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Mutual least and greatest fixed points

1. Examples?

2. Induction/Coinduction?

3. Termination/productivity?



Prove theorems using induction and coinduction - Previous works

● Induction principle

● Bisimulation

● Coinduction principle [Kozen and Silva]

● An infinitary calculus for first-order logic with inductive definitions 

[Brotherston]

● A finitary calculus for least and greatest fixed points in linear logic [Baelde]

● Well founded recursion with copatterns and sized types [Abel and Pientka]



Our contribution

A first order calculus for proving properties about mutual least 
and greatest fixed points, in particular Session-typed processes

 

1. Add fixed points and assign priorities to them,
2. Use circular edges in the proof for inductive and coinductive steps,
3. Impose a validity condition to ensure soundness of this proof system.

We use priorities in the validity condition to ensure valid simultaneous induction and conduction.



Finite lists: Example of least fixed points

Natural numbers

Lists of natural numbers



Programming with finite lists

Append two lists 

I use linear binary session typed processes for programming examples. See [1,2] for more info.

Terminating

If  l1 is an empty list 
(nil): forward l2 to l.

If l1=cons(x, --):
 send x to l and call Append 

on l2 and the remaining of l1.



Termination and List as first order predicates



Append terminates - proof



Programming with streams: example of greatest fixed points

Productive
Merge two streams into a single stream by 
alternatively outputting an element of each.

Return the odd elements of a stream.

Return the even elements of a stream.
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Programming with streams: example of greatest fixed points

Productive
Merge two streams into a single stream by 
alternatively outputting an element of each.

Return the odd elements of a stream.

Return the even elements of a stream.

a1 a2 a3 a4 a5 a6 ...

a1 a3 a5 a2 a4 a6 ......

split1 split2



Programming with streams: example of greatest fixed points

Productive
Merge two streams into a single stream by 
alternatively outputting an element of each.

Return the odd elements of a stream.

Return the even elements of a stream.

a1 a2 a3 a4 a5 a6 ...

a1 a3 a5 a2 a4 a6 ......

merge



Programming with streams

Define properties of merge and splits as:



Operations merge and splitⱼ are inverses



run(x,t): A stream producer where x is the list of operations, and t 
is the output stream.

Skip one step 
and do nothing

Put z as the head of 
output stream and inserts 
the new list of operations 
x to the original one.

Programming with mutual least and greatest fixed points



Run on any list of operations produces a 
(possibly infinite) list of elements “o” 



Run produces a listₒ - proof 



Strong progress and Validity condition

A process satisfies strong progress, if after finite number of 
steps, it either becomes empty or attempts to communicate 

to the left or right [2].

Theorem. Our validity condition on session-typed processes 
ensures strong progress [2].

We want to prove this directly using our calculus.



Producer/Idle: a locally valid program

Producer

x y

x:astream y:nat



Producer/Idle: a locally valid program

Producer

x y

astream 
unfolding

x:&{head:ack, tail:astream} y:nat



Producer/Idle: a locally valid program

Producer

x

Request 
for head

y

x:ack y:nat



Producer/Idle: a locally valid program

Idle

x y

y:natx:ack



Producer/Idle: a locally valid program

Idle

x y

ack 
unfolding 

x:+{ack:astream} y:nat



Producer/Idle: a locally valid program

Idle

x y

acknowledgement

x:astream y:nat



Producer/Idle: a locally valid program

Idle

x y

nat 
unfolding

y:+{zero:1, succ:nat}x:astream



Producer/Idle: a locally valid program

Idle

x y

succ

y:natx:astream



Producer/Idle: a locally valid program

Producer

x y

Back to the original configuration.

y:natx:astream



Producer/Idle: a locally valid program - code

Eventually communicate with 
its external channels

This example is adapted from [2].



Ping-Pong: an invalid program

Ping Pongx y



Ping-Pong: an invalid program

Ping x Pong y

w:astream

Ping 
x

Pong y



Ping-Pong: an invalid program

w:&{head:ack, tail:astream}

Ping - i
x

Pong - i y
astream 

unfolding



Ping-Pong: an invalid program

w:ack

Ping - ii
x

Pong -ii y
Request 
for head



Ping-Pong: an invalid program

w:+{ack:astream}

Ping - iii 
x

Pong - iii y
ack 

unfolding 



Ping-Pong: an invalid program

w:astream

Ping 
x

Pong y
acknowledgement

Back to the original configuration.



Ping-Pong: an invalid program - code
Keep calling itself without 

communicating with its 
external channels



 Bisimulation

Theorem. If configuration C is well-typed then there is an infinite derivation 
for its strong progress property. Moreover, if it C is valid, the infinite 
derivation is a proof.

A valid configuration of processes satisfies 
strong progress

We define strong progress as a predicate



Conclusion

We introduced an infinitary sequent 
calculus for first order intuitionistic 

multiplicative additive linear logic with 
fixed points [2].

Our main motivation for introducing this calculus is 
to reason about programs behaviour. In particular 
we use this calculus to give a direct proof for the 
strong progress property of locally valid binary 
session typed processes [2]. The importance of a 
direct proof other than its elegance is that it can be 
adapted for a more general validity condition on 
processes without the need to prove cut elimination 
productivity for their underlying derivations.



Send me an Email!

fderakhs@andrew.cmu.edu
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