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Quiz 1: Recap: Nash Equilibrium

 In Rock-Paper-Scissors, which of the following is a 

Nash Equilibrium?

 𝑠1 = (1,0,0), 𝑠2 = 1,0,0

 𝑠1 = (
1

3
,
1

3
,
1

3
), 𝑠2 = 1,0,0

 𝑠1 = (
1

3
,
1

3
,
1

3
), 𝑠2 = (

1

3
,
1

3
,
1

3
)

 𝑠1 = (1,0,0), 𝑠2 = 0,1,0
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Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissor -1,1 1,-1 0,0

Player 2
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Quiz 2: Recap: Strong Stackelberg Equilibrium

 In Power of Commitment, what is player 1’s utility in 

Strong Stackelberg Equilibrium?

 3.75

 2



11

3

 3.5
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c d

a 2,1 4,0

b 1,0 3,2
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Societal Challenges: Security and Sustainability
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Societal Challenges: Security and Sustainability

Today

≈ 3,200

100 years ago

≈ 60,000
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Societal Challenges: Security and Sustainability

Physical Infrastructure Transportation Networks Cyber Systems

Environmental Resources Endangered Wildlife Fisheries
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Societal Challenges: Security and Sustainability

 Improve tactics of patrol, inspection, screening etc

5/8/2018

Game Theoretic 

Reasoning

Attacker

Defender
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Outline

 Basic model

 Deal with continuous timeline

 Fine-grained planning with practical constraints
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Model Security Problem as a Stackelberg Game

 Limited resource allocation

 Adversary surveillance

Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender
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Model Security Problem as a Stackelberg Game

 Randomization make defender unpredictable

 Stackelberg Security game

 Defender: Commits to mixed strategy

 Adversary: Conduct surveillance and best responds

Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender

55.6%

44.4%
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Model Security Problem as a Stackelberg Game

 Strong Stackelberg Equilibrium
 Attacker break tie in favor of defender

 AttEU1=0.556*(-3)+0.444*4=0.11

 AttEU2=0.556*1+0.444*(-1)=0.11

 DefEU1=0.556*5+0.444*(-5)=0.56

 DefEU2=0.556*(-1)+0.444*2=0.332

 Equilibrium: DefStrat=(0.556,0.444), AttStrat=(1,0)
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Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender

55.6%

44.4%



Computing SSE

 General-sum

 Multiple LP or MILP

 Assume attacks target 𝑖∗
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Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender

55.6%

44.4%

min
𝑝1,𝑝2,…,𝑝𝑁

𝑣

s.t. 𝑣 ≥ 𝐴𝑡𝑡𝐸𝑈 𝑖 , ∀𝑖 = 1…𝑁

 

𝑖

𝑝𝑖 ≤ 1

min
𝑝1,𝑝2,…,𝑝𝑁

𝐴𝑡𝑡𝐸𝑈 𝑖∗

s.t.𝐴𝑡𝑡𝐸𝑈 𝑖∗ ≥ 𝐴𝑡𝑡𝐸𝑈 𝑖 , ∀𝑖 = 1…𝑁

 

𝑖

𝑝𝑖 ≤ 1

𝐴𝑡𝑡𝐸𝑈 𝑖 = 𝑝𝑖𝑃𝑖
𝑎 + (1 − 𝑝𝑖)𝑅𝑖

𝑎

 Zero-sum

 Single LP

 SSE=NE



Compute optimal defender strategy

 Polynomial time solvable in games with finite actions 

and simple structures [Conitzer06]

 NP-Hard in general settings [Korzhyk10]

 SSE=NE for zero-sum games, SSE⊂NE for games 

with special properties [Yin10]

 Research Challenges

 Massive scale games with constraints

 Plan/reason under uncertainty

 Repeated interaction
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Outline

 Basic model

 Deal with continuous timeline

 Fine-grained planning with practical constraints
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Game Theoretic Reasoning
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Problem

 Optimize the use of patrol resources

 Moving targets: Fixed schedule

 Potential attacks: Any time

 Continuous time
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Model

 Attacker: Which target, when to attack

 Defender: Choose a route for patrol boat

 Payoff value for attacker: 𝑢𝑖(𝑡) if not protected, 0 if protected

 Minimax: Minimize attacker’s expected utility assume attacker 
best responds

10:00:00 AM

Target 1

10:00:01 AM

Target 1
…

10:30:00 AM

Target 3
…

Purple Route

Orange Route

Blue Route

……

D
ef

en
d

er

Adversary

30%

40%

20%

5 4-5, -4, 00, 

Attacker’s Expected Utility = Target Utility × Probability of Success

5/8/201818/64



HOW TO FIND OPTIMAL DEFENDER STRATEGY

 Step I: Compact representation for defender

10:00:00 AM

Target 1

10:00:01 AM

Target 1
…

10:30:00 AM

Target 3
…

Purple Route

Orange Route

Blue Route

……

D
ef

en
d

er

Adversary

5 4-5, -4, 00, 
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STEP I: COMPACT REPRESENTATION FOR DEFENDER

A, 10 minA

B

C

0 min 10 min 20 min

A, 0 min A, 20 min

B, 10 minB, 0 min B, 20 min

C, 10 minC, 0 min C, 20 min

Ferry 1

Attack

Attack

A B C

ManhattanStaten Island
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STEP I: COMPACT REPRESENTATION FOR DEFENDER

 Full representation: Focus on routes (𝑁𝑇)

 Prob(Orange Route) = 0.37 Prob(Green Route) = 0.33

 Prob(Blue Route) = 0.17 Prob(Purple Route) = 0.13

A, 10 minA

B

C

0 min 10 min 20 min

A, 0 min A, 20 min

B, 10 minB, 0 min B, 20 min

C, 10 minC, 0 min C, 20 min

Patroller
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STEP I: COMPACT REPRESENTATION FOR DEFENDER

 Full representation: Focus on routes (𝑁𝑇)

 Prob(Orange Route) = 0.37 Prob(Green Route) = 0.33

 Prob(Blue Route) = 0.17 Prob(Purple Route) = 0.13

 Linear program

min
𝑝1,𝑝2,…,𝑝𝑅

𝑣

s.t. 𝑣 ≥ 𝐴𝑡𝑡𝐸𝑈 𝑖,  𝑡 ,
For all target 𝑖, time point  𝑡

Best response

Probability of route

(𝑁𝑇 variables)
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STEP I: COMPACT REPRESENTATION FOR DEFENDER

 Compact representation: Focus on edges (𝑁2𝑇)

 Probability flow over each edge

A, 10 minA

B

C

0 min 10 min 20 min

A, 0 min A, 20 min

B, 10 minB, 0 min B, 20 min

C, 10 minC, 0 min C, 20 min

p(Blue) = 0.17

p(Purple) = 0.13

0.3

Patroller
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STEP I: COMPACT REPRESENTATION FOR DEFENDER

 Theorem 1: Let 𝑝, 𝑝′ be two defender strategies in 

full representation, and the compact representation 

for both strategies is 𝑓, then 𝐴𝑡𝑡𝐸𝑈𝑝
𝑖 𝑡 =

𝐴𝑡𝑡𝐸𝑈𝑝′
𝑖 𝑡 , and 𝐷𝑒𝑓𝐸𝑈𝑝

𝑖 𝑡 = 𝐷𝑒𝑓𝐸𝑈𝑝′
𝑖 𝑡 , ∀𝑡

 Compact representation does not lead to any loss
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Quiz 3: Deal with Continuous Timeline

 How many variables are needed to compute the 

optimal defender strategy in compact representation?

 A: O(𝑁2𝑇)

 B: O(𝑁𝑇)

 C: O(𝑁𝑇2)

 D: O(𝑁𝑇)
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HOW TO FIND OPTIMAL DEFENDER STRATEGY

 Step I: Compact representation for defender

 Step II: Compact representation for attacker

10:00:00 AM

Target 1

10:00:01 AM

Target 1
…

10:30:00 AM

Target 3
…

Purple Route

Orange Route

Blue Route

……

D
ef

en
d

er 5 4-5, -4, 00, 

Adversary
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STEP II: COMPACT REPRESENTATION FOR ATTACKER

 Partition attacker action set

 Only need to reason about a few attacker actions

A, 10 minA

B

C

0 min 10 min 20 min

A, 0 min A, 20 min

B, 10 minB, 0 min B, 20 min

C, 10 minC, 0 min C, 20 min

Ferry 1

Attack

9 min
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STEP II: COMPACT REPRESENTATION FOR ATTACKER

 Partition points 𝜃𝑘: When protection status changes

Unprotected

Enter

Protected

Leave

Unprotected

𝜃1

𝜃2
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STEP II: COMPACT REPRESENTATION FOR ATTACKER

 Partition points 𝜃𝑘: When protection status changes

A, 10 minA

B

C

0 min 10 min 20 min

A, 0 min A, 20 min

B, 10 minB, 0 min B, 20 min

C, 10 minC, 0 min C, 20 min

𝜃1 𝜃2
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STEP II: COMPACT REPRESENTATION FOR ATTACKER

 𝐴𝑡𝑡𝐸𝑈 = Target Utility(t) ×Probability of Success

 One best time point in each zone

A, 10 minA

B

C

0 min 10 min 20 min

A, 0 min A, 20 min

B, 10 minB, 0 min B, 20 min

C, 10 minC, 0 min C, 20 min

𝜃1 𝜃2

Fixed
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STEP II: COMPACT REPRESENTATION FOR ATTACKER

 𝐴𝑡𝑡𝐸𝑈 = Target Utility(t) ×Probability of Success

 One best time point in each zone

0 min 10 min𝜃1 𝜃2

Target Utility(t)

Fixed
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STEP II: COMPACT REPRESENTATION FOR ATTACKER

 𝐴𝑡𝑡𝐸𝑈 = Target Utility(t) ×Probability of Success

 One best time point in each zone

A, 10 minA

B

C

0 min 10 min 20 min

A, 0 min A, 20 min

B, 10 minB, 0 min B, 20 min

C, 10 minC, 0 min C, 20 min
0.3

Fixed

0.1
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STEP II: COMPACT REPRESENTATION FOR ATTACKER

 Theorem 2: Given target utility function 𝑢𝑖 𝑡 , 
assume the defender’s pure strategy is restricted to 

be a mapping from  𝒕 to  𝒅 , then in the attacker’s 
best response, attacking time 𝑡∗ ∈ 𝒕∗ =
{𝑡|∃𝑖, 𝑗 such that 𝑡 = 𝑎𝑟𝑔 max

𝑡′∈ 𝜃𝑗,𝜃𝑗+1
𝑢𝑖 𝑡

′ }

 Only considering the best time points does not lead 
to any loss when attacker best responds

 ∞ → 𝑂(𝑁2𝑇)
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HOW TO FIND OPTIMAL DEFENDER STRATEGY

 Step I: Compact representation for defender

 Step II: Compact representation for attacker

 Step III: Consider infinite defender action set

 Step IV: Equilibrium refinement
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EVALUATION: SIMULATION RESULTS

 Randomly chosen utility function

 Attacker’s expected utility (lower is better)

0

1

2

3

4

5

6

7

A
tt

ac
ke

r 
E
U

Previous USCG Game-theoretic
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EVALUATION: FEEDBACK FROM REAL-WORLD

 US Coast Guard evaluation
 Point defense to zone defense

 Increased randomness

 Mock attacker

 Patrollers feedback
 More dynamic (speed change, U-turn)

 Professional mariners’ observation
 Apparent increase in Coast Guard patrols

 Used by USCG (without being forced)
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PUBLIC FEEDBACK
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EXTEND TO 2-D NETWORK

 Complex ferry system: Seattle, San Francisco

 Calculate partition points in 3D space
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Outline

 Basic model

 Deal with continuous timeline

 Fine-grained planning with practical constraints
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Fine-Grained Planning
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Fine-Grained Planning
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(Not) Fine-Grained Planning
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 Animal density (utility) 

represented by color

 Max patrol length=10

 Attack two cells

1 2 3 4

Cell1&2 Cell 2&3 … Cell 3&4 …

Purple Route

Orange Route

Blue Route

……

D
ef

en
d

er

Adversary

30%

40%

20%

2 0-2, 0, 5-5, 



(Not) Fine-Grained Planning

 Option 1: Go back to time-location graph

 Only apply to integer-valued distance

 Generalizable to general-sum games

5/8/201843

A, 1A

B

(Base)

C

T=0 T=1 T=2

A, 0 A, 2

B, 10B, 0 B, 2

C, 10 minC, 0 C, 2 Ranger

Attack



(Not) Fine-Grained Planning

 Option 1: Go back to time-location graph

 Only apply to integer-valued distance

 Generalizable to general-sum games

 Option 2: Incremental strategy generation

 Generalizable to fine-grained planning

 Only apply to zero-sum games
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Incremental Strategy Generation

 Start with a subset of actions for each player

 Compute NE strategy for both players
 In zero-sum games, SSE=NE for defender

 Fix attacker strategy, compute best route for defender among all possible 
routes (coin collection problem), add to the matrix

 Fix defender strategy, compute best cells for attacker among all possible 
choices (greedy), add to the matrix

 Re-compute NE

 Repeat until best responses already in the matrix
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Cell1&2 Cell 2&3

Purple Route

Orange Route

D
ef

en
d

er

Adversary

30%

70%

2 0-2, 0, 

60% 40%

1 2 3 4

19 20

Blue Route

Cell 18&19



(Not) Fine-Grained Planning

 Option 1: Go back to time-location graph

 Only apply to integer-valued distance

 Generalizable to general-sum games

 Option 2: Incremental strategy generation

 Generalizable to fine-grained planning

 Only apply to zero-sum games

 Option 3: Cutting plane

 Generalizable to fine-grained planning

 Generalizable to general-sum games
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Cutting Plane

 Focus on the coverage probability

 𝑐1 = 0, 𝑐2 = 0.3, 𝑐7 = 0.3 + 0.7 = 1, …
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Cell1&2 Cell 2&3

Purple Route

Orange Route

D
ef

en
d

er

Adversary

30%

70%

2 0-2, 0, 

60% 40%

1 2 3 4
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Cutting Plane

Calculate coverage prob. 𝑐

Is 𝑐 implementable?

Yes

Solution Found

No Find a constraint 

𝑔 𝑐 ≤ 0

with constraint 𝑔 𝑐 ≤ 0

2/14/201648/45 RongYang, Albert Xin Jiang, Milind Tambe, Fernando Ordonez. Scaling-up Security Games 

with Boundedly Rational Adversaries: A Cutting-plane Approach. IJCAI'13



Cutting Plane

Is 𝑐 implementable?
No Find a constraint 

𝑔 𝑐 ≤ 0

∃𝑝, such that 𝑐𝑖 =  𝑗 𝑝𝑗𝐴𝑗𝑖 𝑧 = min
𝑝

𝑐 − 𝐴𝑇𝑝 1

if 𝑧 = 0, implementable

if 𝑧 > 0, found 𝑝∗ and 𝑔

Prob. of taking each route

2/14/201649/45

0.1 0.3 0.1 0.05 0

0 0.05 0 0.1 0.05

0.1 0.15 0.2 0.18 0.15

0.03 0.03 0.3 0.03 0.18

0.05 0.2 0.18 0.03 0.05



Cutting Plane

𝑧 = min
𝑝

𝑐 − 𝐴𝑇𝑝 1

Prob. of taking each route

Not enumerate all routes? 

Column generation!

Master: solve relaxed problem with a 

small set of patrol routes

Slave: find new route to add to set

2/14/201650/45



Cutting Plane

Calculate coverage prob.

Check feasibility with a subset of 

routes

Find routes that can help match the 

coverage prob. 

Check feasibility of coverage prob., 

return linear constraint

2/14/201651/45



Behind the Scene

 Hierarchical Modeling

 Find implementable game-theoretic solutions

 Incremental strategy generation

 Cutting plane
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PAWS (Protection Assistant for Wildlife Security)

5/8/2018

Protected Area 
Information

Past Patrolling and 
Poaching Information

Patrol Routes
Poaching Data Collected

Machine Learning

Game-theoretic 
Reasoning

Fine-Grained 
Planning

53



Real-World Deployment

 In collaboration with Panthera, Rimba

 Regular deployment since July 2015 (Malaysia)

5/8/201854



Real-World Deployment

Animal Footprint

Tiger Sign

Tree Mark

Lighter

Camping Sign
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Summary

 Basic model

 Deal with continuous timeline

 Fine-grained planning with practical constraints

 Key take-aways

 Game theory can be used to model security/sustainability 

challenges

 Practical challenges void simple models

 Evaluation through real-world deployment is challenging
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