Markov Decision Processes
(MDP)

M4-1
Chun Kai Ling
15 Feb 2018

This lecture

* First half: modelling
e Examples of MDPs
* Learn how to model MDPs
* Familiarize with how the parameters of MDPs affect solutions

e Second half: solving
* Value iteration
* Policy iteration

* Extensions (optional)

The story so far...

* Equilibrium concepts in games (Nash, SE)) Focus is on
* Decision Trees prediction,
- Graphical Models (GMM, DBN, MRF) not control!

Intelligence is more than just predicting stuff’

Loosely speaking:

MDPs: Markov Chain +

boring fun

“Extremely exciting” game (EEG)

START

0 +S700

 Choose to move left, right or keep still at each time step
e Restricted to staying within bounds

* The game ends once you reach the rightmost tile.

e Suffer penalties every time step when in red tiles.

* Best strategy =7

“Extremely exciting” game (Part 2)

START
0

e Restricted to staying within bounds

+S700

p = 0.25

Choose to move left, right or keep still at each time step

The game ends once you reach the rightmost tile.
Suffer penalties every time step when in red tiles.
A strong wind is blowing leftward, causing you to move back

with probability p = 0.25 regardless of your action.

* Best strategy =7

Not obvious if penalties / probabilities are non-uniform.

Foundation for many cool applications

Robotics

‘Game’ playing

Traffic Control

Server management
Modelling human behavior

Useful starting point for many
problems!

* Go, Atari games

Closely related areas
* Reinforcement Learning
* Imitation learning, Inverse RL

Microsoft Teaches Autonomous Gliders to Make Decisions on the Fly
New York Times - Aug 15, 2017

Cars, planes and other robots can now recognize the objects around them with an
accuracy that rivals human sight thanks to the recent rise of neural ... In building their
algorithms, Mr. Kapoor and his team relied on techniques that date back decades —
something called Markov decision processes.

These Al Gliders Hunt for Updrafts to Fly Forever
Popular Mechanics - Aug 16, 2017

View all

How to reroute planes, on the fly, to prevent collisions with rockets
Stanford Report - Jan 9, 2017

As computers have gained the memory capacity and computational ability to solve
bigger and more complex problems, researchers have started using Markov
decision processes in robotics, economics and manufacturing — wherever
engineers need to choose the optimal outcome in uncertain situations ...

Helping robots handle uncertainty
MIT News - Jun 2, 2015

* Decentralized partially observable Markov decision processes are a way to model

B—]

Google news for ‘Markov Decision Process robotics’

| autonomous robots' behavior in circumstances where neither their communication
- with each other nor their judgments about the outside world are perfect. The problem
- with Dec-POMDPs (as they're abbreviated) is that ...

Robot Knows the Right Question to Ask When It's Confused

|IEEE Spectrum - Mar 15, 2017

Pointing, gestures, gaze, and language cues are all tricks that humans use to
communicate information that robots are generally quite terrible at interpreting.
Brown researchers created a system called “FEedback To Collaborative Handoff
Partially Observable Markov Decision Process,” or FETCH-POMDRP, ...

If you have no idea how to proceed, formulating something as an MDP and
doing Monte-Carlo Tree search probably works reasonably well...

- A wise man

Videos

MDP = (S, A, T, R,)

e S: set of states, s; € S where can | be?

t () T Markov Chains!
* A: set of actions, a; € A (what can | do?)
* Transition function: P(s¢;+1|s¢, a;) (what happens n ext?)

* Reward function 1 = R(s¢, a;) (what do | gain?) -
*y €]0,1] (discount factor)

st = {i|location i occupied}
a; € {left, right, rotate}
T = some tetris physics, : T = some physics
"distribution of next tile”) ¢, R(s,) = height of pole
R(s;) = #complete rows
FiriT .-’Q-" 77 pﬁ" Frrr

Q1: What are S,A,T,R for thé prewous ”game?
Q2: How large is |S|?

st = (X¢, x¢, O, 0t)
a; € {left, right}

Behaving (near)-optimally in an MDP

e Assumet =0,1,2 ...
* Total expected discounted reward: Y, y'r,, 0 <y < 1

* Payoffs now worth more than in the future

* Model compound interest, opportunity costs etc.
* Technical convenience (useful later when solving)

* Define a policy (s) = a
* Maps state to action, defines a plan
e Goal: find ™ to maximize expected discounted reward
» " = argmax;Eq[X: v R(st, m(st))]
* Myopic strategy does not work: a; affects future states

Grid World

* The canonical example for MPDs
* Move in desired direction with probability 0.8

* Move in perpendicular direction with probability 0.1

* No movement when hitting walls

+1

T 0.8

0.1

0.1

What is the best
policy?

Behaving (near)-optimally in an MDP

* Q1: Should T depend on t? Or just s;? Do we have to care
about histories of states and actions?
* Independence from t is reasonable due to Markov Property

* Q2: Could we ever benefit from non-deterministic T ?
* No: could always do better by switching to the more rewarding deterministic
policy.
* Grey Area: when there are aliased states (not in this lecture)

M4-1 Quiz 1 (Markov Property)

Which of the following state representations are
suitable for pole-cart balancing ?

A) st = (x¢, x¢,0¢, 0¢)
B) s¢ = (x¢,0;)
C) st = (xtr X¢—1, 0t Ht—l)

Relationship to other models (optional)

Do we have control over

Markov Models state transitions
No Yes
S Yes Markov-Chain MDP
completely

observable?

No HMM POMDP

Markov Chains
s 5+ Find stationary/limiting distribution
* Find time to first return

* Find distribution of states at time t given state at time t-n

HMM
—>| s S —_—
t t+l * Tractable inference, Viterbi etc.
* Filtering, e.g. Kalman filters, EKF, IKF ...
» Sample based filtering, particle, histogram filters...
Zt Zt+1

/ : / Markov Decision Processes
//(// Classic theory on MDPs borrow from Markov Chain theory

Are these well modelled

}
3
§

T e s

CN

-

g et

LN

TN om

et e

2048

| A
e e
-y

_ w MmN T

S

zzilsbﬂ_
i mN
211.!&.11.)@

B R B O I I
A i (IR IC T
I R T R

| _,Aﬂ}xﬂymltl

=1 [T Alm v s T
TR e MmN | =TT
TIAION - A1¢.2l~!| - |

Mw == |
TIM A N-- C NNNw - 1
TIM M e, | NN | |]
TN Am - NN woy Tl
[l 05 0NN
TIMONP N w [

B R L R I Rl il e
2 1 L 0 1 et o o e o o et i (1
1 T O S T T o R S
N 1 L
| TTTT I v T

Minesweeper

Snake and ladders

Pacman

Importance of discount factors & time

* Infinite horizon discounted reward is not the only formulation

* Average reward (not in this lecture)
* Finite horizons

START
0

+S700

 What happens if y = 0.25? What about y = 0.99?

* Future discounted reward is too low to compensate for short-term pain

* What if the game only carries on for tynagx = 8 steps?

* Impossible to reach goal after being pushed back once.
 Time-dependent policy m;(s), or augmented state (s, t)

* Dynamic programming

p = 0.00001

M4-1 Quiz 2

Legend:

Grey: walls, Red: cliff (terminal
state), : gold (terminal
state), Blue: slippery slope

Actions:

* up, down, left, right

* Taking any action on blue tiles
causes you to fall down with
probability p.

Q: Which of the settings for

gamma and p result in an optimal

agent's first action to be "Left"?

A:y=01 p=0

B:y =0.99999, p=0

C.y=01, p=0.2

D:y =0.99999, p = 0.2

Solving MIDPs (not exhaustivel!)

*Exact

* VValue Iteration
* Policy Iteration
* Linear Programming

* Approximate
* Sampling based
* Function approximation

Value Functions (finite horizon H)

* The value function at time t, for policy m is

* V7 (s) = expected total reward assuming
* We adopt
* We beginin s
* We have t timesteps remaining

* Bellman Equations:
VI*(s) = R(s,m(s)) + yz P(s'|s, m(s))VE(s")
VE 20

* Value of state = immediate reward + future reward

Optimal Value Functions (finite horizon)

» The value function for the optimal policy is V* (s)
 Abbreviated as V/ (s)

Vi(s) = max [R (s,a) + Vz P(s'|s, a)Vi_1(s")]

S,
V=0

* Pick the action which maximizes current + future reward (assuming
continued optimal behavior)

e Similar in spirit to dynamic programming.

Value Iteration (Infinite Horizon)
V¥ (s) = max [R(s,a) + ¥y X.c, P(s'|s,a)V" (s")]

* Self referencing fixed point equations!

* Fixed point iteration
* Pretend we have a really long horizon
e Perform dynamic programming!

* Initialize V5 (s) < 0

e lterate V", (s) « max [R(s,a) +y 2 P(s'|s, a)V; (s')]
a

 aka ‘Value update’, ‘Bellman backups/updates’

* Q1: How does V™ help us get the optimal policy?
* Optimal policy is retrieved using one step look-ahead
1(s) = argmax [R(s,a) + y 2 P(s'|s,a)V™ (s')]

acA
* Q2: Is the value function always finite?

*Yes, ify <1

* Total payoff cannot exceed

Rmax.
1=y
* Q3: Does value iteration convergeto ™ ?
* Yes, use the fact that Bellman backups are a contraction.
* Q4: Is the fixed point V* unique?
* Yes.

Value Iteration: Example

START
0

+S700

0 0 0 0 0 0 0 0
0 100 | -100 | -100 | -100 | -100 | -100 | +700
0 100 | -190 | -190 | -190 | -190 | 458 | +700

Demo by TA + Video

Policy Iteration

* Value iteration: V™ estimates gradually improved by Bellman
backups

* Optimal policy is induced by V'~
* Q: Is it necessary to get an accurate estimate of V™ to
induce ”
* Policy iteration: m gradually ‘improved’.
* /™ used to evaluate policy

* New idea: Iterate between 2 steps
* Policy Evaluation (check how good current policy is)
* Policy Improvement (get a ‘better’ policy)

Policy iteration (con’t)

* Policy Evaluation
* Method 1: Use value iteration
« V51(s) « R(s,m(s)) +y X P(s'|s,a)V*(s"), V5 (s) « 0
 Method 2: Solve system of linear equations (no max operator for fixed m)
* Terminate if Bellman equations holds

* Policy Improvement

* Since Bellman equations did not hold, some condition was violated
« (s) # argmax [R(s,a) +y X P(s'|s, a)V"(s")]

acA
* Improve 1 by setting this to be true

* Theorem: Policy iteration converges to the optimal policy in a finite
number of steps

Extensions (Optional)

* Scaling up: Function Approximation & Fitted Value Iteration

* Online vs. Offline planning
* Which do | really need, T* or m*(s4)?

* What happens if my model of the environment is inaccurate?
e Options (macro-actions)

Value lteration

Value iteration example

Problem definition: numbers are rewards/penalties per timestep

&
+S700

START
0 p =0.1,y =0.9
Step O: Initialization, Vy = 0
Current value function, written as an array.
Recall
The objective is to find a good
0 0 0 0 0 0 0 0 estimate of VV*, by repeatedly
refining our estimate.

Problem definition: numbers are rewards/penalties per timestep

+S700

p =0.1,y =0.9

START
0

iteration 1: Perform Bellman Backups
-or each state, compute expected cumulative
rewards for each action

Lets consider the second last square.

Problem definition: numbers are rewards/penalties per timestep

START
0

+S700

Currently updating value of this state

lteration 1:

Possible action 1: RIGHT

Current value function from previous iteration

Immediate reward = -100 (state we are in)
Future reward = 0.9 * O (if we move end up right)

+ 0.1 * 0 (if we move end up left)
=> Expected total reward =-100 + 0 =-100
Why 0? Because we use the values from the
previous iteration for all estimates of future rewards.

The probabilities 0.9 and 0.1 are
obtained from the transition
function P(s'|s, a).

Problem definition: numbers are rewards/penalties per timestep

0

START

+S700

lteration 1:

Currently updating value of this state

Current value function from previous iteration

Applying this to all
other actions gives:
Possible action 1: RIGHT
Expected total reward =-100 + 0 =-100

Possible action 1: LEFT

Expected total reward =-100 + 0 =-100

0 0 0 0 0 0 0 0
Updated value function
TBD TBD TBD TBD TBD TBD -100 TBD

Possible action 1: NONE
Expected total reward =-100

=>Value of best action (tied) = -100

Problem definition: numbers are rewards/penalties per timestep

lteration 1:

I
Applying this to all states gives:

Current value function from previous iteration

0 0 0 0 0 0 0 0
Updated value function
0 -100 -100 -100 -100 -100 -100 | +700

End of iteration 1

r Use for iteration 2

Problem definition: numbers are rewards/penalties per timestep

START
0

+S700

lteration 2:

Currently updating value of this state

Possible action 1: RIGHT

Current value function from previous iteration

0 -100

-100

-100

-100

-100

-100

+700

Immediate reward = -100 (state we are in)
Future reward = 0.9 * 700 (if we end up right)
+ 0.1 * -100 (if we end up left)
=> Expected total reward =-100 + y620 = 458
We use the values from the previous iteration for all
estimates of future rewards. Do not forget

discounting!
The probabilities 0.9 and 0.1 are
obtained from the transition
function P(s'|s, a).

Problem definition: numbers are rewards/penalties per timestep

&
STgRT +$700
p =0.1,y =0.9
. I
|te rat | O n 2 Currently updating value of this state

Applying this to all

Current value function from previous iteration

other actions gives:

Possible action 1: RIGHT
Expected total reward = 458

Possible action 1: LEFT

Expected total reward =-100 + y(—100) =-190

0 -100 -100 -100 -100 -100 -100 | +700
Updated value function
TBD TBD TBD TBD TBD TBD 458 TBD

Possible action 1: NONE
Expected total reward =-100 + y(—100) =-190

=>Value of best action (right) = 458

Problem definition: numbers are rewards/penalties per timestep

lteration 2:

I
Applying this to all states gives:

Current value function from previous iteration

0 -100 -100 -100 -100 -100 -100 | +700
Updated value function
0 -190 -190 -190 -190 -190 | +458 | +700

End of iteration 2

rUse for iteration 3

Repeated iterations converge to the optimal value
function

Value function convergesto V*

0 -100 | -93.7 | 18.88 | 157.2 | 315.4 | 4954 | +700

Now, perform one step lookahead to extract *

Problem definition: numbers are rewards/penalties per timestep

START

0 +S700

Suppose we want the
best action at this state

Possible action 1: RIGHT

Immediate reward = -100 (state we are in)
Future reward = 0.9 * 157.2 (if we end up right)
+ 0.1 *-93.7 (if we end up left)
=> Expected total reward =-100 + y620 = 18.88

IV* we computed after many iterations

0 -100 | -93.7 | 18.88 | 157.2 | 315.4 | 4954 | +700

We use the values from V* for future rewards.
Do not forget discounting!

Perform for all actions

to obtain the best

End of Algorithm

Final policy after extracting best action at each state

«c | > > > >

