function: 𝑃(𝑏𝑡+1|𝑏𝑡 , 𝑎𝑡)
 Reward function: 𝑟𝑡 =  𝑠𝑡 𝑏 𝑠𝑡 𝑅 (𝑠𝑡, 𝑎𝑡)

 Exp 1
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Simple Solution to POMDP

 Simple solution

 Construct belief state MDP

 Discretize belief state space of the constructed MDP

 Solve the MDP using value iteration, policy iteration or 

other MDP solving techniques

 Map the solution back to POMDP

 Limitations

 Curse of dimensionality: When |𝑆| is large, even a coarse 

discretization leads to a huge number of states!

 Exp 1
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Other Solutions to POMDP

 Exact solution approaches

 Value iteration

 Policy iteration

 Intractable

 Online Planning approach

 Point-Based Value Iteration

 Branch and bound
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Monte Carlo Tree Search

 General framework to make online decision in 

sequential decision making problems

 E.g., online planning in MDPs, to determine game plays in Go, 

chess, video games etc
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Monte Carlo Tree Search

 MCTS for single player setting: online planning in an unknown 
environment

 You are now in some state, need to choose an action, but you 
know nothing about the environment

 Helper: a simulator tells you your available actions, and reward 
after you take the action
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Green player controlled by you

Yellow player controlled by some algorithm

Actions={up, down, nothing}
Game Over!



Monte Carlo Tree Search

 Build a search tree node by node

 Select → Expand → Simulate → Back propagate → Select 
→…

 Simplest MCTS
 In each iteration

 Select: Choose the branch with the highest value

 Expand: Add one node by randomly selecting an action

 Simulate: Uniform random rollout

 Back propagate: update mean return (average accumulated reward) along 
the path

 Output: action correspond to branch with highest value at the 
root node after 𝐾 iterations
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Monte Carlo Tree Search

 More advanced MCTS
 Upper Confidence Bounds for Trees (UCT)

 For each node, keep track of estimated action value and visit count: 
𝑄(𝑠, 𝑎) and 𝑁(𝑠, 𝑎)

 Select: Balance exploration vs exploitation:
 If some actions never been chosen, randomly choose among them

 Choose branch with highest augmented action value (also referred to as Upper 
Confidence Bounds (UCB)):

𝑄⨁ 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝑐
ln𝑁(𝑠)

𝑁(𝑠, 𝑎)

 Other advanced options:
 Simulate: Terminate after 𝑇0 steps and estimate the reward

 Expand: Add more nodes to he tree

 Output: Optimal action at root node, as well as 𝑄 and 𝑁 in the subtree 
corresponds to the optimal action

 Initialize search tree with domain knowledge
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Monte Carlo Tree Search

 MCTS for multi-player setting: Tic-Tac-Toe

 Select

 Expand

 Simulate

 Back propagate
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Quiz 2

 For the following tree, which leaf node will be 

expanded in UCT with 𝑐 =1000?
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Q=3

N=15

Q=10

N=10

Q=2

N=1

Q=5

N=4

A B C



Partially Observable Monte Carlo Planning (POMCP)

 Apply MCTS to solve POMDP

 Partially Observable-UCT (PO-UCT)
 Node in the search tree represent a history ℎ
 For each node, keep track of estimated history value 𝑉(ℎ) and visit 

count 𝑁(ℎ)
 Given belief state 𝑏, run one simulation

 Select: sample initial state 𝑠, choose branch with highest 

𝑉⨁ ℎ, 𝑎 = 𝑉 ℎ, 𝑎 + 𝑐
ln𝑁(ℎ)

𝑁(ℎ, 𝑎)

 Expand: add a node

 Simulate: Uniform random rollout

 Back propagate: update 𝑉(ℎ)

 Output: Optimal action at root node, as well as 𝑉 and 𝑁 in the subtree 
corresponds to the optimal action
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Online planning with PO-UCT

 In each time step:

 Run PO-UCT, get optimal action 𝑎 and 𝑉 and 𝑁 in the 

subtree correspond to 𝑎

 Take optimal action 𝑎

 Observe a real observation 𝑜

 Update belief 𝑏

 Initialize search tree for next time step with 𝑉 and 𝑁 in the 

subtree correspond to 𝑎
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Monte Carlo Belief Update (Particle Filtering)

 Task: given 𝑏𝑡, 𝑎𝑡, 𝑜𝑡+1, (approximately) compute 𝑏𝑡+1
 Sample K states (particles) from initial state distribution 
𝑏𝑡

 Set 𝐵𝑡+1 𝑠 = 0, ∀𝑠
 In each iteration

 Randomly choose one particle to be 𝑠𝑡
 Run simulation to get a sample successor state 𝑠′ and sample 

observation 𝑜′
 If 𝑜′ = 𝑜𝑡+1, then add particle s′ to the new state particles, i.e., 
𝐵𝑡+1 𝑠′ = 𝐵𝑡+1 𝑠′ + 1

 Repeat until 𝐾 particles are added to 𝐵𝑡+1
 Estimate 𝑏𝑡+1 from 𝐵𝑡+1 as 𝑏𝑡+1 𝑠 =

𝐵𝑡+1 𝑠

 
𝑠′
𝐵𝑡+1 𝑠′
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Partially Observable Monte Carlo Planning (POMCP)

 POMCP=PO-UCT + MC Belief Update with shared 

simulations

 For each node, keep track of estimated history value 

𝑉(ℎ) and visit count 𝑁(ℎ), and also particles 𝐵 ℎ
 Note that ℎ encodes 𝑎 and 𝑜

 During back propagation, update 𝐵(ℎ)

 After the optimal action 𝑎 is chosen, and the 

observation 𝑜 is observed, search tree for next time 

step with belief state derived from 𝐵(ℎ) of the new 

root
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Additional Resources

 Planning and acting in partially observable stochastic 

domains

 Leslie Pack Kaelbling, Michael L. Littman, Anthony R. 

Cassandra

 Monte-Carlo Planning in Large POMDPs

 David Silver, Joel Veness

 Bandit based Monte-Carlo Planning

 Levente Kocsis and Csaba Szepesvari
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http://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf
https://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps.pdf
http://ggp.stanford.edu/readings/uct.pdf

