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Outline

 Predicting Poaching Activity

 Model 1: CAPTURE

 Dynamic Bayesian Network

 Model 2: INTERCEPT

 Spatially Aware Decision Tree Ensemble

 Model 3: Hybrid Model

 Gaussian Mixture Model × Decision Tree with Bagging + Markov 

Random Fields

 Predicting Urban Crime

 Dynamic Bayesian Network
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Learning Objectives

 Describe a few models for real-world spatio-

temporal prediction tasks such as predicting poaching 

activity and urban crime

 Answer the representation, inference, learning 

questions w.r.t. the models

 Describe several evaluation metrics for these models

 Describe methodologies of field tests for these tasks
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Wildlife Protection in Uganda
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Forest Area: QEPA
• Covers 2520 sq. km

• Divided into a grid of  1km×1km

Poachers:  Set trapping tools (e.g., snare)

Rangers:  Conduct patrols
• On foot or by ground vehicles 

• From 2003-2017

Queen Elizabeth Park

Collaborators:Wildlife Conservation Society, UgandaWildlife Authority,
Rangers Pictures: Trip to Indonesia withWorld Wide Fund for Nature



Dataset Covariates: Queen Elizabeth Park
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Challenges: Data Uncertainty
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Challenges: Small Number of Recorded Attacks
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CAPTURE – Single Time Step
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Probability of 

attack on target j

Detection probability

Ranger patrol

Animal density
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rivers / roads 
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Area slope

…

∝ 𝒆(𝒘𝟏 × 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑃𝑟𝑜𝑏+ 𝒘𝟐×𝐹𝑒𝑎𝑡𝑢𝑟𝑒1+ 𝒘𝟑× 𝐹𝑒𝑎𝑡𝑢𝑟𝑒_2… )

Nguyen et al. Capture: A new predictive anti-poaching tool for wildlife 

protection. In AAMAS, 2016



CAPTURE – Multiple Time Steps

 Temporally-aware Dynamic Bayes Net
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CAPTURE – Multiple Time Steps

 Conditional probabilities

 Logistic model

 𝑝 𝑎𝑡,𝑖 = 1 𝑎𝑡−1,𝑖 , 𝑐𝑡,𝑖 , 𝑥𝑡,𝑖 =
𝑒
𝜆𝑇[𝑎𝑡−1,𝑖,𝑐𝑡,𝑖,𝑥𝑡,𝑖,1]

1+𝑒
𝜆𝑇[𝑎𝑡−1,𝑖,𝑐𝑡,𝑖,𝑥𝑡,𝑖,1]

 𝑝 𝑜𝑡,𝑖 = 1 𝑎𝑡,𝑖 = 1, 𝑐𝑡,𝑖 , 𝑥𝑡,𝑖 = 𝑐𝑡,𝑖 ×
𝑒𝑤
𝑇
[𝑥𝑡,𝑖,1]

1+𝑒𝑤𝑇[𝑥𝑡,𝑖,1]
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Learning in CAPTURE

 Learn/Train CAPTURE

 Given a set of data

 Find weights 𝜆,𝑤 (Expectation Maximization Algorithm + 

Parameter Separation + Target Abstraction)
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Inference with CAPTURE

 Make inferences given trained CAPTURE

 Infer the past

 Input: Geospatial features, patrol coverage 𝑐𝑡,𝑖 , observations 𝑜𝑡,𝑖, 𝑡 =

1…𝑇

 Output: Probability of poaching activity 𝑎𝑡,𝑖 , 𝑡 = 1…𝑇

 Predict the future

 Input: Geospatial features, patrol coverage 𝑐𝑡,𝑖 , observations 𝑜𝑡,𝑖, 𝑡 =
1…𝑇; future patrol coverage 𝑐𝑇+1,𝑖 (controlled by defender)

 Output: Probability of poaching activity 𝑎𝑇+1,𝑖 and probability of 

observing poaching activity 𝑜𝑇+1,𝑖

5/8/2018Fei Fang13



Evaluate CAPTURE

 How to evaluate CAPTURE?

 Data: Observations 𝑜 only (no ground truth of 𝑎)

 Evaluate “predict the future” task using historical data

 Training/test sets

 Training 1: Data in 2003–2006; Test 1: Data in 2007

 …

 Training 8: Data in 2010-2013; Test 8: Data in 2014
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Evaluate CAPTURE

 What metrics can be used?

 Accuracy / Recall / Precision / F1?

 Need binary decision from probabilities

 Set a threshold on probability

 Value dependent on threshold

 Receiver operating characteristic 

(ROC) curve

 Area under the Curve (AUC)

5/8/201815 https://en.wikipedia.org/wiki/Receiver_operating_characteristic



Quiz 1

 In ROC curve, the x-axis is false positive rate, and y-

axis is true positive rate. Which point in the ROC 

space corresponds to a perfect classifier that makes 

correct predictions for all data points? Which point in 

the ROC space corresponds to a classifier that makes 

predictions based on the flip of a balanced coin?

 (0,1), (0.5,0.5)

 (0.5,0.5), (1,0)

 (1,0), (0.5,0.5)

 (0,1),(1,1)
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Human Behavioral Model: CAPTURE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PAWS Logit SVM

AUC (Non-Commercial Animal)

Dry Season (June-August 2008)

5/8/201817/67 Nguyen et al. Capture: A new predictive anti-poaching tool for wildlife 

protection. In AAMAS, 2016

CAPTURE Logit SVM



Limitations of CAPTURE

 Good at predicting observations 𝑜 but not poaching 

activities 𝑎

 Difficulty to interpret

 Slow to run
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Basic Decision Tree

 Goal: Predict whether or not 
having poaching activity based 
on a set of input features

 Input features: Geospatial 
features + patrol coverage

 Label: Have poaching?

 Learn/Train the tree
 Greedy decision tree learning

 Greedily choose a feature and a 
threshold at a time

 Inference: traverse the tree
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BoostIT: Spatially Aware Decision Tree

 Consider spatial correlations 

(hotspots)

 Learn a decision tree

 Compute predictions

 Hotspot proximity computation

 Feature = 1 if #positive neighbors 

≥ 𝛼

 Learn a new decision tree with 

hotspot proximity as a feature

 Repeat until a stopping condition is 

reached

Observed 

Attack
Prediction

Hotspot Proximity
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INTERCEPT: Build an Ensemble

 Set different stopping criteria for decision tree retraining

 Set different cost for false positive and false negative 

predictions

5/8/2018Fei Fang22

Classifier 1 Classifier 2 Classifier 3

Is target x

going to be 

attacked?

0 1 1

Aggregation Rule
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Evaluate INTERCEPT

 How to evaluate INTERCEPT?

 Treat detections as labels for poaching activity but with 

uncertainty in negative label

 Evaluate “predict the future” task using historical data

 Datasets 

 Trained: 2003-2014, Tested: 2015

 Trained: 2003-2013, Tested: 2014
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Evaluate INTERCEPT

 Metrics

 INTERCEPT outputs binary label directly

 Accuracy?

 No. Class imbalance

 Precision / Recall / F1?

 Not enough. Does not consider the uncertainty in negative label

 L&L score

 Accounts for negative label uncertainty

 Rewards recall heavily

 Rewards selective models
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𝐿&𝐿(𝐷, 𝑇𝑒) =
𝑟𝑒𝑐𝑎𝑙𝑙2

Pr 𝑓 𝑇𝑒 = 1

Probability of positive prediction



Quiz 2

 In the test set, 20% of the data points are actually 

positive. What is the L&L score of a perfect classifier? 

What is the L&L score of a classifier that predict 

every point to be positive?

 1, 0

 4, 0

 5, 1

 5, 0
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Evaluate INTERCEPT

 Empirical Evaluation

 40 models w/ total of 192 model variations

 Best model: Decision tree ensemble with Standard decision tree 

+ 2 BoostITs (α =2, 3) + 2 Decision Trees (FP cost = 0.6, 0.9)
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Deploy INTERCEPT

 Fast runtime and interpretability
led to its deployment

 Two 3x3 sq. km patrol areas
 Infrequent patrols

 Predicted hotspot

 Trespassing
 19 signs of litter, ashes, etc.

 Poached Animals
 1 poached elephant

 Snaring
 1 active snare

 1 cache of 10 antelope snares

 1 roll of elephant snares
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Deploy INTERCEPT
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Classifier: Decision Tree

30

PROS

• High speed

• Learn global poachers behavior

• Learn nonlinearity in geo-spatial predictor

CONS

• No explicit temporal dimension

• No aspect for label uncertainty



Bagging Ensemble: More Stable, Less Noisy due to 

Diversification

5/8/201831

D

C

D1 D2 Dn

C1 C2 Cn

Original Training Data

Create Multiple Datasets

Build Multiple Classifier

Combine Classifiers



Markov Random Field for Poaching
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PROS

• Explicit spatial dimension

• Explicit temporal dimension

• Addresses label uncertainty

CONS

• Low speed

• Data greedy

1 0 1

0 1 0

1 0 0

1 1 1

1 1 0

0 0 0

Time Step t

Time Step t-1



Markov Random Field for Poaching
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Spatial Cliques

Backward Temporal Cliques

Observed Data Cliques



Markov Random Field for Poaching
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Observed Data Cliques

𝜙 =
𝑃(𝑜𝑖 = 0|𝑎𝑖 = 0) 𝑃(𝑜𝑖 = 0|𝑎𝑖 = 1)
𝑃(𝑜𝑖 = 1|𝑎𝑖 = 0) 𝑃(𝑜𝑖 = 1|𝑎𝑖 = 1)

𝜙 =

1 1

1+𝑒−𝜷.[𝑐𝑖,𝑝𝑖,1]
𝑇

0 𝑒−𝜷.[𝑐𝑖,𝑝𝑖]
𝑇

1+𝑒−𝜷.[𝑐𝑖,𝑝𝑖,1]
𝑇

• Coverage, 𝑐𝑖
• Distance from patrol post, 𝑝𝑖



Markov Random Field for Poaching
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Spatial Cliques

𝜓 =
𝑃(𝑎𝑖 = 0|𝑢𝑁𝑖

𝑡−1)

𝑃(𝑎𝑖 = 1|𝑢𝑁𝑖
𝑡−1)

𝜓 =

1

1 + 𝑒
−𝜶.[𝑿,𝑢𝑁𝑖

𝑡−1,𝑐𝑖,1]
𝑇

𝑒
−𝜶.[𝑿,𝑢𝑁𝑖

𝑡−1,𝑐𝑖,1]
𝑇

1 + 𝑒
−𝜶.[𝑿,𝑢𝑁𝑖

𝑡−1,𝑐𝑖,1]
𝑇

• Coverage, 𝑐𝑖
• Fraction of  neighbors which are attacked, 𝑢𝑁𝑖

𝑡−1

• All static features including distance from patrol posts, 𝑿



Learn Parameters: EM
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• Goal: 𝜽∗ =argmax 𝑃(𝑜|𝜃)
• E-step, 𝜃 = 𝛼, 𝛽 :

𝑄(𝜃|𝜃 𝑘 ) = 𝔼𝒂~𝒐,𝜃 𝑘 𝑙𝑜𝑔𝑃 𝒂, 𝒐 𝜃

=  𝑎𝜖𝒜 𝑃 𝒂 𝒐, 𝜃
𝑘 . 𝑙𝑜𝑔𝑃 𝒂, 𝒐 𝜃

• M-step:

𝜃(𝑘+1) = 𝒂𝒓𝒈𝒎𝒂𝒙𝜃𝑄(𝜃|𝜃
𝑘 )

• Update 𝜽 until convergence:

𝜃(𝑘) 𝜃(𝑘+1)



Geo-clustering
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Gaussian Mixture ModelSpatial Coordinates

Static Covariates

Geo-clusters around patrol posts to learn:
• local poachers’ behavior

• Distinct parameters to expedite the local training of MRF



Hybridizing Bagging Model with Markov Random Fields
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Boost by geo-clustered behaviorally inspired models:

• Improve the accuracy

• Learn local poachers’ behavior; distinct parameters

Decision Tree 

+ 

Markov Random Fields

Markov Random FieldsBagging of Decision Trees

C

C1 C2 Cn

On Intensely Monitored Regions



Empirical Evaluation
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L&L Score = 
𝑅𝑒𝑐𝑎𝑙𝑙2

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑘𝑖𝑛𝑔 𝑎 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

1 0.62 1.03

2.61 3.05 3.46 3.83
4.32

L&L Score

Positive Baseline SVM

RUSBoost ADAboost

Train Labels INTERCEPT

BG Hybrid



Real-world Deployment: 8 Months of Field Tests
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• 27 areas, 9-sq km each

• 2 experiment groups

HIGH: 5 areas

LOW: 22 areas



Real-world Deployment: 8 Months of Field Tests
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• 27 areas, 9-sq km each

• 2 experiment groups

HIGH: 5 areas

LOW: 22 areas

• 8 month, 452 km patrolled in total

0

2

4

6

8

10

12

14

High (1) Low (2)

N
u

m
 S

n
a
re

 O
b

se
rv

a
ti

o
n

s
Experiment Group



Real-world Deployment: 8 Months of Field Tests
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• 27 areas, 9-sq km each

• 2 experiment groups

HIGH: 5 areas

LOW: 22 areas

• 8 month, 452 km patrolled in total

• Catch Per Unit Effort (CPUE)

Unit Effort = km walked

Historical CPUE: 0.03
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Real-world Deployment: 8 Months of Field Tests

5/8/201843

• Statistical Significance

• Cohen’s D

Effect size: A standardized measure of  the difference between two Means

Interpretation*

0.2: Small

0.5: Medium (Visible to naked eye)

0.8: Large (Grossly perceptible)

High Group Mean (std) Low Group Mean (std) p-value Cohen’s d

0.12 (0.44) 0.01 (0.13) p<0.0001 0.52

𝑑 =
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑒𝑎𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑒𝑎𝑛

𝑝𝑜𝑜𝑙𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
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Urban Crime: Opportunistic Attack

 Opportunistic adversaries (OA)

 Seek opportunities to commit attacks

 Flexible in executing the plan

 Flexibility: Adapt plan with real time information

45

In 2009

7,857,000 crime 

$10,994,562,000



Predicting Opportunistic Crime

 Criminology based approach
 General principles “crime predicts crime”

 Have used many ML techniques – SVM, Regression, STL

 Ignores strategic interaction between defender and 

adversaries
 Essential for planning patrols

46



Real-World Data

 Opportunistic crime on the 

campus of University of 

Southern California (USC)
 Department of Public Safety (DPS) 

allocates officers to 5 areas 

 Three patrol shifts per day

 Criminals react opportunistically
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Real-World Data

 Crime Report for 3 years
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Real-World Data

 Patrol Schedule for 3 years
 Manually generated by domain experts
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Real-World Data

 Count number of crimes/officers in each shift in each 

area
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Dynamic Bayesian Network Model

 DBN captures interaction 

between officers and criminals
 D: Number of defenders (known)

 X: Number of criminals (hidden)

 Y: Number of crimes (known)

 T: Step = Shift

5/8/2018Fei Fang51 T T+1



Dynamic Bayesian Network Model

 Learn/Train the model

 Directly apply Expectation Maximization does not work:

 Huge transition matrix and output matrix

 Over-fitting

 Exponential Runtime

 EMC2: Improve EM for this specific problem

 Factorize output matrix

 Pairwise transition matrix

 Distributive law
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Evaluate the Model

 Metric: Accuracy
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 Model 3: Hybrid Model

 Gaussian Mixture Model × Decision Tree with Bagging + Markov 

Random Fields

 Predicting Urban Crime

 Dynamic Bayesian Network
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Quiz 3

 For the problem of identifying fraudulent firms, which 

statements of the following are true?

 The dataset is unbalanced

 The dataset only has positive labels

 Decision tree-based approach can be a good fit

 The dataset has entries with the same features but different 

labels
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