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Quiz 1: Recap: Gradient Descent

 𝑎0 = 1, 𝑏0 = 0.5, run one iteration of gradient descent, 
we get

 A: 𝑎1 > 𝑎0, 𝑏1 < 𝑏0

 B: 𝑎1 > 𝑎0, 𝑏1 > 𝑏0

 C: 𝑎1 < 𝑎0, 𝑏1 < 𝑏0

 D: 𝑎1 < 𝑎0, 𝑏1 > 𝑏0
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𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

min
𝑎,𝑏

 

𝑖=1

3

𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏 )2

s.t. 𝑎, 𝑏 ∈ ℝ

 Exp 1



Recap

 Input 𝑥 → (Not fully hard-coded) Program → Output 

𝑦

 Key questions

 Representation: How to represent the relationship between 

input and output

 Inference: How to infer the output from input

 Learning: How to learn the best model to describe the data?
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Outline

 What is Regression

 Parametric Regression

 Simple Linear Regression

 Linear Regression with Multiple Features

 Evaluation

 Loss function

 Train error, true error, test error

 Overfitting

 Model selection: Validation set

 Regularization

 Ridge regression (L2)

 Gradient descent

 Lasso regression (L1)

 Coordinate descent

 Cross validation

 Non-parametric regression

 K-Nearest Neighbors

 Kernel Regression

 Logistic Regression
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Learning Objectives

 Understand the concept of

 Regression

 Regularization

 Cross validation

 K-NN

 Kernel regression

 Describe coordinate descent algorithm and can apply 

it to small scale problem

 Know how to find the algorithm/solver/package to do 

linear regression / kernel regression
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What is Regression

 Continuous-valued output

 Exp 2: Predict house price
 Input: size (sqft), #bedrooms, #bathrooms

 Output: price of house

 Exp 3: Predict probability of detecting snares

 Exp 4: Predict #likes of a Tweet
 Input: #followers, topic

 Output: #likes

 Other examples?
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Parametric Regression

 Data: input-output pairs 𝑥𝑖 , 𝑦𝑖

 Representation: How to represent the relationship between input and 
output
 Output is a function of input + noise, y𝑖 = 𝑓 𝑥𝑖 + 𝜖𝑖
 Potential functions: constant, linear, quadratic, …

 Which class of functions is more reasonable?

 Within a class of functions (parameterized), which function is most reasonable?

 Exp 1:

 Exp 2: Predict house price
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𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

𝑓 𝑥 = 𝑐? 𝑓(𝑥) = 𝑎𝑥 + 𝑏? 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐?

𝑓 housesize, #bedrooms, #bathrooms = 𝑎 ⋅ housesize + 𝑏 ⋅ #bedrooms + c ⋅ #bathrooms + d?
𝑓 housesize, #bedrooms, #bathrooms = 𝑎 ⋅ log(housesize) + 𝑏 ⋅ #bedrooms2 + c ⋅ #bathrooms2 + d?



Parametric Regression

 Inference: How to infer the output from input

 Estimate the output to be 𝑓 𝑥

 Exp 1:

 Exp 2: Predict the price of a house
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𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

𝑓 𝑥 = 2𝑥 + 2

𝑓 housesize, #bedrooms, #bathrooms
= 100 ⋅ housesize + 20 ⋅ #bedrooms + 10 ⋅ #bathrooms + 10000



Parametric Regression

 Learning: How to learn the best model to describe the data?
 Given a class of functions (parameterized), find the best parameters

 Solve an optimization problem that minimizes loss function

 Example loss function - Residual sum of squares (RSS): 

 𝑅𝑆𝑆 =  𝑖 𝑦𝑖 − 𝑓(𝑥𝑖)
2

 Exp 1:
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𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

𝑓 𝑥 = 𝑎𝑥 + 𝑏

min
𝑎,𝑏

 

𝑖=1

3

𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏 )2

s.t. 𝑎, 𝑏 ∈ ℝ



Simple Linear Regression

 Assume

 𝑓 𝑥 = 𝑎𝑥 + 𝑏

 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏 + 𝜖𝑖
 Easy to find the best parameter values when using RSS as 

the loss function
 Approach 1: set gradient = 0, get closed-form solution

 Approach 2: use gradient descent

 Exp 1:
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𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

min
𝑎,𝑏

 

𝑖=1

3

𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏 )2

s.t. 𝑎, 𝑏 ∈ ℝ



Quiz 2

 In Exp 1 of M3-3, what is the closed form 

representation for the optimal value of 𝑎 if there are 

N data points? Explain how you get the formula.

 A: 𝑎 =  𝑖 𝑥𝑖𝑦𝑖 / 𝑖 𝑥𝑖
2

 B: 𝑎 =
 𝑖 𝑥𝑖𝑦𝑖−

 𝑖 𝑥𝑖  𝑖 𝑦𝑖
𝑁

 𝑖(𝑥𝑖
2)−

( 𝑖 𝑥𝑖)
2

𝑁

 C: 𝑎 =
 𝑖 𝑥𝑖𝑦𝑖−

 𝑖 𝑥𝑖  𝑖 𝑦𝑖
𝑁

( 𝑖 𝑥𝑖)
2−

 𝑖 𝑥𝑖𝑦𝑖
𝑁

 D: 𝑎 =
 𝑖 𝑥𝑖

2−
 𝑖 𝑥𝑖𝑦𝑖

𝑁

( 𝑖 𝑥𝑖)
2−

 𝑖 𝑥𝑖𝑦𝑖
𝑁
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min
𝑎,𝑏

 

𝑖=1

𝑁

𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏 )2

s.t. 𝑎, 𝑏 ∈ ℝ



Simple Linear Regression

 Exp 2: Ignore other input features

 𝑓 housesize = 𝑎 ⋅ housesize + 𝑏

 Other cost functions?

 E.g., higher cost for over-estimation in Exp 2 (no offer)
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Linear Regression with Multiple Features

 What if 

 Generalized model

 𝑥 = (𝑥 1 , 𝑥 2 ,… , 𝑥 𝑑 ): a vector of 𝑑 dimensions

 ℎ𝑗(𝑥): a known function of 𝑥 (no unknown parameters)

 𝑓 𝑥 =  𝑗𝑤𝑗ℎ𝑗(𝑥)

 𝑦𝑖 = 𝑓 𝑥 + 𝜖𝑖
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𝑓 housesize = 𝑤0 + 𝑤1 ⋅ housesize + 𝑤2 ⋅ housesize
2?

𝑓 housesize, #bedrooms, #bathrooms
= 𝑎 ⋅ housesize + 𝑏 ⋅ #bedrooms + c ⋅ #bathrooms + d?

𝑓 housesize, #bedrooms, #bathrooms
= 𝑎 ⋅ log(housesize) + 𝑏 ⋅ #bedrooms2 + c ⋅ #bathrooms2 ⋅ #bedrooms?



Linear Regression with Multiple Features

 Residual sum of squares (RSS): 

 𝑅𝑆𝑆 =  𝑖 𝑦𝑖 − 𝑓(𝑥𝑖)
2

 Find the best parameter values

 Write down the optimization problem

 Solve the optimization problem

 Approach 1: Set gradient = 0 → closed form solution

 Rewrite in matrix form

 Computational challenge: compute the inverse of a matrix can be time 

consuming! (𝑂(𝐷3))

 Approach 2: Gradient descent

 More general, Can be more efficient
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Evaluation

 Access performance

 Make predictions/estimations with the trained model at 

input 𝑥

 Ideally: 𝑦 = 𝑓(𝑥)

 Measure loss in non-ideal case: define a loss function

 Absolute loss: 𝐿 = |𝑦 − 𝑓(𝑥)|

 Squared loss: 𝐿 = 𝑦 − 𝑓 𝑥
2
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Evaluation

 On which data points do you access the performance?

 Training error

 Average loss on all points in training set

 Overly optimistic

 True error

 Average loss on all possible points weighted by likelihood

 You don’t know all points and how likely they are

 Test error

 Average loss on a set of points that are not used to train the model

 Approximate true error

 Overfitting: low training error, high true error
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Regression with Regularization

 Balance fitness to training data and model complexity 

to avoid overfitting

 Total cost = measure of fit + measure of model 

complexity
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Ridge Regression (L2 Regularization)

 When model is complex, some trained parameter 

values would be very high

 Ridge total cost = measure of fit + measure of 

magnitude of coefficients = 𝑅𝑆𝑆 𝑤 + 𝜆 𝑤 2
2

 𝜆: control the balance
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Ridge Regression (L2 Regularization)

 Exp 1:
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𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

𝑓 𝑥 = 𝑎𝑥 + 𝑏

min
𝑎,𝑏

 

𝑖=1

3

𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏 )2 + 𝜆(𝑎2 + 𝑏2)

s.t. 𝑎, 𝑏 ∈ ℝ



Ridge Regression (L2 Regularization)

 How to choose 𝜆?

 Validation set

 K-fold cross validation (Typically, 𝐾 = 5 or 10)

 Randomly assign data to K groups

 Train on data from K-1 groups and compute error on remaining group 

(validation set)

 Compute average error 𝐶𝑉(𝜆) for difference choice of validation set

 Choose 𝜆 that minimizes 𝐶𝑉 𝜆

5/8/2018Fei Fang22

Training set Validation set Test set

80% 10% 10%



Lasso Regression (L1 Regularization)

 Lasso total cost = measure of fit + measure of 

magnitude of coefficients = 𝑅𝑆𝑆 𝑤 + 𝜆 𝑤 1

 𝜆: control the balance

 Lead to sparse solutions in practice (less features 

with 𝑤 > 0)

 Indicate which features are more important

 Trading off efficiency with interpretability
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Lasso Regression (L1 Regularization)
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 Exp 1:

 If 𝑎 = 0, 𝑏 = 3, how to apply one step of gradient 
descent?
 How to compute the gradient?

 Use coordinate decent instead of gradient descent!

𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

𝑓 𝑥 = 𝑎𝑥 + 𝑏

min
𝑎,𝑏

 

𝑖=1

3

𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏 )2 + 𝜆(|𝑎| + |𝑏|)

s.t. 𝑎, 𝑏 ∈ ℝ



Coordinate descent algorithm

 In every iteration, pick a coordinate 𝑗, fix the values in 

all other coordinates and pick the best value in 𝑗𝑡ℎ

coordinate

 To pick the best value in 𝑗𝑡ℎ coordinate: solve an 

optimization problem

 Compute gradient

 Set gradient = 0
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Coordinate descent algorithm for Lasso Regression

 Initialize 𝑤

 While not converged

 For j=0..D

 Compute 𝑧𝑗 =  𝑖 ℎ𝑗 𝑥𝑖
2

 Compute 𝜌𝑗 =  𝑖 ℎ𝑗(𝑥𝑖)(𝑦𝑖 −  𝑦𝑖(𝑤−𝑗)) where  𝑦𝑖 𝑤−𝑗 =

 𝑘≠𝑗𝑤𝑘ℎ𝑘(𝑥𝑖)

 Update 𝑤𝑗 as

 (𝜌𝑗 +
𝜆

2
)/𝑧𝑗 if 𝜌𝑗 < −

𝜆

2

 0 if −
𝜆

2
≤ 𝜌𝑗 <

𝜆

2

 (𝜌𝑗 −
𝜆

2
)/𝑧𝑗 if 𝜌𝑗 >

𝜆

2
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Coordinate descent algorithm for Lasso Regression
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 Exp 1:

 Initialize 𝑎 = 0, 𝑏 = 3

 Apply coordinate descent

 Step 1: Update 𝑎
 Check 𝑔(𝑎, 𝑏 = 3)

𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

𝑓 𝑥 = 𝑎𝑥 + 𝑏

min
𝑎,𝑏

𝑔 𝑎, 𝑏 = 

𝑖=1

3

𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏 )2 + 𝜆(|𝑎| + |𝑏|)

s.t. 𝑎, 𝑏 ∈ ℝ



Coordinate descent algorithm for Lasso Regression
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 Exp 1:

 Initialize 𝑎 = 0, 𝑏 = 3

 Apply coordinate descent

 Step 1-n: Update a, 𝑏, 𝑎, 𝑏, …
 Check contour map of 𝑔(𝑎, 𝑏)

𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 4.1 5.98 9.0

𝑓 𝑥 = 𝑎𝑥 + 𝑏

min
𝑎,𝑏

𝑔 𝑎, 𝑏 = 

𝑖=1

3

𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏 )2 + 𝜆(|𝑎| + |𝑏|)

s.t. 𝑎, 𝑏 ∈ ℝ



How to handle intercept parameter

 Motivation of using Ridge or Lasso regression: get 

smaller parameter value so as to avoid overfitting

 Recall 𝑓 𝑥 =  𝑗𝑤𝑗ℎ𝑗(𝑥). Often ℎ0 𝑥 = 1, 𝑤0 is the 

intercept parameter

 Ridge regression cost = 𝑅𝑆𝑆 𝑤 + 𝜆 𝑤 2
2: requires 

𝑤0 to be small. However, a large value of 𝑤0 does not 

indicate overfitting!

 If 𝑦 value of a dataset is shifted by 𝑀, the learned 

model should simply shift by 𝑀. But Ridge regression 

penalizes this shift heavily.
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How to handle intercept parameter

 Solution 1: (used by many packages, e.g., sklearn)

 Exclude intercept term in the loss function

 Use modified Ridge regression cost = 𝑅𝑆𝑆 𝑤0, 𝑤𝑗≠0 +

𝜆 𝑤𝑗≠0 2

2

 Solution 2: Shift the data first so that  𝑦 = 0, therefore 

𝑤0 = 0 for the shifted dataset. Train a model using 

standard ridge regression, and then shift back.
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Outline

 What is Regression

 Parametric Regression

 Simple Linear Regression

 Linear Regression with Multiple Features

 Evaluation

 Loss function

 Train error, true error, test error

 Overfitting

 Model selection: Validation set

 Regularization

 Ridge regression (L2)

 Gradient descent

 Lasso regression (L1)

 Coordinate descent

 Cross validation

 Non-parametric regression

 K-Nearest Neighbors

 Kernel Regression

 Logistic Regression
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Non-parametric regression

 If we don’t want to represent the relationship 

between 𝑥 and 𝑦 using an explicit function with to-

be-learned parameters, can we still make 

assumptions?

 Simplest approach: Nearest neighbor regression
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Nearest Neighbor Regression

 1-NN regression
 Predicted value = value of “closest” point in training data

 Distance metric: (Scaled) Euclidean distance, Manhattan

 Limitation: poor performance in areas with little data; sensitive to 
noise

 K-NN regression
 Predicted value = average value of k “closest” point in training 

data

 Robust to noise

 Limitation: poor performance in areas with little data or 
boundary; discontinuous predictions

 Choose k: cross validation

5/8/2018Fei Fang33



Quiz 3

 Given the following training data, what is the price of 

Alice’s house with house size = 1300 sqft through k-

NN with k=3

 220

 235

 213.3

 256.7
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House size (sqft) Sale price ($)

1200 220

1000 170

800 150

1500 250

1800 300



Kernel Regression

 Weighted K-NN regression
 Predicted value = weighted average value of k “closest” point in 

training data

 Smaller distance → Higher weight

 Kernel regression
 Predicted value = weighted average value of all points in training 

data

 Weight is a function of distance: kernel

 Example kernel: Gaussian, Triangle, Uniform

 Gaussian: 𝑘𝑒𝑟𝑛𝑒𝑙𝜆 𝑥𝑖 − 𝑥𝑞 = 𝑒−
𝑥𝑖−𝑥𝑞

2

𝜆

 Choose bandwidth parameter 𝜆: cross validation
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Kernel Regression
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https://www.coursera.org/learn/ml-regression

https://www.coursera.org/learn/ml-regression


Logistic Regression

 When the output is binary (or categorical), but we 

want to predict the probability of having positive label

 𝑝 𝑦 = 1 =
1

1+𝑒
 𝑗 𝑤𝑗ℎ𝑗(𝑥)
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Tips for Regression in Practice

 Normalize the feature values

 Center the data

 Packages: sklearn (Python), fitlm(MATLAB)
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Additional Resources

 Text book

 Pattern Recognition and Machine Learning, Chapters 3,6

 Christopher Bishop

 Online course
 https://www.coursera.org/learn/ml-regression

 https://www.coursera.org/learn/ml-classification

 https://www.coursera.org/learn/machine-learning
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https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738
https://www.coursera.org/learn/ml-regression
https://www.coursera.org/learn/ml-classification
https://www.coursera.org/learn/machine-learning

