1

Introduction

11 VossPlot (VP) began at IBM Research in the late 1970’s as a software
What Is tool for scientific and technical graphics, the sort of two-dimensional
VossPlot? drawings that represent most figures in a technical journal. It now in-

cludes many text-processing capabilities, color control, programming,
analysis, and pixel image display features that make it ideal for generat-
ing technical presentation graphics. It provides immediate, interactive
views of data and analysis as well as facilitates the convenient compo-
sition of publication-quality figures from the data.

1.2 * VP does less better.

How Is VP It was designed to solve some of the common jobs of scientists

Different from and engineers: the routine display and analysis of data and the
preparation of publication and presentation 2D graphics from this

Other data. By focussing on the most common tasks, VP is able to provide

Programs? highly efficient solutions without the inherent baggage of a program

that attempts to “be everything to everyone.”

® VP has a long history of testing and evolution.

VP was developed by a physicist at the IBM Research Division for
his own technical presentations in the late 1970s. It has had thou-
sands of users worldwide within the IBM Corporation and has re-
ceived several internal IBM awards. VP has a consistent internal
logic (albeit somewhat idiosyncratic) that cannot be achieved in
committee-designed programs, as well as a long history of testing
and user feedback.

® VP is highly programmable and customizable. Every aspect of the
creation of a graph may be controlied by the user, but all have

2 1 = Introduction

13
How Does VP
Work?

carefully chosen defaults to produce excellent results with mini-
mal tweaking.

VP.has an application programming interface for direct communi-
cation with other high-level programming languages.

VP runs on a wide variety of computers, including the smallest PCs
with 300K of memory.

_F‘igure 1.1 provides an overview of the functional hierarchy of creat-
ing graphics with VP. This figure, like all others in this manual, was
produced with VP.

As can be seen in the figure, VP converts user input from the keyboard,
mouse, text (.exg) files, and other programs to graphics primitives (ob-

jects like lines, triangles, etc.) contained in the output .ugh(bin) file for
display or hard copy.

Keyboard

|
1

Mouse

High-level
language
calls

YYVYY

Text

VP translator > display

Hardcopy
conversion

UGH driver

] Y

Graphics Hardcopy
display device

Flgure 1.1: VP graphics creation hierarchy.

]

A
input

< -
o

132
Recommended
usage

133
VP output

1.3 « How Does VP Work? 3

Users can instruct VP in a number of ways on what graphics to produce:

e Read commands and data from a previously generated text file, the
.exg file.
Note: .exg is the default name used here for text input files to VP.
On most systems these are plain ASCII text files with extension .exg
or .exgraph. In fact, VP can read text files with any extension, but
choices other than .exg must be specified explicitly.

¢ Enter commands and data interactively from the keyboard.

e Use a mouse or other graphics input device to position elements on
the graphics figure.

e Pass data and commands from another high-level language, such as
C, PASCAL, FORTRAN, or APL. It is even possible to start the usual
VP keyboard input mode from the calling language. Here, VP can
serve as a simple graphics display utility for simulations or detailed
experimental data analysis. And, of course, VP makes it easy to
produce the final publication-quality figures once the original data
have been reduced.

The recommended way of using VP is through the plain text .exg file,
which you can create and later change with an editor. Once created, it
is processed by VP with the READ command and its graphics output
is displayed immediately with the VIEW command. This interactive
process of editing the . exg file and displaying the output can be quickly
iterated within VP until the desired figure has been composed. The DOS
version contains a built-in editor interface for this process. At this point
the .ugh(bin) output file may be used to produce hardcopy output using
the utilities described in Chapter 7. The use of an .exg file (rather than
immediate keyboard input) allows simple changes to the figure at a later
date (for example to change the symbols used for plotting or to add the
latest experimental data points).

Figure 1.1 shows that the VP program uses two windows for user in-
teraction: the fext display for text message output and keyboard echoing
and the graphics display.

In a multiwindow environment (such as X-Windows, Windows, or
0S/2) VP also has a RECORD command that allows keyboard and mouse
input (or other graphic positioning) to be saved in an .exg file as it is
generated. Such input can then be made part of the edit-display cycle
previously described. The RECORD command can also save the data
passed by another high-level program in an .exg file for later detailed
graphic editing.

VP translates your input into UGH graphics primitives that are saved in
the .ugh(bin) file.

Note: .ugh(bin) is the default name used here for the VP graph-
ics output files. The .ugh(bin) files consist of compressed binary data

B 1 ¢ Introduction

14

Getting
Started:
Installing VP

that specify the graphics primitives (lines, circles, etc.) in a device-
independent integer coordinate system representing a fictitious page.
On PCs these files have extension .ugh, while systems that support ex-
tensions of more than three characters may use .ughbin as a reminder
of the binary nature of the data.

UGH stands for Universal Graphics Handler. The “universal” is, of
course, rather silly. Nothing in graphics is really universal. UGH, how-
ever, represents an attempt at providing the most useful primitives for
scientific graphics in a device independent manner. The “handlers” are
the individual programs that convert these primitives into hardware
commands that drive specific display and hardcopy devices. Handlers
are available for most of the common graphics devices found in re-
search and engineering labs. Section 7.1 details the format of the binary
-ugh(bin) files. The utility programs described in Chapter 7 can con-
vert the .ugh(bin) files to other common formats for inclusion in word
processing documents or for printing,

VP graphics generated on one system should produce the same output
(within limitations of available colors and graphics resolution) when the
corresponding . exg file is transferred to another system.

Since VP can run on a wide variety of computing environments, it is
impossible for this manual to provide installation details for all present
configurations. Nonetheless, installing VP involves a few general steps:

* Create a subdirectory or folder and copy the VP programs and files
into it. This is typically named vpugh.

* Customize your system by setting environmental variables or select-
ing an UGH graphics driver for PC DOS.

* Run VP.
The README.VP file that is included with the software gives the details

 of the installation process for each specific system. In most cases, the

installation process will be automated. The DOS version includes the
program install.exe for this purpose.

Learning the Basics of VP

21
A First Example

A systematic way to learn VP is with a careful examination of some
simple examples. We'll look at each line in the three examples presented
here and comment on what it does. This chapter is not a reference for
the VP commands. However, it contains a number of hints for efficient
usage of VP and should provide a useful review, even for experts.

Figure 2.1 shows the first example we will study line by line. In a
normal installation this file can be found as vpsamp1.exg in the vpugh
subdirectory or folder. To try it yourself, start the VP program. At the
initial prompt (vp:) type the command

read vpsampl
and press the [ENTER] key. You should see the same graphics as shown

in the figure.
The first two lines

01) #* Simple graph for tutorial purposes
02) * VERSION 1

are comment lines. Any line in an . exg file that begins wi_.th an asetpsk
(*) is treated as a comment. VP ignores the rest of the ln:le but prints
it on your text screen as a reminder of what is happen}ng. stars_ of
experience have shown that such comments are useful in reminding
you (or others) of what you were originally doing when you created
the file. These comments also make your .exg file more raadal?le and
easier to edit. Inline comments, and comments that do not print, are
also possible, as we’ll see in the next example.

03) restart default

This command is recommended as the first non-comment in most .exg
files. Its function is to reset the plotting environment to that estab-

2

Learning the Basics of VP

01) * Simple graph for tutorial
oses
02) * VERSION 1 PP
03) restart default
04) save vpsampi

05) set top 1 ysize 4 bot 1 . .
06) xydata xsize § right 1 pbcolor 0

07 1 -34.47
08) 2 -37.1
09) 3 -27.9
10) 4 -16
11) 5 =977
12) 6 -2.76
13) 7 5.55
14) 8 3.9

15) 9 -2.7

16) 10 -12.1

17) 11 -17.83

18) 12 -27.3

19) * The following sets the x limits and number of

20) * intex vals but imi i il [+]
i [} y 11m1t‘-5 Vlll be take: H
) 1 N 1 from the data:

22) curve isym 1 iline 3 color 4
23) label

24) Month

25) "0" Celsius

::; Average daytime temperature in Tuktuyaktuk

28) view erase fill

10—

L1 1 1
8 9 10 11 12

L l 1 | |
12 3 45 86 7
Month
Average daytime temperature in Tuktuyaktuk

Figure 2.1: Sample . exg file and the resulti

! . ulting VP output. The

Eggﬂ%lésd The line numbers are not normally part of an . ex, cglalzéa ?r:% pl.t:rely
ed here for reference in the text. 8 e hevhave

21 « AFirst Example 7

lished when VP was started. All of the internal VP parameters that
control the graphics are global parameters. Upon entry to VP they are
given default values (you can customize these default values with your
userprof . exg file). These global parameters retain their values until ex-
plicitly changed. Thus, if you process multiple files in a single session,
changes from one file will propagate to the others unless you use the
RESTART DEFAULT command. Including RESTART DEFAULT helps
avoid later “mysterious” results due to leftover (and forgotten) param-
eter changes. RESTART DEFAULT also sets up the default destination
for your graphic output (into the file vossplot.ugh).

In this manual VP commands and their options are often emphasized
with UPPERCASE characters. Commands always indicate some action
that VP is to perform. If present, they are the first word in a line. An
alphabetical list of the available commands is given in Chapter 5.

04) save vpsampl

This indicates that instead of the default we want our graphic output
to be saved in the file vpsamp1.ugh. This command erases any current
contents and directs all following graphics to be saved in vpsamp1.ugh.
Without this command, the graphic output would be placed in the
default file, vossplot.ugh. Remember that the .ugh(bin) file contains
all the primitives (line, circle, text, etc.) that correspond to the graphics
you're creating with VP commands. Consequently, the SAVE command
belongs at the start of your .exg file, before you have generated any
primitives. The .ugh(bin) file is used later to produce a printed copy of
your graphics. See Chapter 7 for the various hardcopy options. Changing
the output destination to the same name as the .exg file that produced
it is good practice. It allows you to generate multiple .ugh(bin) files in
a single session and make hard copies later. It also serves as a reminder
of what produced the .ugh(bin) files.

05) set top 1 ysize 4 bot 1 xsize 5 right 1 pbcolor 0

First, a SET command cannot be found in the reference section. There is
no such command. In fact, the character string "set" has been defined
as a synonym in the profile.exg file, which is automatically read every
time you start VP. A synonym is a character string defined to stand for
another string in order to save typing and improve readability. In this
case, since "set" is replaced by blanks, it doesn’t save typing and the
line would have done the same thing without it, but does clarify what
is happening on the line. See Section 3.3 for more information about
synonyms and how to define your own.

You can probably guess that line (05) sets some parameters that con-
trol later processing. You are correct. Top, ysize, bot, xsize, right, and
pbeolor are only a few of the many global parameters that are used
throughout VP to modify the action of the VP commands. They retain
their values throughout a VP session unless explicitly reset or returned

2

Learning the Basics of VP

to their default values with the RESTART DEFAULT command. See
Chapter 6 for a complete list of all global parameters and their sig-
nificance. It is useful to remember that VP parameters always have a
numeric value and are global to the VP session. Within VP you can use
the PRINT command to see their current numeric values.

The parameters top, ysize, bot (short for bottom), xsize, and right are
used by the AXIS command in line (21) to define the size and placement
of the axis box on an imaginary page as shown in Figure 3.5 on page 42.
You will understand more about these parameters as we continue with
these examples. See Section 3.7 for a detailed discussion of coordinate
mappings. The last parameter pbeolor stands for the page boundary
color. If pbeolor > 0, the page boundaries will be visible with a VIEW
command. You won't see it in this case since we set it to color zero
(the same as the background). The page boundary is never included in
the .ugh(bin) output file and will not appear in any hardcopy output.

Although we have now defined where the axis will be placed, it will
not be created until line (21).

06) xydata

The XYDATA command indicates that the following lines contain X,Y
coordinate pairs that are to be read into internal numeric arrays contain-
ing the X and Y data. Numeric values will be added until a nonnumeric

field is reached (here line 19). This is just one of the many ways to enter
the data you want to see graphically.

07) - 018)

The next twelve lines contain the X and Y data pairs to plot. The values
are written in free format. You do not need to place numbers at the
same position in each column, and you can have a different amount
of numbers on each line. Even decimal points are not necessary. See
Section 3.1 for details about the format of commands and numbers.

21) axis xmin 1 xmax 12 xint 11

This line explicitly specifies the numeric limits of the x-axis (xmin 1
xmax 12 xint 11) and then executes the VP AXIS command. Because
of this explicit specification, the x-axis runs from 1 to 12 in exactly 11
intervals. Note, however, that nothing was specified about the y-axis
limits. In this case, VP looks at the range of the YDATA al ready entered
(the actual limits are found in the parameters ydmin and ydmax) and
chooses “appropriate” Y limits and number of intervals so that all of
the YDATA will be visible. If xmin, xmax, and xint have not been set,
then VP would also have made estimates of the x-axis limits based on
the previous data.

By default, AXIS will produce a box with tic marks all around, and
numeric labels on the left for Y and on the bottom for X. This can, of
course, be changed to almost anything you want.

21 AFirst Example 9

j i limits, intervals, and tic
does a good job of choosing AXIS limits, ;
m:;tsu s{'l:il{viﬁepmgnbly find that most of the time ym:] (Lor; Dtr:a::; t}c;
eciﬁ any limits. If the AXIS command is encountered be s
zﬂd;‘or Y data have been entered, the limits will default to (0.0, 10.

both directions.
29) curve isym 1 iline 3 color 4

This is the command that actual}y bp;l‘ots our :::ras. i\hse:;iti: ;:18 ﬁ:l(]l:i 2:3
t sets any of the globa! param 8 » an
22?:5‘ :npdﬁtrlfen axacu)tres the actual CURVE command. In effect, this

line translates to

i inside the cur-
lot) with the current XY data insi ‘
Ir:::r?:v a:i: gg:}\gth dots (isym 1) as symhqls ateach data}pomt.
connected by dashed lines (iline 3), all in red (color 4]).

Both the CURVE command and the AXIS command place the glraph:;:
:-Jimitives they create in the current .ugh(bin) ﬁls_ (here \L;;satn:)psé:gthé
lI:awr when we get to the VIEW command, we will be able
, is file. .
00;:;{::: gf_:l:)l: page 32 shows the available sym!:ul?ls an_d lllhr::? ;ﬁg:;si ::;
i 1t . exg sample file. As we will see in _
L‘::;;?pll: t::Bisd::o::cessary. however, to remember the numeric values

for isym, iline, and color.

23) label

24) Month

26) "O" Celsius

26) Average daytime temperature in Tuktuyaktuk
27)

The LABEL command on line (23) is used to gdd text]cﬂt;n;l;‘l:ﬂéz ;r:lggﬂ
the current AXIS box. The first line following _tha L ;he St

rovides a text label for the x-axis; the second line gives e
?ur the y-axis, and all remaining lines up to a blank lflmi l OSR o
a caption that is pusition;ad henlllsa‘t{h Ll::tinlaaligi;gla& :umrl:esponding

wit T : \

CBI}lB:: thﬁv{:y:ngo:;t!l:?:i,;g{cnn be customized. 'I'hq double quotes (}:
i‘mltsi.la ‘sfﬁiabel nlmrk off (delimit) the 0 as a superscript. There 1sd n:.:iu
ﬁllore available for text processing than demonstrated here, an

see more in the next example.
28) view erase fill

i to see the graphics we have
i he VIEW command permits us | .
F:::tllﬁ‘ lIt ?)eg'ms a replay of stored graphic data from thF 1._'psampal }‘:15;};
; ot by line (04). The ERASE option erases any existing grap ;
ﬁiet?lse ss‘i:trazn before the VIEW. The FILL option resets dlsplay l;n;ltlt: o
:;proximalely ill the screen with the contents of the .ugh(bin 5

10 2 .

22
A Second
Example

Learning the Basics of VP

If you understand this example, you already know most of the basics
of using VP. For more practice, you can edit the vpsampl.exg file to
change parameters and add or delete parts to see how VP reacts, Mean-
while, we'll look at the next sample, which adds some useful frills to
our first example.

Figure 2.2 shows our second example, which is found as vpsamp2 ., exg in
the vpugh subdirectory or folder. To try it yourself, start the VP program.
At the initial prompt (vp:) type the command

read vpsamp2

and press the (ENTER) key. Once again, you should see the same graphics
as shown in the figure. The contents of vpsamp2. exg are

01) * Simple graph for tutorial purposes

02) x VERSION 2

03) restart default

04) save vpsamp2

05) set top 1 ysize 4 bot 1 xsize 5 right 1 pbcolor 0

06) tabdata ; Notice that we replaced XYDATA by TABDATA...

07) 1 -34.47 -29.2
08) 2 -37.1 -36.4
09) 3 -27.9 -30.2
10) 4 -16 -20.8
11) 5 -.977 -4.1
12) 6 -2.76 -3.8
13) 7 5.55 553
14) 8 3.9 7.73
15) 9 2.7 =3.3
16) 10 -12.1 -9.1
17) 11 -17.83 -20.11

18) 12 -27.3 -26.02

19) xdata column 1

20) ydata column 2

21) * The following sets the x limits and number of
22) + intervals, but y limits will be taken from the data:
23) axis noxtics xmin 1 xmax 12 xint 11

24) ticmarks x bottom

25) 12345678910 11 12

26) JFMAMJJASO N D

27) draw dot dashed red

28) ydata column 3

29) draw diamond dashed green

30) label c2font 20210 c2color 6 ulcolor 7

31) Month

22 « ASecond Example 11

32) "0" Celsius
33) Average _daytime_ temperature in \Tuktuyaktuk\

34)
35) comment 7 -25 smult 3
36) 71.0.47 Year 1887+
?2.0.27 Year 1987
:::;; éill:leit gxsize. &ysize.+0.1 inch right cfont 15150
39) &%0. kdate. &time.
40) view erase fill

vpsamp2 .exg 12/28/94 13:26

10 ¥
AN
! AR
oF P«-.,'!:/ 4 \\ n
3= N
g 10}) oo
2 ’:"' r‘\
g .-“ .
s -20f) -
S ® Year 1887 T\
o ¢ Year 1987
-30 k\ e
s b
U
—40 .I 1 | 1 1 | 1 | 1
J FMAMUJJASOND

Month
Average daytime temperature in Tuktuyaktuk

Figure 2.2: The graphics output from vpsamp2. exg.

In this case we will examine only the lines that have changed signif-
icantly or have been added.

06) tabdata ; Notice that we replaced XYDATA by TABDATA...

First, we see that “inline” comments are initigted with a sermccclrloni
Everything that follows the semicolon will be |gnc?red by VP an nlu
even echoed at the terminal. With the (*) comments in the first example,
the * must start the line and the entire line is echoed to the text screen.
Second, TABDATA has replaced XYDATA to start data entry. Y\hth TAB-
DATA we are not limited to pairs (X,Y) of values. Th.e numeric data iarre
read until a nonnumeric field is reached and place_d into the "I‘ABDAtl ,;\,
array or table. Only later will we specify from which columns X an

values are to be taken.

12 2 = learning the Basics of VP

Note. Options
vs Parameters

07) - 18) Xi YAi YBi

These lines contain the data we wish to plot. Again, it is in free format.
However, TABDATA requires the same number of numbers on each line.
Here, we have three on each line, corresponding to a table of 3 columns
by 12 rows.

19) xdata column 1
20) ydata column 2

Simple enough—this indicates that data for the X array should be taken
from the first column in TABDATA while the second column gives the
Y data. If you look in the command reference section, you can see that
we could also have used XYDATA COLUMN 1 2. Of course, we could have
given any column numbers, as long as they exist.

23) axis noxtics xmin 1 xmax 12 xint 11

We have already encountered most of this line. The change is the NOX-
TICS option, which eliminates both tics and numeric labels from the
X-axis. It is used to replace the horizontal numeric labeling by some-
thing more appropriate to our specific example.

24) ticmarks x bottom
25) 123456789 1011 12
26) JFMAMJIJASOND

We now construct our own labeling. ticmarks x indicates that the two
following lines will refer to the x-axis. bottom indicates that the labels
and tics will appear at the bottom of our graph. Line (25) contains the
numeric values for the placement of the tics. Finally, the third line (26)
gives the corresponding labels. The AXIS command itself generates a
TICMARKS command to add tics and labels to the axis box.

Here, bottom is used as an OPTION for the VP command TICMARKS. If
bottom had been followed by a number in line (24), then the parameter
bottom would have been set to that number. Occasionally VP uses the
same }vord for either a command OPTION or a numeric parameter. It
can distinguish between them since a parameter is always followed
by a numeric value. A parameter is global to the VP session, while an
OPTION is local to a specific command.

27) drav dot dashed red

This is equivalent to line (22) in vpsampl.exg:

22) curve isym 1 iline 3 color 4

Note. Decoding
input lines

2.2 + ASecond Example 13

The difference is that we use default synonyms (defined by profile.exg
as we enter VP) to make the line more readable. The synonyms also elim-
inate the need to remember the specific isym, iline, and color numeric
values. Remember the set synonym from the first example? The words
in line (27) are synonyms that respectively stand for:

draw — curve isym -1 iline -1
dot — isym 1

dashed — iline 3

red — color 4

The draw synonym is simply the CURVE command, preceded by a
resel of the symbol and line types. Here it wouldn’t have been necessary
because we set them anyway with other synonyms. But the use of draw
is recommended over CURVE because it always resets isym and iline.
The usage and definition of synonyms are explained in Section 3.3.

It is useful to remember the sequence of operations VP uses in decoding
an input line: :

1. Replace all synonyms by their character definitions. Line 27 becomes
curve isym -1 iline -1 isym 1 iline 3 color 4

after substitution. The draw synonym includes default definitions
for isym and iline as invisible. These initial settings eliminate the
surprise of having data plotted with isym and iline values defined
(and forgotten) long ago.

3

Reset any global parameters that are found on the line, moving from
left to right, and remove the corresponding fields from the line. Thus,
only the latter settings of isym and iline will be used.

Execute the actual command with current parameter settings.

i

28) ydata column 3
29) draw diamond dashed green

We now replace the Y data by the contents of the third column of
TABDATA and plot this data (using the previous X values) with different
symbols, line type, and color, so that it will be easily distinguished.

30) label c2font 20210 c2color 6 ulcolor 7
33) Average _daytime_ temperature in \Tuktuyaktuk\

Some parameter settings have been added to our LABEL command.
Remember that parameters are not specific to any given command but
exist as global numeric values used throughout a VP session. They could
have been set in any of the previous lines. On a given line they are set

14

2

Learning the Basics of VP

before the command is executed. c2font and c2color are parameters for
the type and color of a secondary font, which is delimited in text by
backslashes *\..\’, as in line (33). ulcolor stands for the underlining
color, used whenever text is underlined, delimited by the underscore
characters ’_.._’ in line (33). Examine the graphic results of the new
caption. See Section 3.4 for more details about text capabilities. Obvi-
ously, the different colors all appear as black on the output shown here,
but if you use VP from a color screen, you will see the specified colors.

35) comment 7 -25 smult 3
36) 71.0.47 Year 1887 +
37) 72.0.27 Year 1987

The COMMENT command is another way to add text to the graph.
(Yet another is with the TEXTBOX command.) It allows you to place
text at any position. The coordinates (7, -25) are in the axis coordinate
system, so it's really easy to know where the text will be placed. The
coordinates could also have been entered in inches, centimeters, or even
with a cursor or a mouse. See the reference section for more details.

The following line begins the actual text. If a COMMENT text line
ends with + (or @), an additional line is read and placed below the
first. So we have two lines of text. The strange-looking strings delim-
ited by question marks indicate VP symbols. The three numbers repro-
sent isym.iline.color. They are the same as those used with CURVE. So
71.0.47 gives a red dot without any line. Finally, smult 4 on line (45)
indicates that the symbol size should be multiplied by 3 before drawing
it, making it 50% larger than the default value of 2 used with the actual
data.

38) comment kxsize. &ysize.+0.1 inch right cfont 15150
39) &%0. kdate. ktime.

This type of comment is useful to place information about when and
where the figure came from directly onto the figure itself. Later, when
you look at a copy of the figure, you will remember where to find the
-exg file that generated it. Line (38) may seem difficult to understand at
first. A verbose interpretation is

Add a comment at position given by the xsize and ysize
parameters (plus 0.1 inch for y), aligning the right edge of the
text with the specified X position and use font 15150 for the
text.

You now see that we can “retrieve” and use the value of a parameterin a
line by delimiting its name between an ampersand (&) and a period (.),
In effect, we make parameter values into synon yms that are substituted
before the line is evaluated.

23
A Third
Example

2.3 e AThird Example 15

The text line (39) also contains some special synonyms delimited by
ersand and a period:
an;;&:: The synonyul;J %0 stands for the name of the current .exg file.
&date. is replaced by the current system date.
&time. is replaced by the current system time.

Our second example included the data to be plotted directlfv in t:lcii.v t::;g
file that produced the figure. This is a common le_chmqge 0{1 re amP 0);
small data sets and unique figures. Moraover_. by :ncludlﬁgt ; nlﬁtler ihp
the .exg file directly on the plot, it is very _mmple to fin al"l asimih;-
plot later. It becomes inefficient if one is trying to produce én.n?y ar;
plots from different data sets. Consider the problem of pro ucul'ng y: A);
temperature profiles on data collected from many c_hfferent {; T};)Z i
we shall see in this example, it may be more convenient to rea

file.
fml:?glal:: pzi.l;a;ﬁows our third example, which is found as va‘ampi ;:.;sf
in the vpugh subdirectory or folder. As before, you can try it yo

with the command
read vpsamp3 tut-temp.dat

i in Figure 2.3 are

VP prompt. Although the graphics sl"_wwrl in Figt
iL:Pl; idenl:ical I:Cl those in Figure 2.2, they :llustr_ate VI’s‘pt)werh:l
pl:ugrammability and advanced features in producing multiple plots

from related data sets.

vpsampl.exq tut-temp.dat 12/28/94 13:30

e oo 1887 ‘\

0 Celsius

-
-

A |
0 FMAMUJUJASOND
Average daytime temperature in Tuktuyaknik

Figure 2.3: The output from the VP command vpsamp3 tut-temp.dat.

16

2« Learning the Basics of VP

The contents of the temperature variation data file tut-temp.dat are

01) ; temperature data for Tuktuyaktuk
02) -34.47 -29.2

03) -37.1 -36.4

04) -27.9 -30.2

05) -16 -20.8

06) -.977 -4.1

07) -2.76 -3.8

08) 5.55 .5563

09) 3.9 7.73

10) -2.7 -3.3

11) -12.1 -9.1

12) -17.83 -20.11

13) -27.3 -26.02

14) define year1 1887

15) define year2 1987

16) define place Tuktuyaktuk

Similar data files could, of course, be produced for many different
years and places. There are several changes between this and the data
that appeared in vpsamp?2. exg.

1. The initial line is a nonprinting comment (which begins with a semi-
colon) to remind us of the contents of the data file.

2.0Only two columns of data are included. The first column in

vpsamp2.exg was a simple integer series that need not be included in
each data file.

3. At the end of the data, several synonyms are defined with the con-
struction DEFINE sname substitution-text that provide informa-
tion about the data in this particular file. We shall see how these
are used by the . exg file that reads this data.

The vpsamp3. exg file processes this (or similar data files):

01) Simple graph for tutorial purposes

02) =« VERSION 3 using separate data file

03) restart default

04) if { &%1.Q = Q } then

05) echo usage: vpsamp3 fname.dat for tabdata data
06) read end

07) endif

08) save vpsamp3

09) set top i ysize 4 bot 1 xsize 5 right 1 pbcolor 0
10) tabdata &j1. i use variable data filename

11) if {nrow<12} then

12) echo data file "&%1." not found or incomplete
13) read end

23 o AThird Example 17

14) endif

15) set ymin { tabdata.min } ymax { tabdata.max }
16) axis noxtics xmin 1 xmax 12 xint 11 xind 0.03
17) ticmarks x bottom

18) 1234567891011 12

19) JFMAMIJJASO N D

20) label c2font 20210 c2color 6 ulcolor 7

21) Menth

22) "0" Celsius

23) Average _daytime_ temperature in \&place.\
24) ‘

25) comment kxsize. &ysize.+0.1 inch right cfont 15150
26) &)40. &/1. &date. &time.

27)

28) macro plotyear)

29) xydata { i c&¥l.

30) draw isym &%1. color &41. dashed

31 comm { 6 ypos}

32) 7&UL. .3.&01.7 kyearkil..

33) ypos { ypos-((ymax-ymin)/10) }

34) return

35) _

36) define ypos { (ymax+ymin)/2 }

37) repeat &ncol.

3s) plotyear &count.

39) end

40)

41) view erase fill

The first change to note is that vpsamp3.exg must be called with an
argument (the name of the data file to process) as

read vpsamp3 tut-temp.dat

i e of commands in
the VP prompt. This allows the same sequenc :
3;:samp3.exi to l?e used with multiple data files. Once vglsam‘ps‘e:‘cji;f
started, the synonym %0 is set to the field "tut-temp.dat c.l'Llnes. (

(07) provide a check that an argument was actually entered:

04) if { &%1.Q =Q } then

05) echo usage: vpsamp3 fname.dat for tabdata data
06) read end

07) endif

in li . The curly brackets

h the use of the IF command in line {0‘.“ ! :

T{lrfr.o.ligdelirnit a numeric calculation. These arekdlscu‘:;;ed “1; sgll_'(taa:e(iattig
i ion 3.2. In evaluating the {...} braf.: ets, substitu

;ir:-stszféfrﬁent for &%1. and calculates numeric values for the character

Learning the Basics of VP

strings &%1.0Q and Q. If these are equal, which can only happen if the first

argument is blank, the statements up to line (07) are executed. These

statements echo a message on the text screen to remind the user that an

?iligu;n}em was expected, and they stop executing the remainder of the
e. Try

read vpsamp3

to see what happens if no argument is given.

If any argument is given, then these statements are skipped and execu-
tion continues with line (08). It is useful to include such a construction
at the start of . exg files that expect arguments.

10) tabdata &%1. ; use variable data filename

The argument is actually used with the TABDATA command in line
(10). In this case, TABDATA attempts to read a numeric table from
the data file named in the argument tut-temp.dat. Initial comments
in this data file are ignored. Once the numeric data has been read into
TABDATA, the remaining lines of tut-temp.dat are treated as normal
VP commands. When the end of tut-temp.dat is reached, processing
of the calling file, vpsamp3. exg, continues.

11) if {nrow<12} then

12) echo data file "&J1." not found or incomplete
13) read end

14) endif

Lines (11)—(14) are another check that a valid data set has been read.
The VP integer parameter nrow is set to the number of rows in the
TABDATA array (ncol is set to the number of columns). If this is less
than 12, then either the data were incomplete or perhaps the data file
could not be found. For either case, a message is again echoed on the
text screen and further processing of vpsamp2. exg is halted.

15) set ymin { tabdata.min } ymax { tabdata.max }
16) axis noxtics xmin 1 xmax 12 xint 11 xind 0.03

Line (15) uses the numeric calculation {. ..} brackets to define the Y
limits for the axis. As discussed in Sections 3.2 and 5.1, the .min and
.max suffixes give the extrema of a numeric array. Thus, no matter what
the range of temperatures in the entire TABDATA array, the axis limits
will be chosen so they will all be visible. Line (16) uses these ymin and
ymax parameters in drawing the axis box. There is one other addition to
the AXIS command line: The parameter xind is set to 0.03. This has the
effect of indenting the x-axis tics by 3% from each side so that extrema
do not fall exactly on the axis. Compare the x-axis of Figure 2.3 with
that of Figure 2.2.

Lines (17)-(26) provide the axis labels and special tic marks similar
to the previous sample. The only change is the addition of &%1. in line
(28) to also display the name of the data file being processed.

2.3 » AThird Example 19

28) macro plotyear

29) xydata { i c&kil. }

30) draw isym &%1. color &J1. dashed
31) comm { 6 ypos}

32) 7&%1..3.8%1.7 kyear&il.

33) ypos { ypos-({(ymax-ymin)/10) }
34) return

Lines (28)-(34) introduce the MACRO command or mini.exg file that
acts just like a separate file. This MACRO can be executed as a VP
command with one argument to plot and generate a text label for an
individual data column. When the MACRO command is encountered
in an .exg file, all lines up to the RETURN command are saved for
later execution when the macro name is called as a command. Thus,
the MACRO can be placed at any convenient place in the .exg file.
Common MACROs may even be included in your userprof . exg file.

Suppose the argument &%1. has value 1. Then, after substitution, the
MACRO commands become

29) xydata { i cl}

30) draw isym 1 color 1 dashed

31) comm { 6 ypos}

32) 71.3.17 kyearl.

33) ypos { ypos-((ymax-ymin)/10) }

Line (29) uses {...} calculations to define the XYDATA. The "i" is
just an integer index, while "c1" gives column 1 of TABDATA. Since
column 1 has a length of 12, this defines 12 X, Y data pairs. The use
of "i" in calculations eliminates the need to include the initial index
column in the data files.

Line (30) plots the data using symbol and color numbers correspond-
ing to the column. Each column will be shown in a different symbol
and color. Lines (31) and (32) add a text comment that identifies the
symbol and color by the &year1. synonym that was part of the data file.
Line (33) reduces the Y position of the comment by one tenth of the Y
range in case another column will be plotted. By making the reduction
depend on the Y coordinates used with this particular data, the reduc-
tion should be appropriate for any data, independent of the range. As
we shall see, ypos is a user-defined REAL parameter. The calculations
in line (33) correspond 1o ypos = ypos — (ymax — ymin}/10. The ypos
parameter is actually defined in line (36).

36) define ypos { (ymax+ymin)/2 }

This is the same sequence used to define the usual character synonyms.
The only difference is that the substitution text is replaced by a {...}
calculation. This creates a user-defined numeric parameter whose initial
value is the result of the calculation, instead of a character string. Such

20 2 .

24
Carrying On

Learning the Basics of VP

parameters may be used like any of the standard predefined VP numeric
parameters,

37) repeat &ncol.
38) plotyear &count.
39) end

Lines (37)-(39) use another advanced feature of VP—the REPEAT-END
loop to call the MACRO plotyear for each column in the TABDATA
array from the data file. Remember that ncol is an integer parameter
that gives the number of TABDATA columns, so MACRO plotyear is
called once for each column. The lines within the REPEAT-END loop
are executed ncol times. Within the loop, the integer parameter count
takes successive integer values (1,2, 3, .. :

If you have followed these three samples, you should have a pretty good
feeling for the many ways VP can translate text and numbers into graph-
ics. The increasing complications of vpsamp3. exg over vpsamp2. exg al-
low vpsamp3.exg to produce a publication-quality plot of any data file
that meets the simple requirements,

It is useful to consider VP as a visual programming and data analysis
language. The best way to learn VP is, perhaps, just to try using it on
your own projects. To that end, the remainder of this book may be
considered as a reference manual.

Chapter 3 may be quickly browsed for hints on many of the advanced
aspects of VP programming.

Chapter 4 consists of sample -exg files and their graphic output.
This is intended as a graphic index. If you want to understand how
something can be accomplished in VP, find the corresponding picture
and examine the source code and explanatory comments,

Chapler 5 gives a detailed reference for each of the VP commands,
while Chapter 6 discusses the VP numeric parameters and character
synonyms.

Finally, Chapter 7 discusses the many utility programs for producing
hardcopies of your graphics or converting to other formats.

Selected Topics

31
Input Format

This chapter provides a detailed description of \.J’P input, advanced
features, and operation, It covers the following topics:

* input format

* numeric calculations

* synonyms for easy mnemonics

* including parameter values and synonyms in text
® lext-processing features

* macros, loops, and conditional processing

* graphical input

¢ understanding coordinate systems

= VP arguments, options, and batch processing

Depending on its internal state, VP will expect either
* command lines
® pumeric values or

* text lines

from the keyboard or . exg file as its next input. When started, and atlshe
appearance of the VP prompt (default: vp:), VP expects a command line
to be entered from the keyboard. When numeric values are expected,
VP prompts with data:. When text is expected, the prompt is changed
to reflect the desired input (e.g., text: Xlabel: Ylabel: Caption:).

