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Abstract—Information flow control type systems statically
restrict the propagation of sensitive data to ensure end-to-end
confidentiality. The property to be shown is noninterference,
asserting that an attacker cannot infer any secrets from made
observations. Session types delimit the kinds of observations
that can be made along a communication channel by imposing
a protocol of message exchange. These protocols govern the
exchange along a single channel and leave unconstrained the
propagation along adjacent channels. This paper contributes an
information flow control type system for linear session types.
The type system stands in close correspondence with intuition-
istic linear logic. Intuitionistic linear logic typing ensures that
process configurations form a tree such that client processes are
parent nodes and provider processes child nodes. To control the
propagation of secret messages, the type system is enriched with
secrecy levels and arranges these levels to be aligned with the con-
figuration tree. Two levels are associated with every process: the
maximal secrecy denoting the process’ security clearance and the
running secrecy denoting the highest level of secret information
obtained so far. The computational semantics naturally stratifies
process configurations such that higher-secrecy processes are
parents of lower-secrecy ones, an invariant enforced by typing.
Noninterference is stated in terms of a logical relation that is
indexed by the secrecy-level-enriched session types. The logical
relation contributes a novel development of logical relations
for session typed languages as it considers open configurations,
allowing for a more nuanced equivalence statement.

I. INTRODUCTION

Message-passing is a successful concurrency paradigm,

adopted by languages such as Erlang, Go, and Rust. In this set-

ting, a program amounts to a number of processes connected

via channels, and computation happens by the concurrent

exchange of messages along these channels. To prescribe the

protocols of message exchange and assert their adherence
at run-time, session types [1], [2] were introduced. Various
session-typed programming languages have been designed

since then [3]–[5] as well as session type libraries for main-

stream languages [6]–[15]. Session types also enjoy a logical

foundation by a Curry-Howard correspondence between linear
logic and the session-typed π-calculus [16]–[18].
Many real-world systems, such as OS processes, Android

apps, and web applications, can naturally be modeled with

session types. In addition to static protocol assurance, the

prevention of information leakage is another desirable property
in such systems. Accidental or malicious leakage can be

prevented by an information flow control (IFC) type system.
Such a type system restricts the propagation of information and

guarantees noninterference, asserting that an adversary cannot
infer any secrets from observing exchanged messages [19],

[20]. While prior work has investigated IFC type systems for

process calculi [21]–[31] as well as run-time monitoring for

OS processes, Android apps, and web applications [32]–[35],

very few IFC session type systems exist [36], [37]. In par-

ticular, no one has investigated information flow types in the

context of linear binary session types based on intuitionistic

linear logic, which naturally accommodate flow sensitivity.
This paper develops a flow-sensitive IFC session type sys-

tem for the language SILLsec and proves noninterference for
SILLsec in addition to type safety. SILLsec is a terminating lan-
guage with higher-order channels, allowing channels to be sent

along channels. It builds on the Curry-Howard correspondence

between intuitionistic linear logic and the session-typed π-
calculus [16], [38]. The intuitionistic foundation turns run-time

configurations of processes into trees, connecting a providing
process with exactly one client.
The SILLsec type system takes advantage of the tree structure

imposed by intuitionism and stratifies process trees according

to the security order. Two secrecy levels are associated with

each process: the maximal secrecy, denoting the maximal
level of information the process may ever obtain, and the

running secrecy, denoting the highest level of information a
process has obtained so far and whose changes are tracked by

the type system. To align the process tree with the security

lattice, typing asserts the following invariant, for any node

in the tree: (i) the maximal secrecy of a child node is at
most as high as the maximal secrecy of the parent node

and (ii) the running secrecy of the parent node is capped by
its maximal secrecy. By complementing the maximal secrecy

with a running secrecy, the SILLsec type system becomes flow-
sensitive, allowing more secure programs to successfully type
check than would be possible with maximal secrecy alone.
Noninterference of SILLsec is stated in terms of a logical

relation [39], [40]. The use of logical relations for session
types has focused predominantly on unary logical relations

(predicates) for proving termination [41]–[43], with the ex-

ception of a binary logical relation for parametricity [44].

Noninterference, however, demands a more nuanced binary

relation, requiring observation of a process’ communication

not only with its client but also with all the processes it is a

client of. We generalize binary logical relations for session-

typed languages to support open configurations, considering
both the antecedent and succedent of the typing judgment.
In summary, the paper makes the following contributions:

• development of an flow-sensitive IFC type system for

binary session types, yielding the language SILLsec;
• proofs of type safety and noninterference of SILLsec;978-1-6654-4895-6/21/$31.00 ©2021 IEEE



• generalization of (binary) logical relations to the session
typed setting, supporting open configurations and higher-

order channels.

Paper structure: Sect. II familiarizes with information flow
control and intuitionistic session-typed programming. Sect. III

develops the main ideas underlying the SILLsec type system,
concretized in Sect. IV. Sect. V develops the main ideas

underlying the session logical relation, detailed in Sect. VI.

Sect. VII proves type safety and noninterference of SILLsec.
Sect. VIII summarizes related and future work. Further tech-

nical developments and proofs can be found in [45].

II. MOTIVATING EXAMPLE

This section provides an introduction to programming with

intuitionistic linear logic session types [3]–[5], [38] based on

a banking example and illustrates violations of end-to-end

confidentiality. We base the discussion on the language SILLsec
that we formalize and for which we prove noninterference in

the remainder of this paper. SILLsec is a terminating language
with higher-order channels, allowing channels to be sent over

channels.

In SILLsec, we can define the protocol according to which an
authorization process interacts with a customer seeking access

to their bank account as follows:

auth = �{tok1 :⊕ {succ: account⊗ 1, fail : 1}, . . . ,
tokn :⊕ {succ: account⊗ 1, fail : 1}}

The connectives �, ⊕, ⊗, and 1 can be found in Table I,
providing an overview of intuitionistic linear session types

and their operational reading. The first column indicates the

session type before the message exchange, the second column

the session type after the exchange. The corresponding process

terms are listed in the third and fourth column, respectively.

The fifth column provides the operational meaning of a con-

nective and the last column its polarity. Positive connectives
have a sending semantics, negative connectives a receiving

semantics.

Linearity ensures that a channel connects exactly two

processes. An intuitionistic viewpoint moreover allows the

distinction of one process as the provider and the other as the
client, where linearity ensures that every providing process has
exactly one client process. As a result, channels in intuitionistic
linear session type languages can be typed with the session

type of the providing process. In developments of linear

session types based on classical logic [17], the two endpoints

of a channel are instead typed separately, using linear negation

to make sure that the two endpoint types are dual to each other.

The fact that a provider process and client process must behave

dually to each other surfaces in an intuitionistic setting at the

level of the process terms, which come in matching pairs.

Table I lists the process term of a provider in the first line for

each connective and the client’s term in the second line.

The above session type auth thus requires the client to send
their authorization token (toki ), after which the authorization
process will respond with succ in case of successful authoriza-
tion and fail , otherwise. In the former case, the authorization

process sends the channel to the customer’s bank account

and then terminates, in the latter case it just terminates. A

corresponding authorization process is implemented for each

customer, accepting only the customer’s authorization token.

We assume that session type auth includes a label toki for
every imaginable authorization token.

We complete the example with the addition of the following

session types:

customer = auth � 1

account = ⊕{high:1, med :1, low :1}
rate = &{lowRate:1, highRate:1}

As the names suggest, customer denotes the protocol of a
customer process, indicating that it is waiting to receive an

authorization channel, after which it eventually terminates. A

bank account process (session type account), on the other
hand, will indicate whether its balance is high (high), medium
(med ), or low (low ) and then terminate. The last session type
rate allows a bank to advertise the current interest rate, for
example by displaying it on a bulletin board.
For our example, we assume that the bank has two cus-

tomers, Alice and Bob, which own accounts with the bank.
In a secure system, Alice’s account can only be queried by
Alice or the bank, but neither by Bob or any walk-in customer.
The same must hold for Bob’s account. We can express these
dependencies by defining corresponding secrecy levels and a
lattice on them:

guest � alice � bank guest � bob � bank

We next show the corresponding process implementations

concerning Alice. We first define process Alice for the alice
customer process:

· � Alice :: y: customer[alice]
y ← Alice ← · = ( // · � y:customer
w ← recv y;w.tok j ; // w:⊕ {succ: account⊗ 1, fail : 1} � y:1
casew (succ ⇒ v ← recvw; // w:1, v:account � y:1

case v (high ⇒ wait v;waitw; close y
| med ⇒ wait v;waitw; close y
| low ⇒ wait v;waitw; close y)

| fail ⇒ waitw; close y))@alice

The first line of the above process definition denotes the

process’ signature. It is in line with the process term typing

judgment introduced in Sect. IV and indicates that process

Alice provides a session of type customer along channel y
without being a client of any other sessions (denoted by · on
the left of the turnstile). The next line introduces the bindings

of channels variables to be used in the body of the process,

appearing to the right of the = sign. We generally use the

symbol ← denote variable bindings. For the time being, we

ignore the secrecy annotations [alice] and @alice.
In its body, the Alice process first receives a channel

to Alice’s authorization process. Along this channel it then

sends Alice’s authorization token. If that token is correct, the

authorization process will respond by sending a channel to

Alice’s account process. Otherwise, the Alice process waits
for the authorization process to terminate and then terminates

itself. In case of successful authentication, the Alice process
queries its account process for its balance, willing to receive



Session type (current / cont) Process term (current / cont) Description Pol
x : ⊕{� : A}�∈L x : Ak x.k;P P provider sends label k along x and continues with P +

casex(� ⇒ Q�)�∈L Qk client receives label k along x and continues with Qk

x : &{� : A}�∈L x : Ak casex(� ⇒ P�)�∈L Pk provider receives label k along x and continues with Pk -
x.k Q Q client sends label k along x and continues with Q

x : A⊗B x : B send y x;P P provider sends channel y:A along x and continues with P +
z ← recv x;Q [y/z]Qz client receives channel y:A along x and continues with Q

x : A � B x : B z ← recv x;P [y/z]Pz provider receives channel y:A along x and continues with P -
send y x;Q Q client sends channel y:A along x and continues with Q

x : 1 - closex - provider sends “end” along x and terminates +
waitx;Q Q client receives “end” along x and continues with Q

TABLE I: Overview of intuitionistic linear session types in SILLsec together with their operational meaning.

any of the labels high , med , or low , and then waits for
the authorization and account processes to terminate, before

terminating itself.

A distinguishing feature of session type programming is

that channels and the processes offering along those channels

change their types along with the messages exchange. It is

instructive to walk through the body of process Alice to follow
these state changes, consulting Table I as needed. We include

annotations as comments, indicating the types of all channels

existing at the various points in the code1.

Next, we show the implementation of Alice’s authorization

process aAuth. This process offers a session of type auth
along its offering channel x and uses a process along channel
u, which offers a choice between access to Alice’s account
process (label s) or a terminating process (label f ). The
aAuth process waits to receive an authorization token along
its offering channel. If the sent token is Alice’s authorization

token (tok j), the authorization process sends the label succ
along its offering channel as well as the label s along channel
u, after which it sends the channel u providing access to Al-
ice’s account process along x and then terminates. Otherwise,
the authorization process sends the labels fail and f along
channel x and u, respectively, waits for u to terminate and
then terminates itself.

u: &{s:account, f :1}[alice] � aAuth :: x:auth[alice]
x ← aAuth ← u = (

casex (tok j ⇒ x.succ;u.s; sendux; closex
| tok i �=j ⇒ x.fail ;u.f ;waitu; closex))@alice

The implementation of Alice’s account process aAcc is
finally shown below. We leave it to the reader to walk through

the code, consulting Table I as needed.

· � aAcc :: u:&{s:account, f :1}[alice]
u ← aAcc ← · = (

caseu (s ⇒ u.high; closeu
| f ⇒ closeu))@alice

It is instructive to look at the implementation of the bank

process, which instantiates our running example. We assume

corresponding process definitions for Bob and the rate to be

displayed on the bulletin board.

1We have omitted secrecy annotations for compactness.
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Fig. 1: State transition in process configuration due to �.

x: auth[alice], y: customer[alice], x′:auth[bob],
y′: customer[bob], u: rate[guest] � Bank :: z:1[bank]
z ← Bank ← x, x′, y, y′, u = (

sendx y; sendx′ y′;u.lowRate;
wait y;wait y′;waitu; close z)@guest

Fig. 1 shows the run-time configuration of processes that exist

before and after executing the first statement in the above code.

Intuitionistic linear typing imposes a tree structure on process
configurations such that client processes are parent nodes and

provider processes child nodes. Fig. 1 also demonstrates that

message exchanges may not only change the type of a channel

and its offering process but also the structure of the tree.

Changes in the tree structure, in particular, are due to the

connectives� and ⊗, which make a sibling subtree the child
of the recipient and a child subtree a sibling of the sender,

respectively.

It is time to ask ourselves whether the Bank process

is actually secure. For this purpose we now consider the

red secrecy annotations [d]. These annotations indicate the
maximal secrecy of a process, i.e., the maximal level of secret
information the process may ever obtain. As to be expected,

the processes Alice, aAuth, and aAcc have maximal secrecy
[alice] because they know Alice’s authorization token and

account balance. Similarly, the processes associated with Bob

have maximal secrecy [bob]. The Bank process itself has the
highest maximal secrecy of [bank]. The process associated
with the rate bulletin board, on the other hand, has the

lowest maximal secrecy [guest] because information about
interest rates are available to any walk-in customer. Given



these annotations and the security lattice defined earlier, we

can conclude that process Bank is secure: it sends Alice’s
authorization process to Alice and Bob’s authorization process

to Bob, but not other way around.

Next, let’s ask the same question for the below LeakyBank
process implementation. As its name suggests, this implemen-

tation is not secure. Information is leaked by sending the

channel to Alice’s authorization process to a customer with

a maximal secrecy of [guest], potentially allowing such a
customer to get access to Alice’s bank account.

x: auth[alice], y: customer[guest] � LeakyBank :: z:1[bank]
z ← LeakyBank ← x, y = (

sendx y; // insecure send
wait y; close z)@guest

While process LeakyBank contains what is referred to as a
direct flow there also exist indirect flows, which are more
subtle. For example, consider the below process definition

SneakyaAuth that not only authenticates Alice but also in-
directly leaks information about whether Alice’s authorization

was successful to the adversary x1.

x1:&{s:1, f :1}[guest],
u: &{s:account, f :1}[alice] � SneakyaAuth :: x:auth[alice]
x ← SneakyaAuth ← u, x1 = (
casex (tok j ⇒ x.succ;u.s;x1.s; // insecure send

sendux;waitx1; closex
| tok i �=j ⇒ x.fail ;u.f ;x1.f ; // insecure send

waitu;waitx1; closex))@alice

Process SneakyaAuth is not secure because the sends to the
adversary x1 with maximal secrecy [guest] happen when
branching on channel x whose maximal secrecy is [alice].

To rule out indirect information flows in SILLsec, we com-
plement the maximal secrecy of a process with its running
secrecy, occurring as green process term level annotations

@c. The running secrecy denotes the highest level of secret
information a process has obtained so far. When defining a

process, a programmer must indicate the process’ maximal

secrecy as well as the initial running secrecy the process starts
out with when spawned. As we will see in Sections IV and

III, the SILLsec type system increases the running secrecy ac-
cordingly whenever information of higher secrecy is received

and disallows sends from contexts of a higher running secrecy

than the one of the receiver.

III. KEY IDEAS - PART I

This section develops the main ideas underlying the SILLsec
type system.

The banking example discussed in the previous section

reveals that a process configuration naturally aligns with

the security lattice of the application: processes with higher

maximal secrecy are ancestors (direct or transitive parents)

of processes with lower or same maximal secrecy. For the

Bank configuration shown in Fig. 1, for example, the Bank
process has the top maximal secrecy [bank] and is the root
process of the configuration, whereas all its descendants (direct

or transitive children) have a lower maximal secrecy.

We can impose this property as a presupposition on the
typing judgment for process terms:

Ψ;Δ � P@c :: (x:A[d])

with presuppositions:

(i) ∀y:B[d′] ∈ Δ(Ψ � d′ � d)

(ii) Ψ � c � d

The typing judgment states that process P with maximal

secrecy [d] and running secrecy @c provides a session of
type A along channel variable x, given the typing of sessions
offered along channel variables in Δ and given the secrecy

levels in the security lattice Ψ. Δ is a linear context that
consists of a finite set of assumptions of the form yi:Bi[d

′
i],

indicating for each channel variable yi its maximal secrecy [d
′
i]

and the offered session type Bi. Channel variables yi must
be unique in Δ and different from x. This well-formedness
condition together with the fact the sequent has exactly one

succedent, turns process configurations into trees. The process

P under consideration is the parent node of all the processes

providing along channels in Δ.

We point out our use of “channel variable” for x and yi.
Channels only exist at run-time, being allocated whenever a

process is spawned and substituted for the channel variables

occurring in process terms. As a result, channel variables can

be α-varied, as usual. For brevity, we will use the term channel
rather than channel variable, whenever the context determines

whether a variable or run-time channel is meant.

The presuppositions guarantee that (i) the maximal secrecy
of a child node is at most as high as the maximal secrecy of

the providing (parent) node and that (ii) the running secrecy of
the providing (parent) node is capped by its maximal secrecy.

By transitivity, assertion (i) holds equally for any descendant
of the providing node. Assertion (ii) ensures that a node can
never obtain more secrets than it is licensed to. We refer to

both assertions as the tree invariant. Stating the tree invariant
as a presupposition requires the process term typing rules to

preserve, but not to establish the invariant. This is sufficient

because the tree invariant holds for any well-typed process

configuration, as expressed by the configuration typing rules

discussed in Sect. IV-C.

The tree invariant is sufficient to rule out any direct flows.

For example, the attempt to send Alice’s authorization process

to a walk-in customer in process LeakyBank (see Sect. II),
violates the tree invariant and thus does not type-check. The

tree invariant, however, is not sufficient to rule out indirect

flows. To tackle indirect flows the type system must make sure

that the running secrecy of a process always soundly reflects

the level of secret information a process has obtained so far.

To this end, it increases the running secrecy upon each receive

and correspondingly guards sends, according to the following

schema:

(i) After receiving a message, the running secrecy of the
receiving process must be increased to at least the
maximal secrecy of the sending process, and



(ii) before sending a message, the running secrecy of the
sending process must be at most the maximal secrecy of
the receiving process.

This schema intimately relies on the tree invariant and uses

the maximal secrecy as a sound approximation for the running

secrecy of a process. We refer to it as the secrecy pas de deux.
The next section puts the discussed ideas into action.

IV. IFC SESSION TYPE SYSTEM

This section formalizes SILLsec, giving the process term
typing, configuration typing, and asynchronous semantics. The

system implements the ideas discussed in the previous section

to rule out both direct and indirect information flows. We defer

proofs of type safety and noninterference to Sect. VII.

A. Process Typing

Our process typing rules are based on the sequent calculus,
leading to a left and a right rule for each connective, describing

the interaction from the point of view of the provider and

client, respectively. We first discuss the rules for the individual

connectives in Table I and then conclude with the judgmental

rules cut and identity.
1) Internal and External Choice: Internal (⊕) and external

(&) choice are the branching constructs, giving the choice to
the provider or the client, respectively.

Ψ;Δ � P@d1 :: y:Ak[c] k ∈ L

Ψ;Δ � (y.k;P )@d1 :: y:⊕ {�:A�}�∈L[c]
⊕R

Ψ � d2 = c 
 d1
Ψ;Δ, x:Ak[c] � Qk@d2 :: y:C[c′] ∀k ∈ L

Ψ;Δ, x:⊕ {� : A�}�∈L[c] � (casex(� ⇒ Q�)�∈L)@d1 :: y:C[c′]
⊕L

Ψ;Δ � Qk@c :: y:Ak[c] ∀k ∈ L

Ψ;Δ � (case y(� ⇒ Q�)�∈I)@d1 :: y:&{� : A�}�∈L[c]
&R

Ψ � d1 � c Ψ;Δ, x:Ak[c] � P@d1 :: y:C[c′] k ∈ L

Ψ;Δ, x:&{� : A�}�∈I [c] � (x.k;P )@d1 :: y:C[c′]
&L

Let’s convince ourselves that the rules preserve the tree

invariant. To preserve the invariant, we may assume that the

invariant holds for the conclusion and must establish it for

the premise. Since the rules do neither add to or remove any

channels from Δ, they preserve the invariant by assumption.
Let’s examine whether the rules implement the secrecy pas

de deux. In case of a receive, the running secrecy of the

continuation must be increased to at least the maximal secrecy

of the sending channel. In ⊕L, the premise d1 � c makes this
adjustment. In &R, no explicit adjustment is needed because
the new running secrecy d1 � c amounts to c, by the tree
invariant. In case of a send, on the other hand, the send is

only admissible if the running secrecy of the sender is at most

the maximal secrecy of the receiving channel. In ⊕R, this
guard (d1 � c) is already established by the tree invariant. &L
explicitly establishes the guard with the premise Ψ � d1 � c.

2) Higher-Order Channels: Tensor (⊗) and lolli (�) de-
note channel output (send) and input (receive), respectively.

Ψ;Δ � P@d1 :: y:B[c]

Ψ;Δ, z:A[c] � (send z y;P )@d1 :: y:A⊗B[c]
⊗R

d2 = c 
 d1 Ψ′ := (Ψ, ψ = c)
Ψ′; Δ, z : A[ψ], x:B[c] � P@d2 :: y:C[c′]

Ψ;Δ, x:A⊗B[c] � (z ← recv x;P )@d1 :: y:C[c′]
⊗L

Ψ′ := (Ψ, ψ = c) Ψ′; Δ, z:A[ψ] � P@c :: y:B[c]

Ψ;Δ � (z ← recv y;P )@d1 :: y:A � B[c]
� R

Ψ � d1 � d Ψ;Δ, x:B[d] � P@d1 :: y:C[c′]

Ψ;Δ, z:A[d], x:A � B[d] � (send z x;P )@d1 :: y:C[c′]
� L

To understand that the rules preserve the tree invariant, it is

helpful to remind ourselves that the connectives ⊗ and �
change the tree structure, making a child a sibling of the

sender and a sibling the child of the recipient, respectively.

⊗R preserves the tree invariant without any extra conditions.

By assumption we know that the maximal secrecy of the sent

channel is equal to the maximal secrecy c of the provider.
Also by assumption, we know that the maximal secrecy of

the provider is less than or equal to the one of its parent,

ensuring that the tree invariant is preserved for ⊗L as well.

⊗R also implements the secrecy pas de deux, since d1 � c
by assumption. While ⊗R license us to assume in ⊗L that

the maximal secrecy ψ of the received channel z is equal
to the maximal secrecy c of the sending channel x, the actual
maximal secrecy level of z is statically unknown. As a result, ψ
stands for a secrecy variable, and we extend the security lattice
with ψ = c. The premise d2 = c�d1 in ⊗L lastly implements
the secrecy pas de deux, raising the running secrecy of the

continuation P to c, unless c � d1. The reasoning for � R
and � L are analogous, but with the roles reversed.

3) Termination: The multiplicative unit (1) denotes process
termination.

Ψ; · � (close y)@d1 :: y:1[c]
1R

Ψ � d2 = c 
 d1 Ψ;Δ � Q@d2 :: y:T [d]

Ψ;Δ, x:1[c] � (waitx;Q)@d1 :: y:C[d]
1L

1R trivially preserves the tree invariant because there is no

continuation and implements the secrecy pas de deux since

d1 � c by assumption. Similarly, 1L preserves the tree

invariant by simply removing a channel from the continuation

and implements the secrecy pas de deux with the left premise.
4) Identity and Cut: Identity and cut are the two rules

that do not result in any communication. Identity amounts to
termination after identifying the involved channels and cut to
process spawning. For simplicity, we do not support process
definitions. The examples from Sect. II can be rewritten by
inlining the body of the process definition when called.

Ψ;x:A[c] � (y ← x)@d1 :: y:A[c]
Fwd

Ψ � d1 � d2 � d′

∀ z:A[c′] ∈ Δ1.Ψ � c′ � d′ Ψ;Δ1 � P@d2 :: x : B[d′]
Ψ � d′ � d Ψ;x : B[d′],Δ2 � Q@d1 :: y:C[d]

Ψ;Δ1,Δ2 � ((xd′ ← P )@d2;Q)@d1 :: y:C[d]
Cut



We briefly comment on Cut. The premise Ψ � d′ � d
establishes the tree invariant for the continuation Q and the

premise ∀ z:A[c′] ∈ Δ1.Ψ � c′ � d′ for the spawned process
P . The premise Ψ � d1 � d2 � d′ is vital to prevent any
indirect flows from Q via P . It ensures that the newly spawned
process has at least the knowledge of secret information that

its spawner has. Thanks to this premise the below insecure

example, which indirectly leaks information about the success

of Alice’s authorization to the adversary x1, is rejected.

x1:&{s:1, f :1}[guest],
u: &{s:account, f :1}[alice] � SneakyaAuth :: x:auth[alice]
x ← SneakyaAuth ← u, x1 = (
casex (tok j ⇒ x.succ;u.s; z1 ← S ← x1; // insecure spawn

sendux;wait z1; closex
| tok i �=j ⇒ x.fail ;u.f ; z1 ← F ← x1; // insecure spawn

waitu;wait z1; closex))@alice

x1:&{s:1, f :1}[guest] � S :: z1:1[alice]
z1 ← S ← x1 = (x1.s;waitx1; close z1)@guest

x1:&{s:1, f :1}[guest] � F :: z1:1[alice]
z1 ← F ← x1 = (x1.f ;waitx1; close z1)@guest

B. Asynchronous Dynamics

We define an asynchronous dynamics for SILLsec because it
is not only more practical but also allows for a more accurate

statement of noninterference. The dynamics is in line with [5],

[46], with the difference that it considers open configurations.

The result is shown in Fig. 3. We first convey the main ideas

and then comment on selected rules.

In an asynchronous semantics only receivers can be blocked,

while senders just output the message and proceed with their

continuation. We model such outputted messages as special

msg(P ) processes that just contain the particular message.
In order to ensure that an outputted message is properly

sequenced with the sender’s continuation, we use forwarding.

Fig. 2 schematically illustrates this idea, showing the case

of a positive (sending) connective in the first line and the
case of a negative (receiving) connective in the second line,
with S and R standing for the sending and receiving process,
respectively. The message process msg(P ) is depicted in red.
This process has a subtree, in case of ⊗ and �. We can

think of the message as being spawned by the sender. This

results in the allocation of a new generation yα+1 of the carrier

channel yα. The forward then links the two generations yα+1

and yα appropriately. In case of a positive connective, yα+1

is forwarded to yα, in case of a negative connective, yα is
forwarded to yα+1. Once the message has been received, it

terminates and yα+1 is substituted for yα in the receiver’s

continuation R′. Messages can be “queued up” as long as the
polarity of the carrier channel stays the same. Session typing

ensures that any messages “in flight” must first be received

before the polarity of the carrier channel changes.

Fig. 3 defines the asynchronous dynamics in terms of

rewriting rules C 	→Δ�Δ′ C′ that rewrite open configuration C
with type Ψ;Δ � C :: Δ′ to open configuration C′ with type
Ψ;Δ � C′ :: Δ′. We detail the configuration typing in the
next section. Cut allocates a fresh channel x0 at generation
0. This channel is substituted for the channel variable x

R

S

yα

yα+1

msg( 〈yα〉; yα ← yα+1)

R’

S

yα+1

Pos:

R′ = [yα+1/yα]R

S

R

Neg:

yα+1

yα

msg( 〈yα〉; yα+1 ← yα)

R′ = [yα+1/yα]R

S

R’

yα+1

Fig. 2: Schematic illustration of asynchronous dynamics.

occurring in the process terms P and Q in the post-state.

The generation α of a channel yα is incremented to α + 1
whenever a new message is spawned, except for 1 because
there is no continuation. Lastly we point out that fwd is not
defined for any channels in Δ′ because those configurations
are considered poised, as we discuss in Sect. IV-D.

C. Configuration Typing
We use the judgment Ψ;Δ � C :: Δ′ to type an open

configuration C. An open configuration consists of an open
forest of processes proc(x[d], P@d1) and messagesmsg(P ).
We refer to the configuration C as open because it is typed
relative to free channels in Δ. While our logical relation is
phrased in terms of an open tree — representing the open
program under consideration — typing of an open forest
is necessitated by the inductive nature of the below rules.
The judgment indicates that C provides sessions in Δ′, using
sessions in Δ, and given the security lattice Ψ. Both Δ′ and
Δ are linear contexts, consisting of a finite set of assumptions
of the form yi:Bi[d

′
i], where yi denotes an actual channel that

has been allocated upon spawning a process. For simplicity,
we do not display a channel’s generation.

Ψ;x:A[d] � · :: (x:A[d])
emp1 Ψ; · � · :: (·) emp2

Ψ � d1 � d ∀y:B[d′] ∈ Δ′
0,Δ(Ψ � d′ � d)

Ψ;Δ0 � C :: Δ Ψ;Δ′
0,Δ � P@d1 :: (x:A[d])

Ψ;Δ0,Δ
′
0 � C,proc(x[d], P@d1) :: (x:A[d])

proc

∀y:B[d′] ∈ Δ′
0,Δ(Ψ � d′ � d)

Ψ;Δ0 � C :: Δ Ψ;Δ′
0,Δ � P@d :: (x:A[d])

Ψ;Δ0,Δ
′
0 � C,msg(P ) :: (x:A[d])

msg

Ψ;Δ0 � C :: Δ Ψ;Δ′
0 � C1 :: x:A[d]

Ψ;Δ0,Δ
′
0 � C, C1 :: Δ, x:A[d]

comp

Rule comp types an open forest, singling out the open tree C1
rooted at x. Rules proc andmsg type open trees, singling out
their root process or message, respectively. Both rules include

sufficient premises to establish the tree invariant. Unlike pro-

cesses, messages have no running secrecy associated because

their running secrecy is determined by the maximal secrecy

of the sender. Sect. VII provides further details. Rules emp1

and emp2, finally, type an empty open forest.



C1proc(yα[c], (yα ← xβ)@d1)C2 �→Δ�Δ′ C1[xβ/yα]C2 (yα ∈ Δ′) fwd
C1proc(yα[c], (x

d ← P )@d2;Q@d1)C2 �→Δ�Δ′ C1proc(x0[d], ([x0/x]P )@d2)proc(yα[c], ([x0/x]Q)@d1)C2 (x0 fresh) Cut
proc(yα[c], (close yα)@d1) C2 �→Δ�Δ′ msg(close yα)C2 1
C1msg(close yα)C′proc(xβ [c

′], (wait yα;Q)@d1)C2 �→Δ�Δ′ C1C′proc(xβ [c
′], Q@(d1 
 c))C2 1

C1proc(yα[c], yα.k;P@d1)C2 �→Δ�Δ′ C1proc(yα+1[c], ([yα+1/yα]P )@d1)msg(yα.k; yα ← yα+1)C2 ⊕
C1msg(yα[c].k; yα ← vδ))C′proc(uγ [c

′], case yα((� ⇒ P�)�∈L)@d1)C2 �→Δ�Δ′ C1C′proc(uγ [c
′], ([vδ/yα]Pk)@(d1 
 c))C2 ⊕

C1proc(yα[c], (xβ .k;P )@d1)C2 �→Δ�Δ′ C1msg(xβ .k;xβ+1 ← xβ)proc(yα[c], ([xβ+1/xβ ]P )@d1)C2 &
C1proc(yα[c], (case yα(� ⇒ P�)�∈L)@d1)C′msg(yα.k; vδ ← yα)C2 �→Δ�Δ′ C1proc(vδ[c], ([vδ/yα]Pk)@c)C′C2 &
C1proc(yα[c], (sendxβ yα;P )@d1)C2 �→Δ�Δ′ C1proc(yα+1[c], ([yα+1/yα]P )@d1)msg(sendxβ yα; yα ← yα+1)C2 ⊗
C1msg(sendxβ yα; yα ← vδ)C′proc(uγ [c

′], (wη ← recv yα;P )@d1)C2 �→Δ�Δ′ C1C′proc(uγ [c
′], ([xβ/wη][vδ/yα]P )@(d1 
 c))C2 ⊗

C1proc(yα[c], (sendxβ uγ ;P )@d1)C2 �→Δ�Δ′ C1msg(sendxβ uγ ;uγ+1 ← uγ)proc(yα[c], ([uγ+1/uγ ]P )@d1)C2 �
C1proc(yα[c], (wη ← recv yα;P )@d1)C′msg(sendxβ yα; vδ ← yα)C2 �→Δ�Δ′ C1proc(vδ[c], ([xβ/wη][vδ/yα]P )@c)C′C2 �

Fig. 3: Asynchronous dynamics of SILLsec.

D. Poised Configuration

What are values in a functional setting are poised configu-
rations here. Prior work [47] has defined that notion only for

closed configurations, and we generalize it to open configura-

tions. An open configuration Ψ;Δ � C :: Δ′ is poised, iff it is
empty or none of its processes and messages can communicate

with each other and there exists at least one process or message

that attempts to communicate along a channel in Δ or Δ′. The
formal definition of poised configurations is given below. For

more details see Definition A.4 in [45].

Definition IV.1 (Poised Configuration). A configuration
Δ1,Δ2 � C1, C2 :: Λ, w:A′[c] is poised iff either C1, C2 is
empty or Δ1 � C1 :: Λ is poised and Δ2 � C2 :: w:A′[c]
is poised. The configuration Δ2 � C2 :: w:A′[c] is poised
iff it cannot take any steps and at least one of the following
conditions hold:

• C2 is an empty configuration.
• C2 = C′

2msg(P )C′′
2 such that msg(P ) is a negative mes-

sage along y ∈ Δ2, i.e. y:&{�:A�}�∈L[c1] � msg(P ) ::
x:Ak[c1] or y:A � B[c1], z:A[c1] � msg(P ) :: x:B[c1],
and both subconfigurations C′

2 and C′′
2 are poised.

• C2 = proc(x[c′], P@d1) C′
2 such that proc(x[c′], P@d1)

attempts to receive along a channel y∈Δ2.
• C2 = C′

2msg(P ) such that msg(P ) is a positive message
sent along w:A′[c], i.e. x:Ak[c] � msg(P ) :: w: ⊕
{�:A�}�∈L[c] or x:B[c], zγ :A[c] � msg(P ) :: w:A ⊗
B[c],or · � msg(P ) :: w:1[c], and subconfiguration C′

2

is poised.
• C2 = proc(w[c], P@d1) C′

2 such that proc(w[c], P@d1)
attempts to receive along w:A′[c].

• C2 = C′
2proc(w

c ← xc@d1) C′′
2 .

V. KEY IDEAS - PART II

This section develops the main ideas underlying the session

logical relation used to prove noninterference of SILLsec. The
next section puts these ideas into action.

Noninterference essentially amounts to a program equiv-
alence up to the secrecy level ξ of the observer, requiring
that two runs of a program may only differ in outputs whose

secrecy level is above or incomparable to ξ. The fundamental

property of the logical relation for noninterference then is

stated for two runs of any open program, showing that the

runs are related, if given related inputs.

In a session-typed setting, open programs amount to open
trees and outputs to messages sent from that open tree. Inputs,
on the other hand, consist of the messages received from any
closing configurations.
Given these basic correspondences, we can develop our ses-

sion logical relation for noninterference schematically based
on Fig. 4. The figure shows two runs D1 and D2 of an
open program with closing substitutions C1, F1 and C2, F2,
respectively, and post-states C′

1D′
1F ′

1 and C′
2D′

2F ′
2, resulting

from a message exchange. The session logical relation now
mandates that D1 and D2 will send the same messages to C1,F1 and C2, F2, respectively, provided that C1, F1 and C2, F2
will send the same messages to D1 and D2, respectively. This
property is expressed as

(C1,D1,F1; C2,D2,F2) ∈ Vξ
Ψ�Δ � K�

where Δ amounts to the typing of channels connecting C1 and
C2 with D1 and D2, respectively, and K to the typing of the

channel connecting D1 and D2 with F1 and F2, respectively.

We refer to Δ and K as the interface of D1 and D2.

Clearly, the above property can only hold for exchanged

messages of at most the observer’s secrecy level. We call

such messages and their carrying channels observable. We
thus phrase the logical relation only over observable channels,

requiring us to determine D1 and D2 for two runs D3 and D4

of an open program, with Ψ;Δ3 � D3 :: K3 and Ψ;Δ4 �
D4 :: K4, such that the observable channels defined by the

projection ⇓ ξ are the same, i.e., Δ3 ⇓ ξ = Δ4 ⇓ ξ = Δ
and K3 ⇓ ξ = K4 ⇓ ξ = K. The left-over, non-observable
channels inΔ3,K3 andΔ4,K4 are closed off and internalized

into D3 and D4, yielding D1 and D2, respectively.
The message exchange depicted in Fig. 4 is a send, denoted

by the red node in D1 and D2. The node is a message
msg(P ), and the figure captures the positive case depicted in
Fig. 2. In the post-states C′

1D′
1F ′

1 and C′
2D′

2F ′
2, this message

is simply pushed into the substitutions F ′
1 and F ′

2. The value
interpretation of (C1,D1,F1; C2,D2,F2) is now phrased in
terms of the transition, requiring that

(C1,D1,F1; C2,D2,F2) ∈ Vξ
Ψ�Δ � K�, if

(C′
1D′

1F ′
1, C′

2D′
2F ′

2) ∈ Eξ
Ψ�Δ′ � K′�



C′
2

C′
1C1

C2

D′
2

D′
1D1

D2

F ′
2

F ′
1F1

F2

Fig. 4: Session logical relation for noninterference: key ideas.

The post-states C′
1D′

1F ′
1 and C′

2D′
2F ′

2 now take any number of
internal transitions until C′′

1 , D′′
1 , F ′′

1 , C′′
2 , D′′

2 , and F ′′
2 are each

individually poised, demanding a message exchange along an
observable channel. We thus require this poised configuration
to be in the value interpretation

(C′′
1 ,D′′

1 ,F ′′
1 ; C′′

2 ,D′′
2 ,F ′′

2 ) ∈ Vξ
Ψ�Δ′ � K′�

The choice to simply push a message msg(P ) across the
interface to the recipient, rather then consuming it with a

corresponding receiving action, allows for more runs to be

soundly equated. In particular, two runs are allowed to differ

in the order in which the messages msg(P ) are consumed by
the recipients, whenever typing ensures that the recipients can

no longer send back any messages to the senders.

Like any logical relation, our session logical relation ac-

counts for the polarity of the connectives in Δ and K.
Moreover, it considers whether the message is being sent along

a channel inΔ or inK. In case the message is being sent along
a channel in Δ, we refer to it as communicating on the left,
otherwise, as communicating on the right. These two dimen-
sions span the space of value interpretations of two program

runs, requiring positive connectives to assert the sending of the
same message in both runs when communicating on the right
and to assume their existence when communicating on the left.
Conversely, negative connectives can assume that the same
messages are being sent in both runs when communicating on

the right and must assert sending of the same message in both
runs when communicating on the left.

VI. NONINTERFERENCE LOGICAL RELATION

In this section we formalize the session logical relation for

noninterference as explained in Sect. V. We are interested

in a property that asserts that two open programs send the

same messages along their observable channels if being closed

with any well-typed configurations. The closing configurations

are assumed to send the same messages along the observable

channels. For this property to hold, the open programs must

agree on their set of observable channels and the closing

configuration have to be well-typed a priori.

For an open program Ψ;Δ1 � D1 :: xα:A1[c1] we
need two closing configurations. One to provide Δ1 without

using any resources, i.e., Ψ; · � C1 :: Δ1. The other to

use xα:A1[c1] as a resource and offer a terminating type,
i.e., Ψ;xα:A1[c1] � F1 :: yα:1[c

′]. The name and secrecy of
the channel provided by F1 is not significant in our setting; yα
can only send a closing message when all observable channels

are already closed. Thus we disregard it and alternatively write

Ψ;xα:A1[c1] � F1 :: ·. We keep in mind that a providing type
· behaves as a terminating channel. In this paper, we often use
K := xα[c]:A | · for the providing channel to account for this
notation.

Our property of interest is formalized in Def. VI.1.

Definition VI.1 (Equivalence up to Observable Messages).
(Δ1 � D1 :: xα:A1[c1]) ≡Ψ

ξ (Δ2 � D2 :: yβ :A2[c2]) is de-
fined as Ψ;Δ1 � D1 :: xα:A1[c1] and Ψ;Δ2 � D2 ::
yβ :A2[c2] and Δ1⇓ξ = Δ2⇓ξ = Δ and xα:A1[c1]⇓ξ =
yβ :A2[c2]⇓ξ = K and for all C1, C2,F1,F2, with Ψ; · � C1 ::
Δ1 and Ψ; · � C2 :: Δ2 and Ψ;xα:A1[c1] � F1 :: · and
Ψ; yβ :A2[c2] � F2 :: ·, we have

(C1D1F1, C2D2F2) ∈ Eξ
Ψ�Δ � K�.

The relation (B1,B2) ∈ Eξ
Ψ�Δ � K� is defined in Fig. 5 2,

line 14. It is an apparatus to track the computation of two

closed configurations B1 and B2 looking for messages being

sent and received along their mutual set of observable channels

Δ andK. The content of messages sent or received along other
channels are not significant and disregarded. In particular,

if the offering channels of the two open programs are not

observable, we dismiss them from consideration and putK = ·
as a placeholder in the relation.

To track the observable messages using Eξ
Ψ, we need to

know that Bi can be broken down into CiDiFi such that Ψ; · �
Ci :: Δ, and Ψ;Δ � Di :: K, and Ψ;K � Fi :: ·. We prove
that this property holds for any Bi that is built by closing an

open program with observable channels Δ on the left and K
on the right. The interested reader can refer to Lemma A.9

and Figure 6 in [45] for further details. The key idea is to

internalize any trees rooted at non-observable channels in the

bottom closing configuration and the closing non-observable

tree constituting the top closing configuration.

After decomposing the configurations B1 and B2 into

C1D1F1 and C2D2F2, respectively, we compute each sub-

configuration separately. We write C,D,F 	→Δ�K C′,D′,F ′

if (i) C 	→·�Δ C′, (ii) D 	→Δ�K D′, and (iii) F 	→K�·
F ′. We are interested in the state in which none of the
subconfigurations can proceed without communicating along

an observable channel. This state is closely related to the

property of being poised introduced in Sect. IV. We call

2For ease of reference in our proofs, we annotate channel names appearing
in process terms with their generations (subscript) and maximal secrecy
(superscript).



(1) (·,D1,F1; ·,D1,F1) ∈ Vξ
Ψ�· � yα:1[c]� (·,D1,F1; ·,D2,F2) ∈ TreeΨ(· � yα : 1[c]) and

D1 = msg(close yc
α) andD2 = msg(close yc

α)

(2) (C1,D1,F1; C2,D2,F2) ∈ (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ � yα : ⊕{�:A�}�∈I [c]) and

Vξ
Ψ�(Δ � yα:⊕ {�:A�}�∈I [c])� D1 = D′

1msg(ycα.k; y
c
α ← uc

δ) and D2 = D′
2msg(ycα.k; y

c
α ← uc

δ) and

(C1D′
1msg(ycα.k; y

c
α ← uc

δ)F1, C2D′
2msg(yc

α.k; y
c
α ← uc

δ)F2) ∈ Eξ
Ψ�Δ � uδ:Ak[c]�

(3) (C1,D1,F1; C2,D2,F2) ∈ (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ � yα:&{�:A�}�∈I [c]), and

Vξ
Ψ�Δ � yα:&{�:A�}�∈I [c]� if (F1 = msg(ycα.k;u

c
δ ← yc

α)F ′
1 and F2 = msg(ycα.k;u

c
δ ← yc

α)F ′
2) then

(C1D1msg(ycα.k;u
c
δ ← yc

α)F ′
1, C2D2msg(ycα.k;u

c
δ ← yc

α)F ′
2) ∈ Eξ

Ψ�Δ � uδ:Ak[c]�

(4) (C′
1C′′

1 ,D1,F1; C′
2C′′

2 ,D2,F2) ∈ (C′
1C′′

1 ,D1,F1; C′
2C′′

2 ,D2,F2) ∈ TreeΨ(Δ � yα:A⊗B[c]) and

Vξ
Ψ�Δ′,Δ′′ � yα:A⊗B[c]� D1 = D′

1T1msg(sendxc
β yc

α; y
c
α ← uc

δ) and
D2 = D′

2T2msg(send, xc
β yc

α; y
c
α ← uc

δ) and
(C′′

1 T1C′
1D′

1msg(sendxc
β yc

α; y
c
α ← uc

δ)F1,

C′′
2 T2C′

2D′
2msg(sendxc

β yc
α; y

c
α ← uc

δ)F2) ∈ Eξ
Ψ�Δ′′ � xβ :A[c]� and

(C′
1D′

1C′′
1 T1msg(sendxc

β yc
α; y

c
α ← uc

δ)F1,

C′
2D′

2C′′
2 T2msg(sendxc

β yc
α; y

c
α ← uc

δ)F2) ∈ Eξ
Ψ�Δ′ � uδ:B[c]�

(5) (C1,D1,F1; C2,D2,F2) ∈ (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ � yα:A � B[c]) and

Vξ
Ψ�Δ � yα:A � B[c]� if (F1 = T1msg(sendxc

β yc
α;u

c
δ ← yc

α)F ′
1 and

F2 = T2msg(sendxc
β yc

α;u
c
δ ← yc

α)F ′
2) then

(C1T1D1msg(sendxc
β yc

α;u
c
δ ← yc

α)F ′
1,

C2T2D2msg(sendxc
β yc

α;u
c
δ ← yc

α)F ′
2) ∈ Eξ

Ψ�Δ, xβ :A[c] � uδ:B[c]�

(6) (C1,F1,D1; C2,F2,D2) ∈ (C1,F1,D1; C2,F2,D2) ∈ TreeΨ(Δ, yα:1[c] � K) and

Vξ
Ψ�Δ, yα:1[c] � K� if (C1 = C′

1msg(close yc
α) and C2 = C′

2msg(close yc
α)) then

(C′
1msg(close yc

α)D1F1, C′
2msg(close yc

α)D2F2)Eξ
Ψ�Δ � K�

(7) (C1,D1,F1; C2,D2,F2) ∈ (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ, yα:⊕ {�:A�}�∈I [c] � K) and

Vξ
Ψ�Δ, yα : ⊕{�:A�}�∈I [c] � K� if (C1 = C′

1msg(ycα.k; y
c
α ← uc

δ) and C2 = C′
2msg(yc

α.k; y
c
α ← uc

δ)) then
(C′

1msg(ycα.k; y
c
α ← uc

δ)D1F1, C′
2msg(ycα.k; y

c
α ← uc

δ)D2F2)

∈ Eξ
Ψ�Δ, uδ:Ak[c] � K�

(8) (C1,D1,F1; C2,D2,F2) ∈ (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ, yα:&{�:A�}�∈I [c] � K) and

Vξ
Ψ�Δ, yα:&{�:A�}�∈I [c] � K� D1 = msg(ycα.k;u

c
δ ← yc

α)D′
1 and D2 = msg(ycα.k;u

c
δ ← yc

α)D′
2 and

(C1msg(ycα.k;u
c
δ ← yc

α)D′
1F1,

C2msg(ycα.k;u
c
δ ← yc

α)D′
2F2) ∈ Eξ

Ψ�Δ, uδ:Ak[c] � K�

(9) (C1,D1,F1; C2,D2,F2) ∈ (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ, yα:A⊗B[c] � K) and

Vξ
Ψ�Δ, yα:A⊗B[c] � K� if (C1 = C′

1T1msg(sendxc
β yc

α; y
c
α ← uc

δ) and
C2 = C′

2T2msg(sendxc
β yc

α; y
c
α ← uc

δ)then
(C′

1T1msg(sendxc
β yc

α; y
c
α ← uc

δ)D1F1,

C′
2T2msg(sendxc

β yc
α; y

c
α ← uc

δ)D2F2) ∈ Eξ
Ψ�Δ, xβ :A[c], uδ:B[c] � K�

(10) (C′
1C′′

1 ,D1,F1; C′
2C′′

2 ,D2,F2) ∈ (C′
1C′′

1 ,D1,F1; C′
2C′′

2 ,D2,F2) ∈ TreeΨ(Δ
′,Δ′′, yα:A � B[c] � K) and

Vξ
Ψ�Δ′,Δ′′, yα:A � B[c] � K� D1 = T1msg(sendxc

β yc
α; ;u

c
δ ← yc

α) D′′
1 and

D2 = T2msg(sendxc
β yc

α; ;u
c
δ ← yc

α)D′′
2 and

(C′′
1 T1C′

1msg(sendxc
β yc

α;u
c
δ ← yc

α)D′′
1F1,

C′′
2 T2C′

2msg(sendxc
β yc

α;u
c
δ ← yc

α)D′′
2F2) ∈ Eξ

Ψ�Δ′ � xβ :A[c]� and
(C′

1C′′
1 T1msg(sendxc

β yc
α;u

c
δ ← yc

α)D′′
1F1,

C′
2C′′

2 T2msg(sendxc
β yc

α;u
c
δ ← yc

α)D′′
2F2) ∈ Eξ

Ψ�Δ′′, uδ:B[c] � K�

(11) (C1,D1,F1; C2,D2,F2) ∈ (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ
′, yα:A[c] � K) and

Vξ
Ψ�Δ � yα:A[c]� D1 = D′

1proc(y
c
α, y

c
α ← xc

β@d1) andD2 = D′
2proc(y

c
α, y

c
α ← xc

β@d2) and

([xc
β/y

c
α]C1D′

1F1, [x
c
β/y

c
α]C2D′

2F2) ∈ Eξ
Ψ�Δ � xβ :A[c]�

(12) (C1,D1,F1; C2,D2,F2) ∈ (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ
′, yα:A[c] � K) and

Vξ
Ψ�Δ, yα:A[c] � K� if (C1 = C′

1proc(y
c
α, y

c
α ← xc

β@d1) and C2 = C′
2proc(y

c
α, y

c
α ← xc

β@d2)) then

([xc
β/y

c
α]C′

1D1F1, [x
c
β/y

c
α]C′

2D2F2) ∈ Eξ
Ψ�Δ, xβ :A[c] � K�

(13) (B1,B2) ∈ Vξ
Ψ�· � ·� (B1,B2) ∈ TreeΨ�· � ·�

(14) (B1,B2) ∈ Eξ
Ψ�Δ � K� B1 = C1D1F1 andB2 = C2D2F2 and (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ � K),

and C1,D1,F1 �→poised
Δ�K C′

1,D′
1,F ′

1 and C2,D2,F2 �→poised
Δ�K C′

2,D′
2,F ′

2

and (C′
1,D′

1,F ′
1; C′

2,D′
2,F ′

2) ∈ Vξ
Ψ�Δ � K�.

(15) (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ � K) Ψ; · � C1 :: Δ, andΨ; · � C2 :: Δ, Ψ;Δ � D1 :: K andΨ;Δ � D2 :: K
andΨ;K � F1 :: · andΨ;K � F2 :: ·

Fig. 5: Session Logical Relation for Noninterference: property (left), condition (right).



Ci,Di,Fi poised if its subconfigurations Ci, and Di, and Fi

are poised. We write Ci,Di,Fi 	→poised
Δ�K C′

i,D′
i,F ′

i stating that

Ci,Di,Fi 	→∗
Δ�K C′

i,D′
i,F ′

i and C′
i,D′

i,F ′
i is poised. (	→∗

Δ�K

refers to zero or more steps taken with 	→Δ�K .)
To relate two poised configurations we use the value relation

Vξ
Ψ�Δ � K�. This relation establishes equality of the content
of every message fired from D1 and D2 before adding them to

the closing configurations Ci and Fi (See Fig. 4). In the case

of sending higher order channels (lines 4 and 10 in Fig. 5),

we further assure that the trees sent along the messages are
also related and will behave similarly when received by the

closing configuration.
For the messages being fired from the poised closing

configurations Ci and Fi, we assume that they have the same
content ready to be moved to D1 and D2. In particular for

higher order channels (lines 5 and 9 in Fig. 5) we assume
the channels sent by the closing configurations will send the

same observable messages too. We add the received channels

to the set of observable channels to make sure that the open

programs do not send them different messages.
A forwarding process does not send or receive an ex-

plicit message. However, when process proc(y[c], yα ← xβ)
forwards channel (xβ) to an observable channel (yα) the
substitution of xβ for yα amounts to a broadcast of the name
of xβ along the observable channel yα. The channel xβ has a

secrecy level lower than or equal to the observer and now can

be observed too. In our relation (line 11 of Fig. 5) we assert
that such forwarding rules in D1 and D2 always broadcast the

same names. In the dual case (line 12 of Fig. 5) we assume
that the closing configurations C1 and C2 broadcast the same
names. In both cases we continue by monitoring the rest of

the computation along xβ . The same holds for a forwarding

on the tail of a message.
The well-foundedness of our logical relation is based on a

lexicographic order on the structure of observable types and

a multiset order < on the size of configurations. The order <
is a multiset order on finite multiset M of the process typing

judgments Ψ;Δ′′ � P :: yγ :A[d] used in the typing derivation
of C. Process typing judgments are ordered based on the size
of the process term. As a result, well-foundedness of < follows
from the well-foundedness of process terms [48].

VII. METATHEORY

In this section we establish the main properties of the

system. We show that SILLsec is a terminating language with
the standard preservation and progress properties. More impor-

tantly, we prove that it enjoys the noninterference property.

Theorem VII.1 (Preservation). If Ψ;Δ � C :: Δ′ and
C 	→Δ�Δ′ C′, then Ψ;Δ � C′ :: Δ′. Moreover C′ < C by
the multiset ordering.

Proof. The proof is by case analysis of C 	→Δ�Δ′ C′ and
inversion on the typing judgment Ψ;Δ � C :: Δ′. See
Theorem A.5 in [45] for details.

Theorem VII.2 (Progress). If Ψ;Δ � C :: Δ′, then either
C 	→Δ�Δ′ C′ or C is poised.

Proof. The proof is by induction on the configuration typing
of C. See Theorem A.6 in [45] for details.

Termination of SILLsec follows from Thm. VII.2 and

Thm. VII.1 and well-foundedness of the < order.

The fundamental property of our logical relation is nonin-

terference stated as below.

Theorem VII.3 (Noninterference). For all security levels ξ
and configurations Ψ;Δ � D :: xα:T [c], we have

(Δ � D :: xα:T [c]) ≡Ψ
ξ (Δ � D :: xα:T [c]).

Our noninterference theorem asserts that a well-typed open

configuration D is equivalent to itself. It states that if we run

a program twice but with different closing configurations, the

contents of messages sent by the program along the observable

channels will be the same in both runs. The assertion is based

on the assumption that the closing configurations send the

same messages along the observable channels in both runs.

The two runs start out as D, guaranteeing that their tree
structure is identical and their processes are running the same

code. The two runs continue to be identical until a process in

each run receives a message from a closing configuration along

a non-observable channel. The received messages may differ

in contents because the carrier channel’s maximal secrecy

is higher than or incomparable to ξ. Based on the contents
of the received message, the two runs may choose different

continuations, after which they begin to diverge in their tree

structure and the code the individual processes are running.

On the other hand, the running secrecy of the receiving

processes will be adjusted upon receiving to become higher

or incomparable to ξ. This adjustment makes sure that the
receiving processes can no longer send any messages along

channels of lower or equal secrecy than the observer. In

particular, they cannot send a message along an observable

channel. We call such processes that can no longer affect any

observable messages irrelevant.
Throughout the computation, the code and structure of

some processes may diverge as they receive non-observable

messages. However, the relevant processes, i.e., the processes
that can affect the contents of observable messages, stay iden-

tical. Later in this section, we state the fundamental theorem

(Thm. VII.6) that proves two configurations to be equivalent up

to observable messages if their relevant processes are identical.

The noninterference property is then an immediate corollary

of the fundamental theorem.

Before stating the fundamental theorem, we need to define

the notion of a relevant process. We discussed earlier that a

process with running secrecy higher or incomparable to the

observer’s secrecy level is irrelevant. An irrelevant process

can no longer spawn any observable messages. Moreover,

if it sends a message along a non-observable channel, then

the receiver becomes irrelevant too. There is another form of

irrelevant process with running secrecy less than or equal to ξ
but with paths to observable channels passing through channels

with maximal secrecy level higher than or incomparable to ξ.



These channels block the flow of information because any

process receiving along such a channel becomes irrelevant.

To establish a sound definition of relevant processes

and messages for the asynchronous semantics, we need

a lookahead for the running secrecy. Consider a process

case yc(· · · )@d1 in the open program and its counterpart

case yc(· · · )@d1 in the other run. They both have running
secrecy d1 � ξ, and are ready to receive a label along a
non-observable channel y[c]. By the previous discussion, right
after receiving a label the two processes become irrelevant.

The non-observable messages may not be ready at the same

time. For example, the process in the first run may receive the

message right away and become irrelevant, while the other

process may need to wait for a while. This results in a dis-

crepancy between relevant processes in the two runs. However,

these processes cannot affect any observable channels even

before they receive a channel. Based on their code they can

only receive in the current step and right after the receive

they become irrelevant. To account for delays in the receives,

we label these two processes as irrelevant even before they

receive, using a lookahead called quasi running secrecy. The
quasi running secrecy of a receiving process is defined as its

running secrecy at the next step, i.e., right after the receive.

We determine the running secrecy of a message to be the

maximal secrecy of the channel that the message is sent along.

However, messages are only temporary holders of a label

or tree that they transport. Unless a message is observable,

i.e., sent to a closing configuration, its contents can only affect

an observable channel after it is received by a process. The
quasi running secrecy of a message accounts for this and

reflects the future potential of a message once it is received

and is determined by examining the running secrecy of the

recipient. In case of a negative message (see Fig. 2), the

receiver is a child of the message. By the tree invariant,

the running secrecy of the child is less than or equal to the

maximal secrecy of the carrier channel. After receiving the

message the running secrecy of the receiver will be equal to

the maximal secrecy of the carrier channel. As a result, the

quasi running secrecy of a negative message amounts to the

maximal secrecy of the channel along which the message is

sent. In case of a positive message (see Fig. 2), the receiver is

the parent of the message. The running secrecy d1 of the parent
may be higher or incomparable to the maximal secrecy c of
the carrier channel. After the message is received, the running

secrecy of the parent is adjusted to at least c�d1. As a result,
we determine the quasi running secrecy of a positive message

to be the running secrecy of its parent after the message has

been received (c � d1).

The notions of quasi running secrecy and relevancy are

formally defined in Def. VII.4 and Def. VII.5

Definition VII.4 (Quasi Running Secrecy). In the configura-
tion tree, the quasi running secrecy of a message or process
is determined based on its running secrecy, its process term,
and the running secrecy of its parent.

• If the node is a process with a process term other than

recv or case, then its quasi running secrecy is equal to
its running secrecy.

• If the process term is of the form case ycα(� ⇒
P�)�∈L@d1 or xψ ← recv ycα;Px@d1, then its quasi
running secrecy is d1 � c.

• If the node is a message of a negative type along channel
ycα, its quasi running secrecy is c.

• If the node is a message of a positive type along channel
ycα and it has a parent with quasi running secrecy d1, its
quasi running secrecy is d1 � c.

The quasi running secrecy can be determined by traversing
the tree top to bottom.

Definition VII.5 (Relevant Channels and Processes). Consider
configuration Δ � D :: K and observer level ξ. A channel is
relevant in D if 1) it is has a maximal secrecy level lower than
or equal to ξ, and 2) it is either an observable channel or it
shares a process or message with quasi running secrecy less
than ξ with a relevant channel. (A channel shares a process
with another channel if they are siblings or one is the parent
of another.)

The set of all relevant channels can be found by traversing
the tree bottom-up. If K is observable, then by the tree
invariant, every channel in D will be relevant.

A relevant process or message has quasi running secrecy
less than or equal to ξ and at least one relevant channel.
C⇓ξ are the relevant processes and messages in C. We write
C1⇓ξ =ξ C2⇓ξ if they are identical up to renaming of channels
with higher or incomparable secrecy than the observer.

The fundamental theorem is stated as below.

Theorem VII.6 (Fundamental Theorem). For all security
levels ξ, and configurations Ψ;Δ1 � D1 :: uα:A1[c1] and
Ψ;Δ2 � D2 :: vβ :A2[c2] with D1⇓ξ = D2⇓ξ, Δ1 ⇓ ξ = Δ2 ⇓
ξ, and uα:A1[c1] ⇓ ξ = vβ :A2[c2] ⇓ ξ we have

(Δ1 � D1 :: uα:A1[c1]) ≡Ψ
ξ (Δ2 � D2 :: vβ :A2[c2]).

Proof. The proof is by induction on the type structure and the
multiset ordering. For the details see Theorem A.13 in [45].

To prove that our fundamental theorem entails the desired

property, we define an alternative stepping definition ↪→Δ�K

for a closed configuration C,D,F ∈ Tree(Δ � K). Where
C,D,F ∈ Tree(Δ � K) is defined as · � C :: Δ, and
Δ � D :: K, and K � F :: y:1[c]. The idea is to run
this closed configuration to completion, while accumulating

the messages exchanged between the open program D and

closing configurations C and F in a queue. To this end, we

define C,D,F ↪→Δ�K queue by first stepping C,D,F in

terms of 	→poised
Δ�K until we get a configuration C′,D′,F ′ that

is poised (i.e., C,D,F 	→poised
Δ�K C′,D′,F ′) and then append

to the queue the message that is waiting to be sent. For

example, C,D′′msg(ycα.k; y
c
α ← uc

δ),F ↪→Δ�yα:⊕{�:A�}�∈L[c]

queue′msg(ycα.k; y
c
α ← uc

δ), where queue′ is a recursive in-
vocation (i.e., C,D′′,msg(ycα.k; y

c
α ← uc

δ)F ↪→Δ�uδ:Ak[c]

queue′). We use an overline to indicate the direction of a



message: msg( ) denotes a message sent from D to C or F
and msg( ) denotes a message sent from C or F to D. The
complete definition of ↪→Δ�K is given in Figure 7 in [45].

It is straightforward to show that CDF 	→∗
·�· msg(close )

if and only if for some queue, we have C,D,F ↪→Δ�K queue,
where queue is the list of observable messages being ex-
changed between D and the closing configurations C and F
along Δ and K.

Definition VII.7. Define queue1 =ξ queue2 as either
• queue1 = queue2 = ·, or
• queue1 = q1 queue

′
1, and queue2 = q2 queue

′
2, and q1 =

q2, and queue′1 =ξ queue′2, or
• queue1 = q1 queue

′
1, and queue2 = q2 queue

′
2, and if

q1 = q2 then queue′1 =ξ queue′2.

Theorem VII.8. For (C1,D1,F1; C2,D2,F2) ∈ TreeΨ(Δ � K),
if (C1D1F1; C2D2F2) ∈ Eξ

Ψ�Δ � K�, then

(C1,D1,F1) ↪→Δ�K queue1 and (C2,D2,F2) ↪→Δ�K queue2

such that queue1 =ξ queue2.

Proof. The proof is straightforward by matching the cases in
the definition of E with the cases in the definition of ↪→Δ�K .

VIII. RELATED AND FUTURE WORK

Related work can be categorized along the following axes:

a) IFC Type Systems for Functional and Imperative
Languages: Volpano et al.’s seminal paper [19] has spurred
a multitude of work on IFC type systems for sequential

programs (c.f., [20]). Our noninterference definition is inspired

by Bowman et al.’s work, which also defines noninterference

in terms of a logical relation [49], albeit in a sequential context.

b) IFC Type Systems for Process Calculi: IFC type

systems have also been explored for process calculi with the

goal to prevent information leakage through process commu-

nications [21]–[31]. Many of these works associate a security

label either with types or channels. Yoshida et al. associate

the security label with actions [22]; Hennessy and Riely

associate read and write policies with channels [27], [28];

and Crafa et al. associate a security label with the process

and capabilities with expressions [23]. In contrast, our system

associates two security labels, the running secrecy and the

maximal secrecy, with every process. The use of two labels

also sets our system apart from prior work in that it is flow-

sensitive: the running secrecy increases as the process receives

more information. Flow sensitivity of our system can elegantly

be accommodated by our tree invariant, given a formulation

based on intuitionistic linear logic session types. Some of the

existing work also consider declassification [25], [26], which

we leave as future work.

Timing channels and race conditions can contribute to

information leakage. Unlike prior work [29], [30], our linear

types ensure progress, termination, and freedom of race condi-

tions; and therefore do not need additional checks to rule out

such leaks. Prior work also proposed different noninterference

definitions, relying on barbed-congruence, P-congruence, may-

testing and must-testing, per-models, and trace equivalence.

Our noninterference definition is based on a novel binary

session logical relation. It is closest to barbed-congruence

definitions and entails trace equivalences. Since our processes’

behavior is finite, we do not need co-inductive definitions.

c) IFC for Multiparty Session Types: Only recently,

have researchers investigated incorporating information flow

security into session types [36], [37], [50], [51]. In addition to

developing information flow session type systems that allow

declassification [36], [37], researchers also designed flexible

run-time monitoring techniques for preventing information

leakage [50], [51], all in the context of multiparty session

types. Ours is the first information flow binary session type

system. Again, our flow-sensitive type system and logical

relation-based definition for noninterference sets us apart from

existing work.

d) Hybrid Logic Modal Worlds in Session Types: Our
typing judgment includes world modalities from hybrid logic

as syntactic objects in propositions, where worlds amount

to secrecy levels. A hybrid logic approach has been used

in prior work on binary session types to ensure deadlock-

freedom of shared binary session types [52] and accessibility

in linear binary session types [53]. Our work differs not only

in the established property of interest (noninterference) but

also in the use of a novel binary relation for session types.

Possible worlds have also been used by Brookes [54] to give a

denotational semantics of parallel Algol with shared variables,

allowing reasoning about safety and liveness properties of

parallel programs.

e) Logical Relations for Session Types: The application
of logical relations to session types has focused predominantly

on unary logical relations (predicates) for proving termina-

tion [41]–[43] with the exception of a binary logical relation

for parametricity [44]. Noninterference, however, demands a

more nuanced binary relation, requiring observing a process’

communication not only with its client but also with all

the processes it is a client of. Our work generalizes binary

logical relations for session typed languages to support open
configurations, considering both the antecedent and succedent
of the typing judgment. Interestingly, Kavanagh [55] makes

a similar generalization, albeit in the context of bisimulations

and barbed congruences. While we have defined the logical

relation for noninterference, we believe that the technical

developments in this paper can serve as a stepping stone for

future explorations.

f) Kripke Logical Relations: Conceptually, our work

seems related to Kripke logical relations [56] and in particular

the works that use possible worlds [57] and state machines [58]

to impose invariants on program heaps. In our setting, the

program heap is a configuration of processes. Session types

constrain how the configuration can evolve, and configuration

typing asserts that configurations align with the security lattice.

It seems that our secrecy-level-enriched session types internal-

ize Kripke logical worlds into the type system. We would like

to explore this connection in future work.
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