Solving the vehicle routing problem in air quality sampling

Quanyang Lu 05/01/2018

Background

• Air pollution has been proved to link to cardio-vascular diseases and pre-mature death (>3 million per year globally)

Why mobile sampling?

- Traditional monitoring sites are stationary and sparse
- Mobile sampling are now deployed for high-resolution sampling

PM₁ concentration of downtown Pittsburgh

Route planning for mobile sampling

- We want to plan the route to maximize information gain
- The driving and sampling hours are limited, we need to stay at each node for 15 mins for data quality

Photo of sampling van of CMU CAPS lab

PM₁ concentration of downtown Pittsburgh

- Objective: navigate the sampling van to maximize information gain
- The reward decrease with the visited time *vt*,

$$R_{i,t,vt} = R_{i,t,1} * \frac{1}{vt}$$

• We assume every nodes has been at least visited once, so that we have some prior knowledge

- Maximize $\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{v_t=1}^{T} R_{i,t,v_t} x_{i,t,v_t}$, subject to:
- $x_{i,t,vt} \in \{0,1\}$ (1) $y_{i,j,t,vt,vtj} \leq x_{i,t,vt} * T$ (2) $\sum_{i=1}^{N} \sum_{vt=1}^{T} x_{i,t,vt} = 1$ (3) $\sum_{t=1}^{T} x_{i,t,vt} \leq 1$ (4) $\sum_{i=1}^{N} \sum_{vt=1}^{N} y_{i,j,t,vti,vtj} = \sum_{k=1}^{N} \sum_{vt=1}^{N} y_{j,k,t+1,vtj,vtk} + x_{j,t,vt}$ (5) • Given $R_{i,t,vt} = R_{i,t,1} * \frac{1}{vt}$ (5)

• Maximize $\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{v_t=1}^{T} R_{i,t,v_t} x_{i,t,v_t}$, subject to: $x_{i,t,vt} \in \{0,1\}$ (1)Integer constrain: $y_{i,j,t,vt,vtj} \leq x_{i,t,vt} * T$ (2) 0/1 whether visit or not • $\sum_{i=1}^{N} \sum_{v t=1}^{T} x_{i.t.vt} = 1$ (3)(4) $\sum_{i=1}^{N} \sum_{\nu t=1}^{N} y_{i,j,t,\nu t,j,\nu tk} = \sum_{k=1}^{N} \sum_{\nu t=1}^{N} y_{j,k,t+1,\nu t,j,\nu tk} + x_{j,t,\nu t}$ (5)• Given $R_{i,t,vt} = R_{i,t,1} * \frac{1}{vt}$

• Maximize $\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{v_{t=1}}^{T} R_{i,t,v_t} x_{i,t,v_t}$, subject to: $x_{i,t,vt} \in \{0,1\}$ (1)Pipeline constrain: $y_{i,j,t,vt,vtj} \le x_{i,t,vt} * T$ (2) $\sum_{i=1}^{N} \sum_{vt=1}^{T} x_{i,t,vt} = 1$ (3) – At each node, sum of all outgoing flow cannot exceed T • $\sum_{t=1}^{T} x_{i,t,vt} \leq 1$ (4) $\sum_{i=1}^{N} \sum_{vt=1}^{N} y_{i,j,t,vtj,vtk} = \sum_{k=1}^{N} \sum_{vt=1}^{N} y_{j,k,t+1,vtj,vtk} + x_{j,t,vt}$ (5)• Given $R_{i,t,vt} = R_{i,t,1} * \frac{1}{vt}$

• Maximize $\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{v=1}^{T} R_{i,t,vt} x_{i,t,vt}$, subject to: □ $x_{i.t.vt} \in \{0,1\}$ (1)(2) $y_{i,j,t,vt,vtj} \leq x_{i,t,vt} * T$ Single presence constrain: $\sum_{i=1}^{N} \sum_{v=1}^{T} x_{i,t,vt} = 1$ (3) At each time step, one and only $\overline{\sum_{t=1}^{T} x_{i,t,vt}} \leq 1$ one node could be visited. (4) $\sum_{i=1}^{N} \sum_{vt=1}^{N} y_{i,j,t,vt,j,vtk} = \sum_{k=1}^{N} \sum_{vt=1}^{N} y_{j,k,t+1,vt,j,vtk} + x_{j,t,vt}$ (5)• Given $R_{i,t,vt} = R_{i,t,1} * \frac{1}{mt}$

• Maximize
$$\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{vt=1}^{T} R_{i,t,vt} x_{i,t,vt}$$
, subject to:
• $x_{i,t,vt} \in \{0,1\}$ (1)
• $y_{i,j,t,vt,vtj} \leq x_{i,t,vt} * T$ (2)
• $\sum_{i=1}^{N} \sum_{vt=1}^{T} x_{i,t,vt} = 1$ (3)
• $\sum_{t=1}^{T} x_{i,t,vt} \leq 1$ (4)
• $\sum_{i=1}^{N} \sum_{vt=1}^{N} y_{i,j,t,vtj,vtk} = \sum_{k=1}^{N} \sum_{vt=1}^{N} y_{j,k,t+1,vtj,vtk} + x_{j,t,vt}$ (5)
• Given $R_{i,t,vt} = R_{i,t,1} * \frac{1}{vt}$

- Maximize $\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{vt=1}^{T} R_{i,t,vt} x_{i,t,vt}$, subject to:
 - $x_{i,t,vt} \in \{0,1\}$ $y_{i,j,t,vt,vtj} \leq x_{i,t,vt} * T$ $y_{i,j,t,vt,vtj} \leq x_{i,t,vt} * T$ (2) $\sum_{i=1}^{N} \sum_{vt=1}^{T} x_{i,t,vt} = 1$ (3) $\sum_{t=1}^{T} x_{i,t,vt} \leq 1$ (4) Flow conserve constrain: at each node, the incoming flow = 0/1 (visited or not) + outgoing flow $x_{i,t,vt} \leq 1$ $\sum_{i=1}^{N} \sum_{vt=1}^{N} y_{i,j,t,vtj,vtk} = \sum_{k=1}^{N} \sum_{vt=1}^{N} y_{j,k,t+1,vtj,vtk} + x_{j,t,vt}$ (5) $Given R_{i,t,vt} \equiv R_{i,t,1} * \frac{1}{2}$

• Given
$$R_{i,t,vt} = R_{i,t,1} * \frac{1}{vt}$$

Solving with MATLAB

- Basically, we are solving a MILP, with dimension of (N^2T^3)
- However, MATLAB does not scale the problem very well, ending up getting 20000*20000 matrix (memory out).

linprog

Solve linear programming problems

Linear programming solver

Finds the minimum of a problem specified by

$$\min_{x} f^{T}x \text{ such that} \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

Switching to Gurobi

- Professional large-scale optimization problem solver
- Able to handle problems of millions of variables

Sampling downtown area with 5*5 blocks

- Consider a 3-hour sampling period (N = 25, T = 12)
- Prior knowledge expressed in ranging in (0,1)

Greedy driving schedule

- Always go to the neighboring node with highest reward
- Total reward = 5.596

Optimal driving schedule

- Number of variables: $N^2T^3 = 1,080,000$ (computing time: 30 min)
- Total reward: 6.80663 (21.6% increase)

Conclusion

- Our algorithm provides an exact solution to the discountedreward vehicle routing problem
- The problem is NP-hard and its size scale to N²T³, which is very time-consuming to solve
- Approximation is needed, such as
 - Each node could be visited at most 3 times
 - $\hfill \$ The dimension of this problem reduce to $9N^2\,T$

Acknowledgement

- The author would like to thank Prof. Fei Fang for her advisement and helpful discussion on this course project.
- The author would like to thank his academic advisor Prof. Allen Robinson for support on taking this course.
- The author would also like to thank Zhongju Li and Peishi Gu for the sharing of their PM₁ map data.