20 2+ learning the Basics of VP

2.4
Carrying On

parameters may be used like any of the standard predefined VP numeric
parameters.

37) repeat &ncol.
38) plotyear &count.
39) end

Lines (37)—(39) use another advanced feature of VP—the REPEAT-END
loop to call the MACRO plotyear for each column in the TABDATA
array from the data file. Remember that ncol is an integer parameter
that gives the number of TABDATA columns, so MACRO plotyear is
called once for each column. The lines within the REPEAT-END loop
are executed ncol times. Within the loop, the integer parameter count
takes successive integer values (1,2, 3,...).

If you have followed these three samples, you should have a prett y good
feeling for the many ways VP can translate text and numbers into graph-
ics. The increasing complications of vpsamp3. exg Over vpsamp2. exg al-
low vpsamp3. exg to produce a publication-quality plot of any data file
that meets the simple requirements.

It is useful to consider VP as a visual programming and data analysis
language. The best way to learn VP is, perhaps, just to try using it on
your own projects. To that end, the remainder of this book may be
considered as a reference manual.

Chapter 3 may be quickly browsed for hints on many of the advanced
aspects of VP programming.

Chapter 4 consists of sample -exg files and their graphic output.
This is intended as a graphic index. If you want to understand how
something can be accomplished in VP, find the corresponding picture
and examine the source code and explanatory comments.

Chapter 5 gives a detailed reference for each of the VP commands,
while Chapter 6 discusses the VP numeric parameters and character
synonyms.

Finally, Chapter 7 discusses the many utility programs for producing
hardcopies of your graphics or converting to other formats.

3

Selected Topics

31
input Format

This chapter provides a detailed descripti_on of VP input, advanced
features, and operation. It covers the following topics:

e input format

* numeric calculations

* synonyms for easy mnemonics

¢ including parameter values and synonyms in text
* text-processing features

* macros, loops, and conditional processing

* graphical input

* understanding coordinate systems

* VP arguments, options, and batch processing

Depending on its internal state, VP will expect either
¢ command lines

* numeric values or

* text lines

from the keyboard or . exg file as its next input. When started, and ;l’?he
appearance of the VP prompt (default: vp:), VP expects a comman 1:[3
to be entered from the keyboard. When numeric values are expecte ci
VP prompts with data:. When text is expected, the prompt is change
to reflect the desired input (e.g., text: Xlabel: Ylabel: Caption:).

22 3 .

311
Command lines

Selected Topics

Eiac_h command line consists of a series of alphanumeric fields de-
limited by spaces, commas, or = signs. All of these delimiters are
equal and consecutive delimiters have the same effect as a single

delimiter. A single input line may not contain more than 255 char-
acters.

If necessary, a field may be delimited by single or double quotes to
allow the inclusion of other delimiters (such as embedded spaces).

!f the line begins with an asterisk (*), it is treated as a comment and
is echoed on the console. It is not examined further by VP.

Any part of the line after a semicolon (;) is also treated as a comment

and is discarded by VP. This discarded part is not echoed on the
console.

Before the line is interpreted,

~ Numeric calculation fields delimited by [...] or {...} are eval-

uated, and the resulting stack values are added as numbers to
the input line.

- Recognized synonym names delimited by & and . (&Sname.)
are replaced by their text definitions.

VP examines the resulting fields from left to right, looking for the
following characteristics:

- If the field corresponds to a synonym name (without initial &

and ending .), the synonym definition is substituted for the field
and the line evaluation begins anew.

- Ifthe ﬁelr_l corresponds to a VP parameter name and the follow-
ing field is numeric, the parameter value is set to the numeric
value. Both the parameter name and its value are removed from

the input line. The rules for numeric input are summarized as
follows:

- Comparison between alphanumeric fields and synonym names,
parameter names, and commands is made independent of case
using a maximum of 8 characters. Thus, the input fields may
consist of mixed-case characters. Only enough characters need

to be included to distinguish a name from all other VP possi-
bilities.

- Unrecognized fields, numbers, and parameter names not fol-
lowed by numeric fields remain part of the command line.
Some names such as TOP can refer to a parameter or a com-
mand option.

v

31.2
Numeric input

Input Format 23

31

The line, which now should correspond to the format given in the
reference section, is executed. The command must be the first field
and may be followed by options and data.

Multiple command lines may be included on a single input line
using the ~ as a logical end-of-line indicator.

Certain commands (such as XDATA or YDATA) tell VP to look for nu-
meric values in the following lines. In this case, successive lines are
scanned for numbers until a nonnumeric field is encountered. If this
nonnumeric field is the first field on a new line, that line is taken as the
next command line. If the nonnumeric field is not the first field, then the
remainder of the line is ignored and a new command line is assumed to
start on the following line. Numeric input, including parameter values,
must obey the following rules:

Numbers use free format notation without embedded spaces.
A decimal point may be included but is not required.

An optional E or D may.be followed by an integer value for standard
scientific exponential notation. Thus, 100 may be entered as 1E2 or
10.0d1.

Hexadecimal numbers begin with a dollar sign ($) (such as $13
or $2EF0), with an underline (.) (such as _13 or _2EF0), or with C-
language notation 0x (such as 0x13 or 0x2EF0).

An arbitrary count of numbers may be included on each input line
for the XDATA, YDATA, ZDATA, and XYDATA commands.

Simple binary operator numeric calculations may be included when
numeric input is expected.

— The allowed binary operations are: + = * /.

— Binary operators are evaluated from left to right. For example,
"1+3/4" gives 1, but "3/4+1" gives 1.75.

- The expression string must not include any spaces or paren-
theses. For example, if A,B,C,D, and E are numeric character
strings, an input of the form A*B/C+D-E, will be evaluated prop-
erly but A+B/C+(D-E) will not. The parentheses will cause the
entire field to be treated as non-numeric.

This is particularly useful with synonym and parameter substitu-
tion, as discussed later in the chapter. It allows numeric values
relative to parameter positions. For example:

COMMENT &xsize./2 &ysize./2 inch center
COMMENT &xsize.-0.5 kysize.-0.5 inch upper right

24 3 Selected Topics

313
Text input

314
interrupting
execution

3.2
Numeric
Calculations

will always place a comment in the middle of the axis box and in
the upper right corner.

¢ The more powerful form of {...} and [...] cal . . .
cussed in Section 3.2, } [...] calculations will be dis-

Other commands (such as COMMENT or LABELS) tell VP to accept
Ehe fo_llowing lines as alphanumeric text without breaking them up into
individual fields, without converting to uppercase, without recognizin,
the logical end-of-line character ~, and without recognizing the semig-
colon (;) as the start of trailing comments.

It is possible to include parameter values and synonym definitions

in the text. See Section 3.4 for a summa i i
X of this
text-processing features. v 8 € e specia

During file READs, VP execution ma i itti
, y be interrupted by hitting the
Ctrl-C or Break characters. At this point VP will display the massgage

interrupt: Q=quit all reads, E=exit, otherwise continue:

Depending on the character entered ing wi i
: » processing will continue, all REA
will be halted, or VP will exit. With DOS, a E‘hsck is malcll: faor an 135

terr Upl Dnly as Each new llne 18 IBBd and ot dllll Xecution ol a y
' n ng e
g 1 f n

\

Arbitrary numeric calculations may b

y be used to define VP synonyms
apd parameters and data manipulation before plotting. Expresysionsy in-
side square brackets [...] are evaluated in HSILOP (reverse POLISH)
notation, while expressions within curly brackets {.. .} are evaluated in

standard notation with - .
theses. 1th operator priority determined solely by paren-

Thus, to define the real parameter Plas 3.1415 .. ., you may use either

def%ne pi [1 ATAN 4 #] ; in HSILOP notation
define pi { 4*ATAN(1) } i in normal notation

Such expressions may be used in VP command lines whenever numeric

input is expected. All expressions are eval -
i sy uated as 8-byte real numbers.

axis xmin { EXP(-1) } xmax { EXP(3) }

can be used to define the x-axis range.

Parameter values may be used in i ion si i
cluding thets sy ¥1 Dou numeric calculation simply by in-

comment { xmin+SQRT(2) } { ymin*#*0.5 }

3.2 « Numeric Calculations 25

The & and . delimiters that are used to include parameter values in
text (&Sname.) are not needed inside [...] or {.. .} calculations; their use
causes rounding to NDECPL places. They may be used for synonyms.

Successive numeric calculations do not need individual sets of [...]

or{...} brackets, so
comment { xmin+SQRT(2) ymin**0.5 }

which places two values on the stack, is the same as the previous line
of code.

XDATA, YDATA, ZDATA, and TABDATA values may also be used in
calculations. Here, the colon () operator acts as subscript notation in
either HSILOP [...] or normal {. ..} calculations.

print { 1:X 2:X 10:X } ; prints 1st, 2nd, and 10th XDATA
print { nmbr:YDATA } ; prints the last YDATA value
print [3:C1 3:C21] ; prints ist and 2nd columns
i in TABDATA row 3

When used with XDATA, YDATA, ZDATA, and XYDATA column
commands the calculation delimiters have an implied loop. It is best to
specify this loop size explicitly with the LOOP parameter on the same
line as the calculations. If LOOP is not given on the same line, VP will
attempt to guess the implied loop length (NMBR or NCOL or NROW}.

This allows arbitrary redefinition of data such as

xdata { c1 } loop &nrow. ; same as XDATA COLUMN 1
ydata { c2/c3} ; ratio of column 2 to 3
ydata { r2/r3 } loop &ncol. ; ratio of row 2 to 3

xydata { i SQRT(i) } loop &nmbr. ; ¥Y=SQRT(X) for X=1-nmbr

The implied calculation loop can also be used with the CURVE com-
mand for arbitrary plots with no restrictions on the use of X or Y. When
used with CURVE (or the DRAW synonym), two calculated values de-
fine the actual X and Y data to be plotted. This data does not replace
the current XYDATA:

curve { x SQRT(y) } ; plot X vs SQRT(Y)

curve { y (SIN(pi*x))##2.5 } ; X and Y switched
draw line { i 3*SQRT(i) } loop 100 ; purely calculated

Similarly, calculations can be used to supply the four values required
by the LINE command (as the endpoints xnin ynin xmax ymax) with an
implied loop,

line box { X-0.5 0 x+0.5 Y } loop &nmbr. ; line spectra

or calculations can be used to supply the six values required by the
XYERRDATA command (asx y xmin xmax ymin ymax)withanimplied
loop as in demoerrb. exg:

26

3 » Selected Topics

dot red i set color and symbol type with synonyms

xyerrdat {cl c2 cl cl ¢2-(0.12%c1) c2+(0.19%c1)} loop &nmbr.

When 2 calculated values are supplied for XDATA, YDATA, ZDATA,
or when 3 values are supplied for XYDATA or CURVE, or when 7 values
are supplied for XYERRDATA, the first value is taken as a logical com-
pression operator (TRUE if INT(value) # 0 and FALSE if INT(value) =
0) for inclusion of the remaining item(s). Thus:

xdata {c1>0 ¢2} loop &nrow. ; c2 when c1 > 0
xydata {ABS(c1)>0.01 €2 C3} ; column 2 3 when ABS(c1)>0.01
draw dot {cl==2 C2 C3} i Plot column 2 3 when (cl)=2

This latter format is a particularly powerful method of selecting and

plotting subsets of tabular data. Samples of such sophisticated calcula-

tions are found in the sample files democalc. exg and demomac . exg.
Named arrays from the ARRAYDAT command may be used in cal-

culations like TABDATA. Several special attributes may be accessed
directly:

{ name.min } min value in array name

{ name.max } max value in array name

{ name.nmbr } number of points in array name

{ name.ncol } number of columns in array name

{ name.nrow } number of rows in array name (nmbr/ncol)

{ name.Cn } column n from array name
{ name.Rn } row n from array name
{ name } the complete array name as a 1D array

TABDATA, XDATA, YDATA, ZDATA may be used for name with these
.attributes.

VP performs all numeric calculations in HSILOP notation on an in-
ternal stack. The stack size is 20. 40 numeric constants are allowed,
and the calculation operator stack size is 256. Up to 32K values may be
indexed for TABDATA row and column. Normal notation is converted
to HSILOP before evaluation. Character synonym substitution of names
delimited by & . (&Sname.) is performed before any attempt to evaluate
the expression. HSILOP |[...] calculations are always performed from
left to right. An operator modifies the top stack contents. Constants or
variables add a value to the stack. Parentheses “(” and “)" should be
used in normal calculations {.. } to indicate operator priority. Without

parentheses all operators have equal priority and are evaluated from
left to right.

print { 1 +3 % 4}

i gives (1+3)#4 = 16
print { SQRT 4#4 }

; Eives SQRT(4) * 4 = 8

The allowed operations and their effect on the stack are summarized

in the following tables. S, is the top stack item and S_, is the previous
item.

3.2 + Numeric Calculations 27

Symbol | Operation performed and its effect on the stack |
Binary operations use the two top items
and reduce stack size by 1
+ | 8.1+5 =S8 (addition)
-1 8.4 =85=S8 (subtraction)
* | S X5=8§8 (multiplication)
/] 5-4/5 =8 (division)
wx [S5 = 8 (exponentiation)
MAX | MAX(S_,,5)= S (largest of two values)
MIN | MIN(S_;,S5)) =S (smallest of two values)
Logical operations use the top stack item, return
1 if TRUE, 0 if false, and reduce stack size by 1
==, =, or EQ | 1if 51 = Sp, else 0 =S
<> or NE | 1if S_y # Sp, else0= S
>=or GE | 1if §_; = Sy, else0 =S
<= or LE | 1if 5.3 = Sp, else0= 5§
>or GT | 1ifS-; > 8y, else 0= §
< or LT | 1if Sy < 5p, else0=§
AND | 1if INT(S-1) # 0and INT(S;) # 0, else 0= S
OR | 1ifINT(S-1) # 00or INT(S) # 0, else 0= S
Unitary operations replace the top item on the stack
and leave the stack size unchanged
SIN | sin(Sy)= S
C0s | cos(Sp)== 8
TAN | tan(Sg)= S
ATAN | atan(Sp) == S
SQRT | sqrt(Se) == S
EXP =85
LN | log.(So) =S
LOG or LOG10 | logia(Se)l= S
ABS or | | abs(Sp)= S (absolute value)
INT | int(Sg)= S (integer part)
SINH | sinh(Sp)= S
COSH | cosh(Sy) =S
TANH | tanh(Sp)== S
ATAN2 | atanh(S,, Sp) == §
ASIN | asin(Sp)== S
ACOS | acos(Sp) =S

Continued on next page.

28 3

33
Synonyms

Selected Topics

Symbol | Operation performed and its effiect on the stack

Dthqr names and constants add a value to the stack
and increase the stack size by 1

num. comst. | numeric value = §
current INDEX value=— S
XDATAlindex] = S
YDATA[index] = S
ZDATA[index) = §
TABDATA column n row INDEX = S
TABDATA column INDEX row n =3 S
pname | add value of parameter pname = §
Aum!:e AlllFEAY[index] =S (from ARRAYDATA)
Aname.min | minimum value in ARRAY = §
Aname.max | maximum value in ARRAY = §
Aname.nmbr | number of values in ARRAY = S
Aname.ncol | number of columns in ARRAY = §
Aname.nrow | number of rows in ARRAY = S
Aname.Cn | (column n in ARRAY)[index] = §
Aname.Rn | (row n in ARRAY)findex] = §

B8N~

Two special operators use the same sequence in both
norrna? notation. The colon (:) pops the fccllp stack tzlem(an.tH f?)]rLl?sl; :;1 g
subscript on the following variable (if allowed). Thus, {10: X} specifies
XDATA(10). The characters => store the top stack value in the fup
REAL or INTEGER parameter. Thus, {XDMIN+1
the value of XDMIN,

DnUnlreftl:qgni_zed alphanumeric names are given a numerical value based
a left-justified, 8 character, uppercase number algorithm that can be

used for logical operations. This fea i
_ i ture is often i
independent equality of text strings: e tasting cass.

llowing
=> XDMIN} increments

read wait Hit ENTER to continue or Q to quit:

if { &%1.Z = QZ } read END } prmng

i @valuate

Note that the simpler calculation { &%1
_ . =0 } would not -
rectly in the above example. If the user responds with ENT“EMI;“:(OCS:;
g)trom;_at in RJ.EAD WAIT, the synonym %1 will be blank and the con-
ruction { &%1. = Q } reducesto { = Q }, which is incorrect,

User-defined SYNONYMs customize
) . .exg file i impli
VP operation with easy-to-remember mn:monii:?cessmg S

¢ A synonym is a :
by s nazw. n arbitrary character string that may be referenced

331
%0 ... %8
synonyms

3.3 = Synonyms 29

Once defined, a synonym is global to the VP session. Synonyms
defined in an .exg file remain valid after the file is complete.

Synonyms may be defined anywhere on a command input line with
the keyword DEFINE followed by the synonym name and its text
definition:

define namel ok
define name2 ’Scotty’
define name3 "beam me up”

After the above definitions, the input line read name2 is interpreted
as read Scotty. The single or double quotes are necessary when the
synonym text contains normal delimiters such as spaces.

If the synonym definition field is a hexadecimal number beginning
with a $, the synonym will consist of the single corresponding ASCII
character. Thus,

define hat $5E

will define hat as the ~ character. Since the - is the logical end-of-
line character, this is a convenient way to include it in text. Normal
numeric input may also use an underline (_} or 0x for hexadecimal.

Synonyms can be redefined witha DEFINE Sname NewText sequence.

Synonyms can be removed with a null definition DEFINE Sname
The RESTART DEFAULT command also removes any new synonyms
defined since the last RESTART SAVE.

A maximum of 128 synonyms may be defined (96 under DOS),
including those in profile.exg.

The command PRINT SYNONYM may be used to examine the current
synonym names and their definitions.

A single special set of %n synonyms, %0, %1, ..., %8, is used for
passing parameters to .exg files. When the READ command is en-
countered (either explicitly or implicitly), these parameters are de-
fined from the remaining fields on the command line. Thus, either

read testcs sample one ; explicit READ or
\vp\testcs sample one ; implicit READ in DOS

will define %1 as ’sample’ and %2 as ’one’, while %3-%8 re-
main blank during the processing of testcs.exg. %0 is defined
as the name of the file being read without any path prefix (here,
testcs.exg). Any explicit path prefix is saved in the PATHEXG syn-
onym (\vp\ in the 2nd case). If testcs.exg contains the command

30 3 Selected Topics

3.3.2
PROMPT
synonym

3.33
MSGFILE
synonym

334
Defining new
REAL
parameters

print % pathexg

the values of the %n synonyms and PATHEXG will be displayed.

* The %n synonyms may be included in LABELs and COMMENTs
with &n. where both the *&’ and ’ . are necessary.

® Since there is a single global set of %n synonyms that are redefined
with each new READ, it may be necessary to “save” a %n synonym
for use outside its .exg file by

DEFINE savel &%1.

* Theinitial values of the %1-%8 synonyms are defined from the first
8 fields (excluding options) of the initial VP command. These fields
are then available for use in the profile. axg'or userprof . exg files
for batch processing,

The PROMPT synonym contains the VP prompt text when keyboard
command line input is requested. For example, one can use

DEFINE PROMPT ’hit me: °’

; for "hit me:" as prompt
DEFINE PROMPT ’ !

; for blank prompt.
to change or completely eliminate the prompt message.

The MSGFILE synonym can be set to place VP output messages in a file
(or NULL) rather than displaying them at the console. Far example:

DEFINE MSGFILE batch.msg

!-.ril] place all messages in the file batch.msg. This is useful for examin-
ing progress of a batch job. The combination

DEFINE MSGFILE null
DEFINE PROMPT *

will discard most VP console messages.

Although all synonym names correspond to character strings, the DEFINE
name text sequence can also be used to create new REAL parameters.
When the text field begins with a plus (+) and text can be evaluated as
a number, or when text isa[...] or {.. .} numeric calculation, then name
becomes a REAL parameter with the corresponding value rather than a
character synonym. For example,

define pi 3.14159
define pi +&pi.
define pi +3.14159
define pi [3.14159]

; creates SYNONYM pi as ’3.14159°

i creates REAL pi and removes synonym
; also creates REAL pi

; also creates REAL pi

335

Including
synonyms and
parameter
values in text

336
Synonyms
for graphic
symbols
and lines

33 e Synonyms 31

The resulting user-defined REAL parameters, like synonyms, may be
removed with a null definition DEFINE pi ’’. A given name can never
refer to both a synonym and a real parameter. The most recent DEFINE
determines the type. .

Some commands (such as FIT and AVERAGE) may define additional
REAL parameters as the result of processing or graphics input. These
are discussed in more detail in Section 6.3.

Parameter values or synonym definitions may be included in any VP
text line (such as those processed by the COMMENT or LABELS com-
mands) by delimiting the names between an ampersand (&) and a period
(.). This is particularly useful for including the FIT results SLOPE and
YO0 in the text of a comment. Thus, for example, to include the current
value of parameter XMAX in a comment, use

comment cursor ; position comment with cursor
XMAX has the value kxmax. in file &J0.

The current value will be substituted for &xmax . with NDECPL decimal
places while the current file name will replace £%0. . A similar technique
can be used to equate parameters.

ndecpl 1 ; portray REALs with 1 decimal place
ymax = &xmax. ; set ymax to NDECPL version of xmax
ymax [xmax] ; numeric equality

The latter example (ymax [xmax]) provides a numeric identity, while
the former (ymax = &xmax.) first creates the character representation of
XMAX to 1 decimal place, then evaluates the characters as the new
numeric value for YMAX. The = sign in the example is unnecessary.

Two special synonyms, &date. and &time., will be replaced by the
current date and time in any label or comment. Section 6.3 describes
other special and default synonyms.

Many of the default synonyms described in Section 6.3 provide easy-
to-remember names for the graphic symbols and line types produced
by VP. These are summarized in Fig. 3.1.

32 3 « Selected Topics

34
Text Processing

1SYM Synonym Graphic ILINE Synonym Graphic

- nosym =1 noline

! dot * 1 connect = .

2 damond ¢ 2 dotted oo

’ tricigle & 3 doshed e---s

: square . 4 dotdash e----e

5 del v

6 arrow - 11 line JE—

7 b + 2 e

8 xmork x 13 T

1 14 0 aeea

1; Egm'ﬁﬁle : Line types 1-4 produce lines

13 olriangle & with spoce for s;fmbo!s if ISYM 2 0
14 osquare a Iﬂﬂd continuous lines if ISYM < 0.
15 odel v Line types 11-14 ALWAYS omit symbols.
16 oarrow A The PATTERN command changes the

patlern for ILINE 2-4, 12-14.

Synonyms following CURVE reset ISYM and ILINE before plotting.

Since the CURVE command uses the global ISYM and ILINE, it
is best to specify BOTH ISYM and ILINE synonyms after CURVE
or use the DRAW synonym to reset ISYM and ILINE:

CURVE nosym dolted or DRAW dotted

CURVE square noline or DRAW square

CURVE dot connect or DRAW dot connect

Flgure 3.1: VP defauit synonyms for graphics elements.

All VP text is treated as Hershey fonts made up of arbitrarily sized stroke
characters for immediate display and hard copy. The u-ps utility can
be usec! to convert the Hershey fonts to PostScript fonts as described
in Section 7.5. Fonts are specified to VP by a 5-digit number, FFSSS
that determines both the font style and size. FF is the 2-digit Hersheg;
font nun_lbel' shown in Fig. 3.2. Any other font number will simply
display in the current font. A negative font number gives characters
that are rotated 90 degrees. The 3 digits SSS give the vertical size of
the characters in thousandths of an inch. The parameter FONTWIDTH

gi:'e_s the width relative to height. A FONTWIDTH of 0.4 to 0.5 is a good
choice.

3.41
Fonts

342
Text processing
features

3.4 e TextProcessing 33
VP/UGH Hershey font samples

Toripd Bompla
Roman Triplex
Italic Triplex

12 Roman Simplex 22

14 Boript bimplao 24

15 Roman monospace | 25

18 Roman Complex 26 Werman Fothic
20 [Italic Complex 27 Euglish Gothic
21 Roman Duplex 28 Xtialisn €othic
30 APL monospace 31 APL proportional

Flgure 3.2: The Hershey font styles recognized by VP drawn with FONTWIDTH
0.5.

VP provides many special text-processing features that may be used
whenever text input is expected. These include Greek characters, sub-
scripts, superscripts, underlined text, secondary font, special charac-
ters, formatting, and others. Most of these features are obtained by using
special characters to delimit the desired text. Some of the special char-
acters may cause problems with DOS keyboard extensions that monitor
keyboard input. There should, however, be no problem with .exg file
input.

Some of the text-processing features are provided by the low-level
UGH driver commands described in Section 7.1. The remainder are
part of VP. This separation, however, should be transparent to the user.
Figure 3.3 demonstrates these features, which are described in more
detail below the figure. The TEXTBOX command is described in detail
in Reference Section 5.31.

The UGH driver provides the following text features:

Greek letters
Delimited by exclamation points (!c!). Each font includes a

set of Greek equivalents, along with many special symbols.
Figure 3.4 shows many of the character translations.

Subscripts
Delimited by single quotes ('c’).

Superscripts
Delimited by double quotes ("c").

Arbscripts
Delimited by back quotes (‘c‘).

34

3

Selected Topics

VP/UGH Text-processing features

1 delimil Greek labe Greek! —= afly Mpeex
" " delimit superscripts Text'upper ful" —= Teytupper v
' delimit subscripts TexUlower ' —= Textier s
_ _ delimit underlining _under_ —= under
\ '\ delimit CZFONT text Text \C2font\ —= WC&‘MC
I'l delimit box highlights |boxed| > |boxed
? 7 delimit VP symbols 2isym.iline.color?
a) 74.1.2? —> g) e—s

b) 712.-2.47 - b) 0---- 0

TEXTBOX adj i it j
4L justs the following t
inside the box maorgins 9 text to fit just

_ with optional right

or left justification

Flgure 3.3: VP/UGH text-processing features.

VP/UGH Greek—character transiation table

a o n v A A N ¥ 0 ° / = A
b g oo B I 0 e 1 ¢ P .U
¢ X pm CL PN 2] -= CS
dé 9% DA Qg 3Y +x v ¢
e ¢ rpe E ~ R = 40 > 2 NI,
f¢ so Fe s 50 <s I e
9y tT GIF Tx 61 =% ~n £
hn wvev HA UT 7. ((%
feovy 1 vy ma))
e we JO wn 9« ['s 27 a
ke x¢ K8 XI %o]2 | 3
A y ¥ LA Y ¥ & v i (@@ O
m z ¢ MV 7 + . b)) =

Figure 3.4: VP/UGH Greek characters and special symbols.

3.4 e« TextProcessing 35

Arbscripts are like sub- and superscripts but with complete
control over size and baseline offset. They can be used to
provide subscripts within superscripts or just different size
characters within a text string. The default arbscripts are the
same size as sub- and superscripts (75% of normal) but with no
baseline offset. To change the characteristics of all following
arbscripts, begin an arbscript with the sequence “siz+off+dx”
or “siz-off-dx~, where size is the arbscript size in 32nds
of font size, and +off or ~off is the baseline shift in 32nds
of arbscript size. The third numeric value, +dx or -dx, gives
an X shift in 32nds of the font X size for this arbscript only.
The +-dx may be omitted. For example, to set all following
arbscripts to act like superscripts, include ‘~24+18~“; to have
arbscripts imitate subscripts, include ‘~24-10"‘. To use arb-
scripts as subscripts within superscripts, try ‘~16+107 ‘. Ifa ~
does not immediately follow the ¢, it indicates a color+font
change as below.

The ~siz+off" specification can also be used immediately af-
ter a * or " to change the characteristics of all following sub-
and/or superscripts.
In the following example

e"-E‘~16+10~i/k’B"T" produces e F/keT

note that the first occurrence of any type of quote (* " ‘) al-
ways activates sub-, super-, or arbscripts even if the text was

already in one of the other scripts.

Color+Font+Size change

Specified within tildes (7).

The format is “color+font+siz+off~. Thus, "6~ changes to
color 6 for the remainder of the text line, while “6+24~ changes
to color 6 and font 24 for the remainder. Size and offset may
also be changed (in units of 32nds of the normal font size) as
with arbscripts above.

Remember that the usage is different when a ~ immediately
follows a *. See arbscripts above.

CR/LF Provided by @. It also sets Greek, subscript, superscript, and
secondary font modes off.
Backspace

Provided by #. It allows overwriting of characters and produc-
tion of special characters.

36

3« Selected Topics

Underlining

Boxing Delimited by vertical bars and tilde (1 “col+wid-bot+top~
-+ 1). Draws a hox of color co1 and width wid a distance bot.
below and top ahove (in 32nds of the font size) the text be-
tween vertical bars. The box also extends a distance bot before
and after the text. If wid<0, a filled box is drawn before the text
is written. See “boxing” below for VP's implementation of a
simpler form of boxing,

The following text features are part of VP:

Underlining

Delimited by underscore (_c_). All text between underscores
is underlined by a line in the color specified by the parameter

Boxing Delimited by vertical bars (| c[). All text between vertical bars
appears enclosed within a box of color ULCOLOR. The ac-
tual position will vary with the parameter ULSPACE. VP adds
“col+wid-bot+top~ specifications to produce the UGH boxing
format (see “boxing” above). If ULCOLOR < 0, the box will
be solid in color ABS(ULCOLOR). The use of solid boxes is

supported. ULCOLOR=0 (background) can be used to “erase”
any existing graphics in the box around the text,

Secondary font

Delimited by backslashes (\c\). All text between backslashes is
written in font C2ZFONT and color C2COLOR. Secondary font
text will not work properly if C2FONT does not refer to an
allowed font number in the form FFsss discussed in Section
3.4.1. VP adds “color+font+siz+off~ specifications to pro-
duce the UGH color/font/size format (see “Color+Font+Size
change” above),

Multiple lines
When a COMMENT text line is ended by + or @, the following
line is also considered part of the same COMMENT and will

be placed a distance LSPACE (times font size) below the first
line.

343
Including
delimiter
characters
in text

344
Creating
special
characters

3.4 e« Text Processing 37

comment 9 9 right

This text comment+
consists of three lines@
right justified

i ill not work prop-
ing: The following VP text fe.atures wi
grgfmwitgh the rotated text in vertical comments or Y AXIS

labels.

Symbols;ll::::lei‘fnitad by question marks (?c?) as ?isym.iline.color?

i iline is the line type,
i is the symbol number, iline is r
:12]31-:0;:3]:3 the color of the included symhgls. ;t; g].laizie;g;
line will be drawn of type -iline. See Fig. 3. r
::::E:?;.%h:-; symbol size will be determined by the p;)ara?:
eter SMULT, and any line widths will be controlled by the
parameter WIDTH. .
Warning: Symbol inclusion will not work properly if XMULT
and YMULT are not 1.0.

i i i .30) can be used
BS command (described in Section 5
Tebs ;Eh:az‘?ab positions for horizontal labels. Any character may

be used as the tab delimiter.

Box form?}:a“fhe TEXTBOX command to format text inside a user-

i ides a set of word-

ified box. This command also provi) -

:przg:msor-like control commands to allow flexible text format
ting, as described in detail in Section 5.31.

Any of the standard text dﬁlimi[lers (:" ¢ I‘! :? | II\ ;_Z_may].be in-
in text by doubling them (** "" 177 —
CI‘}ieedﬁth;’;pl?:m of the LABELS and COMMENT col‘nr’lanlii;i CE;E alg;

be used to stop any VP special character processing and include the

i acters without doubling.)
sp;(i:rl:ill:ill;r the UGH special character processing can be suppressed

by including the string ~-13" at the start of each line.

i i haracter (#) can be used to
iting symbols with the backspace ¢ _ °
g‘;glt-::;:}:ac:?al}::haracters. For example, a copyright symbol can be ap
proximated by:
comment x y
Cc#100!

Although the copyright symbol is not part of th_a Hershe); J(;::zl; l:;p:
UGH-to-PostScript conversion can transform this seq}xen? ok 10 a
standard PostScript character for hard copy. See Section 7.

details.

P Y

as 3 e Selected Topics

35 :
Macros, Loops,
and Conditional
Execution

Internal macros may be defined for short sequences of frequently used
commands with argument substitution. Such Macros act like internal
-exg files. Once defined, they may be used like any other VP command.

The following example illustrates the use of a MACRO to select several
TABDATA columns to plot and fit:

macro pfit
xydata column &Y%1. &%2.
draw dot color &%3.

; defines a new macro called PFIT
i XYDATA from specified columns
i Plot in specified color

fit ; least-squares fit

return ; end of macro defimition
pfit 1 2 6 i plot X,Y as columns 1,2, color 6
pfit 34 5

i pPlot X,Y as columns 3,4, color 5

* There is a limited amount of internal storage for macros and at most

32 macros may be defined at one time.
® The RESTART DEFAULT command does not remove macro defini-

tions. To remove all macro definitions issue the RESTART MACRO
command.

¢ The PRINT pname command may be used to see the stored macro
definition of pname. PRINT MACRO lists all current macro names.

In a similar manner, REPEAT-END loops may be used to repeat a
sequence of commands a specified number of times. During successive
iterations the integer parameter COUNT is incremented by 1, starting
with value 1 on the first iteration. This is used as the default index
(subscript) for [...] and {...} calculations with the XDATA, YDATA,
TABDATA, and ARRAYDATA commands, Outside of a REPEAT-END
loop, COUNT has the value 0.

The REPEAT command is implemented by defining an internal macro
named REPMACRO and calling the macro the specified number of times
while incrementing COUNT.

The following example illustrates the use of a REPEAT-END loop to

plot all TABDATA columns after the first in alternating red and green
colors:

tabdata

i define the TABDATA array

i alvays use column 1 for xdata
start with color 4 = red
repeat count = NCOL-1

take YDATA from next column
increase color number by 2

i reset from red to green

; plot as DOTs in the next color

xdata column 1

color 4

repeat &ncol.-1
ydata column &count.+1
color &color.+2
if { color > 4 } color 2
draw dot color &count.

3.6 e Graphical Input 39

f { color = 2 } then ; print message for GREEN
i [

.+1 drawn in green
echo column &count ; print message for RED

lse .

° echo column &count.+1l drawn in red

o ; end of loop
end

and.
The above example also illustrates the two forms of the IF comm

With the simple form

IF { calc } command ; or
IF [calc] command

1{...}or HSILOP[..]
i ted if the result of the_norma

c:lm::;l::i‘;rt?}sh '?‘I?lflegllli.e.. INT(calc)#0). With the compound form

G

; IF [...] THEN
o a:}1dT¥TN H '1'1|0E Tn are executed if {...} true
comm; ;

command Tn
ELSE d if {...} false
. - Fm are execute
command F1 » F1

command Fm
ENDIF .
ands T1 - Tn or the FALSE comn&agc:[]ll"; i
uted. In the compound form THEN, E!LSE,faIrll7 s
bo spoll d om letely. Moreover, only one level o ' comma
o ?ﬂll:d Ic\l‘:aslgd IF statements will yield unpredictable re .
sup .

gither the TRUE comm;

i TA or
itional input such as XYDATA ©
ands that accept positional inj : (YDATA or
56 Ma:ﬁyJEPNPI?I;Ew the CURSOR option to 1nd|rfata m;::lacat::;agmguse
G_,_ra________—pmcal Input o itioning. A cursor is displayed on the graph1c§ scrmm.i and A e
Pt loll: anrd (on PCs) can be used to t.:har_lge its p o, A
o e=ryk.c,vybnr:ard character is pressed to |ndlcaﬂe“rith:nle'sif ¢ Elandard
bu&?:;lol-‘c DOS, mouse positioning c;llr: b?)e‘:floadeﬂ N eoponds
i ; e.sys) has !
mousle ?'Sl;rf l;lgn:;ml;(ee;l::al?é n;ﬁ::em:nt control is not activated under
to inter: . .
b i 1l
x-wmdﬂ;gDRD command has been issued, any Fursor coor?f;z;t:: ;: d
b " “\:‘;dR in graph (as opposed to screen) ‘;.tml.tls in l‘l:; zgg:dimtes o
Yo 1 ion i ified, the sav 1
"HES option is also specified, o
ﬁle._ " }::hlte]:c:]ativ;] to the AXIS box’s_loyver left Totrit::.t Olftll;-'a OB is
o ll-fﬁlec:l the saved coordinates will be in inches rela
specified,

left page corner.

40

3

Selected Topics

Keyboard controls are available with PC UGH drivers:

Movement is accomplished by the usual cursor arrow keys on the
keyboard. In normal mode they jump the cursor bya laige amoul;(t:
(default 16 screen pixels) with each hit. Shifted (uppercase) cursor
keys on the numeric keypad (or the corresponding numeric keys
4+,6—,2,81) give fine positioning by a single pixel. The Alt-F
and Cirl-F keys can also be used to change the step amount.

Pressing a normal character ends cursor movement and returns the
current position and character hit.

* Pressing Q usually terminates the input operation.

* Pressing V when using COMMENT CURSOR causes preview draw-

iﬁg of thf) comment at the current position. The next character erases
the preview and returns to cursor positioning of the text.

Alt-S and All-C'changa the motion of rubber lines and boxes on the
screen. Alt-S will toggle the movable corner, and Alt-C will toggle

l;;;wean corner movement and displacement of the entire line or

Alt-F will halve the size of the large i
will double the step s rge movement step, while Ctrl-F

Alt-X will halve the display size of th i i
will double the crosshair size. © cursor crosshair, while Cirl-X

Mouse and trackball control:

Movement is, of course, tracked from the mouse movements.

Mouse buttons, which are read upon release, repre: i
keyboard conventions (see above): +ropeasent tho following

LEFT Return position as though the ENTER key were hit.
MIDDLE Q if present. Quit current operation.
RIGHT V For COMMENT CURSOR, toggle temporary view.

For ruh?:er lines and boxes, cycle between Alt-S and
Alt-C, (i.e., switch movable ends and the center).

LEFT+RIGHT Q (Both buttons hit simultaneously). Same as MID-
DLE; used for two-button mice.

The following table summarizes control of graphical input:

37 e Understanding VP and UGH Coordinate Systems 41

Action | Keyboard Mouse
cursor movement | arrow keys just move it
fine positioning | numeric pad arrow keys | just move it
terminate (QUIT) | Q middle button or
left+right
COMMENT CURSOR | Vto view right button toggles
preview draw or erase
return position | any character left button
rubber lines or boxes
toggle moving end | Alt-S right button (cycles)
toggle center vs. end | Alt-C right button (cycles)
halve step size | Alt-F
double step size | Ctrl-F not applicable
halve X-hair size | Alt-X
double X-hair size | Ctrl-X not applicable

37
Understanding
VP and UGH
Coordinate
Systems

This section describes the multiple coordinate systems used by VP and
UGH for locating text and graphics.

AXIS These are the real number coordinates in which user data are

specified to VP. The AXIS or BOXLIMIT command sets up
the transformation (which may, for example, include LOGs)
to the virtual integer units used by UGH.

INCHES These are the real number coordinates in which comments

and other text may be specified when the INCHES option is
given. INCH coordinates are relative to the lower left corner
of the AXIS box. Their transformation to UGH units is set
by the AXIS or BOXLIMIT command and the PIXPIN (PIXels
Per INch) parameter.

INCH PAGE :

These are the real number coordinates in which comments
and other text may be specified when the INCH PAGE option
is given. INCH PAGE coordinates are always relative to the
lower left corner of the virtual page. Their transformation to
UGH units does not depend on AXIS box placement, but it
does depend on the PIXPIN parameter.

CMS For those of metric persuasion, CMs (centimeters) may be

used instead of INCHES or INCH PAGE.

Virtual UGH

This is the integer coordinate system used by UGH for storing
and displaying graphics data. It is a 64K by 64K virtual space

42

3

Selected Topics

!derlved from a 16-bit integer). A mapping of this space onto
lthes is conventional, with the PIXPIN parameter speci-
fying the number of virtual units per inch. The VP default
for lf’]XPlN is 800. When combined with the number of pix-
el_shnch on the output device, it allows explicit control of the
display scaling in familiar units. In many cases, the default
valu_e makes one virtual inch (800 units) correspond to one
real inch on output devices such as plotters and printers.

Display This F:oordinale system is device-dependent and represents
the pixel mapping of the device, with (0,0) being the lower
left corner. For example, the PC VGA's display coordinates
run from 0 to 639 in X and from 0 to 479 in Y.

The AXIS or BOXLIMIT command defi i
to virtual UGH units. The TOP, YSIZE, Bg%ﬁh?fg;}fﬁ’;,g‘;%’;ﬁj
XSIZE parameters define the position and size of the AXIS box in ir;ches
(or centimeters) on a virtual page as shown in Fig. 3.5 below. Either the
current XYDATA limits (via the parameters XDMIN, XDMAX, YDMIN,

UGH coordingles (PRoM « Page, PIXPIN x Paget) ,

)
Top
Y
)
< Left >pe---ciooe r ----- Xsize --->1< Right- >
Ysize
(0.0,00) INCH I
(0.0,00) CM : AXIS box
Bottom
Y

(0,0) UGH coardinules

(0.0.0.0) PAGL INCH or PAGE CM page boundcry’

Flgure 3.5: VP parameters determine AXIS i i
Ity orahi box size and placement on an imag-

37 + Understanding VP and UGH Coordinate Systems 43

and YDMAX) or specifically set XMIN, XMAX, YMIN, and YMAX de-
termine the mapping of user AXIS units onto the AXIS box. A specific
example may be useful. Consider the following simple .exg file:

pixpin 800 ; UGH units per inch

top 1 ysize 4 bot 6 ; Y page param. in inches
left 1 xsize 6 right 1 ; X page param. in inches
axis xmin 0 xmax 10 ymin O ymax 10 ; USER coordinate mapping

This defines a page of X size of 8 inches (146+1) by Y size of 11
inches (1+4+6) corresponding to a virtual space of size 6400 (8*800)
by 8800 (11*800) in UGH units. In this case, AXIS coordinates 0,0 map
to 800,4800 in UGH units while 10,10 maps to 5600,8000 in UGH units.
0,0 INCH also maps to 800,4800 as does 1,6 INCH PAGE.

Note: The page does not restrict where graphics may be placed in the
virtual space; it is only a convenient concept for eventual hard copy. The
VP parameter PRUNE controls plotting of data outside the AXIS box,
while text may be placed anywhere. Text commands have INCHES and
INCH PAGE or CMS and CM PAGE options that allow positioning the
text at a particular place on the page rather then using user coordinates
based on the axis. .

The final mapping is from the virtual UGH coordinates onto a display.
This mapping is controlled in two ways. First a subset of the display
area (possibly the entire display area) is mapped as a window, and then
a region of virtual space is mapped onto that window. Both aspects are
usually accomplished by the VIEW command.

UGH drivers for display devices have the following default windows
(see UGH command 9 in Section 7.1):

0 full screen 4 upper left 1/4

1 left half 5 upper right 1/4
2 right half 6 lower left 1/4
3 center 1/4 7 lower right 1/4

One of these can be selected with the VIEW command. If no window
number is specified, the previous window is not changed. Thus,

VIEW fill erase

will display the current .ugh(bin) file in the current window (default
0, fullscreen) and adjust the final mapping so that all of the graphic
elements will “fill” the window, keeping a 1:1 aspect ratio. The VIEW
command never alters the contents of the .ugh(bin) file; it only deter-
mines which part of virtual UGH space can be seen on the graphics
screen.

VIEW page erase 2

will display the current UGH file in window 2 (right half) and adjust
the mapping so the current virtual page will “fill” this window.

il 3 e« Selected Topics

3.8

Invoking VP:
Arguments and
Options

It is also possible to use the VP UGH command as

UGH 9 2

to set the UGH driver to window 2 for all following VIEW commands
(until explicitly reset).

Note: Users with detailed knowledge of a particular display device's
courd!nates can use UGH command 7 to set a particular portion of the
graphics screen for display.

VP may be started from a system (or shell) command line such as:

vp argl arg2 ... arg8 (opt1 opt2 ... or
vp argl arg2 ... arg8 -opt1 -opt2 ...

In normal operation, the following events occur:
* The UGH display and internal variables are initialized.

* Any initial _valL}es of the %1 to %8 synonyms are set to the values of
the corresponding argument fields (fields are separated by spaces).

* Any options are evaluated. The options are all fields after the first

occurrence of " (" (or "\ (" in UNIX) in the command line or al] fields
that begin with a dash *-".

. The.) initial profile . exg file is opened for input, and VP begins exe-
cuting the commands in this profile.

* If, as racomme!'lded. the default profile.exg is used as the initial
pr_oﬁle, then this will be followed by a read of the file userprof. exg
with the arguments %1, ..., %8. This is the recommended location
of any user-specific changes.

¢ When the profile has been read, VP displays a prompt and waits for
keyboard input.

The ol:!tions_ can change this sequence of events. The valid options
may be given in upper or lower case, and only enough characters need
be given to distinguish between options:

PROFILE filespec

Uses filespec as the initial profile .exg file instead of the
default profile.exg. If multiple profile options are given,
only the last is actually read.

3.8 e Invoking VP: Arguments and Options 45

NOGRAPHICS
All processing will be completed, but no graphics will be
drawn to an UGH display and no graphics or cursor input
will be accepted. This is used for batch processing, where
immediate views are not required.

QUIT VP will QUIT after the end of the profile . exg file. This is used
with batch processing as described at the end of this section.

DISPLAY disp
Changes the display destination for UGH graphics. For X-
windows implementations, this takes the usual form -display
machine_name:0. For the PC SVGA implementation this speci-
fies the VESA numeric hex mode of the display. For example,
-display 103 attempts to operate the SVGA adapter at 800 by
600 pixels with 256 colors,

CcM Uses centimeters instead of inches for specifying AXIS box
size and placement. This option also converts default values
from inches to centimeters.

FLOAT Uses 4-byte floating point numbers for storage of REAL values.
The default uses 8-bytes for each number.

If other system-specific options are available, they will be described in
README files that accompany each implementation of VP.

The use of command line arguments and options as described above
allows VP to conveniently operate in a batch-processing environment.
The standard profile.exg file supplied with VP ends with the line

if {$ ne (SEY1.)} &%1. &%2. &43. &%4. &US. &i6. &AT. &V8.

Thus, if VP is called with any arguments, the standard profile.exg file
will end by reading the .exg file specified by the first argument and
passing the remaining arguments. In other words, the PC command line

vp demovp (quit

will start VP, read profile.exg, read userprof.exg, if il exists, read
demovp. exg, and quit.

vp demofit

will start VP, read profile.exg, read userprof.exg, if it exists, read
demofit.exg, display the prompt, and wait for input from the keyboard.

