
Session-Typed Recursive
Processes and Circular Proofs
Farzaneh Derakhshan
PhD Prospectus Presentation

Programs as Proofs ¹

2

Functional
programming

Intuitionistic
Natural deduction²

[1] W. A. Howard, 1969 [2] Hilbert and Bernays, 1922 - Gentzen, 1932 - Prawitz, 1965

3

input output

Programs as Proofs ¹

Functional
programming

Intuitionistic
Natural deduction²

[1] W. A. Howard, 1969 [2] Hilbert and Bernays, 1922 - Gentzen, 1932 - Prawitz, 1965

4

Session-typed
Processes

Sequent
 Calculus²

(intuitionistic linear logic)

Programs as Proofs¹

[1] Caires and Pfenning 2010 [2] Gentzen, 1932

5

provider clienty

Session-typed Processes Sequent Calculus

Sends message r along y () and continues as P ().

Programs as Proofs

A private channel
that connects the

provider to its client.

y

6

provider clienty

Cut Reduction

Session-typed
Processes

Sequent
Calculus

Computation

Programs as Proofs

provider clienty

Communications are bi-directional

7

Cut EliminationTermination

Programs as Proofs

Session-typed
Processes

Sequent
Calculus

8

Recursive
Session-typed

Processes

Programs as Proofs

provider clienty

9

Blockzero

succ

y zLoop
succ

y

Recursion - An example of a process with only internal
communications

Loop sends a “succ” message along y
and then calls itself recursively.

Block waits to receive a message
along y, (a) if it is a “succ” it calls itself
recursively, (b) if it is a “zero” it
“closes” channel z.

Deyoung and Pfenning 2016

10

Blockzero

succ
y zLoop

succ
y

Loop Blocky z

Recursion - An example of a process with only internal
communications

11

Loop Blocky

succ

z

Blockzero

succ
y zLoop

succ
y

Recursion - An example of a process with only internal
communications

12

Blockzero

succ
y zLoop

succ
y

Loop Blocky z

Recursion - An example of a process with only internal
communications

13

Blockzero

succ
y zLoop

succ
y

Loop Blocky

succ

z

Recursion - An example of a process with only internal
communications

No communication along z

14

Recursion - An example of a process with only internal
communications

Even in the presence of recursion, we can retain the Curry-Howard isomorphism
between linear logic and session-typed concurrent programs if we:

1. refine general recursive session types into least and greatest
fixed points, and

2. impose conditions under which recursively defined
processes correspond to valid circular proofs.

With this approach we can retain the correspondence between cut elimination, and
meaningful communication with type preservation and strong progress.

 15

Thesis statement

1. Extend the Curry-Howard interpretation of circular derivations in linear logic as
communicating processes to include least and greatest fixed points.
 A circular derivation is thus represented as a collection of mutually recursive
process definitions.

2. A compositional criterion for validity of such programs, which is local in the sense
that each process definition can be checked independently.

3. Local validity implies a strong progress property on programs and cut elimination on
the circular proofs they correspond to.

4. Implement the local validity algorithm.

5. An infinitary sequent calculus for first order intuitionistic multiplicative additive linear
logic with least and greatest fixed points; A tool to reason about a rich signature of
mutually defined inductive and coinductive predicates.
It also allows using nonlinear first order theories.

16

Contributions

We have completed the first four steps for the subsingleton fragment.

17

Computational power and potential applications

Linear processes

Subsingleton fragment

Only positive types

Deyoung and Pfenning 2016

Operations on Lists, tries, streams, etc.

Turing machines, Linear communicating
automata

Finite state transducers (cut-free!), Data
processing with limited state and time

1. James Brotherston. 2005. Cyclic proofs for first-order logic with inductive definitions. In International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods. Springer, 78–92.

2. Luigi Santocanale. 2002. A Calculus of Circular Proofs and Its Categorical Semantics. In 5th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2002), M.
Nielsen and U. Engberg (Eds.). Springer LNCS 2303, Grenoble, France, 357–371

3. Jérôme Fortier and Luigi Santocanale. 2013. Cuts for Circular Proofs: Semantics and Cut-Elimination. In
22nd Annual Conference on Computer Science Logic (CSL 2013), Simona Ronchi Della Rocca (Ed.).
LIPIcs 23, Torino, Italy, 248–262.

4. David Baelde, Amina Doumane, and Alexis Saurin. 2016. Infinitary Proof Theory: the Multiplicative Additive
Case. In 25th Annual Conference on Computer Science Logic (CSL 2016), J.-M. Talbot and L. Regnier
(Eds.). LIPIcs 62, Marseille, France, 42:1–42:17.

5. Amina Doumane. On the Infinitary Proof Theory of Logics with Fixed Points. PhD thesis, Paris Diderot
University, France, June 2017.

18

Previous works

Circular derivations in (the subsingleton fragment of) linear logic

Local validity for recursive session-typed processes

Negative results

An infinitary calculus for first-order IMALL with fixed points

Proposed work - next steps

Conclusion

19

Outline

Circular derivations in (the subsingleton fragment of) linear logic
The subsingleton logic with fixed points : two examples

A guard condition

Cut elimination

Local validity for recursive session-typed processes

Negative results

An infinitary calculus for first-order IMALL with fixed points

Proposed work - next steps

Conclusion
20

Outline

21

A Circular derivation in the subsingleton fragment

Fortier and Santocanale, 2013; Santocanale 2002

22

A Circular derivation in the subsingleton fragment

Fortier and Santocanale, 2013; Santocanale 2002

Every cycle should be supported by the unfolding of

1. a positive (least) fixed point on the antecedent, or
2. a negative (greatest) fixed point on the succedent;

such that the supporting fixed point for each cycle is the
highest priority among all fixed points getting unfolded in the
cycle.

23

Fortier and Santocanale’s guard condition

Fortier and Santocanale, 2013

Fortier and Santocanale’s cut elimination algorithm uses a
reduction function Treat that may never halt.

Treat halts on guarded proofs; it produces a cut-free inference.

For guarded proofs cut can be eliminated productively.

24

The guard condition assures cut elimination

Fortier and Santocanale, 2013

Circular derivations in linear logic

Local validity for recursive session-typed processes
Example: Copy

Example: PingPong

Strong progress

Negative results

An infinitary calculus for first-order IMALL with fixed points

Proposed work - next steps

Conclusion
25

Outline

A locally checkable, compositional validity condition on processes.

 We check validity of each process separately!

26

Recursive
Processes

Circular
derivations

Our local validity condition

27

Copy: a valid program

Copy receives a natural number along
channel x and sends it along channel y.

28

Ping-Pong: an invalid program

Ping Pongx y

29

Ping-Pong: an invalid program

Ping x Pong y

w:astream

Ping
x

Pong y

[0 , 0 , 0 , 0 , 0 , 0] [0 , 0 , 0 , 0 , 0 , 0]

30

Ping-Pong: an invalid program

w:&{head:ack, tail:astream}

Ping - i
x

Pong - i y
astream

unfolding

[0 , 0 , -1 , 0 , 0 , 0] [0 , 0 , 0 , 1 , 0 , 0]

31

Ping-Pong: an invalid program

w:ack

Ping - ii
x

Pong -ii y
Request
for head

[0 , 0 , -1 , 0 , 0 , 0] [0 , 0 , 0 , 1 , 0 , 0]

32

Ping-Pong: an invalid program

w:+{ack:astream}

Ping - iii
x

Pong - iii y
ack

unfolding

[0 , 1 , -1 , 0 , 0 , 0] [-1 , 0 , 0 , 1 , 0 , 0]

33

Ping-Pong: an invalid program

w:astream

Ping
x

Pong y
acknowledgement

Back to the original configuration.

[0 , 1 , -1 , 0 , 0 , 0] [-1 , 0 , 0 , 1 , 0 , 0]

34

Ping-Pong: an invalid program - code

Our validity condition implies the guard condition

Theorem 1. Our local condition implies guard condition of
the underlying derivation; therefore it implies termination
of reduction function Treat and cut elimination.

35

Theorem 2. A valid program always terminates either in an
empty configuration or one attempting to communicate
along external channels.

36

Strong
Progress

Cut
elimination

Strong progress and cut elimination

Circular derivations in linear logic

Local validity for recursive session-typed processes

Negative results
Turing machines and undecidability of strong progress

Binary counter: a negative example

An infinitary calculus for first-order intuitionistic MALL with fixed points

Proposed work - next steps

Conclusion

37

Outline

38

Turing machines and undecidability of strong progress

Cut reduction on circular pre-proofs in subsingleton logic with
recursive types has the computational power of Turing machines.¹

Theorem. Recognizing all programs that satisfy a compositional strong progress property is
undecidable.

Proof. Termination of a Turing machine can be encoded as strong progress.

[1] Deyoung and Pfenning 2016

39

Binary counter: a negative example

e

Start with an empty counter that offers
along channel y:ctr

y

40

Binary counter: a negative example

e
y

increment

41

Binary counter: a negative example

e
y

increment

e b1
w y

42

Binary counter: a negative example

e
y

increment

e b1
w y

e b1
yw

increment

43

Binary counter: a negative example

e
y

increment

e b1
w y

e b1
yw

increment

e b0
yw

increment
recursion

44

Binary counter: a negative example

e
y

increment

e b1
w y

e b1
yw

increment

e b0
yw

increment

e b0
yw

b1
x

recursion

45

Binary counter: a negative example

e
y

increment

e b1
w y

e b1
yw

e b0
yw

e b0
yw

b1
x

w_ctr < y_ctr ??recursion

increment

increment

46

Binary counter: a negative example - code

We cannot rely on the guard condition anymore.

We need an alternative technique to prove strong progress:

● Proof using logical relations

Simultaneous induction/coinduction

47

Generalize the local validity condition?

Circular derivations in linear logic

Local validity for recursive session-typed processes

Negative results

An infinitary calculus for first-order intuitionistic MALL with fixed points
Previous work

Example: productivity of run(x,t)

Strong progress of locally valid processes

Proposed work - next steps

Conclusion

48

Outline

A calculus to reason about data-types defined as mutual least and
greatest fixed points.

Reason about session-typed programs.

Use circular derivations to prove theorems by simultaneous
induction and coinduction.

49

Our goal

● Coinduction principle [Kozen and Silva, 2017]

● An infinitary calculus for first-order logic with inductive definitions

[Brotherston, 2005]

● A finitary calculus for least and greatest fixed points in linear logic

[Baelde, 2007]

● Well founded recursion with copatterns and sized types [Abel and

Pientka, 2016]

50

Previous work: Calculi for inductive and coinductive proofs

To reason about programs in a meta-circular way.

Our calculus is mainly designed for linear reasoning but we also
allow appealing to first order theories such as arithmetic, by
adding an adjoint downgrade modality.

A condition to identify (a subset of) valid proofs among all infinite
derivations.

We proved cut elimination for the valid proofs.

51

An infinitary sequent calculus for first order intuitionistic
MALL with fixed points

run(x,t): A stream producer where x is the list of operations, and t is
the output stream.

Skip one step and
do nothing

Put z as the head of output
stream and inserts the new
list of operations x to the
original one.

Programming with mutual least and greatest fixed points

52

Run on any list of operations produces a (possibly infinite)
list of elements “o”

53

Run produces a listₒ - proof

54

 Bisimulation

Theorem. If configuration C is well-typed then there is an infinite derivation for its
strong progress property. Moreover, if it C is valid, the infinite derivation is a proof.

A valid configuration of processes satisfies strong progress

55

We define strong progress as a predicate

Circular derivations in linear logic

Local validity for recursive session-typed processes

Negative results

An infinitary calculus for first-order intuitionistic MALL with fixed points

Proposed work - next steps
Subsingleton fragment - revisited

Linear logic

Mode shifts

Conclusion

56

Outline

57

1. A more general local validity condition for the
subsingleton fragment

We need to know that Bit1Ctr output is “smaller” than its input.

 Use our calculus to prove strong progress property for the generalized version using
logical relations.

58

2. Linear logic

Processes defined based on linear logic may use more than one resource.

Track the values of all channels on the left and the one on the right for each fixed
point in the signature.

A lexicographic order on the list of all channels.

If l1 is an empty list (nil):
forward l2 to l.

If l1=cons(x, --):
 send x to l and call Append on l2 and

the remaining of l1.

An example: Append two finite lists

59

60

Polarity shifts

Type t appears in both positive and
negative positions

61

3. Shift for modes

Circular derivations in linear logic

Local validity for recursive session-typed processes

Negative results

An infinitary calculus for first-order intuitionistic MALL with fixed points

Proposed work - next steps

Conclusion

62

Outline

63

Conclusion

● Results we accomplished so far:
a. A local validity condition for recursive session-typed processes in the subsingleton

fragment
b. Our local validity ensures the guard condition; thus it implies strong progress
c. Implementation of the condition as a static check in SML
d. A first order infinitary calculus to reason about programs
e. A validity condition that ensures cut elimination
f. Prove strong progress of locally valid processes directly

● Next steps:
a. A more generalized version of local validity condition for the subsingleton

fragment
b. A local validity condition for linear logic; a special treatment of function types
c. Prove strong progress for locally valid processes

i. To use our first order calculus
● Time permitting:

a. Generalize the results for the calculus with adjoint modalites for mode shifts

Thank you!

64

1. Frank Pfenning. Substructural logics. Lecture notes for course given at Carnegie Mellon University, Fall 2016, December 2016.
2. Farzaneh Derakhshan and Frank Pfenning. 2019. Circular Proofs as Session-Typed Processes: A Local Validity Condition. arXiv preprint

arXiv:1908.01909 (2019).
3. Farzaneh Derakhshan and Frank Pfenning. 2020. Circular Proofs in First-Order Linear Logic with Least and Greatest Fixed Points. arXiv preprint

arXiv:2001.05132 (2020).
4. Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with copatterns and sized types. Journal of Functional Programming 26(2016).
5. David Baelde and Dale Miller. 2007. Least and greatest fixed points in linear logic. In International Conference on Logic for Programming Artificial

Intelligence and Reasoning. Springer, 92–106
6. Amina Doumane. 2017.On the infinitary proof theory of logics with fixed points. Ph.D. Dissertation.
7. David Baelde, Amina Doumane, and Alexis Saurin. 2016. Infinitary proof theory: the multiplicative additive case. (2016).
8. James Brotherston. 2005. Cyclic proofs for first-order logic with inductive definitions. In International Conference on Automated Reasoning with

Analytic Tableaux and Related Methods. Springer, 78–92.
9. Dexter Kozen and Alexandra Silva. 2017. Practical coinduction.Mathematical Structures in Computer Science 27, 7 (2017), 1132–1152.

10. Gentzen, 1932 - Prawitz, 1965
11. W. A. Howard. The formulae-as-types notion of construction. Unpublished note. An annotated version appeared in: To H.B. Curry: Essays on

Combinatory Logic, Lambda Calculus and Formalism, 479–490, Academic Press (1980), 1969.
12. Hilbert D, Bernays P (1921-22) Grundlagen der Mathematik. In David Hilbert’s Lectures on the Foundations of Mathematics and Physics 1917-1933.

W. B. Ewald and W. Sieg, editors, Springer, 2013:431-518
13. Gentzen G (1932-3) Urdissertation, Wissenschaftshistorische Sammlung, Eidgenossische Technische Hochschule. Zurich, Bernays Nachlass, Ms ULS (A

detailed description of the manuscript is found in (von Plato 2009))

References

65

