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Abstract

Session types describe the communication behavior of interacting processes. Binary session

types, in which each channel has two endpoints, corresponds to intuitionistic linear logic by a

Curry-Howard interpretation of propositions as types, proofs as programs, and cut reduction

as communication. �is interpretation provides a solid foundation for reasoning about the be-

havior of session-typed processes. For example, termination of a process can be inferred from

the cut elimination property of its underlying proof. However, as soon as we add recursive ses-

sion types we abandon this correspondence and lose our solid ground. From the programming

perspective it means that we can no longer exploit the cut elimination property to guarantee

termination.

�is document establishes a logical foundation for recursive binary session-typed processes

using in�nitary proof systems for linear logic. We show that if we re�ne recursive types as

least and greatest �xed points and impose a guard condition on recursive processes, we can still

guarantee meaningful communication, ensuring that a program always terminates either in an

empty con�guration or one a�empting to communicate along external channels. To develop

this logical foundation, we appeal to two well-known paradigms that relate programs to logical

systems: types-as-propositions and processes-as-formulas.
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Chapter 1

Introduction

Proof theory as we know it today is built upon Hilbert’s e�orts to prove the consistency of

mathematics. Hilbert’s radical foundational goal to prove consistency was abandoned a�er

Gödel presented his incompleteness theorems; however, the logical structure further estab-

lished based on Hilbert’s e�orts became a foundation for computer science and particularly

programming languages. Proof theory has heavily in�uenced the development of program-

ming languages and provided new insights into designing new computational systems. �is

thesis exploits this foundation to study termination of concurrent recursive programs.

1.1 Logic and programming languages

Two main paradigms have endorsed the foundational role of logical proofs in formalizing pro-

gramming languages: types-as-propositions and programs-as-formulas.

• �e types-as-propositions paradigm, also known as Curry-Howard correspondence,

has its roots in Curry’s [20] discovery that axiomatic schemas correspond to types of

combinators and Howard’s [56] interpretation of simply-typed λ-calculus in intuitionis-

tic natural deduction. Under this interpretation, types correspond to propositions, pro-

grams to proofs, and computations to proof reductions.

�e (simply-typed) λ-calculus is the original (statically-typed) functional programming

language introduced by Church [19]. Like all other functional programming languages,

the (simply-typed) λ-calculus emphasis is on interpreting the computation as the eval-
uation of a function. Evaluating functions in nature gives rise to a model with a uni-

directional �ow from the inputs to the output. �is uni-directional �ow results from

the asymmetric behavior of functions toward their inputs and output. �e asymmetry

manifests itself in the corresponding natural deduction system too, where all logically

genuine rules apply to the succedents.

1



Introduction 2

More recently, a correspondence between linear logic [41] and binary session types (ei-

ther in its intuitionistic [15, 16] or classical [98] formulation) has been recognized. Ses-

sion types provide a typed foundation for communication centered programming (CCP).

As opposed to the uni-directional nature of functions, the structural units of CCP are

bi-directional communicating sessions (or processes) connected by channels. �e com-

munications along channels are governed by a protocol associated with them. �ese

protocols are expressed as session types. A collection of interrelated processes is called

a con�guration. Binary session types, is a particular form of session types in which each

channel has two endpoints. A binary channel connects the provider of a resource to its

client. When such a channel connects two processes within a con�guration of processes

it is considered internal and private; other external channels provide an interface to a

con�guration and communication along them may be observed.

Caires and Pfenning [15] interpret a binary session type system as a Gentzen-style se-

quent calculus for intuitionistic linear logic. Under this interpretation, propositions are

associated with session types, proofs in the sequent calculus with concurrent processes,

and cut reduction with communication. �ey show that the le� and right rules for each

connective in the linear logic capture a principal action in session types, e.g., sending or

receiving a label/channel to or from the le� and right.

�e Curry-Howard correspondence provides a solid ground for studying and reasoning

about programming languages. For example, proving deadlock freedom for interrelated

binary session-typed processes follows from cut-reduction for each connective in the

underlying sequent calculus. Moreover, a terminating cut-elimination algorithm for the

underlying proofs ensures termination of concurrent processes

• Logic programming, in general, expresses programs as formulas and computation as

proof construction. As a particular case, Miller [68] introduced theprocesses-as-formulas
paradigm to express processes in the π-calculus as formulas in linear logic. His approach

is based on the observation that linear logic is a suitable interface between computer sci-

ence and logic; it can model the dynamics of processes by describing the state of a process

and its resources as a linear formula. In this interpretation, a computation of a process

corresponds to the construction of its corresponding formula proof, and logical implica-

tion gives rise to a process preorder. �is approach has been used to prove properties

about processes, e.g., proofs of deadlock-freedom for (recursive) session types [54], and

bisimilarity for π-calculus processes [96].

1.2 Recursion and termination

In the context of programming, recursive session types and recursive processes have also been

considered [60, 97]. Together they can capture unbounded interactions between processes.

�ey seem to �t smoothly, just as recursive types �t well into functional programming lan-

guages. However, this comes at a price: we abandon the proposition-as-types correspondence.
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From the programming perspective it means that we can no longer exploit the cut elimination

property to guarantee termination of programs.

Even in the presence of the recursive session types and recursively de�ned processes, the pro-

cess typing rules guarantee deadlock-freedom, also known as the progress property [15, 97].

�e progress property for a con�guration of processes ensures that during its computation, it

either (i) takes an internal communication step, or (ii) is empty, or (iii) communicates along

one of its external channels. However, we may spawn a vacuous process that will get stuck

in an in�nite number of internal communication steps without ever communicating along an

external channel. �e programmer will generally be interested in a stronger form of progress

that restricts this non-communicating behavior. We introduce strong progress that requires

any of conditions (ii) or (iii) to hold a�er a �nite number of computation steps. �is strong

version of the progress property ensures that a con�guration terminates either in an empty

con�guration or one a�empting to communicate along an external channel.

�is is similar to the functional programming se�ing with general recursive types. Without

any restrictions on the programs or types, a well-typed program may diverge and never return

a value.

1.3 Our work

�e main thesis can be summarized as follows:

Even in the presence of recursion, we can retain the propositions-as-types correspon-
dence between linear logic and session-typed concurrent programs if we (a) re�ne
general recursive session types into least and greatest �xed points, and (b) impose con-
ditions under which recursively de�ned processes correspond to valid circular proofs.
With this approach we can retain the correspondence between cut elimination, and
meaningful communication with type preservation and strong progress.

General (nonlinear) type theory has followed a similar path, isolating inductive and coinductive

types with a variety of conditions to ensure validity of proofs. Mendler [65, 66] �rst formal-

ized inductive and coinductive types in simply-typed lambda calculus. He imposed a simple

positivity condition on types and proved normalization of the calculus. �e recursion schema

introduced by Mendler resembles general recursion, but its power is limited to primitive re-

cursion [65] through typing. Moreover, the use of Mendler’s recursive types is restricted in the

sense that it can reason about recursive types using the recursion principle but cannot unfold

their de�nitions directly. Our system resembles Mendler-style languages as we also introduce

inductive and coinductive types to our language. However, in contrast to Mendler’s system,

our language has the full power of general recursion schema, and we unfold the de�nition

of the inductive and coinductive types directly both on the le� and right of the judgment.

Moreover, in the se�ing of linear logic, we �nd many more symmetries than typically present
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in traditional type theories that appear to be naturally biased towards least �xed points and

inductive reasoning.

1.3.1 Design choice: rules for �xed points

�ere are two main approaches for incorporating �xed points in a linear logic proof system.

One approach studied by Baelde and Miller [8] yields a �nitary system that enjoys the cut elim-

ination property but not the sub-formula property. �e other approach results in an in�nitary

system that maintains the sub-formula property but not necessarily the cut elimination prop-

erty [7, 33, 36]. �e in�nitary systems for linear logic are always equipped with additional

conditions on derivations to ensure the cut elimination property. We can represent some in-

�nitary derivations, called circular derivations, as �nite trees with loops (or circular edges).

We choose to build the typing rules for least and greatest �xed points of session types upon

an in�nitary proof system since it requires a minimal change to the system of session types.

�is is in contrast to the design choice made by Lindley and Morris [60] to build their system

for recursive session-typed processes based on the �nitary system introduced by Baelde and

Miller [8]. In our design, the recursive process calls are supported as they correspond to circular

edges in the derivation. Moreover, the le� and right unfolding rules for general recursive types

remain intact when re�ned into least and greatest �xed points; the le� and right rules for both

�xed points unfold the de�nition of a recursive type. �e rules of least and greatest �xed points

are only di�erentiated by their di�erent semantics. As a drawback, we need to provide an extra

condition on the processes to ensure strong progress.

A similar design choice exists when considering inductive and coinductive types in the se�ing

of functional programming. One may choose to work with an in�nitary system that requires

additional guard conditions but is closer to the recursive programming schema, or a �nitary

system with a simpler condition but not ergonomically suitable for implementing recursion.

1.3.2 Design choice: subsingleton fragment

Subsingleton logic is a fragment of intuitionistic linear logic [18, 41] in which the antecedent

and succedent of each judgment consist of at most one proposition. �is reduces consideration

to the additive connectives and multiplicative units, because the le� or right rules of other

connectives would violate this restriction. �e expressive power of pure subsingleton logic is

rather limited, among other things due to the absence of the exponential !A. However, we can

recover signi�cant expressive power by adding least and greatest �xed points, which can be

done without violating the subsingleton restriction.

In this thesis we focus mainly on binary session types de�ned over the subsingleton fragment

of linear logic. In this fragment each process uses the service of at most one process on its le�

and provides its own resource to the right. Moreover, we allow least and greatest �xed points
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and recursively de�ned processes that correspond to circular derivations in the underlying

logic. �e computational power of the subsingleton fragment in the presence of recursion is

surprisingly as good as Turing machines [31].

We think of the subsingleton fragment as a laboratory in which to study the properties and

behaviors of least and greatest �xed points in their simplest nontrivial form, following the

seminal work of Fortier and Santocanale [36].

1.3.3 Our approach

Our approach toward the thesis involves several layers:

1. �e �rst step is to build prior work on in�nitary linear logics with �xed points, and

form a Curry-Howard correspondence between them and binary session types. We build

the correspondence upon the in�nitary system introduced by Fortier and Santoconale

[36, 83] for singleton logic, a fragment of intuitionistic logic in which the antecedent

consists of exactly one formula [27].

Fortier and Santoconale [36, 83] extend the sequent calculus for singleton logic with

rules for least and greatest �xed points. A naive extension, however, loses the cut elimi-

nation property (even when allowing in�nite proofs) so they call derivations pre-proofs.
Circular pre-proofs are distinguished as a subset of derivations which are regular in the

sense that they can be represented as �nite trees with loops. Fortier and Santocanale

then impose a validity condition on pre-proofs to single out a class of pre-proofs that

satisfy cut elimination. Moreover, they provide a cut elimination algorithm and show its

productivity on valid derivations. In this thesis we call a pre-proof FS-valid if it satis�es

Fortier and Santocanale’s condition.

We establish a correspondence between (mutually) recursive session-typed processes

and circular pre-proofs in subsingleton logic with �xed points. We introduce a guard

condition to check a stricter version of the FS-validity condition. Our condition is local

in the sense that we check each process separately to be guarded, and it is stricter in the

sense that it accepts a proper subset of the processes with an underlying valid proofs.

We further introduce a synchronous computational semantics of cut reduction in

subsingleton logic with �xed points in the context of session types, based on a key step

in Fortier and Santocanale’s cut elimination algorithm which is compatible with prior

operational interpretation of session-typed programming languages [97]. We show that

the strong progress property for session typed programs corresponds to productivity of the

cut elimination property for their underlying derivations. Since the FS-validity condition

satis�es productivity of cut elimination, our local guard condition ensures the strong

progress property.

2. One shortcoming of building our local guard condition upon the FS-validity condition

is that we cannot capture some interesting programs, although they enjoy the strong
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progress property. Of course, as a corollary to the halting problem, no decidable guard

condition can recognize all programs with the strong progress property. But, our goal

is to capture more programs with this property as long as the guard condition is still

e�ective, local, and elegant.

For generalizing the guard condition, we need to prove the strong progress property

directly. �e �rst step towards this goal is to formalize strong progress as a predicate in-

dependent from cut elimination of its underlying derivation, and prove it in a metalogic.

Here is where our subgoal arises:

• New metalogic. To carry out our argument in a metalogic we need a calculus in

which we can easily embed session-typed processes and de�ne their operational

behavior, which strongly suggests a linear metalogic. Moreover, the formaliza-

tion of strong progress inherits the need for using nested least and greatest �xed

points from the session types that it is de�ned upon. Furthermore, we must be able

to prove properties formalized using nested �xed points. For these reasons, we

decided to introduce a new metalogic: a calculus for �rst order intuitionistic mul-

tiplicative additive linear logic with �xed points and in�nitary proofs [28]. Our

metalogic also supports term equality. To avoid the general uni�cation problem in

the presence of higher-order terms with binding operators, which is undecidable

and non-deterministic, we use higher-order pa�erns in the sense of Miller [67].

Miller’s higher-order pa�erns inherit the good properties of �rst-order uni�cation,

e.g. a linear-time decision procedure and existence of most general uni�ers, and are

su�cient in many applications where representation requires binding operators.

For data types mutually de�ned by induction and coinduction the separate prin-

ciples of induction and coinduction are insu�cient. One recent approach in type

theory integrates induction and coinduction by pa�ern and copa�ern matching

and explicit well-founded induction on ordinals [2], following a number of earlier

representations of induction and coinduction in type theory [1]. Here, we pursue

a di�erent line of research in linear logic with �xed points. Our goal is to intro-

duce a sequent calculus to reason about linear predicates de�ned as nested least

and greatest �xed points. Instead of applying induction and coinduction principles

directly, we follow the approach of Brotherston et al. [12] to allow circularity in

derivations. Unlike Brotherston’s calculus which only has least �xed points, we

consider nested least and greatest �xed points. To ensure soundness of the proofs

we impose a validity condition on our derivations. We generalize the cut elimina-

tion algorithm introduced by Fortier and Santocanale for in�nitary singleton logic

with �xed points to our se�ing. We prove that this algorithm is productive on �rst

order valid derivations and produces a cut-free (possibly in�nite) valid proof pro-

ductively. An algorithm is productive if every piece of its output is generated in a

�nite number of steps.

Our metalogic and the validity condition imposed upon its derivations are a gener-

alization of Fortier and Santocanale’s singleton logic and their validity condition,
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respectively. Baelde et al. [7, 33] introduced a validity condition on the pre-proofs

in multiplicative-additive linear logic with �xed points and proved cut-elimination

for valid derivations. Our results, when restricted to the propositional fragment,

di�er from Baelde et al.’s in the treatment of intuitionistic linear implication (()

versus its classical counterpart (O). In Chapter 4, we will compare our work with

Baelde et al.’s in more detail.

We follow the approach of processes-as-formulas to provide an asynchronous semantics

for session-typed processes and a predicate for strong progress indexed by session types

in our metalogic. We carry out the proof of strong progress in the metalogic [28]. In this

logic, we can build an elegant derivation for the strong progress property of a process

with clearly marked (simultaneous) inductive and coinductive steps. We form a bisim-

ulation between the resulting metalogical derivation and the process typing derivation.

�is helps us to be�er understand the interplay between mutual inductive and coinduc-

tive steps in the proof of strong progress, and how they relate to the behavior of the

program. Finally, we show that for a guarded process this derivations ensures strong

progress of the process when executed with any synchronous scheduler.

We use this proof technique as a case study of the guard criterion established in prior

step, but also of how to prove properties of programming languages in a metalanguage

with circular proofs.

1.4 Synopsis

�is thesis is split into two parts. �e �rst part is dedicated to proof theory of in�nitary systems

for linear logic with �xed points. In the second part, we focus on the strong progress property

of session-typed processes.

Part 1. Proof theory

• Chapter 2 provides a brief history of sequent calculus and a discussion on the importance

of cut elimination. We review the proof system of a few linear logics that are of inter-

est in this thesis: subsingleton logic, multiplicative additive linear logic, and �rst-order

multiplicative additive linear logic.

• Chapter 3 provides a brief history of �xed-points in proof theory. We review the lit-

erature that generalizes linear logic to reason with least and greatest �xed points. We

recall the system for in�nitary subsingleton logic with �xed points [36] and in�nitary

multiplicative additive linear logic with �xed points [7, 33].

• Chapter 4 introduces our in�nitary system for �rst order multiplicative additive linear

logic (FIMALL∞µ,ν). We describe our validity condition on derivations and provide a cut-

elimination algorithm for valid derivations.
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Part 2. Session typed processes

• Chapter 5 provides a background on session types. We recall the typing rules, operational

semantics, and the type safety properties of session-typed processes. We also extend the

Curry-Howard correspondence of derivations in in�nitary subsingleton logic with �xed

points as recursive communicating processes.

• Chapter 6 presents our local guard condition to check a stricter version of the Fortier and

Santocanale’s validity condition. Our condition is local in the sense that we check each

process de�nition separately, and it is stricter in the sense that it accepts a proper subset

of the processes that their underlying proofs are recognized by the FS validity condition.

We provide a proof for strong progress of guarded subsingleton session-typed processes

based on the Curry-Howard correspondence built in Chapter 5.

• Chapter 7 revisits strong progress for session-typed processes. Following the processes-

as-formulas approach, we formalize strong progress as a predicate in FIMALL∞µ,ν de�ned

using mutual least and greatest �xed points. We provide an in�nitary proof for this

predicate when de�ned over guarded processes in FIMALL∞µ,ν .

• Chapter 8 brie�y describes an implementation of our local guard condition for subsin-

gleton session-typed processes in SML.

In Chapter 9 we conclude this thesis by discussing future lines of work.



Chapter 2

Preliminaries - Proof theory

�is chapter reviews the foundations of proof systems of di�erent logics used in this thesis. In

the next chapter, we review the literature that generalizes these systems to reason with least

and greatest �xed points.

2.1 A bit of history

�e history of proof theory goes back to 1920, when Hilbert was pursuing formalizability of

mathematics as part of his program. Hilbert and Bernays introduced the original natural de-

duction as an axiomatic proof system with axioms to eliminate and introduce each connective

[49, 50]. Gentzen articulates these axioms as the introduction and elimination rules for each

connective [39]. In Gentzen’s Natural Deduction (ND), proofs are structured as trees. It has a

novel feature that allows adding and discharging assumptions. �e nodes in ND are sequents

of the form Γ ` A, meaning that the proof of succedent formulaA uses the assumptions in the

set of formulas Γ. �e genuinely logical actions in both elimination and introduction rules are

taking place on the right (succedent A). Here we only formalize introduction and elimination

rules for disjunction:

⊕I
Γ ` A

Γ ` (A⊕B) and
Γ ` B

Γ ` (A⊕B)

⊕E
Γ ` (A⊕B) Γ, A ` C Γ, B ` C

Γ ` C

�is calculus’s essential property is normalization [77], which roughly is the ability to trans-

form a proof into another that does not make any detours. In particular, a calculus’s consistency

9
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is a corollary to its normalization. �e proof of normalization is typically by induction on the

structure of the derivation and the complexity of detour formulas.

Later, in 1934-35 Gentzen introduced another proof system known as Sequent Calculus (SC)

[39, 39, 40]. Like ND, the proofs in an intuitionistic Sequent calculus are tree form structures

with their nodes being sequents of the form Γ ` A. He assigned two rules to each connective;

a le� rule (L) to specify how to use an assumption (or antecedent) with that connective and a

right rule (R) to prove a succedent with it. As a result, the logical actions in SC may occur in

both le� and right. �e le� and right rules for disjunction, for example, are:

Γ ` A
Γ ` A⊕B ⊕R1

Γ ` B
Γ ` A⊕B ⊕R2

Γ, A ` C Γ, B ` C
Γ, A⊕B ` C ⊕L

Other than the le� and right rules for the connectives, SC has two rules to capture the meaning

of logical consequence: Identity (Id) and Cut (Cut). Identity states that an assumption A

is su�cient to achieve the succedent A. In contrast, Cut states that proving a formula A is

enough to use it as an assumption.

A ` A Id

Γ1 ` A Γ2, A ` C
Γ1,Γ2 ` C

Cut

Using these two judgmental rules, we can test that a connective’s behavior speci�ed by its le�

and right rules respects the meaning of pure logical consequence as understood by Gentzen

[37, 73]. In the �rst test, we consider breaking down Identity for each connective compound

formula into smaller subformulas. �is test is called Identity expansion. For example, for dis-

junction, we have:

Identity expansion: A⊕B ` A⊕B Id ⇒

A ` A Id

A ` A⊕B ⊕R1
B ` B Id

B ` A⊕B ⊕R2

A⊕B ` A⊕B ⊕L

�e second test is Cut reduction. It states that we can reduce a cut for each connective com-

pound formula to its smaller subformulas. For disjunction, the test is as follows:

Cut reduction:

T1
Γ1 ` A

Γ1 ` A⊕B
⊕R1

T2
Γ2, A ` C

T3
Γ2, B ` C

Γ2, A⊕B ` C
⊕L

Γ1,Γ2 ` C
Cut ⇒

T1
Γ1 ` A

T2
Γ2, A ` C

Γ1,Γ2 ` C
Cut

where T1, for example, is the proof tree given for the sequent Γ1 ` A.

Identity expansion and Cut reduction ensure that each connective’s le� and right rules are in

harmony. �ey are both strong enough to match up with the other one [73, 85].

�e analog of normalization in SC is the cut-elimination property originally called Hauptsatz

(”main theorem”) by Gentzen. It states that we can eliminate the use of Cut in any given proof.
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Similar to normalization, cut elimination is of utmost importance. Cut elimination is necessary

for the proof of the sub-formula property. �is property bounds the logical complexity of

formulas in the proof by the complexity of the formulas in the proved sequent (conclusion)

and is crucial for proof search. Among other results, cut-elimination for a system ensures its

consistency and completeness for the synthetic notion of logical consequence; it ensures that

the calculus captures correct inferences.

Cut reductions for each connective are essential for eliminating Cuts in a proof. Usually, cut-

elimination follows from cut reduction by a straightforward induction. However, in the next

chapter, we will see that this is not always the case.

To fully describe Gentzen’s sequent calculus, we need to mention three structural rules that he

considered in his system:
1

Γ ` C
Γ, A ` C Weakening

Γ, A,A ` C
Γ, A ` C Contraction

Γ1, B,A,Γ2 ` C
Γ1, A,B,Γ2 ` C

Exchange

We are interested in a re�nement of this calculus in which Weakening and Contraction rules

are not necessarily applicable. �is re�nement is called linear logic and was �rst described by

Girard [43]. Without weakening and contraction, formulas behave as resources that have to

be used exactly once. Consuming (le� rules) and producing (right rules) such resources can

model changes in the states of computation.

In a linear proof system, additive (&,⊕) and multiplicative (⊗,( in the intuitionistic se�ing,

O in the classical se�ing) connectives are distinguished and not equivalent. �e contexts of

premises remain the same in the additive rules, while in the multiplicative ones the contexts

are divided.

2.2 Sequent calculi for linear logics

We focus on linear Sequent Calculus for two main reasons. First, it corresponds to the underly-

ing structure of session-typed processes, the main subjects of this thesis. We will elaborate on

this correspondence later in Chapter 5. Second, we need the ability of linear logic to represent

state in order to model the behavior of session-typed processes (Chapters 4 and 7).

We �rst review a system in which sequents are restricted to those with at most one resource

on the le�, called subsingleton logic. Next, we li� this restriction and provide the calculus

for intuitionistic Multiplicative Additive Linear Logic (MALL). Finally, we show the �rst-order

generalization of it.

1

�e Exchange rule is implicitly admissible when Γ in sequent Γ ` A is de�ned as a multiset of formulas.
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A ` A Id
ω ` A A ` C

ω ` C Cut

ω ` A
ω ` A⊕B ⊕R1

ω ` B
ω ` A⊕B ⊕R2

A ` C B ` C
A⊕B ` C ⊕L

ω ` A ω ` B
ω ` A&B

&R
A ` C

A&B ` C &L1
B ` C

A&B ` C &L2

· ` 1
1R

· ` C
1 ` C 1L

ω ` T >R 0 ` A 0L

Figure 2.1: Sequent calculus for subsingleton logic.

2.2.1 Propositional subsingleton logic.

�e basic judgment of the subsingleton sequent calculus has the form ω ` A, where ω is either

empty or a single propositionA. If we restrict ω to be exactly one formula, we get the singleton

sequent calculus.

�e syntax of propositions follows the grammar

A,B ::= A⊕B | A&B | > | 1 | 0

ω ::= · | A

We summarize the subsingleton logic rules [73] in Figure 2.1. Our only connectives are dis-

junction (⊕) and conjunction (&). With the restriction of having at most one formula as an

antecedent, the multiplicative connectives cannot be captured in the subsingleton se�ing. We

will see the multiplicative connectives in the next section when this restriction is li�ed.

We generalize ⊕ and & to be n-ary connectives ⊕{` : A`}`∈L and &{` : A`}`∈L, where L

ranges over �nite sets of labels denoted by ` and k.

A ::= · · · | ⊕{` : A`}`∈L | &{` : A`}`∈L

�e binary disjunction and conjunction are de�ned as A ⊕ B = ⊕{π1 : A, π2 : B} and

A&B = &{π1 : A, π2 : B}. Constants 0 and > are de�ned as the nullary version of these

connectives: 0 = ⊕{} and > = &{}.

ω ` Ak k ∈ L
ω ` ⊕{`:A`}`∈L

⊕R A` ` C ∀` ∈ L
⊕{`:A`}`∈L ` C

⊕L ω ` A` ∀` ∈ L
ω ` &{`:A`}`∈L

&R
Ak ` C k ∈ L
&{`:A`}`∈L ` C

&L

To prove the cut-elimination property, we need to provide cut reductions for each connective.

�ese reductions cover the cases where the cut-formula is a principal formula of a le� rule

in the �rst assumption of Cut rule and a right rule in the second one (we call them internal
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· ` 1
1R

Γ ` C
Γ, 1 ` C 1L

Γ ` C Cut Reduce
====⇒ Γ ` C

ω ` Ak k ∈ L
ω ` ⊕{`:A`}`∈L

⊕R A` ` C ∀` ∈ L
⊕{`:A`}`∈L ` C

⊕L

ω ` C Cut Reduce
====⇒

ω ` Ak Ak ` C
ω ` C Cut

ω ` A` ∀` ∈ L
ω ` &{`:A`}`∈L

&R
Ak ` C k ∈ L
&{`:A`}`∈L ` C

&L

ω ` C Cut Reduce
====⇒

ω ` Ak Ak ` C
ω ` C Cut

· ` B
1 ` B 1L

B ` C
1 ` C Cut LFLip

===⇒

· ` B B ` C
· ` C Cut

1 ` C 1L

ω ` B
B ` Ak k ∈ L
B ` ⊕{`:A`}`∈L

⊕R

ω ` ⊕{`:A`}`∈L
Cut RFLip

===⇒

ω ` B B ` Ak
ω ` Ak

Cut
k ∈ L

ω ` ⊕{`:A`}`∈L
⊕R

A` ` B ∀` ∈ L
⊕{`:A`}`∈L ` B

⊕L
B ` C

⊕{`:A`}`∈L ` C
Cut LFLip

===⇒

A` ` B B ` C
A` ` C

Cut ∀` ∈ L
⊕{`:A`}`∈L ` C

⊕L

ω ` B
B ` A` ` ∈ L
B ` &{`:A`}`∈L

&R

ω ` &{`:A`}`∈L
Cut RFLip

===⇒

ω ` B B ` A`
ω ` A`

Cut ∀` ∈ L
ω ` &{`:A`}`∈L

&R

Ak ` B k ∈ L
&{`:A`}`∈L ` B

&L
B ` C

&{`:A`}`∈L ` C
Cut LFLip

===⇒

Ak ` B B ` C
Ak ` C

Cut
k ∈ L

&{`:A`}`∈L ` C
&L

Figure 2.2: Internal and External reductions for subsingleton logic

reductions). We also need to consider external reductions or Flip rules to cover other cases

in the proof of cut-elimination. We provide a full list of internal and external reductions for

subsingleton logic in Figure 2.2.

�eorem 2.1 (Cut admissibility). If T1 and T2 are cut-free proofs for ω ` A and A ` C ,
respectively, we can build a cut-free proof for ω ` C .

Proof. �e proof is by a lexicographic induction on the structure of formula A and structure

of T1 and T2. If the last step in T1 or T2 is Id, we can eliminate it outright:

A ` A Id
A ` C

A ` C Cut ID−Elim
=====⇒ A ` C

ω ` A A ` A Id

ω ` A Cut ID−Elim
=====⇒ ω ` A
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If the last step in T1 is a right rule (applied on A) and the last step in T2 is a le� rule (applied

on A), we use the corresponding internal cut reduction and apply the inductive hypothesis.

Otherwise, either the last step in T1 is a le� rule or the last step in T2 is a right rule, in each of

these cases we apply the corresponding external reduction. For a complete proof see [73].

�eorem 2.2 (Cut elimination). Sequent ω ` C is provable in subsingleton logic if and only if
it is provable without the cut rule.

Proof. �e proof is by induction on the structure of the proof given for ω ` C and is a straight-

forward corollary of cut-admissibility.

�e proof of the cut-elimination theorem provides a mechanical algorithm to remove cut from

any given derivation. �e cut-free derivation has a subformula property meaning that any

formula appearing in a derivation for ω ` C is a subformula of either ω or C . Consistency is

a straightforward corollary of this property: there is no proof in subsingleton logic for · ` 0.

2.2.2 Propositional intutitionistic multiplicative additive linear logic.

Derivations in Intuitionistic Multiplicative Additive Linear Logic (IMALL) establish judgments

of the form Γ ` A where Γ is an unordered list of formulas. �e syntax of formulas follows

the grammar

A ::= 1 | A⊗A | A( A | ⊕{`:A`}`∈L | &{`:A`}`∈L.

�e sequent calculus for this logic, originally presented by Girard [41], is given in Figure 4.1.

Intuitionistic sequents in the calculus of Figure 4.1 are restricted to have only one formula as

the succedent. Classical Multiplicative Additive Linear Logic (MALL) is obtained by allowing a

set of formulas for the succedent instead: Γ ` ∆. In the classical se�ing, we have an alternative

disjunction O, the counterpart of( in the intuitionistic framework:

Γ ` ∆, A,B

Γ ` ∆, AOB OR
Γ, A ` ∆ Γ′, B ` ∆′

Γ,Γ′, AOB ` ∆,∆′
OR

�ere is an equivalent one-sided representation for classical MALL, in which the sequents are

of the form ` ∆. A proof for ` ∆ in the one-sided calculus implies · ` ∆ in a two-sided

system of classical MALL, and Γ ` ∆ in the two-sided calculus implies ` Γ⊥,∆ in the one-

sided system. Where the involution of formulas by negation satis�es:

⊕{`:A`}⊥`∈L = &{`:A⊥` }`∈L &{`:A`}⊥`∈L = ⊕{`:A⊥` }`∈L
(A⊗B)⊥ = A⊥OB⊥ (AOB)⊥ = A⊥ ⊗B⊥
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A ` A Id

Γ ` A Γ′, A ` C
Γ,Γ′ ` C Cut

· ` 1
1R

Γ ` C
Γ, 1 ` C 1L

Γ ` A1 Γ′ ` A2

Γ,Γ′ ` A1 ⊗A2
⊗R Γ, A1, A2 ` B

Γ, A1 ⊗A2 ` B
⊗L

Γ, A1 ` A2

Γ ` A1 ( A2
(R

Γ ` A1 Γ′, A2 ` B
Γ,Γ′, A1 ( A2 ` B

(L

Γ ` Ak k ∈ I
Γ ` ⊕{li : Ai}i∈I

⊕R
Γ, Ai ` B ∀i ∈ I

Γ,⊕{li : Ai}i∈I ` B
⊕L

Γ ` Ai ∀i ∈ I
Γ ` &{li : Ai}i∈I

&R
Γ, Ak ` B k ∈ I

Γ,&{li : Ai}i∈I ` B
&L

Figure 2.3: Propositional intuitionistic MALL

�e cut-elimination theorem can be proved for IMALL and MALL, similar to �eorem 2.2 for

subsingleton logic. Internal and External cut reductions needed for the proof of IMALL are

given in Figure 2.4.
2

2.2.3 First-order intutitionistic multiplicative additive linear logic.

�e grammar

A ::= · · · | ∃x.A(x) | ∀x.A(x) | s = t | T (t),

extends intuitionistic multiplicative additive linear logic to a �rst-order language. s, t stand

for terms, t for a sequence of terms, and x, y for term variables. For our purposes, no grammar

is speci�ed for terms; all terms are of the only type U with binders. T (t) is an instance of a

predicate. �e rules for the �rst order extensions are given in Figure 2.5.

Our �rst-order quanti�ers and equality rules follow the standard representation of the rules

in a linear logic with �xed points presented in [8]. In the = L rule, mgu stands for the most

general uni�er. A substitution σ is a function that replaces variables by terms. σ uni�es two

terms t and s if t[σ] = s[σ]. A substitution, θ, is a most general uni�er of t and s if it uni�es t

and s, and for any uni�er σ for t and s, there is a uni�er λ, such that σ = θ ◦λ, where ◦ stands

for the composition of θ and λ as functions. We restrict our terms to Miller’s [67] higher-order

pa�erns: an extension of �rst-order formulas including bound variable names and scopes. With

this restriction, we ensure that we have the most general uni�er when uni�ers exist. In this

se�ing, the set mgu(t, s) in = L is either empty, or a singleton set containing a most general

uni�er.

2

�is thesis focuses on intuitionistic systems, so we only provide cut reductions for IMALL.
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· ` 1
1R

Γ ` C
Γ, 1 ` C 1L

Γ ` C Cut Reduce
====⇒ Γ ` C

Γ′1 ` A1 Γ′2 ` A2

Γ′1,Γ
′
2 ` A1 ⊗A2

⊗R
Γ′′, A1, A2 ` B

Γ′′, A1 ⊗A2 ` B
⊗L

Γ′1,Γ
′
2,Γ
′′ ` C Cut Reduce

====⇒
Γ′1 ` A1 Γ′2 ` A2 Γ′′, A1, A2 ` B

Γ′1,Γ
′
2,Γ
′′ ` C Cut

Γ′, A1 ` A2

Γ′ ` A1 ( A2
( R

Γ′′1 ` A1 Γ′′2, A2 ` B
Γ′′1,Γ

′′
2, A1 ( A2 ` B

( L

Γ′,Γ′′1,Γ
′′
2 ` C

Cut Reduce
====⇒

Γ′′1 ` A1 Γ′, A1 ` A2 Γ′′2, A2 ` B
Γ′,Γ′′1,Γ

′′
2 ` C

Cut

Γ1 ` Ak k ∈ L
Γ1 ` ⊕{`:A`}`∈L

⊕R
Γ2, A` ` C ∀` ∈ L
Γ2,⊕{`:A`}`∈L ` C

⊕L

Γ1,Γ2 ` C
Cut Reduce

====⇒
Γ1 ` Ak Γ2, Ak ` C

Γ1,Γ2 ` C
Cut

Γ1 ` A` ∀` ∈ L
Γ1 ` &{`:A`}`∈L

&R
Γ2, Ak ` C k ∈ L
Γ2,&{`:A`}`∈L ` C

&L

Γ1,Γ2 ` C
Cut Reduce

====⇒
Γ1 ` Ak Γ2, Ak ` C

Γ1,Γ2 ` C
Cut

Γ′ ` B
Γ′′1, B ` A1 Γ′′2 ` A2

Γ′′1,Γ
′′
2, B ` A1 ⊗A2

⊗R

Γ′,Γ′′1,Γ
′′
2 ` A1 ⊗A2

Cut RFLip
===⇒

Γ′ ` B Γ′′1, B ` A1

Γ′,Γ′′1, B ` A1
Cut

Γ′′2 ` A2

Γ′,Γ′′1,Γ
′′
2 ` A1 ⊗A2

⊗R

Γ′, A1, A2 ` B
Γ′, A1 ⊗A2 ` B

⊗L
Γ′′, B ` C

Γ′,Γ′′, A1 ⊗A2 ` C
Cut LFLip

===⇒

Γ′, A1, A2 ` B Γ′′, B ` C
Γ′, A1, A2 ` C

Cut

Γ′,Γ′′, A1 ⊗A2 ` C
⊗L

Γ′ ` B
Γ′′, B,A1 ` A1

Γ′′, B ` A1 ( A2
( R

Γ′,Γ′′ ` A1 ( A2
Cut RFLip

===⇒

Γ′ ` B Γ′′, B,A1 ` A2

Γ′,Γ′′, A1 ` A2
Cut

Γ′,Γ′′ ` A1 ( A2
( R

Γ′1 ` A1 Γ′2, A2 ` B
Γ′1,Γ

′
2, A1 ( A2 ` B

( L
Γ′′, B ` C

Γ′1,Γ
′
2,Γ
′′, A1 ( A2 ` C

Cut LFLip
===⇒

Γ′1 ` A1

Γ′2, A2 ` B Γ′′, B ` C
Γ′2,Γ

′′, A2 ` C
Cut

Γ′1,Γ
′
2,Γ
′′, A1 ( A2

( L

Figure 2.4: Internal cut reductions and selected external cut reductions for IMALL

�e following derivation is an example of = L application when the most general uni�er of

the terms is an empty set:

z = sx ` A = L

∀x.(z = sx) ` A ∀L

Cut reductions for the �rst-order components of �rst-order intutitionistic multiplicative addi-

tive linear logic (FIMALL) are given in Figure 2.6. �e proof of cut elimination is similar to the

previous fragments of linear logic by induction on the structure of derivations.
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Γ ` P (t)

Γ ` ∃x.P (x)
∃R

Γ, P (x) ` B x fresh

Γ,∃x.P (x) ` B ∃Lx

Γ ` P (x) x fresh

Γ ` ∀x.P (x)
∀Rx

Γ, P (t) ` B
Γ, ∀x.P (x) ` B ∀L

· ` s = s
=R

Γ[θ] ` B[θ] ∀θ ∈ mgu(t, s)

Γ, s = t ` B =L

Figure 2.5: First-order extension of IMALL.

Γ1 ` P (t)

Γ1 ` ∃x.P (x)
∃R

T
Γ2, P (x) ` B

Γ2,∃x.P (x) ` B ∃L

Γ1,Γ2 ` C
Cut Reduce

====⇒
Γ1 ` P (t)

T [t/x]
Γ2, P (t) ` B

Γ1,Γ2 ` C
Cut

T
Γ1 ` P (x)

Γ1 ` ∀x.P (x)
∀R

Γ2, P (t) ` B
Γ2,∀x.P (x) ` B ∀L

Γ1,Γ2 ` C
Cut Reduce

====⇒

T [t/x]
Γ1 ` P (t) Γ2, P (t) ` B

Γ1,Γ2 ` C
Cut

· ` s = s
= R

Γ ` C
Γ, s = s ` C = L

Γ ` C Cut Reduce
====⇒ Γ ` C

Γ′ ` B
Γ′′1 ` P (t)

Γ′′, B ` ∃x.P (x)
∃R

Γ′,Γ′′ ` ∃x.P (x)
Cut RFLip

===⇒

Γ′ ` B Γ′′, B ` P (t)

Γ′,Γ′′ ` P (t)
Cut

Γ′,Γ′′ ` ∃x.P (x)
∃R

Γ′, P (x) ` B
Γ′,∃x.P (x) ` B ∃L Γ′′, B ` C

Γ′,Γ′′,∃x.P (x) ` C Cut LFLip
===⇒

Γ′, P (x) ` B Γ′′, B ` C
Γ′,Γ′′, P (x) ` C Cut

Γ′,Γ′′,∃x.P (x) ` C ∃L

Γ′ ` B
Γ′′, B ` P (x)

Γ′′, B ` ∀x.P (x)
∀R

Γ′,Γ′′ ` ∀x.P (x)
Cut RFLip

===⇒

Γ′ ` B Γ′′, B ` P (x)

Γ′,Γ′′ ` P (x)
Cut

Γ′,Γ′′ ` ∀x.P (x)
∀R

Γ′, P (t) ` B
Γ′,∀x.P (x) ` B ∀L Γ′′, B ` C

Γ′,Γ′′,∀x.P (x) ` C Cut LFLip
===⇒

Γ′ ` B Γ′′, B ` P (t)

Γ′,Γ′′ ` P (t)
Cut

Γ′,Γ′′, ∀x.P (x)
∀L

Γ′[θ] ` B[θ] ∀θ ∈ mgu(t, s)

Γ′, s = t ` B = L T
Γ′′, B ` C

Γ′,Γ′′, s = t ` C Cut LFLip
===⇒

Γ′[θ] ` B[θ] Γ′′[θ],
T [θ]

B[θ] ` C[θ]

Γ′[θ],Γ′′[θ] ` C[θ]
Cut ∀θ ∈ mgu(t, s)

Γ′,Γ′′, s = t ` C = L

Figure 2.6: Selected internal and external cut reductions for FIMALL



Chapter 3

Preliminaries - Fixed points in logic

3.1 A bit of history

Inductive reasoning is well known and presented in the literature in many di�erent contexts.

In general, it is used to prove properties about inductively de�ned structures such as natural

numbers, �nite lists, and �nite trees. Computer scientists also use induction to specify and

reason about recursive programs’ behavior. �e usual induction schema for induction over the

natural numbers is the following:

P (z) ∀x∈N (P (x)→ P (s(x)))

P (t)

where z stands for 0 ∈ N and s(x) for successor of x ∈ N.

Several approaches were introduced throughout the proof theory history that embraces in-

ductive reasoning in a proof system. Hilbert in his 1930 Hamburg talk extends the elementary

arithmetic by a �nitist rule called Hilbert’s rule (HR) to introduce universally quanti�ed for-

mulas. Essentially, it asserts that a universally quanti�ed formula is justi�ed when all of its

instances are justi�ed. Later in 1931, Bernays, inspired by the HR rule, proposed an in�ni-

tary rule (ω-rule) for universal quanti�er that captures complete induction [87, 88]. Lorenzen,

Schü�e, and Tait further developed the schema of ω-rule [58, 61, 94]. In a sequent calculus

system, this schema is as the following rules:

Γ ` A(n) for all n ∈ N
Γ ` ∀x.A(x)

∀R
Γ, A(n) ` C for some n ∈ N

Γ, ∀x.A(x) ` C ∀L

�e ∀R rule is an in�nitary rule; it requires in�nitely many premises. Alternatively, the uni-

versally quanti�ed formula ∀x.A(x) can be translated as an in�nitary conjunction ΠnA(n).

Proofs in the calculus are in�nitely branching but still well-founded trees. �is extension is

strong enough to capture inductive reasoning. As with other sequent calculi, cut-elimination

18
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is of utmost importance for the system’s consistency and has been studied for this extension.

Tait’s proof for cut-elimination of in�nitary classical propositional logic is one particular result

[94].

A di�erent approach entails adding rules for unfolding inductive de�nitions to the calculus.

�is approach has its roots in Martin Löfs’ natural deduction system with iterated inductive

de�nitions [62], Girard’s description of linear logic with �xed points [44], and Eriksson [35]

and Schroeder-Heister de�nitional re�ection [84]. It is developed further by McDowell and

Miller 2000 [64], and Momigliano and Tiu [71].

�ere are two main methods for adding unfolding rules of inductive de�nitions (least �xed

points) to the proof system. �e �rst method is closely associated with the induction princi-

ple and yields a �nitary system. �e other is related to in�nite descent and produces a non-

wellfounded in�nitary system (but �nitely branching).

A typical schema for the unfolding rules of least �xed points in a �nitary system is as follows:

Γ ` A[µx.A/x]

Γ ` µx.A µR
A[B/x] ` B Γ, B ` C

Γ, µx.A ` C µL

where x is a propositional variable.

�is set of rules is a variant of Park’s rules; in contrast to original Park’s rules, they do not break

cut admissibility. Cut elimination for such �nitary systems is proved in di�erent contexts, e.g.

[8]. However, the subformula property is necessarily lost because of the le� �xed-point rule.

As a result, consistency is not a straightforward corollary of cut-elimination in such systems

anymore.

Unfolding rules for the least �xed points in an in�nite system are usually more straightforward

and respect the subformula property:

Γ ` A[µx.A/x]

Γ ` µx.A µR
Γ, A[µx.A/x] ` C

Γ, µx.A ` C µL

�is set of rules in a �nitary system is not strong enough to prove all derivations in a calculus

with the previous set of �xed-point rules [33]. To revive this strength, we allow the system to

be in�nitary.

Cut reductions for matching le� and right rules hold in the in�nitary calculus. However,

the non-wellfoundedness of in�nite derivations breaks the induction needed to prove cut-

elimination. Without the cut-elimination property, derivations are not proper proofs.

To establish the cut-elimination property, an additional soundness condition is imposed on

in�nitary derivations. A typical soundness condition on an in�nitary calculus ensures that

some inductive de�nition unfolds in�nitely o�en along each in�nite branch. Sound derivations

are called proofs. Cut-elimination is proved for proofs in in�nitary calculi in di�erent contexts

[7, 12, 33].
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Even though in�nitary derivations can be ”in�nite,” an interesting subset of them can be ex-

pressed as �nite trees with loops. A circular derivation is the �nite representation of an in�nite

one in which we can identify each open subgoal with an identical interior judgment.

�is thesis focuses on non-wellfounded in�nitary sequent calculi with �xed points. Our

interest in such calculi is rooted in the close correspondence of circular derivations to recursive

programs and cyclic reasoning employed in computer science. We elaborate more on this

correspondence in Chapter 7.4.

In this historical section, we only considered inductive de�nitions. However, our general in-

terest is more extensive: we want to include coinductive de�nitions (greatest �xed points) in

our sequent calculus. To show properties of coinductive de�nitions, e.g. streams and in�nite

trees, a dual principle of coinduction is needed. Although this dual principle has been used in

the literature before, David Park was the �rst one who explicitly used greatest �xed points in

a non-trivial form. For an intensive historical review of coinduction and greatest �xed points,

see the paper titled ”On the Origins of Bisimulation and Coinduction” by Sangiorgi [80].

Similar to the least �xed points, we can introduce the rules for greatest �xed points in both

�nitary and in�nitary systems. �e following is a typical schema for the unfolding rules of

greatest �xed points in a �nitary system:

Γ ` B B ` A[B/x]

Γ ` νx.A νR
Γ, A[νx.A/x] ` C

Γ, νx.A ` C νL

where x is a propositional variable. By adding this set of rules, cut admissibility remains intact.

�e subformula property is lost also because of the right greatest-point rule.

�e typical unfolding rules for the greatest �xed points in an in�nite system is similar to the

rules we provided for the least �xed points and respect the subformula property:

Γ ` A[νx.A/x]

Γ ` νx.A νR
Γ, A[νx.A/x] ` C

Γ, νx.A ` C νL

To summarize, we are interested in non-wellfounded in�nitary sequent calculi that integrate

mutually de�ned least and greatest �xed points. �e rest of this chapter is devoted to reviewing

such calculi presented previously.

3.2 Mutual �xed points and priorities

�e celebrated Knaster-Tarski theorem[95] guarantees existence of both least and greatest �xed

points of a monotone operator in a complete la�ice:

De�nition 3.1. A la�ice Lwith a partial order≤ is called complete if every subset A of L has

a least upper bound (join) and a greatest lower bound (meet).
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De�nition 3.2. A mapping f : L→ L is monotonic if ∀x, y ∈ L. x ≤ y implies f(x) ≤ f(y).

�eorem 3.3 (Knaster-Tarski �xed point theorem). For a complete la�ice L and a monotone
operator f : L→ L, the least �xed point µx.f(x) =

∧
{u∈L : f(u) ≤ u} and the greatest �xed

point νx.f(x) =
∨
{u∈L : u ≤ f(u)} exist.

�is result can be generalized to n-ary operators f :Ln → L monotonic in all variables.

It is well-known that for a monotonic operator f :Ln+1 → L, the �xed-points µx.f(x, ȳ) and

νx.f(x, ȳ) are also monotonic operators from Ln to L. As a result, we can consider nested

�xed-points such as µx. νx. (1⊕ x⊕ y) [6].

Example 3.1. 1. µx.1⊕ x represents natural numbers.

2. νy.(µx.1⊕ x)⊗ y represents a stream of natural numbers.

As an alternative to the vectorial presentation of �xed points as µx.f(x) for least �xed-points

and νx.f(x) for greatest �xed points, we can use systems of equations. We use an example to

explain this alternative representation’s key ideas; for more information, see [86].

�e formula νy.(µx.x ⊕ y) ⊗ y can be represented using equations y =ν x ⊗ y and x =µ

x ⊕ y. To ensure that this signature truly represents the formula νy.(µx.x ⊕ y) ⊗ y (and not

µx.x⊕ (νy.x⊗ y)), we need to impose a linear ordering on the equations. �e importance of

this ordering is apparent from the following inequality:

νy.(µx.x⊕ y)⊗ y 6= µx.x⊕ (µy.x⊗ y).

We call the place of an equation in this ordering its priority and present it as a superscript

on the equation: y =1
ν x ⊗ y and x =2

µ x ⊕ y. We will see that priorities provide central

information to determine validity of circular proofs.

Priorities are not signi�cant when comparing two least �xed points and similarly two greatest

�xed points:

µx.µy.f(x, y) = µy.µx.f(x, y).

As a result, a signature of �xed-point equations is divided into ”layers” within which only �xed-

points of the same kind occur. In other words, relational priorities form a heirarchy analogous

to quanti�ers in logic [86].

Using systems of equations to represent �xed points is more in line with recursive de�nitions

of data types in programming languages. Moreover, it is more �exible in the sense that we

can reformulate a signature only by changing the priorities, without altering the �xed-point

formulas.

We conclude this section by providing an example of a system of equations, also called signa-

ture.
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Example 3.2. �e signature

Σ = {stream =1
ν nat⊗ stream, nat =2

µ 1⊕ nat}

describes natural numbers nat and stream of natural numbers stream.

3.3 Subsingleton logic with �xed points

�e expressive power of pure subsingleton logic described in Section 2.2.1 is rather limited,

among other things due to the absence of the exponential !A. However, we can recover signif-

icant expressive power by adding least and greatest �xed points, which can be done without

violating the subsingleton restriction.

Fortier and Santocanale [36] introduce an extension of singleton logic with the least and great-

est �xed points. �is section summarizes the fundamental ideas of Fortier and Santocanale’s

seminal work. However, we allow some deviations from their original formulation. For in-

stance, we generalize this result for the subsingleton logic.

�e syntax of propositions follows the grammar

A ::= ⊕{`:A`}`∈L | &{`:A`}`∈L | 1 | t

where t ranges over a set of propositional variables denoting least or greatest �xed points. We

de�ne them in a signature Σ which records some important additional information, namely

their relative priority.

Σ ::= · | Σ, t =i
µ A | Σ, t =i

ν A,

with the conditions that

• if t =i
a A ∈ Σ and t′ =i

b B ∈ Σ, then a = b, and

• if t =i
a A ∈ Σ and t =j

b B ∈ Σ, then i = j and A = B.

For a �xed point t de�ned as t =i
a A in Σ the subscript a is the polarity of t: if a = µ, then t

is a �xed point with positive polarity and if a = ν, then it is of negative polarity. Finitely rep-

resentable least �xed points (e.g., natural numbers and lists) can be represented in this system

as de�ned propositional variables with positive polarity, while the potentially in�nite great-

est �xed points (e.g., streams and in�nite depth trees) are represented as those with negative

polarity.

�e superscript i is the priority of t. Fortier and Santocanale interpreted the priority of �xed

points in their system as the order in which the least and greatest �xed point equations are

solved in the categorical semantics [36, 81]. �ey also used them syntactically as central infor-

mation to determine validity of circular proofs.
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A ` A Id
ω ` A A ` C

ω ` C Cut

ω ` Ak k ∈ L
ω ` ⊕{A`}`∈L

⊕R A` ` C ∀` ∈ L
⊕{A`}`∈L ` C

⊕L

ω ` A` ∀` ∈ L
ω ` &{A`}`∈L

&R
Ak ` C k ∈ L
⊕{A`}`∈L ` C

&L1

· ` 1
1R

· ` C
1 ` C 1L

ω ` A t =i
µ A ∈ Σ

ω ` t µR
A ` C t =i

µ A ∈ Σ

t ` C µL

ω ` A t =i
ν A ∈ Σ

ω ` t νR
A ` C t =i

ν A ∈ Σ

t ` C νL

Figure 3.1: In�nitary sequent calculus for subsingleton logic with �xed points.

We write p(t) = i for the priority of t, and ε(i) = a for the polarity of propositional variable t

with priority i. �e condition on Σ ensures that ε is a well-de�ned function.

�e basic judgment of the subsingleton sequent calculus has the form ω `Σ A, where ω is

either empty or a single proposition A and Σ is a signature. Since the signature never changes

in the rules, we omit it from the turnstile symbol.

�e rules of subsingleton logic with �xed points are summarized in Figure 3.1. We added the

�xed points in the two last rows to Figure 2.1. �is set of rules must be interpreted as in�nitary,

meaning that a judgment may have an in�nite derivation in this system.

Even a cut-free derivation may be of in�nite length since each de�ned propositional variable

may be unfolded in�nitely many times. Also, cut elimination no longer holds for the deriva-

tions a�er adding �xed point rules. What the rules de�ne then are the so-called pre-proofs. In

particular, we are interested in circular pre-proofs, which are the pre-proofs that can be illus-

trated as �nite trees with loops [33].

Fortier and Santocanale [36] introduced a validity condition for identifying proofs among all

in�nite pre-proofs in singleton logic with �xed points. �ey used the notion of transition sys-

tems to de�ne their validity condition formally. Here we only provide a high-level description

of the condition. It states that every cycle should be supported by the unfolding of a least
�xed point on the antecedent or a greatest �xed point on the succedent. Since they allow

mutual dependency of least and greatest �xed points, they need to consider the priority of each

�xed point as well. Each cycle’s supporting �xed point has to be of the highest priority among

all �xed points that are unfolded in the cycle.
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Fortier and Santocanale proved that the valid subset of derivations enjoys the cut-elimination

property; in particular, a cut composing any two valid derivations can be eliminated e�ec-

tively. �ey introduced a cut-elimination algorithm that applies internal cut reductions in a

sub-algorithm Treat until an external cut reduction is available. �ey proved that the algo-

rithm is productive for in�nite proofs satisfying their validity condition, which means that it

outputs a cut-free step a�er every �nite number of steps.

�eir proof of cut elimination is based on a critical lemma which states termination of the

internal reductions in the sub-algorithm Treat . �e sub-algorithm creates a trace that is a

complete la�ice. �e lemma is proved using the observation that a valid derivation tree has

only a limited number of branches on its right or le� side created by the cut rule. By this

observation, they deduce that the sub-algorithm does not have an in�nite computation tree.

As a corollary to this lemma, the cut-elimination algorithm produces a potentially in�nite

cut-free proof for the annotated derivation. �ey further prove that the output of the cut-

elimination algorithm is valid.

In Chapter 4 we use a variant of this technique to prove cut-elimination for a �rst-order intu-

itionistic linear logic with �xed points.

We conclude this section with two examples of circular derivations. �e following circular

pre-proof de�ned on the signature nat =1
µ 1 ⊕ nat depicts an in�nite pre-proof that consists

of repetitive application of µR followed by ⊕R:

· ` nat
· ` 1⊕ nat

⊕R

· ` nat
µR

�is derivation is not valid. On the other hand, on the signature conat =1
ν 1 & conat, we can

de�ne a circular pre-proof using greatest �xed points that is valid:

· ` 1
1R · ` conat
· ` 1& conat

&R

· ` conat
νR

3.4 Classicalmultiplicative additive linear logicwith�xedpoints
(µMALL∞)

�is section reviews the in�nitary sequent calculus for multiplicative additive linear logic

(µMALL∞) introduced by Baelde, Doumane, and Saurin and reviews some of their main re-

sults [7, 33].
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` A,A⊥
Id

` Γ1, A ` Γ2, A
⊥

` Γ1,Γ2
Cut

` Γ1, A1 ` Γ2, A2

` Γ1,Γ2, A1 ⊗A2
⊗R

` Γ, A1, A2

` Γ, A1OA2
OR

` Γ, Ak k ∈ I
` Γ,⊕{li : Ai}i∈I

⊕R
` Γ, Ai ∀i ∈ I
` Γ,&{li : Ai}i∈I

&R

` Γ, A[µx.A/x]

` Γ, µx.A
µR

` Γ, A[νx.A/x]

` Γ, νx.A
νR

Figure 3.2: In�nitary multiplicative additive linear logic with �xed points

�e grammar for building formulas in µMALL∞ is as follows:

A ::= A⊗A | AOA | ⊕{`:A`}`∈L | &{`:A`}`∈L | µt.A | νt.A | t.

Fixed points are presented in the vectorial form, and their rules follow from the following

classical negation involution:

(µt.A)⊥ = νt.A⊥ (νt.A)⊥ = µt.A⊥ t⊥ = t

�ey represent their proof system as the one-sided sequent calculus of Figure 3.2.

Like other in�nitary calculi, they enforced a validity condition on in�nite derivation to en-

sure cut-elimination. �eir validity condition is similar to Fortier and Santocanale’s validity

condition: they both require an in�nite branch to have in�nitely many unfoldings of a proper

�xed-point. However, there are a few di�erences in presenting these two validity conditions

worth mentioning:

• Since multiple formulas are allowed to be in the succedents, we need to consider the

thread formed from connecting each formula’s derivatives in the in�nitary branch sep-

arately. �ese threads are de�ned carefully by annotating each formula’s occurrence by

an address. In essence, a thread starting from a formula on a derivation is a list of its

sub-occurrences. �e sub-occurrences of a formula in the conclusion when a logical rule

is applied on it are depicted in Figure 3.2 as formulas in the premises with the same color.

When no logical rule is applied on a formula in the conclusion its sub-occurrence is the

identical formula in a premise. (For the exact de�nition see [33].)

• Moreover, with a one-sided calculus, the proper �xed-point for supporting an in�nite

branch is always in succedents and thus is a greatest �xed-point.

• Finally, instead of using the notion of priority which only makes sense for a language

presented using systems of equations, they use subformula ordering on the �xed-points.
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In summary, a thread is valid if supported with a greatest �xed point which is minimal (wrt.

subformula ordering) among those occurring in�nitely o�en. A derivation is valid if every

in�nite branch has a valid thread.

�eir cut-elimination algorithm is similar to Fortier and Santocanale’s: to apply internal re-

ductions and, when available, external reductions. However, the proof of the algorithm’s pro-

ductivity follows a di�erent technique based on the semantical soundness of a truncation of

the in�nitary calculus. �ey form a contradiction with semantical soundness from assuming a

non-productive sequence of reductions on a valid proof.

3.5 Other related work

3.5.1 Parity games and circular proofs.

Circular proofs in singleton logic are interpreted as the winning strategy in parity games [81].

A winning strategy corresponds to an asynchronous protocol for a deadlock-free communica-

tion of the players [57]. �e cut-elimination result for circular proofs is a ground for reasoning

about these communication protocols, and the related categorical concept of µ-bicomplete cat-

egories [82, 83].

3.5.2 Other approaches.

In the literature, bisimulation has been used e�ectively to prove the equality of structures

de�ned as greatest �xed points. To prove properties other than equality for coinductive data

types, one needs to use the somewhat less familiar coinduction principle [11, 26, 48, 70, 80].

Kozen and Silva established a practical proof principle to produce sound proofs by coinduction

[59]. However, these separate principles are insu�cient for data types mutually de�ned by

induction and coinduction.

One recent approach in type theory integrates induction and coinduction by pa�ern and co-

pa�ern matching and explicit well-founded induction on ordinals [2], following some earlier

representations of induction and coinduction in type theory [1]. We will discuss this line of

work further in Chapter 9.



Chapter 4

First order linear logic with least and
greatest �xed points

In this chapter we introduce �rst order intuitionistic multiplicative additive linear logic with

�xed points (FIMALL∞µ,ν). In our �rst order calculus, we allow circularity in derivations gen-

eralizing the approach of Brotherston et al. [12, 13] by allowing both least and greatest �xed

points. To ensure soundness of the proofs we impose a validity condition on our derivations.

We introduce a cut elimination algorithm and prove that it produces a cut-free proof when

applied on valid derivations. �is algorithm is productive for valid derivations: it receives a

potentially in�nite valid proof as an input and outputs a cut-free in�nite valid proof produc-

tively. (An algorithm is productive if every piece of its output is generated in a �nite number

of steps.) Our results, when restricted to the propositional singleton fragment are the same as

Fortier and Santocanale’s (Section 3.3).

We restrict the linear implication to allow only an atomic formula as its assumption, i.e. A1 in

A1 ( A2, is an atom. Our validity condition for the linear implication is also more restrictive

than Baelde et al.’s treatment of its classical counterpart (O). Recall form Section 3.4 that in

Baelde et al.’s notion of thread both A and B are considered to be sub-occurrences of AOB in

the O rule. We, however, only considerB (and notA) as a continuation of the formulaA( B

in the rules for(. We will comment more on this di�erence in Section 4.3.

�e restrictions on the linear implication are motivated by two considerations. First, we can

obtain a clearer cut elimination proof even in the presence of the multiplicative connectives;

it allows us to adapt Fortier and Santocanale’s cut elimination proof. Our proof is essentially

di�erent from Baelde et al.’s proof of cut elimination [7, 33] for in�nitary multiplicative addi-

tive linear logic; in particular, we do not need to interpret the logical formulas in a classical

truth semantics. Second, the resulting metalogic is strong enough for our primary application,

i.e., encoding session-typed processes as formulas in linear logic. Furthermore, our restric-

tion seems to be in line with the restrictions imposed on implication in multiset rewriting, e.g.

27
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the work by Cervesato and Scedrov [17] in which they restrict an implication to be between

tensors of atomic formulas.

McDowell and Miller [63] presented what can be considered a precursor of the metalogic we

introduce in this chapter. �ey designed a metalogic with a similar goal: to prove properties

about the speci�ed programming systems in a formal framework. �eir metalogic is de�ned

based on (non-linear) intuitionistic sequent calculus that allows higher-order quanti�cation

over simply typed terms. Similar to our use of �xed points in FIMALL∞µ,ν , they use de�nitional

re�ection [84] via le�- and right- rules for unfolding de�nitions in the sequent calculus. �eir

logic also admits inductive reasoning using an explicit rule for induction on natural numbers.

However, it does not support coinduction and is not based on an in�nitary logic.

4.1 Language and calculus

�e syntax and calculus of FIMALL∞µ,ν is similar to the �rst order linear logic (Section 2.2.3),

but it is extended to handle predicates that are de�ned as mutual least and greatest �xed points.

�e syntax of formulas follows the grammar

A ::= 1 | A⊗A | A( A | ⊕{li : Ai}i∈I | &{li : Ai}i∈I | ∃x.A(x) | ∀x.A(x) | s = t | T (t)

where s, t stand for terms and x, y for term variables. We do not specify a grammar for terms;

all terms are of the only type U with binders. Similar to Section 2.2.3 we restrict our terms

to Miller’s [67] higher-order pa�erns which is an extension of �rst-order terms that include

bound variable names and scopes.

T (t) is an instance of a predicate. A predicate can be de�ned using least and greatest �xed

points in a signature Σ

Σ ::= · | Σ, T (x) =i
µ A | Σ, T (x) =i

ν A.

An atom is an instance of a predicate T (t̄) that is not de�ned in the signature as a least or

greatest �xed point. We restrict the formulas in our metalogic to those in which the le�-hand

side of a linear implication is an atom, i.e. formula A in A( B is atomic.

�e subscript a of a �xed point T (x) =i
a A determines whether it is a least or greatest �xed

point. If a = µ, then predicate T (x) is a least �xed point and inductively de�ned (e.g., the

property of being a natural number) and if a = ν it is a greatest �xed point and coinductively

de�ned (e.g., the lexicographic order on streams).

�e superscript i ∈ N is the relative priority of T (x) in the signature Σ with the condition that

if T1(x) =i
a A, T2(x) =i

b B ∈ Σ, then a = b. We say T1(x) =i
a A has higher priority than

T2(x) =j
b B if i < j. �e priorities determine the order by which the �xed-point equations in

Σ are solved [81], and we use them to de�ne the validity condition on in�nite derivations.
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Example 4.1. Let signature Σ1 be

Stream(x) =1
ν (∃y.∃z.(x = y · z)⊗ Nat(y)⊗ Stream (z))

Nat(x) =2
µ (∃y.(x = sy) ⊗ Nat(y)) ⊕ (x = z)

where predicate Nat refers to the property of being a natural number, and predicate Stream refers
to the property of being a stream of natural numbers. A stream of natural numbers is de�ned as a
concatenation of natural numbers y.z where y is a natural number and z is the rest of the stream.
z corresponds to 0 ∈ N and sy corresponds to the successor of y.

We de�ne Stream to have a higher priority relative to Nat since the de�nition of a natural number
is nested in the de�nition of a stream.

Example 4.2. Let signature Σ2 be

Nat(x) =1
µ (∃y.(x = sy) ⊗ Nat(y)) ⊕ ((x = z))

Even(x) =2
µ (∃y.(x = sy) ⊗ Odd(y))⊕ ((x = z))

Odd(x) =2
µ (∃y.(x = sy) ⊗ Even(y))

where positive predicates Nat, Even, and Odd refer to the properties of being natural, even, and odd
numbers respectively. All predicates in this signature are inductive, and their relative priority is
not important. We assign a higher priority to Nat so that we can use this signature for illustrating
some notations in the future examples.

Derivations in FIMALL∞µ,ν establish judgments of the form Γ `Σ A where Γ is a multiset

of formulas and Σ is the signature. We omit Σ from the judgments, since it never changes

throughout a proof. �e in�nitary sequent calculus for this logic is given in Figure 4.1.

Example 4.3. Consider signature Σ2 and predicates Even and Odd de�ned in Example 4.2. �e
following derivation is a �nite proof of one (sz) being an odd number.

· ` sz = sz
= R

· ` (z = z)
= R

· ` (∃y.(x = sy) ⊗ Odd(y))⊕ (z = z)
⊕R

· ` Even(z)
µR

· ` (sz = sz) ⊗ Even(z)
⊗R

· ` ∃y.(sz = sy) ⊗ Even(y)
∃R

· ` Odd(sz)
µR

�e calculus of Figure 4.1 is in�nitary, meaning that we allow �nitely branching but non-

wellfounded derivations. Like other in�nitary calculi described in this thesis, derivations in

FIMALL∞µ,ν do not necessarily enjoy the cut-elimination property and are called pre-proofs.

We call the open leaves in a partial derivation open subgoals of the derivation. �e judgments

in the derivation that are the conclusion of a rule are called interior judgments. A circular
derivation is the �nite representation of an in�nite one in which we can identify each open
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A ` A Id

Γ ` A Γ′, A ` C
Γ,Γ′ ` C Cut

· ` 1
1R

Γ ` C
Γ, 1 ` C 1L

Γ ` A1 Γ′ ` A2

Γ,Γ′ ` A1 ⊗A2
⊗R Γ, A1, A2 ` B

Γ, A1 ⊗A2 ` B
⊗L

Γ, A1 ` A2

Γ ` A1 ( A2
(R

Γ ` A1 Γ′, A2 ` B
Γ,Γ′, A1 ( A2 ` B

(L

Γ ` Ak k ∈ I
Γ ` ⊕{li : Ai}i∈I

⊕R
Γ, Ai ` B ∀i ∈ I

Γ,⊕{li : Ai}i∈I ` B
⊕L

Γ ` Ai ∀i ∈ I
Γ ` &{li : Ai}i∈I

&R
Γ, Ak ` B k ∈ I

Γ,&{li : Ai}i∈I ` B
&L

Γ ` P (t)

Γ ` ∃x.P (x)
∃R

Γ, P (x) ` B x fresh

Γ,∃x.P (x) ` B ∃Lx

Γ ` P (x) x fresh

Γ ` ∀x.P (x)
∀Rx

Γ, P (t) ` B
Γ,∀x.P (x) ` B ∀L

T (x) =µ A Γ ` [t/x]A

Γ ` T (t)
µTR

T (x) =µ A Γ, [t/x]A ` B
Γ, T (t) ` B

µTL

T (x) =ν A Γ ` [t/x]A

Γ ` T (t)
νTR

T (x) =ν A Γ, [t/x]A ` B
Γ, T (t) ` B

νTL

· ` s = s
=R

∀θ ∈ mgu(t, s) Γ[θ] ` B[θ]

Γ, s = t ` B =L

Figure 4.1: In�nitary calculus for �rst order linear logic with �xed points. (In the =L rule, the

set mgu(t, s) is either empty, or a singleton set containing a most general uni�er.)

subgoal with an identical interior judgment
1
. In the �rst order context we may need to use a

substitution rule right before a circular edge to make the subgoal and interior judgment exactly

identical [12]:

Γ ` B
Γ[θ] ` B[θ]

substθ

We can transform a circular derivation to its underlying in�nite derivation in a productive way,

i.e. at each step we can produce one rule of the in�nite derivation. Consider a substθ rule and

a circular edge in the circular derivation. We (1) instantiate the (possibly circular) derivation

to which the circular edge pointed with substitution θ, (2) replace the substθ rule with the

instantiated derivation, and (3) remove the circular edge. Lemma 4.1 proves that instantiation

of a derivation used in step (1) exists and does not change the structure of derivation.

1

By this de�nition vacuous circular derivation that identi�es an open sub-goal with itself is not allowed.
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Lemma 4.1 (Substitution). For a derivation

Π
Γ ` A

in the in�nite system and substitution θ, there is a derivation for

Π[θ]
Γ[θ] ` A[θ]

where Π[θ] is the whole derivation Π or a pre�x of it instantiated by θ.

Proof. �e proof is by coinduction on the structure of

Π
Γ ` A

�e only interesting case is where we get to the = L rule.

Π′

Γ[θ′] ` B[θ′] ∀θ′ ∈ mgu(s, t)

Γ, s = t ` B = L

If the set mgu(t[θ], s[θ]) is empty then so is Π′[θ]. Otherwise if η is the single element of

mgu(t[θ], s[θ]), then for some substitution λ we have θη = θ′λ, and we can form the rest of

derivation for substitution λ as Π′[λ] coinductively.

�e de�nitions and proofs in this chapter are based on the in�nite system of Figure 4.1. When

possible, we present the derivations in a circular form.

Example 4.4. Consider signature Σ2 and predicates Nat, Even, and Odd de�ned in Example 4.2.
Figure 4.2 represents a circular derivation for Even(x) ` Odd(sx). Π is the �nite derivation given
in Example 4.3.

In Figure 4.2, the judgment ? Even(x) ` Odd(sx) is an open subgoal that can be identi�ed with
the interior judgment ? Even(x) ` Odd(sx). We marked both judgments with the same symbol ?
to represent this identi�cation.

We can interpret the proof in Example 4.4 as an inductive proof where its circular edge cor-

responds to applying the induction hypothesis. In the next two examples we represent two

coinductive proofs in our circular calculus. Both examples are adapted from [59].

Example 4.5. De�ne Σ3 to consist of a single predicate with negative polarity (x ∼ y) =1
ν

(hdx = hd y) &(tlx ∼ tl y).

Predicate (x ∼ y) can be read as a bisimulation between streams x and y, where the term hdx

refers to the head of the stream x and tlx refers to its tail. For simplicity, we use the hd and tl

notation as an alternative to the concatenation in Example 4.1. We present a circular derivation
for ∼ being symmetric in Figure 4.3.
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· ` (ssy = ssy)
= R

· ` ssz = ssz
= R

? Even(x) ` Odd(sx)

Even(z) ` Odd(sz)
Subst[z/x]

Even(z) ` (ssz = ssz) ⊗ Odd(sz)
⊗R

Even(z) ` (∃y.(ssz = sy) ⊗ Odd(y))
∃R

Even(z) ` (∃y.(ssz = sy) ⊗ Odd(y))⊕ (ssz = z)
⊕R

Even(z) ` Even(ssz)
µR

(y = sz), Even(z) ` Even(sy)
= L

(y = sz) ⊗ Even(z) ` Even(sy)
⊗L

∃z.(y = sz) ⊗ Even(z) ` Even(sy)
∃L

Odd(y) ` Even(sy)
µL

Odd(y) ` (ssy = ssy) ⊗ Even(sy)
⊕R

Odd(y) ` ∃z.(ssy = sz) ⊗ Even(z)
∃R

Odd(y) ` Odd(ssy)
µR

(x = sy), Odd(y) ` Odd(sx)
= L

(x = sy) ⊗ Odd(y) ` Odd(sx)
⊗L

∃y.(x = sy) ⊗ Odd(y) ` Odd(sx)
∃L

Π
· ` Odd(sz)

(x = z) ` Odd(sx)
= L

(∃y.(x = sy) ⊗ Odd(y))⊕ (x = z) ` Odd(sx)
⊕L

? Even(x) ` Odd(sx)
µL

Figure 4.2: Successor of every even number is odd.

· ` (hdx = hdx)
= R

(hdx = hd y) ` (hd y = hdx)
= L

(hdx = hd y) &(tlx ∼ tl y) ` (hd y = hdx)
&L

? (x ∼ y) ` (y ∼ x)

(tlx ∼ tl y) ` (tl y ∼ tlx)
Subst[tlx/x,tly/y]

(hdx = hd y) &(tlx ∼ tl y) ` (tl y ∼ tlx)
&L

(hdx = hd y) &(tlx ∼ tl y) ` (hd y = hdx) &(tl y ∼ tlx)
&R

(x ∼ y) ` (hd y = hdx) &(tl y ∼ tlx)
νL

? (x ∼ y) ` (y ∼ x)
νR

Figure 4.3: Relation ∼ de�ned on streams is symmetric.

Example 4.6. We can reason about the properties of stream operations in our calculus as well.
Consider three operations merge, split1 and split2. Operation merge receives two streams and
merge them into a single stream by alternatively outpu�ing an element of each. Operations split1
and split2 receive a stream x as an input and return the odd and even elements of it, respectively.
We de�ne these operations as negative predicates in our language. De�ne signature Σ4 as

Merge(x, y, z) =1
ν (hd z = hdx ⊗ Merge (y, tlx, tl z))

Split1(x, y) =1
ν (hd y = hdx ⊗ Split2(tlx, tl y))

Split2(x, y) =1
ν (Split1(tlx, y))

�e derivation given in Figure 4.4 shows that operations merge and spliti are inverses: Split a
stream x into two streams y1 and y2 using split1 and split2, respectively, then merge y1 and y2.
�e result is x.



First order linear logic with least and greatest �xed points 33

· ` hd y1 = hd y1
= R

hd y1 = hdx ` hdx = hd y1
= L

? S2(x, y2), S1(x, y1) ` M (y1, y2, x)

S2(tlx, tly1), S1(tlx, y2) ` M(y2, tly1, tlx)
Sub[tlx,tly1,y2/x,y2,y1]

hd y1 = hdx , S2(tlx, tl y1), S1(tlx, y2) ` hdx = hd y1 ⊗ M (y2, tl y1, tlx)
⊗R

hd y1 = hdx ⊗ S2(tlx, tl y1), S1(tlx, y2) ` hdx = hd y1 ⊗ M (y2, tl y1, tlx)
⊗L

hd y1 = hdx ⊗ S2(tlx, tl y1), S2(x, y2) ` hdx = hd y1 ⊗ M (y2, tl y1, tlx)
νL

S1(x, y1), S2(x, y2) ` hdx = hd y1 & M (y2, tl y1, tlx)
νL

? S1(x, y1), S2(x, y2) ` M(y1, y2, x)
νR

Figure 4.4: Operations Merge(M) and Spliti(Si) are inverses.

4.2 Pattern Matching

It may not be feasible to present a large piece of derivation fully in the calculus of Figure 4.1.

For the sake of brevity, we may represent predicates of positive polarity in the signature using

pa�ern matching and build equivalent derivations based on that signature [12, 79]. In all the

examples in this thesis, if we use pa�ern matching, it should be clear how to transform the

signature and derivations into the main logical system.

Example 4.7. Recall signature Σ2 in Example 4.2

Nat(x) =1
µ (∃y.(x = sy) ⊗ Nat(y)) ⊕ ((x = z))

Even(x) =2
µ (∃y.(x = sy) ⊗ Odd(y))⊕ ((x = z))

Odd(x) =2
µ (∃y.(x = sy) ⊗ Even(y))

where positive predicates Nat, Even, and Odd refer to the properties of being natural, even, and
odd numbers respectively.

Rede�ne predicates Even, Odd, and Nat by pa�ern matching in signature Σ′2 as:

Nat(z) =1
µ 1 Nat(sy) =1

µ Nat(y)

Odd(z) =1
µ 0 Odd(sy) =1

µ Even(y)

Even(z) =1
µ 1 Even(sy) =1

µ Odd(y)

�e circular derivation in Example 4.4 can be simpli�ed in the following way:

[1]

· ` 1
1R

· ` Even(z)
µR

· ` Odd(s z)
µR

1 ` Odd(s z)
1L

† Even(z) ` Odd(s z)
µL

[2]

? Odd(x) ` Even(sx)

Odd(x) ` Odd(s sx)
µR

† Even(sx) ` Odd(s sx)
µL

[3]
0 ` Odd(z)

0L

? Odd(z) ` Even(s z)
µL

[4]

† Even(x) ` Odd(sx)

Even(x) ` Even(s sx)
µR

? Odd(sx) ` Even(s sx)
µL
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By the de�nition of signature Σ′2, the pa�ern of x in Odd(x) is either of the form s y or z. At the
subgoal marked with ? in subderivation 2, we form a branch similar to the ⊕L rule to cover all
possible pa�erns of x; we continue with subderivations 3 and 4. With the same reasoning at the
subgoal marked with † in the subderivation 4 we form a branch with subderivations 1 and 2.

A major contribution of this chapter is to give a criterion for validity of theorems proved by

simultaneous induction and coinduction. In the next example we see an interplay between

positive and negative �xed points in the derivation. �is example is adapted from [2]. De-

�ne predicate run(x, t) to represent computation of a stream processor, where x is the list of

operations we want to compute.

Example 4.8. De�ne the signature Σ5 to be

run(end , t) =1
µ 1

run(seq(skip, x), t) =1
µ run(x, t)

run(seq(put(x), y), t) =1
µ nrun (x, y, t)

nrun(x, y, t) =2
ν hd t = z& run(seq(x, y), tl t)

Operations can be either a skip or a put(x). �ey are composed to each other with seq(x, y).
Operation skip simply skips one step and does not contribute to the output stream t. Operation
put(x) puts element z as the head of the output stream t and appends a new list of operations x to
the original list of operations. A�er computing skip the length of remaining operations in x goes
down by one. So we can de�ne run(seq(skip, x), t) inductively. put(x) increases the length of the
operations, but produces an element of the output stream. So run(seq(put(x), y), t) needs to be
de�ned coinductively. We assigned a higher priority to the inductive predicates since the overall
program is terminating given that the length of the list of operators x is �nite.

�e equivalent signature without pa�ern matching is

run(x, t) =1
µ ⊕{end : x = end ⊗ 1,

skip : ∃x′.seq(skip, x′)⊗ run(x′, t),

put : ∃x′.∃y.x = seq(put(x′), y)⊗ nrun(x′, y, t)}
nrun(x, y, t) =2

ν hd t = z& run(seq(x, y), tl t)

Here we de�ne run(seq(put(x), y), t) in two steps to follow the rules of de�nition by pa�ern
matching: the pa�ern is broken down inductively and is de�ned as a positive �xed point. In the
case where the pa�ern matches seq(put(x), y), the predicate run is de�ned using an intermediate
negative predicate nrun coinductively. We may abbreviate this de�nition to one step as:

run(seq(put(x), y), t) =2
ν hd t = z& run(seq(x, y), tl t)
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· ` 1
1R

· ` 1⊕ ztream(t)
⊕R

· ` zlist(t)
µR

1 ` zlist(t)
1L

† run(end , t) ` zlist(t)
µL

† run(x, t) ` zlist(t)

† run(seq(skip, x), t) ` zlist(t)
µL

? nrun (x, y, t) ` ztream(t)

nrun (x, y, t) ` 1⊕ ztream(t)
⊕R

nrun (x, y, t) ` zlist(t)
µR

† run(seq(put(x), y), t) ` zlist(t)
µL

hd t = z ` hd t = z
ID

hd t = z& run(seq(x, y), tl t) ` hd t = z
&L

nrun (x, y, t) ` hd t = z
νL

†
run(x; y, tl t) ` zlist(tl t)

hd t = z& run(seq(x, y), tl t) ` zlist(tl t)
&L

nrun (x, y, t) ` zlist(tl t)
νL

nrun (x, y, t) ` hd t = z& zlist(tl t)
&R

? nrun (x, y, t) ` ztream(t)
νR

Figure 4.5: run produces a possibly in�nite list of elements z

In Figure 4.5, we prove that a run of any list of operations x produces a (possibly in�nite) list of
elements z:

zlist(t) =1
µ 1⊕ ztream(t)

ztream(t) =2
ν hd t = z& zlist (tl t)

We give circular derivations for both † run(x, t) ` zlist(t) and ? nrun(x, y, t) ` ztream(t) to
show the interplay between coinductive and inductive predicates.

4.3 A validity condition on �rst order derivations

In Section 4.1, we introduced an in�nitary calculus for �rst order linear logic with �xed points.

�is section establishes a concept of validity with respect to cut elimination. As usual, cut

elimination for valid derivations ensures consistency: it implies that there is no proof for · ` 0

in our calculus. All derivations presented in this chapter are valid by the de�nition we present

in this section. We leave it to the reader to check their validity.

To establish a validity condition we need to keep track of the behavior of any particular for-

mula throughout the whole derivation. We uniquely annotate the formulas in a judgment with

variables x,y, z. �e variables used for labeling formulas are disjoint from the set of term vari-

ables. Similar to proof terms, the annotations can di�erentiate between two alternative proofs

of a judgment. For example, by annotating the formulas, the proof

A ` A Id
A ` A Id

A,A ` A⊗A ⊗R
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can be di�erentiated into the following two proofs based on the roles of the distinct but equiv-

alent formulas in the antecedent of the conclusion:

x : A ` w : A
Id

y : A ` z : A
Id

x : A,y : A ` z : A⊗A ⊗R
y : A ` w : A

Id
x : A ` z : A

Id

x : A,y : A ` z : A⊗A ⊗R

where w is a fresh variable that we introduce as the (le�) continuation of z, when a ⊗R rule

applies on it. �e freshness of variable w ensures the uniqueness invariant of each formula in

the sequent. Similarly, in the cut rule we annotate the cut formula with a fresh variable w to

distinguish it from the other formulas in the derivation:

x : A ` w : A
Id

w : A ` y : A
Id

x : A ` y : A
Cut

We track the generation of variables to capture evolution of a formula in a derivation. A gen-

eration α is de�ned over natural numbers. We call a variable used for labelling formulas in

a sequent and its generation (xα) a generational variable. Di�erent generations of the same

variable allow us to capture the progress of a given formula which is made when an unfolding

�xed point rule is applied on it. With this annotation we can keep track of the behaviour of

any particular formula throughout the whole derivation. Our validity condition requires that

at least one formula in every in�nite branch behaves in a way that justi�es validity of that

branch.

Figure 4.6 shows the calculus annotated with variable generations and their relations. A basic

judgment in the annotated calculus is of the form ∆ `Ω zβ :C where ∆ is a multiset of formulas

annotated with (unique) generational variables, i.e. its elements are of the form xα:A. �e set Ω

keeps the relation between di�erent generations of variables in a derivation for each priority.

�e relations in Ω are of the form xαi < yβi or xαi = yβi , where i is a priority of a predicate in

the signature.

We picked generational variables to track formulas over alternatives since they resemble chan-

nels in session-typed processes [27]. We will use this analogy in the proof of strong progress

property (Section 7.4). Generational variables are related to other alternatives for annotating a

formula in an in�nite derivation to track its behaviour [7, 92]. For example, Baelde et al.’s no-

tion of (pre)formula occurrences is similar to annotated formulas with generational variables.

However, some subtle di�erences make them distinct: 1) Generational variables are unique in

each sequent, but they are not necessarily assigned uniquely to sub-formulas, e.g. &R/L rules.

2) �e relation that we form between generational variables is not based on a subformula re-

lation, e.g. µR, νL, and( R/L rules.

�e relation of a new generation yα+1
to its prior yα is determined by the role of the rule

that introduces it in (co)induction. �e µL rule breaks down an inductive antecedent and νR

produces a coinductive succedent. �ey both take a step toward termination/productivity of

the proof: we put the new generation of the variable they introduce to be less than the prior
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ones in the given priority. �eir counterpart rules νL and µR, however, do not contribute to

termination/productivity. �ey break the relation between the new generation and its prior

ones for the given priority. In the µL rule, for example, we add the relation yα+1
i < yαi to Ω′.

It is interpreted as the new generation yα+1
is less than its prior generation on priority i. For

the other priorities j 6= i we keep yα+1
j = yαj .

As explained above, in the Cut rule we introduce a fresh variable annotated with a generation:

wη
where w is a fresh variable and η is a generational variable. Since it refers to a new formula,

we designate it to be incomparable to other variables. We consider wη
as a continuation of zβ

in the rule ⊗R and add wη
i = zβi to Ω for each priority i. Similarly, we keep the relation

of yα with its continuation wη
for each priority in Ω for the ⊗L rule. �is is similar to the

validity condition for propositional µ-MALL∞ [7] where both A1 and A2 are sub-occurrences

of A1 ⊗A2 and are considered to be on the same thread as A1 ⊗A2 (see Section 3.4).

�e fresh variable wη
introduced in the( R (resp.( L) rule switches its place in the sequent

from right to le� (resp. le� to right) and thus it has a dual role in (co)induction compared to zβ

(resp. yα). We do not consider a relation between wη
and zβ in the( R (resp. yα in( L). As

a result, our condition on( is more restrictive than its classical counterpart O in [7] where

both A1 and A2 are sub-occurrences of A1OA2 (see Section 3.4). Recall that A1 is already

restricted to be an atomic formula in our se�ing, and no logical rule will apply to it further

in the derivation. �e restrictions we put on the linear implication allow us to obtain a more

straightforward cut-elimination proof than Baelde et al.’s proof. To accept more proofs, one

may li� the restriction on linear implication and maintain a relation betweenA1 andA1 ( A2

in the intuitionistic se�ing despite the switch ofA1 between le� and right by polarizing all the

connectives as described in [74]. �is is a generalization we plan to pursue in future work since

it is not necessary here in our principal application.

Unlike the existing validity conditions for in�nitary calculi de�ned only over least �xed points

[12, 13, 25, 90], priorities are essential in a se�ing with nested least and greatest �xed points.

Here both inductive and coinductive predicates may be unfolded in�nitely o�en along the le�

and right sides of a branch, but only the one with the highest priority shall be used to ensure
validity of it.

To sort �xed point unfolding rules applied on previous generations of variable xα by their

priorities we use a snapshot of xα. For a given signature Σ, the snapshot of an generational

variable xα is a list snap(xα) = [xαi ]i≤n, where n is the maximum priority in Σ. Having the

relation between generational variables in Ω, we can de�ne a partial order on snapshots of

generational variables. We write snap(xα) = [xα1 · · ·xαn] <Ω [zβ1 · · · zβn] = snap(zβ)if the list

[xα1 · · ·xαn] is less than [zβ1 · · · z
β
n] by the lexicographic order de�ned by the transitive closure

of the relations in Ω.

Example 4.9. Consider signature Σ1

Stream(x) =1
ν (∃y.∃z.(x = y · z)⊗ Nat(y)⊗ Stream (z))

Nat(x) =2
µ (∃y.(x = sy) ⊗ Nat(y)) ⊕ ((x = z) ⊗ 1)
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xα : A `Ω zβ : A
Id

∆ `Ω wη : A ∆′,wη : A `Ω zβ : C

∆,∆′ `Ω zβ : C
Cut

· `Ω zβ : 1
1R

∆ `Ω zβ : C

∆,yα : 1 `Ω zβ : C
1L

∆ `
Ω∪{wη

i =zβi |i≤n}
wη : A1 ∆′ `Ω zβ : A2

∆,∆′ `Ω zβ : A1 ⊗A2
⊗R

∆,wη : A1,y
α : A2 `Ω∪{wη

i =yαi |i≤n} zβ : B

∆,yα : A1 ⊗A2 `Ω zβ : B
⊗L

∆,wη : A1 `Ω zβ : A2

∆ `Ω zβ : A1 ( A2
( R

∆ `Ω wη : A1 ∆′,yα : A2 `Ω zβ : B

∆,∆′,yα : A1 ( A2 `Ω zβ : B
( L

∆ `Ω zβ : Ak k ∈ I
∆ `Ω zβ : ⊕{li : Ai}i∈I

⊕R
∆,yα : Ai `Ω zβ : B ∀i ∈ I
∆,yα : ⊕{li : Ai}i∈I `Ω zβ:B

⊕L

∆ `Ω zβ:Ai ∀i ∈ I
∆ `Ω zβ : &{li : Ai}i∈I

&R
∆,yα : Ak `Ω zβ : B k ∈ I

∆,yα : &{li : Ai}i∈I `Ω zβ : B
&L

∆ `Ω zβ : P (t)

∆ `Ω zβ : ∃x.P (x)
∃R

∆,yα : P (x) `Ω zβ : B x fresh

∆,yα : ∃x.P (x) `Ω zβ : B
∃Lx

∆ `Ω P :: zβ : P (x) x fresh

∆ `Ω zβ : ∀x.P (x)
∀Rx

∆,yα : P (t) `Ω zβ : B

∆,yα : ∀x.P (x) `Ω zβ : B
∀L

Ω′ = Ω ∪ {zβ+1
i = zβi | i 6= j}

∆ `Ω′ zβ+1 : [t/x]A T (x) =j
µ A

∆ `Ω zβ : T (t)
µR

Ω′ = Ω ∪ {yα+1
i = yαi | i 6= j} ∪ {yα+1

j < yαj }
∆,yα+1 : [t/x]A `Ω′ zβ : B T (x) =j

µ A

∆,yα : T (t) `Ω zβ : B
µL

Ω′ = Ω ∪ {zβ+1
i = zβi | i 6= j} ∪ {zβ+1

j < zβj }
∆ `Ω′ zβ+1 : [t/x]A T (x) =j

ν A

∆ `Ω zβ : T (t)
νR

Ω′ = Ω ∪ {yα+1
i = yαi | i 6= j}

∆,yα+1 : [t/x]A `Ω′ zβ : B T (x) =j
ν A

∆,yα : T (t) `Ω zβ : B
νL

· `Ω zβ : (s = s)
= R

∆[θ] `Ω zβ : B[θ] ∀θ ∈ mgu(t, s)

∆,yα : (s = t) `Ω zβ : B
= L

Figure 4.6: In�nitary calculus annotating formulas with labelling variables and their genera-

tions.

and variables xα and zβ in the judgment xα:Nat(x),yδ : Stream(y) ` zβ :Stream(x · z). We have
snap(xα) = [xαi ]i≤2 = [xα1 ,x

α
2 ] and snap(zβ) = [zβi ]i≤2 = [zβ1 , z

β
2 ].

Example 4.10. Let Ω = {xα1 = zβ1 ,x
α
2 < zγ2 , z

γ
2 < zβ2}. For snap(xα) and snap(zβ) de�ned

over signature Σ1 in Example 4.9, we have snap(xα) = [xα1 ,x
α
2 ] <Ω [zβ1 , z

β
2 ] = snap(zβ).

When comparing the snapshot of a generational variable with the snapshot of a previous gen-

eration of it, we can recognize the history of �xed point unfolding rules that has been applied
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on the formula between the two generations. For example, in the path

x4:A2 `Ω′ y0 : B
.
.
.

x0:A1 `Ω y0 : B

if [x4
1 · · ·x4

n] is less than [x0
1 · · ·x0

n], then we know that a least �xed point unfolding rule with

priority i has been applied on a prior generation of x4
in the path but no greatest �xed point

rule with a higher priority than i has been applied on the prior generations of x4
.

We generalize the de�nitions of le� µ-trace and right ν-trace from Fortier and Santocanale and

adapt it to our se�ing.

De�nition 4.2. An in�nite branch of a derivation is a le� µ-trace if for in�nitely many gen-

erational variables x1α1 ,x2α2 , · · · appearing as antecedents of judgments xiαi : Ai,∆i `Ωi

wβ : Ci, in the branch as

.

.

.

x3α3 : A3,∆3 `Ω3 zη : C3

.

.

.

x2α2 : A2,∆2 `Ω2 yδ : C2

.

.

.

x1α1 : A1,∆1 `Ω1 wβ : C1

.

.

.

we can form an in�nite chain of inequalities snap(x1α1) >Ω2 snap(x2α2) >Ω3 · · · .

Dually, an in�nite branch of a derivation is a right ν-trace if for in�nitely many generational

variables y1β1 ,y2β2 , · · · appearing as the succedents of judgments ∆i `Ωi yiβi : Ci in the

branch as

.

.

.

∆3 `Ω3 y3β3 : C3

.

.

.

∆2 `Ω2 y2β2 : C2

.

.

.

∆1 `Ω1 y1β1 : C1

.

.

.

we can form an in�nite chain of inequalities snap(y1β1) >Ω2 snap(y2β2) >Ω3 · · · .

Consider a derivation given in the system of Figure 4.1. We can annotate the derivation to get

one in the system of Figure 4.6. �is can be done productively: we start by annotating the root

with arbitrary generational position variables, and continue by replacing the last rule with its

annotated version.
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De�nition 4.3 (Validity condition for in�nite derivations). An in�nite derivation in the cal-

culus of Figure 4.1 is a valid proof if each of the in�nite branches in its annotated derivation is

either a le� µ-trace or a right ν-trace.

We do not represent circular derivations in the annotated calculus directly; instead we un-

fold them to their underlying in�nitary derivations. A circular derivation in the calculus of

Figure 4.1 is a proof if it has a valid underlying in�nite derivation.

We can prove that our validity condition is preserved by substitution.

Lemma 4.4 (Substitution preserves validity). For a valid derivation

Π
∆ ` wα : A

in the in�nite system and substitution θ, there is a valid derivation for

Π[θ]

∆[θ] ` wα : A[θ]

where Π[θ] is the whole derivation Π or a pre�x of it instantiated by θ.

Proof. Similar to the proof of Lemma 4.4.

Our validity condition, when restricted to the propositional singleton fragment considered by

Fortier and Santocanale, is the same as their validity condition.

Example 4.11. Figure 4.7 presents the �rst several steps of the derivation from Example 4.4 in
the annotated calculus. To check the validity of this derivation, it is enough to observe that

snap(xα+2) = [xα+2
1 ,xα+2

2 ] <Ω6 [xα1 ,x
α
2 ] = snap(xα).

Since the annotation of generational variables is straightforward, for the sake of conciseness,

we present future examples as circular derivations in the calculus of Figure 4.1. We also use

pa�ern matching whenever possible.

4.4 A productive cut elimination algorithm

We introduce a cut elimination algorithm for in�nite pre-proofs in FIMALL∞µ,ν . We prove that

this algorithm is productive for valid derivations: the algorithm receives a potentially in�nite

valid proof as an input and outputs a cut-free (possibly in�nite) valid proof productively. An

algorithm is productive if every piece of its output is generated in a �nite number of steps.
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· `Ω7 zη : (ssy = ssy)
= R

· `Ω6 uγ : ssz = ssz
= R

.

.

.

.

xα+2 : Even(z) `Ω6 yβ+2 : Odd(sz)

xα+2 : Even(z) `Ω6 yβ+2 : (ssz = ssz) ⊗ Odd(sz)
⊗R

xα+2 : Even(z) `Ω6 yβ+2 : (∃y.(ssz = sy) ⊗ Odd(y))
∃R

xα+2 : Even(z) `Ω6 yβ+2 : (∃y.(ssz = sy) ⊗ Odd(y))⊕ (ssz = 0)
⊕R

xα+2 : Even(z) `Ω5 yβ+1 : Even(ssz)
µR

vζ : (y = sz),xα+2 : Even(z) `Ω5 yβ+1 : Even(sy)
= L

xα+2 : (y = sz) ⊗ Even(z) `Ω4 yβ+1 : Even(sy)
⊗L

xα+2 : ∃z.(y = sz) ⊗ Even(z) `Ω4 yβ+1 : Even(sy)
∃L

xα+1 : Odd(y) `Ω3 yβ+1 : Even(sy)
µL

xα+1 : Odd(y) `Ω3 yβ+1 : (ssy = ssy) ⊗ Even(sy)
⊗R

xα+1 : Odd(y) `Ω3 yβ+1 : ∃z.(ssy = sz) ⊗ Even(z)
∃R

xα+1 : Odd(y) `Ω2 yβ : Odd(ssy)
µR

wδ : (x = sy),xα+1 : Odd(y) `Ω2 yβ : Odd(sx)
= L

xα+1 : (x = sy) ⊗ Odd(y) `Ω1 yβ : Odd(sx)
⊗L

xα+1 : ∃y.(x = sy) ⊗ Odd(y) `Ω1 yβ : Odd(sx)
∃L

· · ·
xα+1 : (∃y.(x = sy) ⊗ Odd(y))⊕ ((x = z)) `Ω1 yβ : Odd(sx)

⊕L

xα : Even(x) `∅ yβ : Odd(sx)
µL

Ω1 = {xα+1
2 < xα2 ,x

α+1
1 = xα1 }, Ω2 = Ω1 ∪ {wδ

2 = xα+1
2 ,wδ

1 = xα+1
1 },

Ω3 = Ω2 ∪ {yβ+1
1 = yβ1}, Ω4 = Ω3 ∪ {xα+2

2 < xα+1
2 ,xα+2

1 = xα+1
1 },

Ω5 = Ω4 ∪ {vζ2 = xα+2
2 ,vζ1 = xα+2

1 }, Ω6 = Ω5 ∪ {yβ+2
1 = yβ+1

1 }, and

Ω7 = Ω3 ∪ {zη2 = yβ+1
2 , zη1 = yβ+1

1 }

Figure 4.7: Successor of an even number is odd in the annotated calculus.

Consider a derivation given in the system of Figure 4.1. We annotate it to get a proof in the

system of Figure 4.6. We prove a lemma which states termination of the principal reductions

(or internal reductions) of the algorithm (Lemma 4.7) on the annotated derivation. Fortier and

Santocanale’s proof of a similar lemma for singleton logic is based on an observation that a�er

the principal reductions are applied on a ν-trace in a valid derivation tree, the resulting path

only has a �nite number of branches on its right side. �ese branches are created by the cut

rule. �e branches in the derivation that are created by additive connectives in &R and⊕L are

not signi�cant in this se�ing: in the principal cut reduction steps these branches are resolved

and exactly one of them remains.

In our calculus, multiplicative connectives can also create a branch by the⊗R and( L rules.

�ese branches continue to exist even a�er an internal cut reduction step. We introduce a fresh

variable wη
as a succedent in the branching rules. In the branches created by⊗R we keep the

relation between the fresh variable wη
with its parent zβ . As a result there may be an in�nite

ν-trace with in�nitely many branches on its right created by the⊗R rule. To take advantage of

a similar observation to Fortier and Santocanale’s, we distinguish between branching on fresh
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succedent generational variables created by a cut or a ( L rule, and a ⊗R rule. A�er this

distinction, our cut elimination algorithm creates a trace which is a chain complete partially

ordered set, rather than a complete la�ice in Fortier and Santocanale’s proof. We show that

having a chain complete partially ordered set is enough for proving the lemma both in our

se�ing and the subsingleton se�ing by slightly modifying Fortier and Santocanale’s argument.

As a corollary to this lemma our cut elimination algorithm produces a potentially in�nite cut-

free proof for the annotated derivation. We further prove that the output of the cut elimination

algorithm is valid. By simply ignoring the annotations of the output, we get a cut free valid

derivation in the calculus of Figure 4.1.

Since we are dealing with in�nite derivations, to make the algorithm productive we need to

push every cut away from the root with a lazy strategy. With this strategy we may need to

permute two consecutive cuts which results into a loop. To overcome this problem, similarly

to Fortier and Santocanale and also Baelde et al. [7] we generalize binary cuts to n-ary cuts

using the notion of a branching tape.

De�nition 4.5. A branching tape C is a �nite list of sequents
2 ∆ ` wβ : A, such that

• Every two judgments ∆ ` wβ : A and ∆′ ` w′β
′

: A′ on the tape share at most one

generational variable zα : B. If they share such a generational variable, we call them

connected. Moreover, assuming that ∆ ` wβ : A appears before ∆′ ` w′β
′

: A′ on the

list, we have zα : B ∈ ∆′ and zα : B = wβ : A.

• Each generational variable zβ appears at most twice in a tape, and if it appears more

than once it connects two judgments.

• C is connected.

�e conclusion concM of a branching tapeM is a sequent ∆ ` xα : A such that

• For some ∆′, there is a sequent ∆′ ` xα : A in the tape that xα : A does not connect it

to any other sequent in the tape.

• For every yβ : B ∈ ∆ there is a sequent ∆′,yβ : B ` zγ : C on the tape (for some ∆′

and zγ : C) such that yβ : B does not connect it to any other sequent in the tape.

We call ∆ the set of le�most formulas ofM: lft(M). And xα : A is the rightmost formula of

tapeM: rgt(M).

Lemma 4.6. Every branching tape has a unique conclusion.

Proof. By de�nition a branching tape is connected and acyclic. �erefore its conclusion always

exists and is unique.

2

For brevity we elide the set Ω in the judgments.
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An n-ary cut is a rule formed from a tapeM and its conclusion concM:

M
concM nCut

We generalize Fortier and Santocanale’s set of primitive operations to account for FIMALL∞µ,ν .

�ey closely resemble the reduction rules given by Doumane [33]. Figure 4.8 depicts a few

interesting internal (PRd) and external (Flip) reductions, identity elimination, and merging a

cut. It is straightforward to adapt the remainder of the reduction steps from the previous work

[33, 36].

Our cut elimination algorithm is given as Algorithms 1 and 2. We de�ne a function Treat that

reduces the sequence in a branching tape with principal reductions (PRd) until either a le� rule

is applied on one of its le�most formulas or a right rule is applied on its rightmost formula.

While this condition holds, the algorithm applies a �ip rule on a le�most/rightmost formula of

the tape (LFlip or RFlip). �e �ipping step is always productive since it pushes a cut one step

up. It su�ces to show that the principal reductions are terminating to prove productivity of

the algorithm. We prove termination of the principal reductions in Lemma 4.7.

C1
∆′ ` zβ : P (t)

∆′ ` zβ : ∃x.P (x)
∃R

C2

Π′

∆′′, zβ : P (x) ` wα : B

∆′′, zβ : ∃x.P (x) ` wα : B
∃L

C3
∆ ` v : C

nCut PRd
==⇒

C1 ∆′ ` zβ : P (t) C2
Π′[t/x]

∆′′, zβ : P (t) ` wα : B C3
∆ ` v : C

nCut

C1 · ` zβ : s = s
= R

C2
∆′′ ` wα : B

∆′′, zβ : s = s ` wα : B
= L

C3
∆ ` v : C

nCut PRd
==⇒

C1 C2 ∆′′ ` wα : B C3
∆ ` v : C

nCut

C1

∆′1 ` uη : A1 ∆′2 ` zβ : A2

∆′ ` zβ : A1 ⊗A2
⊗R

C2

∆′′,uη : A1, z
β : A2 ` wα : B

∆′′, zβ : A1 ⊗A2 ` wα : B
⊗L

C3

∆ ` v : C
nCut PRd

==⇒
C1 ∆′1 ` uη : A1 ∆′2 ` zβ : A2 C2 ∆′′,uη : A1, z

β : A2 ` wα : B C3

∆ ` v : C
nCut

C1

∆′,uη : A1 ` zβ : A2

∆′ ` zβ : A1 ( A2
( R

C2

∆′′1 ` uη : A1 ∆′′2, z
β : A2 ` wα : B

∆′′, zβ : A1 ( A2 ` wα : B
( L

C3

∆ ` v : C
nCut PRd

==⇒
C1 C2 ∆′′1 ` uη : A1 ∆′,uη : A1 ` zβ : A2 ∆′′2, z

β : A2 ` wα : B C3

∆ ` v : C
nCut

C1

∆′ ` zβ+1 : [t/x]A T (x) =µ A

∆′ ` zβ : T (t)
µR

C2

∆′′, zβ+1 : [t/x]A ` wα : B T (x) =µ A

∆′′, zβ : T (t) ` wα : B
µL

C3
∆ ` v : C

nCut PRd
==⇒

C1 ∆′ ` zβ+1 : [t/x]A C2 ∆′′, zβ+1 : [t/x]A ` wα : B C3
∆ ` v : C

nCut

Figure 4.8: Primitive operations.
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C
∆′1 ` uη : A1 ∆′2 ` zβ : A2

∆′1,∆
′
2 ` zβ : A1 ⊗A2

⊗R

∆1,∆2 ` zβ : A1 ⊗A2
nCut RFlip

===⇒

C∆′1
∆′1 ` uη : A1

∆1 ` uη : A1
nCut

C∆′2
∆′2 ` zβ : A2

∆2 ` zβ : A2
nCut

∆1,∆2 ` zβ : A1 ⊗A2
⊗R

C∆′1
in the above reduction is a subset of the tape C connected to ∆′1. By de�nition of tape, two sets C∆′1

and C∆′2
partition C.

C1

∆′,uη : A1, z
β : A2 ` wα : B

∆′, zβ : A1 ⊗A2 ` wα : B
⊗L

C2

∆, zβ : A1 ⊗A2 ` v : C
nCut LFlip

===⇒

C1 ∆′,uη : A1, z
β : A2 ` wα : B C2

∆,uη : A1, z
β : A2 ` v : C

nCut

∆, zβ : A1 ⊗A2 ` v : C
⊗L

C1

∆′[θ] ` wα : B′[θ] ∀θ ∈ mgu(t, s)

∆′, zβ : s = t ` wα : B
= L

C2

∆, zβ : s = t ` wα : B
nCut LFlip

===⇒
C1[θ] ∆′[θ] ` wα : B′[θ] C2[θ]

∆[θ] ` wα : B[θ]
nCut ∀θ ∈ mgu(t, s)

∆, zβ : s = t ` wα : B
= L

C1 xα : A ` wγ : A
ID C2

∆ ` zβ : C
nCut ID−Elim

=====⇒
C1 C2[xα/wγ ]

∆ ` zβ : C
nCut

C1

∆′ ` zβ : A ∆′′, zβ : A ` wα : B

∆′,∆′′ ` wα : B
Cut C2

∆ ` v : C
nCut Merge

====⇒
C1 ∆′ ` zβ : A ∆′′, zβ : A ` wα : B C2

∆ ` v : C
nCut

Figure 4.8: Primitive operations.

Lemma 4.7. For every input tape M , computation of Treat(M) halts.

Proof. We show that Treat(M) does not have an in�nite computation. Assume for the sake of

contradiction that Treat(M) has an in�nite computation and iterates inde�nitely. Put Mi for

i ≥ 1 to be the branching tape before the i-th iteration of the loop, with M1 = M .

We build the full trace T of the algorithm. T is a tree with nodes of the form (n, k) and a

designated root (0, 0). A node (n, k) corresponds to the k-th element of the branching tape

Mn. We produce T coinductively with a level order traversal: when the n-th iteration of the

loop in the Treat function creates a new tape Mn+1 from Mn we add the nodes (n + 1, k)

corresponding to the sequents inMn+1 to the n+1-th level of the tree and connect them with

labeled edges to the nodes in the n-th level of the tree. We provide the rules for building the

edges from level n to n + 1 based on the step that is used to create the tape Mn+1 from Mn,

i.e. internal cut reductions, merging a cut, and identity elimination. For merging a cut, identity

elimination, and internal cut reductions for additive connectives, we use essentially the same

rules as in Fortier and Santocanale[36]. �e rules for multiplicative internal cut reductions are

di�erent but based on a similar idea.
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Algorithm 1: Cut elimination algorithm

Description: Q is a queue with the elements of the form (w,M) where M is a tape, and

w is the node that was previously computed. �e output of the algorithm is a tree labelled

by {0, 1}. Each node of the tree is identi�ed with a sequent of 0 and 1s: w ∈ {0, 1}∗. For

each node in the tree, we also compute the corresponding sequent, s(w), and the rule

applied on it, r(w). ρ(s) is the rule applied on formula labelled with variable s, it can

either be an Id, Cut, a L rule, or a R rule. lft(M) and rgt(M) are de�ned in De�nition

4.5. �e FLip rules return the rule that is permuted down a�er the external reduction step

to prove w, the sequent corresponding to w, and a list List of one or two tapes to

continue with.

Initialization: Λ← ∅;Q← [(ε, [v])]; v is the root sequent.

while Q 6= ∅ do
(w,M)← pull(Q);

Λ← Λ ∪ {w};
M ← Treat(M);

if ∃s ∈ lft(M).ρ(s) ∈ L then
(r(w), s(w),List)← LFlip(M);

else
if ∃s ∈ rgt(M).ρ(s) ∈ R then

(r(w), s(w),List)← RFlip(M);

end
end
if List = [M ′] then

push((w0,M ′), Q);

else
if List = [M ′0,M

′
1] then

push((w0,M ′0), Q);

push((w1,M ′1), Q;

end
end

end

�e initial step is to add an edge labeled by i from the root to each node corresponding to the

i-th sequent in the initial tape M1, i.e. (1, i).

For 1 ≤ i ≤ |M1|, (0, 0)→i (1, i).

Next, we provide the rules for producing edges of T when the Treat function applies an identity

elimination or merges a cut on the tape Mn

• If Mn+1 = ID− Elim(Mn, i) then

– (n, k)→⊥ (n+ 1, k) for k < i,

– (n, k)→⊥ (n+ 1, k − 1) for k > i.
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Algorithm 2: Treat Function

Description: M is a branching tape. i and j in PRd(M, i, j) are the index of the two

sequents in tape on which the reduction rules are applied. Similarly i in Merge(M, i) and

ID− Elim is the index of the sequent in the tape on which the corresponding rule is

applied. ρ′(i) is the rule applied on the i-th sequent of the tape, it can either be an Id,

Cut, a L rule, or a R rule.

while ρ(lft(M)) 6∈ L and ρ(rgt(M)) 6∈ R and |M | > 0 do
if ∃i ∈M : ρ′(i) = Id then

M ← ID− Elim(M, i);

else
if ∃i ∈M : ρ′(i) = Cut then

M ← Merge(M, i);

else
if ∃i.∃j.∃ ◦ ∈ {1,⊕,&,⊗,(}.ρ′(i) = ◦R and ρ′(i) = ◦L then

M ← PRd(M, i, j);

end
end

end
end

• If Mn+1 = Merge(Mn, i) then

– (n, k)→⊥ (n+ 1, k) for k < i,

– (n, i)→1 (n+ 1, i),

– (n, i)→2 (n+ 1, i+ 1),

– (n, k)→⊥ (n+ 1, k + 1) for k > i.

Edges labeled by ⊥ mean that the sequent has not evolved by the operation. We use labels 1

and 2 in the step corresponding to Merge(Mn, i). Edges labeled by 1 and 2 connecting (n, i)

with (n + 1, i) and (n + 1, i + 1), respectively, show that the sequent i-th of the tape Mn

evolves to two new sequents: the i-th and i + 1-th sequents of the tape Mn+1. Naturally, we

have the relation 1 < 2 between the labels. Observe that the sequents corresponding to the

nodes (n+ 1, i) and (n+ 1, i+ 1) are connected via the fresh generational variable created by

the cut rule.

Recall from Algorithm 2 that function PRd(Mn, i, j) receives a tape M and two indices i, j

corresponding to the position of two sequents in the tape, applies an internal cut reduction

on the sequents at positions i and j and outputs the new tape Mn+1. One di�erence between

our algorithm, and Fortier and Santocanale’s is that in our algorithm the sequents subject to

reduction may not be next to each other. �us, in our case the PRd function needs to receive

the index of both sequents. Moreover, having the multiplicative connectives we need to deal

with branching internal reductions too. All reductions except those corresponding to ⊗ and

( are non-branching(nb). For the non-branching reductions the rules for creating the edges

of T are quite similar to the ones introduced by Fortier and Santocanale[36]. For brevity, we
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put function PRdnb(Mn, i, j) to stand for all internal reductions except ⊗ and(. �e rules

for building the next level of T for this collection of reductions is as follows:

• If Mn+1 = PRdnb(Mn, i, j) then

– (n, k)→⊥ (n+ 1, k) for k 6∈ {i, j},

– (n, i)→0 (n+ 1, i),

– (n, j)→0 (n+ 1, j).

�e label 0 connecting (n, i) and (n+1, i) for example indicates that the sequent corresponding

to the node (n, i) evolves to a new sequent corresponding to (n + 1, i) but it does not spawn

any new sequent and thus does not create a branch.

�e reductions corresponding to ⊗ and(, however, produce a branch. We de�ne the rules

for building T when the algorithm applies such branching steps separately:

• If Mn+1 = PRd⊗(Mn, i, j) then

– (n, k)→⊥ (n+ 1, k) for k < i,

– (n, i)→1a (n+ 1, i) and (n, i)→1b (n+ 1, i+ 1),

– (n, j)→0 (n+ 1, j + 1),

– (n, k)→⊥ (n+ 1, k + 1) for i < k < j or k > j.

• If Mn+1 = PRd((Mn, i, j) then

– (n, k)→⊥ (n+ 1, k) for k < i,

– (n, i)→0 (n+ 1, j),

– (n, k)→⊥ (n+ 1, k − 1) for i < k < j,

– (n, j)→1 (n+ 1, j − 1) and (n, j)→2 (n+ 1, j + 1),

– (n, k)→⊥ (n+ 1, k + 1) for k > j.

Labels ⊥ and 0 are used with a similar meaning as before. In the internal reduction for the

multiplicative conjunction (⊗), the i-th sequent of the tape Mn is replaced by two sequents,

the i-th and i+ 1-th sequents of the tape Mn+1. We connect the nodes corresponding to both

these new sequents to (n, i) using two distinct labels 1a and 1b. We extend the order < on

natural numbers N to an order on N ∪ {1a, 1b} such that 1a and 1b are incomparable to each

other. (We can also extend the order to include 1 < 1a, 1b < 2, but it is not signi�cant in our

proof.)

�e internal reduction of the linear implication (() creates a branch too: the j-th sequent

of the tape Mn is replaced by two sequents, the j − 1-th and j + 1-th sequents of the tape

Mn+1. We connect the nodes corresponding to these new sequents to (n, j) using labels 1 and
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2. More importantly, the reduction rule shi�s the i-th element of Mn to position j at the tape

Mn+1: in the new tape the sequent corresponding to (n + 1, j) is at the right of the sequent

corresponding to (n+ 1, j − 1).

Labels 1a, 1b, 1, 2 are to distinguish between two types of branching in Ψ: (i) the branching

that occurs in Merge and PRd( rules are labeled with 1 and 2 , and (ii) the branching in the

PRd⊗ is labeled with 1a and 1b. In the �rst case the branch labeled with 1 is lexicographically

less than the branch labeled with 2 since 1 < 2, while in the second case the branches are

incomparable (1a is incomparable to 1b).

Recall that the edges labelled by ⊥ connect two identical sequents. We get the real trace Ψ by

collapsing these ⊥-edges. Ψ is an in�nite, �nitely branching labelled tree with pre�x order v
and lexicographical order < (based on the order on natural numbers extended with labels 1a

and 1b). A branch in Ψ is a maximal path with respect tov. �e set of all branches of Ψ ordered

lexicographically forms a chain complete partially ordered set, meaning that a set of branches

that form a <-chain has a least upper bound and a greatest lower bound. We provide a simple

productive procedure of computing the greatest lower bound β for a chain of branches {γi}i∈I
as it will be used later in the proof. �e procedure assumes that (a) the greatest lower bound β

is constructed up to (not including) its i-th element, and (b) it receives a chain of branches as

an input such that they all have the same pre�x up to (not including) the i-th element. With

these assumptions the following provides an algorithm to �nd the i-th element of the greatest

lower bound β. �e assumptions clearly hold when we call the procedure for the �rst time to

construct the �rst element of β, and it is preserved by each recursive call:

Compare the i-th elements of the given branches and choose the least one (the number of labels
is �nite and all of them are comparable). Put the i-th element of β to be the chosen label. Next,
discard all branches that their i-th element is any other label, and repeat the procedure on the
remaining branches to �nd the i+ 1-th element.

Before proceeding with the proof, we state and prove the main observations that we use in the

rest of the proof.

Observation 1. Consider two sequents Γ′ ` xα : A and Γ,xα : A ` yβ : B on a branching

tape Mn where A is not an atomic formula. �e path in Ψ starting from the root and ending

in the node corresponding to Γ′ ` xα : A is lexicographically less than the path starting from

the root and ending in the node Γ,xα : A ` yβ : B.

Proof. We prove that this property holds as an invariant of each tape. By De�nition 4.5, the

invariant holds for the starting tape M1. We assume that the invariant holds for tape Mn and

prove that it holds for tape Mn+1 created by each possible step of the Treat function, i.e. a

principal reduction, Merge, or Identity elimination. �e proof is straightforward for all cases

except the principal reduction for( and identity elimination. Consider the case of reduction

for (, in which the principal reduction is applied on the sequents at positions i and j of

tape Mn (with i < j) as shown in Figure 4.8. Two new connections are formed in the new

tape Mn+1: ∆′′1 ` uη : A1 is connected to ∆′,uη : A1 ` zβ : A2 and ∆′,uη : A1 `
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zβ : A2 is connected to ∆′′2, z
β : A2 ` wα : B. By the restriction on the assumption of a

linear implication we know that A1 is an atomic formula and thus the �rst connection can be

dismissed. It is enough to prove that the path from the root to node (n+ 1, j) is less than the

path from the root to the node (n + 1, j + 1). To get this we can simply use the assumption

that the Tape Mn satis�es the invariant.

Next, consider identity elimination applied on the i-th sequent of the tapeMn. �e interesting

case is when the i-th sequent is of the form xα:A ` wγ :A and is connected to two sequents

Γ ` xα:A and Γ′,wγ :A ` zβ:C . In the resulting tape Mn+1, xα:A ` wγ :A is deleted and by

renaming the variables a new connection is created between Γ ` xα:A and Γ′,xα:A ` zβ:C .

IfA is an atom this connection is not signi�cant for our proof and can be dismissed. IfA is not

an atom then by assumptionMn satis�es the invariant and by transitivity of the lexicographic

order we know that the path from the root to the nodes corresponding to sequents Γ ` xα:A

and Γ′,xα:A ` zβ:C already satis�es the required condition.

De�nition. An in�nite branch in Ψ is a µ-branch (resp. ν-branch) if its corresponding path

in the derivation is a µ-trace (resp. ν-trace).

Observation 2. Our validity condition implies that the (in�nite) label of a ν-branch has only

�nitely many occurrences of 1.

Proof. Whenever we create a branch labeled by 1 (either when merging a cut or in a principal

reduction for (), we introduce a fresh variable as a succedent that does not relate to any

other prior generational variable. As a result, a ν-trace whose de�nition depends on the chain

of relationships formed between its succedents can only accept in�nitely many 1 labels.

We prove the following three contradictory statements:

(i) An in�nite branch of Ψ which is not less than any other in�nite branches (a maximal

in�nite branch) exists and it is a µ-branch:

We �rst prove that such a maximal branch exists. Assume that we add 1a < 1b to the

ordering, then the set of all branches of Ψ forms a complete la�ice, and by Konig’s lemma

it has a greatest in�nite branch γ. �is branch is maximal if we dismiss the relation

1a < 1b from the ordering.

Consider a maximal in�nite branch γ in Ψ. By validity of the derivation, it is either a

µ- or a ν-branch. Assume it is a ν-branch. �ere is an in�nite chain of inequalities for

generational variables x1α1 ,x2α2 , · · · on the succedents of γ:

snap(x1α1) >Ωγ1
snap(x2α2) >Ωγ2

· · · .

Recall that no logical rule can be applied on an atomic formula. As a result, by the

way we de�ned our validity condition, none of the variables xiαi annotate an atomic

formula. Moreover, by the de�nition of the Treat function each generational variable

xiαi occurs as an antecedent of a branch. For each generational variable xiαi we can
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build a branch βi: we start by connecting the root to the node corresponding to a sequent

in which xiαi is an antecedent. We then follow the path starting from the sequent to the

next generational variable that it has in common with γ. By the structure of Ψ and

duality of the le� and right rules, we can either �nd the next common generational

variable between βi and γ, or βi is a �nite branch and terminates. In both cases, we can

productively build a branch βi. We form a set {βi}i∈I from the branches we built. �is

set can have one or more elements. By Observation 1, we get γ < βi for every i ∈ I .

If there is an in�nite branch β in {βi}i∈I , we can form a contradiction with the maxi-

mality of γ since γ < β.

Otherwise all branches in {βi}i∈I are �nite and thus the index set I has to be in�nite.

Next, we show in this case we can also build an in�nite branch β > γ productively. �e

procedure assumes that (a) the in�nite branch β is constructed up to (not including) its

i-th element, and (b) it receives an in�nite set of branches as an input such that they all

have the same pre�x up to (not including) the i-th element. With these assumptions the

following provides an algorithm to �nd the i-th element of β. �e assumptions clearly

hold when we call the procedure for the �rst time to construct the �rst element of β, and

it is preserved by each recursive call:

Compare the i-th elements of the given branches and choose one that appears in�nitely
o�en (the number of distinct labels is �nite and at least one of them has to appear in�nitely
o�en). Put the i-th element of β to be the chosen label. Next, discard all branches that their
i-th element is any other label, and repeat the procedure on the remaining branches to �nd
the i+ 1-th element.

By the way β is synthesized, it is greater or equal to γ. Assume γ = β, it means that

each pre�x of γ is the pre�x of in�nitely many branches in {βi}i∈I . By γ < βi for every

i ∈ I , we conclude that γ = β has in�nitely many occurrences of 1 on its label. �is

forms a contradiction with γ being a ν-trace. As a result, we know that γ < β and we

can again form a contradiction with the maximality of γ.

(ii) Let γ be a maximal in�nite branch (an in�nite branch of Ψ which is not less than any

other in�nite branches with respect to the lexicographic ordering). Form a decreasing

chain of µ-branches in Ψ starting from γ: · · · < β2 < β1 < γ. Put E to be the elements

of this chain. �en η =
∧
E exists since Ψ is chain complete and it is a µ-branch: If

η ∈ E then it is trivially true. Otherwise, by the way we construct η each pre�x of η

is the pre�x of in�nitely many branches in E. By a similar reasoning to the previous

case we get that η has in�nitely many occurrences of 1 on its label. By Observation 2, it

cannot be a ν-branch and thus is a µ-branch.

(iii) If β is a µ-branch, then there exists another µ-branch β′ < β:

β is a µ-branch so for in�nitely many generational variables x1α1 ,x2α2 , · · · on the

antecedents of β we can form an in�nite chain of inequalities

snap(x1α1) >
Ωβ1

snap(x2α2) >
Ωβ2
· · · .
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Recall that none of the variables xiαi annotate an atomic formula. Moreover, by the

de�nition of the Treat function each generational variable xiαi occurs as the succedent

of a branch. We build the branch βi for each xiαi similar to part (i): for each generational

variable xiαi we can build the branch βi: we start by connecting the root to the node

corresponding to the sequent in which xiαi is the succedent. We then follow the path

starting from the sequent to the next generational variable that it has in common with β.

By the structure of Ψ and duality of the le� and right rules, we can either �nd the next

common generational variable between βi and β, or βi is a �nite branch and terminates.

In both cases, we can productively build the branch βi.

We form a set of branches {βi}i∈I with one or more elements. By Observation 1, we get

β1 < β for every i ∈ I . Observe that two branches βi and βi+1 have a close relation:

either (1) βi is equal to βi+1, or (2) βi is �nite and terminates by an identity rule that

forward its antecedent y to its succedent z. Case (2) has two sub-cases: either (2-1) z is

an antecedent of βi+1, or (2-2) y is the succedent of βi+1.

In Case (2-1) we know that βi+1 has a common pre�x with β at least up to z and thus

β later spawns βi+1 by introducing a fresh variable x as the succedent of βi+1 which is

not related to the variable z. �is results in a contradiction with the chain of inequalities

formed above. In (2-2) we have βi > βi+1 where βi is a �nite branch.

As a result the set {βi}i∈I of branches form a chain, and we can produce its greatest

lower bound β′. It is strightforward to observe that β′ is less than β, and also is in�nite.

By the way that we created it, one of the followings hold for β′:

(a) β′ < β is an in�nite branch with in�nitely many generational variables

xiαi ,x{i + 1}αi+1 , · · ·

as its succedents. �ese generational variables connect sequents in β to the se-

quents in β′ in�nitely many times. So every µ/νL rule in β reduces with a µ/νR

rule in β′. �is means that a µR rule with priority i is applied on the succedent of

β′ in�nitely o�en but no priority j < i has an in�nitely many νR rule in β′.

(b) β′ < β is an in�nite branch with in�nitely many occurrences of 1 on its label.

In both cases β′ cannot be a ν-branch and thus is a µ-branch.

Items (i)-(iii) form a contradiction. We can form the nonempty collection E of all µ-branches

in Ψ that from a maximal decreasing chain starting from γ by (i) and (iii). By (ii) we get

(η =
∧
E) ∈ E is the minimum of this chain. �is forms a contradiction with (iii) and

maximality of E.

With a similar reasoning, we can prove that the output of the cut elimination algorithm is also

a valid derivation. Since the reasoning of the proof is similar to the above, we only provide

a high level description here. Consider a branch b in the output derivation of Algorithm 1.

Using a similar set of rules in the above proof we can build a tree Tb for the full algorithm
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corresponding to branch b (including the treating part). De�ning the �ip (external reduction)

rules for creating tree Tb is straightforward: If the �ip rule creates two branches we continue

with the branch corresponding to b and dismiss the other one. For example in RFlip for⊗R, if

b corresponds to the le� branch, we add an edge from the node corresponding to the sequent

∆′1,∆
′
2 ` zβ : A1 ⊗ A2 to the node corresponding to the sequent ∆′1 ` uη : A1 labeled

by 0. For nodes corresponding the sequents in C∆′1
we add an edge labeled by ⊥ and for the

nodes corresponding to the sequents in C∆′2
we do not add any edges and simply terminate

their branches. For non-branching external reductions we use a set of rules similar to the

non-branching principal ones. Consider Ψb to be the real trace built based on branch b in the

derivation produced by collapsing the edges in Tb labeled by ⊥. It is straightforward to see

that Ψb is a chain complete partially ordered set, and Observations 1 and 2 hold in this se�ing

too.

If b is �nite we are done. Assume that branch b is not �nite.

(i’) Similar to item (i) we can show that the tree has a maximal in�nite branch γ with regard

to the lexicographic ordering. If this branch is a ν-branch then we can either form a set

of branches {βi}i∈I such that βi > γ, or in�nitely many RFlip rules are applied to the

succedents of γ to create the branch b. In the �rst case, we can form a contradiction

similar to the reasoning above and it means that γ has to be a µ-branch. In the second

case, the proof is complete since b is a valid ν-trace.

(ii’) In the previous case we established that γ is a µ-branch. Form a decreasing chain of

µ-branches in Ψ starting from γ: · · · < β2 < β1 < γ. Put E to be the elements of this

chain. �en η =
∧
E exists since Ψ is chain complete and it is a µ-branch by a similar

reasoning to item (ii).

(iii’) Put E to be a maximal decreasing chain of µ-branches in Ψ starting from γ: · · · < β2 <

β1 < γ. Let η =
∧
E be the greatest lower bound of E. By a similar reasoning to item

(iii), we get that either there is a µ-branch β′ < β or the antecedents that make β a

µ-trace are the antecedents of branch b in the output derivation. In the �rst case, we

form a contradiction. In the second case, the proof is complete since b is a µ-trace.

�eorem 1. A valid (in�nite) derivation enjoys the cut elimination property.

Proof. We annotate a given derivation in the system of Figure 4.1 to get a derivation in the

system of Figure 4.6 productively (as described in Section 4.3). As a corollary to Lemma 4.7 the

cut elimination algorithm (Algorithm 1) produces a potentially in�nite valid cut free proof for

the annotated derivation. By simply ignoring the annotations of the output, we get a cut free

proof in the calculus of Figure 4.1.



Chapter 5

Session-typed processes

5.1 Background

Communication centered programming (CCP) is an alternative to sequential programming and

a central element in so�ware development. CCP is a computational model with the expressive

power of λ-calculus [69] and has a broad range of applications. Its applications include net-

working, business protocols, and multicore programming.

Honda proposed session types as a potential typed foundation for structuring communication

centered programming [51]. �is model’s central objects are interrelated units called sessions

or processes, with their name originating from the networking community. �e interactions

between processes are governed by protocols associated with them. �e protocols are called

session types and describe the pa�ern in which processes interact with each other.

�e original work introduced session types based on π-calculus and described interactions

between sessions based on input/output communication and binary choice [51]. Channels

connect processes and transfer the interactions between them. Binary channels, in particu-

lar, conduct the interaction between exactly two processes. Honda et al. [52] generalized the

actions in session types to sending labels (as opposed to binary choice) and passing channels

over channels (session delegation). A duality is central in all interactions between processes:

one sends while the other receives.

Other variants of session types have been introduced since the original formulation. Honda et

al. [53] proposed multiparty session types that describe interactions containing more than two

parties. We are interested in binary session types, with every channel occurring exactly once in

a collection of interrelated processes. Binary session types have been recognized as arising from

linear logic (either in its intuitionistic [15, 16] or classical [98] formulation) by a Curry-Howard

interpretation. �e connectives in linear logic can model all actions in session types: additive

connectives simulate choosing a label, while multiplicative ones simulate session delegation

53
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and termination. Under this correspondence, propositions correspond to types, logical proof

rules to typing rules, proofs as programs, and cut reduction to communication along channels.

For the intuitionistic binary session types, a con�guration of processes connected along their

mutual channels forms a tree. �e tree’s acyclicity guarantees an important safety property

called progress (deadlock-freedom): the con�guration will never get stuck. Another key prop-

erty is type preservation (session �delity), ensuring a con�guration remains well-typed a�er a

step of computation [97].

�is thesis focuses on subsingleton session-typed processes, which is the fragment correspond-

ing to subsingleton logic [29, 31, 73]. In this fragment, the con�guration of connected processes

forms a chain rather than a tree. We extend the Curry-Howard interpretation of derivations in

in�nitary subsingleton logic with �xed points as recursive communicating processes. Along

with the standard progress and preservation results, we present a strong version of the progress

property that ensures each process communicates along its le� or right channel in a �nite

number of steps. Interestingly, the subsingleton fragment with recursive types already has the

computational power of Turing machines [31].

5.2 Session typed processes

Under the Curry-Howard interpretation a subsingleton judgment A ` B is annotated as

x : A ` P :: (y : B)

where x and y are two di�erent channels and A and B are their corresponding session types.

One can understand this judgment as [31]:

Process P provides a service of type B along channel y while using channel x of type A, a

service that is provided by another process along channel x.

However, since a process might not use any service provided along its le� channel, e.g. · `
P :: (y : B), or it might not provide any service along its right channel, e.g. x : A ` Q :: (·),

the labelling of processes is generalized to be of the form:

x̄ : ω ` P :: (y : C),

where x̄ is either empty or x , and ω is empty given that x̄ is empty.

We can form a chain of processes P0, P1, · · · , Pn with the typing

· ` P0 :: (x0 : A0), x0 : A0 ` P1 :: (x1 : A1), · · · xn−1 : An−1 ` Pn :: (xn : An)

which we write as

P0 |x0 P1 |x1 · · · |xn−1 Pn
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in analogy with the notation for parallel composition for processes P | Q, although here it

is not commutative. In such a chain, process Pi+1 uses a service of type Ai provided by the

process Pi along the channel xi, and provides its own service of type Ai+1 along the channel

xi+1. Process P0 provides a service of typeA0 along channel x0 without using any services. So,

a process in the session type system, instead of being reduced to a value as in functional pro-

gramming, interacts with both its le� and right interfaces by sending and receiving messages.

Processes Pi and Pi+1, for example, communicate with each other along the channel xi of type

Ai: if process Pi sends a message along channel xi to the right and process Pi+1 receives it

from the le� (along the same channel), session type Ai is called a positive type. Conversely, if

process Pi+1 sends a message along channel xi to the le� and process Pi receives it from the

right (along the same channel), session type Ai is called a negative type.

In general, in a chain of processes, the le�most type may not be empty. Also, strictly speaking,

the names of the channels are redundant since every process has two distinguished ports: one

to the le� and one to the right, either one of which may be empty. Because of this, we may

sometimes omit the channel name, but in the theory we present in this thesis it is convenient

to always refer to communication channels by unique names.

De�nition 5.1. We de�ne session types with the following grammar, where L ranges over

�nite sets of labels denoted by ` and k.

A ::= ⊕{` : A`}`∈L | &{` : A`}`∈L | 1 | ⊥

�e binary disjunction and conjunction are de�ned as A ⊕ B = ⊕{π1 : A, π2 : B} and

A&B = &{π1 : A, π2 : B}, respectively. Similarly, we de�ne 0 = ⊕{} and > = &{}.

�e restricted judgment of the subsingleton fragment cannot capture the binary multiplicative

connectives, i.e. we cannot handle session delegation in this fragment.

All processes we consider in this thesis provide a service along their right channel so in the

remainder of the thesis we restrict the sequents to be of the form x̄ : ω ` P :: (y : A). We

therefore do not need to consider the rules for type ⊥ anymore, but the results of this thesis

can easily be generalized to the fully symmetric calculus.

A summary of the operational reading of session types is presented in Table 5.1. �e �rst

column indicates the session type before the message exchange, the second column the session

type a�er the exchange. �e corresponding process terms are listed in the third and fourth

column, respectively. �e ��h column provides the operational meaning of the type and the

last column its polarity.
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Session type (curr./cont.) Process term (curr./cont.) Description Pol
x:⊕ {`:A}`∈L x:Ak Rx.k;P P provider sends label k along x +

caseLx(`⇒ Q`)`∈L Qk client receives label k along x

x:&{`:A}`∈L x:Ak caseRx(`⇒ P`)`∈L Pk provider receives label k along x -

Lx.k Q Q client sends label k along x

x : 1 - closeRx - provider sends “close” along x and terminates +

waitLx;Q Q provider receives “close” along x

Table 5.1: Overview of intuitionistic linear session types with their operational meaning.

5.3 Typing rules

�e process typing rules are based on the sequent calculus given in Section 2.2.1, which leads to

a le� and a right rule for each connective. �e le� and right rules for each connective describe

the interaction from the point of view of the provider and client, respectively.

Internal (⊕) and external (&) choice are the branching constructs. An internal choice gives the

choice to the provider, an external choice to the client.

x̄ : ω ` P :: (y : Ak) (k ∈ L)

x̄ : ω ` Ry.k;P :: (y : ⊕{` : A`}`∈L)
⊕R

∀` ∈ L x : A` ` P` :: (y : C)

x : ⊕{` : A`}`∈L ` caseLx (`⇒ P`)`∈L :: (y : C)
⊕L

x̄ : ω ` P` :: (y : A`) ∀` ∈ L
x̄ : ω ` caseRy (`⇒ P`)`∈L :: (y : &{` : A`}`∈L)

&R

k ∈ L x : Ak ` P :: (y : C)

x : &{` : A`}`∈L ` Lx.k;P :: (y : C
&L

�e multiplicative unit (1) denotes process termination.

· ` closeRy :: (y : 1)
1R

. ` Q :: (y : C)

x : 1 ` waitLx;Q :: (y : C)
1L

Identity and cut are the two rules that do not result in any communication. Identity amounts

to termination a�er identifying the involved channels and cut to process spawning. �e pro-

cess executing (w ← Pw;Qw) spawns a new process Pw and continues as Qw. To ensure

uniqueness of channels, we need w to be a fresh channel.

x : A ` y ← x :: (y : A)
Id
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x̄ : ω ` Pw :: (w : A) w : A ` Qw :: (y : C)

x̄ : ω ` (w ← Pw;Qw) :: (y : C)
Cut

w

Since the system is entirely syntax-directed we may sometimes equate (well-typed) programs

with their typing derivations.

5.4 Recursive types

In this section, we extend subsingleton session types with recursive types, allowing them to

capture unbounded interactions. We di�erentiate between least and greatest �xed points to

maintain a Curry-Howard correspondence between recursive session-typed processes and in-

�nitary subsingleton logic presented in Section 3.3.

De�nition 5.2. We extend the grammar of session types to include least and greatest �xed

points:

A ::= ⊕{` : A`}`∈L | &{` : A`}`∈L | 1 | ⊥ | t

where t ranges over type variables whose de�nition is given in a signature Σ:

Σ ::= · | Σ, t =i
µ A | Σ, t =i

ν A,

with the conditions that

• if t =i
a A ∈ Σ and t′ =i

b B ∈ Σ, then a = b, and

• if t =i
a A ∈ Σ and t =j

b B ∈ Σ, then i = j and A = B.

For a �xed point t de�ned as t =i
a A in Σ the subscript a is the polarity of t: if a = µ, then t

is a �xed point with positive polarity and if a = ν, then it is of negative polarity. Finitely rep-

resentable least �xed points (e.g., natural numbers and lists) can be represented in this system

as de�ned propositional variables with positive polarity, while the potentially in�nite great-

est �xed points (e.g., streams and in�nite depth trees) are represented as those with negative

polarity.

As a �rst programming-related example, consider natural numbers in unary form (nat) and a

type to demand access to a number if desired (ctrl).

Example 5.1 (Natural numbers on demand).

nat =2
µ ⊕{z : 1, s : nat}

ctrl =1
ν &{now : nat, notyet : ctrl}

In this example, Σ consists of an inductive and a coinductive type; these are, respectively: (i) the
type of natural numbers (nat) built using two constructors for zero and successor , and (ii) a type



Session-typed processes 58

to demand access to a number if desired (ctrl) de�ned using two destructors for now to request
the number and notyet to send a postpone message. With ctrl being a negative �xed point, the
request for the number can be postponed inde�nitely. To de�ne nat nested in ctrl, we associate 2

and 1 as priorities of nat and ctrl, respectively (“ctrl has higher priority than nat”).

Example 5.2 (Binary numbers in standard form). As another example consider the signature
with two types with positive polarity and the same priority: std and pos. Here, std is the type
of standard bit strings, i.e., bit strings terminated with $ without any leading 0 bits, and pos is
the type of positive standard bit strings, i.e., all standard bit strings except $. Note that in our
representation the least signi�cant bit is sent �rst.

std =1
µ ⊕{b0 : pos, b1 : std, $ : 1}

pos =1
µ ⊕{b0 : pos, b1 : std}

Example 5.3 (Bits and cobits).

bits =1
µ ⊕{b0 : bits, b1 : bits}

cobits =2
ν &{b0 : cobits, b1 : cobits}

In a functional language, the type cobits would be a greatest �xed point (an in�nite stream of
bits), while bits is recognized as an empty type. However, in the session type system, we treat
them in a symmetric way. bits is an in�nite sequence of bits with positive polarity. And its dual
type, cobits, is an in�nite stream of bits with negative polarity.

We treat �xed points in an isorecursive way, that is, a message is sent to unfold the de�nition

of a �xed point t. �is message is wri�en as µt for a least �xed point and νt for a greatest �xed

point. �e language of process expressions dealing with �xed points and their operational

readings is given in Table 5.2.

�e typing rules for processes that receive or send �xed point messages is based on the �xed

point rules presented in the sequent calculus of Section 3.3. A least �xed point receives from

the le� (client) and send to the right (provider), while the negative one sends to the le� (client)

and receive from the right (provider).

x̄ : ω ` Py :: (y : A) t =i
µ A

x̄ : ω ` Ry.µt;Py :: (y : t)
µR

x : A ` Qx :: (y : C) t =i
µ A

x : t ` caseLx (µt ⇒ Qx) :: (y : C)
µL

x̄ : ω ` Py :: (y : A) t =i
ν A

x̄ : ω ` caseRy (νt ⇒ Py) :: (y : t)
νR

x : A ` Qx :: (y : C) t =i
ν A

x : t ` Lx.νt;Qx :: (y : C)
νL
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Session type (curr./cont.) Process term (curr./cont.) Description Pol
x:t x:A Rx.µt;P P provider sends unfolding message µt along x +

(t =i
µ A ∈ Σ) caseLx(µt ⇒ Q) Q client receives unfolding message µt along x

x:t x:A caseRx(νt ⇒ P) P provider receives unfolding message νt along x -

(t =i
ν A ∈ Σ) Lx.νt Q Q client sends unfolding message νt along x

Table 5.2: Intuitionistic linear �xed point session types with their operational meaning.

�e above �xed point rules are not enough to capture recursive processes. Recall from Chap-

ter 3 that in the logic with similar �xed point rules, we need to allow in�nitary derivations to

get the full power of �xed points in inductive and coinductive reasoning. In the context of pro-

cesses, we follow a similar approach by introducing process variables X,Y, · · · to the syntax

of processes. Process de�nitions are of the form x̄ : ω ` X = Px̄,ȳ :: (y : C) representing that

variable X is de�ned as process P .

x̄ : ω ` Px̄,ȳ :: (y : C) ū : ω ` X = Pū,w̄ :: (w : C) ∈ V
x̄ : ω ` ȳ ← X ← x̄ :: (y : C)

Def(X)

A program P is de�ned as a pair 〈V, S〉, where V is a �nite set of process de�nitions, and S is

the main process variable.

�ese typing rules interpret pre-proofs: a circular derivation is represented as a collection of

mutually recursive process de�nitions inP = 〈V, S〉, with S referring to the root of the deriva-

tion.

As can be seen in the rule Def, the typing rules inherit the in�nitary nature of deductions from

the logical rules in Section 3.3 and are therefore not directly useful for type checking. �e rule

Def corresponds to forming cycles in the circular derivations of the system of Figure 3.1. We

obtain a �nitary system to check circular pre-proofs by removing the �rst premise from the

Def rule and checking each process de�nition in V separately, under the hypothesis that all

process de�nitions are well-typed.

ū : ω ` X = Pū,w̄ :: (w : C) ∈ V
x̄ : ω ` ȳ ← X ← x̄ :: (y : C)

Deff (X)

Example 5.4. With signature

Σ1 := nat =1
µ ⊕{z : 1, s : nat}

we de�ne process Copy

x : nat ` Copy :: (y : nat)
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as

y ← Copy← x =

caseLx (µnat ⇒ % receive µnat from le� (i)

caseLx % receive a label from le� (ii)

( z ⇒ Ry.µnat; % send µnat to right (ii-a)

Ry.z; % send label z to right

waitLx; % wait for x to close

closeRy % close y

| s⇒ Ry.µnat; % send µnat to right (ii-b)

Ry.s; % send label s to right

y ← Copy← x)) % recursive call

�is is an example of a recursive process over the signature Σ1. �e computational content of Copy
is to simply copy a natural number given from the le� to the right:
(i) It waits until it receives a positive �xed point unfolding message from the le�, (ii) waits for
another message from the le� to determine the path it will continue with:
(a) If the message is a z label, (ii-a) the program sends a positive �xed point unfolding message
to the right, followed by the label z , and then waits until a closing message is received from the
le�. Upon receiving that message, it closes the right channel.
(b) If the message is an s label, (ii-b) the program sends a positive �xed point unfolding message
to the right, followed by the label s , and then calls itself and loops back to (i).

5.5 Operational semantics

�e operational semantics for process expressions under the proofs-as-programs interpretation

of linear logic has been treated exhaustively elsewhere [15, 16, 46, 97]. We therefore only brie�y

sketch the operational semantics here.

5.5.1 Con�guration typing

A con�guration C is a list of processes that communicate with each other along their private

channels. It is de�ned with the grammar C ::= · | proc(x, P ) | (C1 |x:A C2), where | is an

associative, noncommutative operator and (·) is the unit. �e typing judgment for a con�gu-

ration is of the form x̄ : ω  C :: (y : B). We call x̄ and y the external channels of con�guration

C. �e type checking rules for con�gurations are:

x : A  · :: (x : A)
emp
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x̄ : ω  C1 :: (z : A) z : A  C2 :: (y : B)

x̄ : ω  C1|z:A C2 :: (y : B)
comp

x̄ : ω ` P :: (y : B)

x̄ : ω  proc(y, P ) :: (y : B)
proc

In comp we introduce a fresh channel z internal to the composition of C1 and C2.

A given program P = 〈V, S〉 is well-typed, if for every process de�nition x̄ : ω ` X = P ::

(y : B), we have:

x̄ : ω  proc(y, P ) :: (y : B)

5.5.2 Synchronous semantics

In a synchronous computation, both sender and receiver block until they synchronize. A sig-

ni�cant di�erence to much prior work is that we treat types in an isorecursive way, that is, a

message is sent to unfold the de�nition of a type t. �is message is wri�en as µt for a least

�xed point and νt for a greatest �xed point.

�e computational semantics is de�ned on a con�guration C. �e transitions given in Figure 5.1

can be applied anywhere in a con�guration. �e forward rule removes process y ← x from

the con�guration and replaces channel x in the rest of the con�guration with channel y. �e

rule for x← P ;Q spawns process [z/x]P and continues as [z/x]Q. To ensure uniqueness of

channels, we need z to be a fresh channel. For internal choice, Rx.k;P sends label k along

channelx to the process on its right and continues asP . �e process on the right, caseLx (`⇒
Q`), receives the label k sent from the le� along channel x, and chooses the kth alternative

Qk to continue with accordingly. �e last transition rule unfolds the de�nition of a process

variable X while instantiating the le� and right channels ū and w in the process de�nition

with proper channel names, x̄ and y respectively.

5.5.3 Asynchronous semantics

In this section we de�ne an asynchronous dynamics for subsingleton logic. Asynchronous

communication is a more practical model of computation and we will see in Section 5.7 that

it allows a more realistic statement of a strong progress property. In an asynchronous seman-

tics only receivers can be blocked, while senders output the message and proceed with their

continuation.

�e grammar and typing rule of con�gurations are extended to allow appearance of such out-

pu�ed messages as follows:

C ::= · |msg(M) | proc(x, P ) | (C1 |x:A C2),

x̄ : ω `M :: (y : B)

x̄ : ω msg(M) :: (y : B)
msg
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C |x proc(y, y ← x) |y C′ 7→ [y/x]C |y C′
forward

proc(w, x← P ; Q) 7→ proc(z, [z/x]P ) |z proc(w, [z/x]Q)
(z fresh), spawn

proc(x, closeRx) |x proc(w,waitLx ; Q) 7→ proc(w,Q)
close channel

proc(x,Rx.k ; P ) |x proc(w, caseLx (`⇒ Q`)`∈L) 7→ proc(x, P ) |x proc(w,Qk)
send label k ∈ L right

proc(x, caseRx (`⇒ P`)`∈L) |x proc(w,Lx.k ; Q) 7→ proc(x, Pk) |x proc(w,Q)
send label k ∈ L le�

proc(x,Rx.µt ; P ) |x proc(w, caseLx (µt ⇒ Q)) 7→ proc(x, P ) |x proc(w,Q)
send µt unfolding message right

proc(x, caseRx (νt ⇒ P )) |x proc(w,Lx.νt ; Q) 7→ proc(x, P ) |x proc(w,Q)
send νt unfolding message le�

proc(x, y ← X ← x̄) 7→ proc(x, [y/w, x̄/ū]P )
where ū : ω ` X = P :: (w : C)

Figure 5.1: Synchronous computational semantics

where M is a special process de�ned with the grammar

M ::= Lx.k;w ← x | Rx.k;x← w | Lx.µt;w ← x | Rx.νt;x← w.

We model messages as special processes that contain the value of a particular message followed

by a forwarding [9, 21, 30, 38]. �e forwarding is necessary to ensure that an outpu�ed message

is properly sequenced with the sender’s continuation.

�e asynchronous dynamics is given in Figure 5.2. It is de�ned in terms of rewriting rules that

can be applied anywhere in the con�guration. A fresh channel is allocated whenever a new

message is spawned, except for closing channels because there is no continuation. �e forward

then links the fresh channel and the previous one.

5.6 Type safety

In this section we present the usual preservation and progress theorems. �e preservation the-

orem ensures types of a con�guration are preserved during computation in both synchronous

and asynchronous semantics [31]. For simplicity, we only present preservation for a closed

con�guration, i.e. a con�guration that does not use any resources.

�eorem 5.3. (Preservation) For a con�guration ·  C :: (y : A), if C 7→ C′ by one step of
computation, then ·  C′ : (y : A).

Proof. �e proof is by considering cases of 7→ and inversion on the typing derivation.
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C |x proc(y, y ← x) |y C′ 7→ [z/x]C |y C′
forward

proc(w, x← P ; Q) 7→ proc(z, [z/x]P ) |z proc(w, [z/x]Q)
(z fresh), spawn

proc(x, closeRx) 7→ msg(closeRx)
send close message

msg(closeRx) |x proc(w,waitLx;P ) 7→ proc(w,P )
close channel

proc(x,Rx.k;P ) 7→ proc(z, [z/x]P ) |z msg(Rx.k; z ← x))
send label k ∈ L right

msg(Rx.k;x← z) |x proc(w, caseLx(`⇒ P`)`∈L) 7→ proc(w, [z/x]Pk)
receive label k ∈ L from le�

proc(w,Lx.k;P ) 7→ msg(Lx.k; z ← x) |z proc(w, [z/x]P )
send label k ∈ L to le�

proc(x, caseRx(`⇒ P`)`∈L) |x msg(Lx.k; z ← x) 7→ proc(x, [z/x]Pk)
receive label k ∈ L from right

proc(x,Rx.µt;P ) 7→ proc(w, [w/x]P ) |w msg(Rx.µt;x← w)
send µt unfolding message right

msg(Rx.µt;x← z) |x proc(w, caseLx(µt ⇒ P )) 7→ proc(w, [z/x]P )
receive µt unfolding message from le�

proc(w,Lx.νt;P ) 7→ msg(Lx.νt; z ← x) |z proc(w, [z/x]P )
send νt unfolding message le�

proc(x, caseRx(νt ⇒ P )) |x msg(Lx.νt; z ← x) 7→ proc(z, [z/x]P )
receive νt unfolding message from right

proc(x, y ← X ← x̄) 7→ proc(x, [y/w, x̄/ū]P )
where ū : ω ` X = P :: (w : C)

Figure 5.2: Asynchronous computational semantics

�e progress property as stated below ensures that computation makes progress or it a�empts

to communicate with an external process [73].

�eorem 5.4. (Progress) If x̄ : ω  C :: (y : A), then either

1. C can make a transition,

2. or C = (·) is empty,

3. or C cannot make a transition and a�empts to communicate either to the le� or to the right;
in a synchronous semantics it has one of the following forms:

proc(w, caseLx(µt ⇒ P )) |w C′ proc(w, caseLx(`⇒ P )`∈L) |w C′

proc(w,Lx.µt;P ) |w C′ proc(w,Lx.k;P ) |w C′

C′ |w proc(x, caseRx(νt ⇒ P )) C′ |w proc(x, caseRx(`⇒ P )`∈L)

C′ |w proc(x,Rx.νt;P ) C′ |w proc(x,Rx.k;P )

where C′ cannot make any transitions.
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Proof. �e proof is by structural induction on the con�guration typing from right to le�.

5.7 Strong progress

�e progress property ensures that a con�guration can always take a step or terminates. In the

presence of (mutual) recursion, it is not strong enough to ensure the termination of a con�g-

uration either in an empty con�guration or one a�empting to communicate with its external

channels. As a result, a well-typed con�guration may fall into an in�nite inner communication

loop and never communicate with its external channels. �is section de�nes a stronger form

of progress that prevents such non-terminating behavior.

Example 5.5. Take the signature

Σ1 := nat =1
µ ⊕{z : 1, s : nat}.

We de�ne a process

· ` Loop :: (y : nat),

where Loop is de�ned as

y ← Loop← · = Ry.µnat; % send µnat to right (i)

Ry.s; % send label s to right (ii)

y ← Loop← · % recursive call (iii)

P1 := 〈{Loop}, Loop〉 forms a program over the signature Σ1. It (i) sends a positive �xed
point unfolding message to the right, (ii) sends the label s , as another message corresponding
to successor , to the right, (iii) calls itself and loops back to (i).

In an asynchronous semantics, Loop runs forever, sending an in�nite stream of successor labels

to the right, without receiving any messages from the le� or the right. In the synchronous

semantics, the process is blocked before each send by waiting for another process willing to

receive. Even in the synchronous semantics Loop has a non-terminating nature: we will see

that composing · ` Loop :: (y : nat) with process y : nat ` Block :: (z : 1), de�ned in the

next example, results in exchanging an in�nite number of messages between them.

Example 5.6. De�ne process

y : nat ` Block :: (z : 1)
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over the signature Σ1 as

z ← Block← y =

caseLy (µnat ⇒ % receive µnat from le� (i)

caseLy % receive a label from le� (ii)

( z ⇒ waitLy; % wait for y to close (ii-a)

closeRz % close z

| s⇒ z ← Block← y)) % recursive call (ii-b)

P2 := 〈{Block}, Block〉 forms a program over the signature Σ1:
(i) Block waits, until it receives a positive �xed point unfolding message from the le�, (ii) waits
for another message from the le� to determine the path it will continue with:
(a) If the message is a z label, (ii-a) the program waits until a closing message is received from
the le�. Upon receiving that message, it closes the le� and then the right channel.
(b) If the message is an s label, (ii-b) the program calls itself and loops back to (i).

�e in�nite computation of the composition ·  y ← Loop | y z ← Block ← y :: (z : 1) in

the synchronous semantics can be depicted as follows:

y ← Loop | y z ← Block← y 7→
Ry.µnat;Ry.s; y ← Loop | y z ← Block← y 7→
Ry.µnat;Ry.s; y ← Loop | y caseLy (µnat ⇒ caseLy · · · ) 7→
Ry.s; y ← Loop | y caseLy (s ⇒ z ← Block← y | z ⇒ waitLy; closeRz) 7→
y ← Loop | y z ← Block← y 7→
· · ·

In this computation, the con�guration can always take a step, but it does not communicate to

the le� or right and a never ending series of internal communications takes place. To avoid

such in�nitary computations, we de�ne strong progress as follows.

De�nition 5.5. (Strong Progress) Con�guration x̄ : ω  C :: (y : A) satis�es the strong

progress property if a�er �nite number of steps, either

1. C = (·) is empty,

2. or C is blocked by waiting to communicate to the le� or right.

�e de�nition of strong progress in the asynchronous se�ing is more realistic. In the asyn-

chronous semantics, only receive can block a con�guration; a process that keeps sending un-

folding messages, e.g. Loop, does not satisfy strong progress. In the synchronous semantics,

a process can be blocked by both send and receive. �erefore process Loop satis�es strong

progress, even though it clearly sends in�nitely many messages when composed with a pro-

cesses willing to receive, e.g. Block.
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Clearly, not all well-typed programs satisfy strong progress. We devote the rest of this thesis to

proving the strong progress property for a subset of well-typed programs that can be identi�ed

algorithmically.



Chapter 6

Strong progress as termination of cut
elimination

In Chapter 5 we showed that by de�ning type variables in the signature and process variables

in the program, we can generate (mutually) recursive processes which correspond to circular

pre-proofs in the sequent calculus.

In Section 5.5, we introduced process con�guration C as a list of processes connected by the

associative, noncommutative parallel composition operator |x. Alternatively, considering C1

and C2 as two processes, con�guration C1 |z C2 can be read as their composition by a cut rule

(z ← C1; C2). In Section 5.5, we de�ned a synchronous operational semantics on con�gura-

tions using transition rules. Similarly, these computational transitions can be interpreted as

the internal cut reductions in the in�nitary calculus of subsingleton logic with �xed points.

For example, for con�guration

C = C1 |z proc(x,Rx.µt;P ) |x proc(w, caseLx (µt ⇒ Q)) |w C2

the internal communication transition

C1 |z proc(x,Rx.µt;P ) |x proc(w, caseLx (µt ⇒ Q)) |w C2 7→
C1 |z proc(x, P ) |x proc(w,Q) |w C2

can be interpreted as the following cut reduction step:

C1
z : A ` P :: (x : B) t =µ B

z : A ` Rx.µt;P :: (x : t)
µR

x : A ` Q :: (w : C) t =µ B

x : t ` caseLx (µt ⇒ Q) :: (w : C)
µL

C2
x̄ : ω ` C :: (v : D)

nCut PRd
==⇒

C1 z : A ` P :: (x : B) x : B ` Q :: (w : C) C2
x̄ : ω ` C :: (v : D)

nCut

67
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Recall from Section 3.3 that Fortier and Santocanale [36] introduced a cut-elimination algo-

rithm for derivations in in�nitary singleton logic with �xed points. As a part of their cut-

elimination algorithm, they de�ned a function Treat that applies internal cut reductions on

in�nitary derivations. �ey proved that this function terminates on a list of pre-proofs fused

by consecutive cuts if all of them satisfy their validity condition. In our system, the function

Treat corresponds to computation on a con�guration of processes. Termination of this func-

tion corresponds to the computation’s termination either in an empty con�guration or one

a�empting to communicate with an external channel, i.e. the strong progress property.

In this chapter, we introduce a type system as an algorithm to check a stricter version of Fortier

and Santocanale’s validity condition (FS validity condition) generalized to the subsingleton

fragment. Our algorithm is local in the sense that we check the guard condition for each process

de�nition separately, and it is stricter in the sense that it accepts a proper subset of the proofs

recognized by the FS validity condition. Since our local guard condition implies the FS validity

condition, we can use their results to show that a locally guarded program satis�es strong

progress. �e results of this chapter are built upon the correspondence between internal cut

reductions and synchronous semantics of session types, and are con�ned to the synchronous

semantics.

We develop a local guard condition through a sequence of re�nements in Sections 6.2–6.5. We

capture this condition on in�nitary proofs in Section 6.6 and reduce it to a �nitary algorithm in

Section 6.7. We prove that our local guard condition implies Fortier and Santocanale’s validity

condition (Section 6.8) and therefore cut elimination. In Section 6.9 we explore the computa-

tional consequences of this, including the strong progress property, which states that every

guarded con�guration of processes will either be empty or a�empt to communicate along ex-

ternal channels a�er a �nite number of steps. We conclude by illustrating some limitations

of our algorithm (Section 6.10) and pointing to some additional related and future work (Sec-

tion 9).

A key aspect of our type system is that our guard condition is a compositional property (as we

generally expect from type systems) so that the composition of guarded programs de�ned over

the same signature are also guarded and therefore also satisfy strong progress. In other words,

we identify a set of processes such that their corresponding derivations are not only closed

under cut elimination, but also closed under cut introduction (i.e., strong progress is preserved

when processes are joined by cut).

6.1 Ensuring communication and a local guard condition

In this section we motivate our algorithm as an e�ectively decidable compositional and local

criterion which ensures that a program always terminates either in an empty con�guration or

one a�empting to communicate along external channels.
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Example 6.1. Take the signature

Σ1 := nat =1
µ ⊕{z : 1, s : nat},

and process

· ` Loop :: (y : nat),

y ← Loop← · = Ry.µnat; % send µnat to right (i)

Ry.s; % send label s to right (ii)

y ← Loop← · % recursive call (iii)

We can obtain the following in�nite derivation in the system of subsingleton logic with �xed points
via the Curry-Howard correspondence of the unique typing derivation of process Loop:

· ` nat
· ` ⊕{z : 1, s : nat} ⊕Rs

· ` nat
µR

Process

x : nat ` Block :: (y : 1)

over the signature Σ1 de�ned as

y ← Block← x =

caseLx (µnat ⇒ % receive µnat from le� (i)

caseLx % receive a label from le� (ii)

( z ⇒ waitLx; % wait and close x (ii-a)

closeRy % close y

| s⇒ y ← Block← x)) % recursive call (ii-b)

corresponds to the following in�nite derivation:

· ` 1
1R

1 ` 1
1L

nat ` 1
⊕{z : 1, s : nat} ` 1

⊕L

nat ` 1
µL

Derivations corresponding to both of these programs are cut-free. Also no internal loop takes

place during their computation, in the sense that they both communicate with their le� or

right channels a�er �nite number of steps. For process Loop this communication is restricted

to sending in�nitely many unfolding and successor messages to the right. Process Block, on

the other hand, receives the same type of messages a�er �nite number of steps as long as they
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are provided by a process on its le�. Composing these two processes as in x ← Loop ← · |
y ← Block ← x results in an internal loop: process Loop keeps providing unfolding and

successor messages for process Block so that they both can continue the computation and

call themselves recursively. Because of this internal loop, the composition is not acceptable: it

never communicates with its le� (empty channel) or right (channel y). �e in�nite derivation

corresponding to the composition x ← Loop ← · | y ← Block ← x therefore should be

rejected as unguarded:

· ` nat
· ` ⊕{z : 1, s : nat} ⊕Rs

· ` nat
µR

· ` 1
1R

1 ` 1
1L

nat ` 1
⊕{z : 1, s : nat} ` 1

⊕L

nat ` 1
µL

· ` 1
Cutnat

�e cut elimination algorithm introduced by Fortier and Santocanale, similar to the general-

ization of it that we introduced in Section 4.4, uses a reduction function Treat and may never

halt. �ey proved that for derivations satisfying the validity condition Treat is locally termi-

nating since it always halts on valid proofs [36]. �e above derivation is an example of one that

does not satisfy the FS validity condition and the cut elimination algorithm does not locally

terminate on it.

Like cut elimination, strong progress is not compositional. Processes Loop and Block both

satisfy the strong progress property but their composition x ← Loop ← · | y ← Block ← x

does not. We will show in Section 6.9 that FS validity implies strong progress. But, in contrast

to strong progress, FS validity is compositional in the sense that composition of two disjoint

valid proofs is also valid. However, the FS validity condition is not local. Locality is particularly

important from the programming point of view. It is the combination of two properties that

are pervasive and o�en implicit in the study of programming languages. First, the algorithm

is syntax-directed, following the structure of the program and second, it checks each process

de�nition separately, requiring only the signature and the types of other processes but not their

de�nition. One advantage of locality is asymptotic complexity, and, furthermore, a practically

very e�cient implementation. In Remark 6.19 we show that the time complexity of our guard

algorithm is linear in the total input, which consists of the signature and the process de�nitions.

Another is precision of error messages: locality implies that there is an exact program location

where the condition is violated. �e guard condition is a complex property, so the value of

precise error messages cannot be overestimated. �e �nal advantage is modularity: all we

care about a process is its interface, not its de�nition, which means we can revise de�nitions

individually without breaking the guard condition for the rest of the program as long as we

respect their interface. Our goal is to construct a locally checkable guard condition that accepts

(a subset of) programs satisfying strong progress and is compositional.

In functional programming languages a program is called terminating if it reduces to a value

in a �nite number of steps, and is called productive if every piece of the output is generated
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in �nite number of steps (even if the program potentially runs forever). As in the current

work, the theoretical underpinnings for terminating and productive programs are also least

and greatest �xed points, respectively, but due to the functional nature of computation they

take a di�erent and less symmetric form than here (see, for example, [10, 45]).

Going back to Examples 5.5 and 5.6, process Loop seems less acceptable than process Block:

process Loop does not receive any least or greatest �xed point unfolding messages. It is nei-

ther a terminating nor a productive process. We want our algorithm to accept process Block

rather than Loop, since it cannot accept both. �is motivates a de�nition of �nite reactivity on

session-typed processes.

De�nition 6.1. A program de�ned over a signature Σ is (�nitely) reactive to the le� if for a

positive �xed point t ∈ Σ with priority i it does not continue forever without receiving a �xed

point unfolding message µt from the le� in�nitely o�en. Moreover, for any negative �xed

point s ∈ Σ with priority j < i, the program does not send in�nitely many νs messages to the

le�.

A program is (�nitely) reactive to the right if for a negative �xed point t ∈ Σ with priority i it

does not continue forever without receiving a �xed point unfolding message νt from the right

in�nitely o�en. Moreover, for any positive �xed point s ∈ Σ with priority j < i, the program

does not send in�nitely many µs messages to the right.

A program is called (�nitely) reactive if it is either reactive to the right or to the le�.

By this de�nition, process Block is reactive while process Loop is not. Finite reactivity corre-

sponds to the FS validity condition on the underlying circular derivation of a process. Although

reactivity is not local we use it as a motivation behind our algorithm. We construct our local

guard condition one step at a time. In each step, we expand the condition to accept one more

family of interesting �nitely reactive programs, provided that we can check the condition lo-

cally. We �rst establish a local algorithm for programs with only direct recursion. We expand

the algorithm further to support mutual recursions as well. �en we examine a subtlety re-

garding the cut rule to accept more programs locally. �e reader may skip to Section 6.7 which

provides our complete �nitary algorithm. Later, in Sections 6.8 and 6.9 we prove that our

algorithm ensures the FS validity condition and strong progress.

Priorities of type variables in a signature are central to ensure that a process de�ned based

on them satis�es strong progress. �roughout the thesis we assume that the priorities are

assigned (by a programmer) based on the intuition of why strong progress holds.

We conclude this section with an example of a reactive process Copy. �is process, similar to

Block, receives a natural number from the le� but instead of consuming it, sends it over to the

right along a channel of type nat.

Example 6.2. With signature Σ1 := nat =1
µ ⊕{z : 1, s : nat} we de�ne process Copy

x : nat ` Copy :: (y : nat)
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as

y ← Copy← x =

caseLx (µnat ⇒ % receive µnat from le� (i)

caseLx % receive a label from le� (ii)

( z ⇒ Ry.µnat; % send µnat to right (ii-a)

Ry.z; % send label z to right

waitLx; % wait for x to close

closeRy % close y

| s⇒ Ry.µnat; % send µnat to right (ii-b)

Ry.s; % send label s to right

y ← Copy← x)) % recursive call

�is is an example of a recursive process, and forms a le� reactive program over the signature Σ1.
Process Copy does not involve spawning (its underlying derivation is cut-free) and satis�es the
strong progress property. �is property is preserved when composed with Block as y ← Copy←
x | z ← Block← y.

6.2 A local guard algorithm: naive version

In this section we develop a �rst naive version of our local guard algorithm using Examples

6.3-6.4.

Example 6.3. Let the signature be

Σ2 := bits =1
µ ⊕{b0 : bits, b1 : bits}

and de�ne the process BitNegate

x : bits ` BitNegate :: (y : bits)
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with

y ← BitNegate← x =

caseLx (µbits ⇒ % receive µbits from le� (i)

caseLx % receive a label from le� (ii)

( b0 ⇒ Ry.µbits; % send µbits to right (ii-a)

Ry.b1; % send label b1 to right

y ← BitNegate← x % recursive call

| b1 ⇒ Ry.µbits; % send µbitsto right (ii-b)

Ry.b0; % send label b0 to right

y ← BitNegate← x)) % recursive call

P4 := 〈{BitNegate}, BitNegate〉 forms a le� reactive program over the signature Σ2 quite
similar to Copy. Computationally, BitNegate is a bu�er with one bit capacity that receives a bit
from the le� and stores it until a process on its right asks for it. A�er that, the bit is negated and
sent to the right and the bu�er becomes free to receive another bit.

Example 6.4. Dual to Example 6.3, we can de�ne coBitNegate. Let the signature be

Σ3 := cobits =1
ν &{b0 : cobits, b1 : cobits}

with process

x : cobits ` coBitNegate :: (y : cobits)

where coBitNegate is de�ned as

y ← coBitNegate← x =

caseRy (νcobits ⇒ % receive νcobits from right (i)

caseRy % receive a label from right (ii)

( b0 ⇒ Lx.νcobits; % send νcobits to le� (ii-a)

Lx.b1; % send label b1 to le�

y ← coBitNegate← x % recursive call

| b1 ⇒ Lx.νcobits; % send νcobits to le� (ii-b)

Lx.b0; % send label b0 to le�

y ← coBitNegate← x)) % recursive call

P5 := 〈{coBitNegate}, coBitNegate〉 forms a right reactive program over the signature Σ3.
Computationally, coBitNegate is a bu�er with one bit capacity. In contrast to BitNegate in
Example 6.3, its types have negative polarity: it receives a bit from the right, and stores it until a
process on its le� asks for it. A�er that the bit is negated and sent to the le� and the bu�er becomes
free to receive another bit.



Session-typed processes 74

Remark 6.2. �e property that assures the reactivity of the previous examples lies in their

step (i) in which the program blocks until an unfolding message is received, i.e., the program

can only continue the computation if it receives a message at step (i), and even a�er receiving

the message it can only take �nitely many steps further before another unfolding message is

needed.

We �rst develop a naive version of our algorithm which captures the property explained in

Remark 6.2: associate an initial integer value (say 0) with each channel and de�ne the basic

step of our algorithm to be decreasing the value associated to a channel by one whenever it

receives a �xed point unfolding message. Also, for a reason that is explained later in Remark

6.3, whenever a channel sends a �xed point unfolding message its value is increased by one.

�en at each recursive call, the value of the le� and right channels are compared to their initial

value.

For instance, in Example 6.2, in step (i) where the process receives a µnat message via the le�

channel (x), the value associated with x is decreased by one, while in steps (ii-a) and (ii-b) in

which the process sends a µnat message via the right channel (y) the value associated with y

is increased by one:

x y

y ← Copy← x = 0 0

caseLx (µnat ⇒ −1 0

caseLx (z ⇒ Ry.µnat; −1 1

R.z; waitLx; closeRy −1 1

s ⇒ Ry.µnat; −1 1

Ry.s; y ← Copy← x)) −1 1

When the recursive call occurs, channel x has the value−1 < 0, meaning that at some point in

the computation it received a positive �xed point unfolding message. We can simply compare

the value of the list [x, y] lexicographically at the beginning and just before the recursive call:

[−1, 1] being less than [0, 0] exactly captures the property observed in Remark 6.2 for the par-

ticular signature Σ1. Note that by the de�nition of Σ1, y never receives a �xed point unfolding

message, so its value never decreases, and x never sends a �xed point unfolding message, thus

its value never increases.
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�e same criteria works for the programP3 over the signature Σ2 de�ned in Example 6.3, since

Σ2 also contains only one positive �xed point:

x y

y ← BitNegate← x = 0 0

caseLx (µbits ⇒ −1 0

caseLx (b0⇒ Ry.µbits; −1 1

Ry.b1; y ← BitNegate← x −1 1

b1 ⇒ Ry.µbits; −1 1

Ry.b0; y ← BitNegate← x)) −1 1

At both recursive calls the value of the list [x, y] is less than [0, 0]: [−1, 1] < [0, 0].

However, for a program de�ned on a signature with a negative polarity such as the one de�ned

in Example 6.4, this condition does not work:

x y

y ← coBitNegate← x = 0 0

caseRy (νcobits ⇒ 0 −1

caseRy (b0⇒ Lx.νcobits; 1 −1

Lx.b1; y ← coBitNegate← x 1 −1

b1 ⇒ Lx.νcobits; 1 −1

Lx.b0; y ← coBitNegate← x)) 1 −1

By the de�nition of Σ3, y only receives unfolding �xed point messages, so its value only de-

creases. On the other hand, x cannot receive an unfolding �xed point from the le� and thus

its value never decreases. In this case the property in Remark 6.2 is captured by comparing

the initial value of the list [y, x], instead of [x, y], with its value just before the recursive call:

[−1, 1] < [0, 0].

For a signature with only a single recursive type we can form a list by looking at the polarity

of its type such that the value of the channel that receives the unfolding message comes �rst,

and the value of the other one comes second. With this generalization, we can check all three

programs that we have seen so far, Copy, BitNegate, and coBitNegate.

6.3 Priorities in the local guard algorithm

�e property explained in Remark 6.2 of previous section is not strict enough, particularly

when the signature has more than one recursive type. In that case not all programs that are

waiting for a �xed point unfolding message before a recursive call are reactive.
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Example 6.5. Consider the signature

Σ4 := ack =1
µ ⊕{ack : astream},

astream =2
ν &{head : ack, tail : astream},

nat =3
µ ⊕{z : 1, s : nat}

astream is a type with negative polarity of a potentially in�nite stream where its head is always
followed by an acknowledgement while tail is not. ack is a type with positive polarity that, upon
unfolding, describes a protocol requiring an acknowledgment message to be sent to the right (or
be received from the le�).

P6 := 〈{Ping, Pong, PingPong}, PingPong〉 forms a program over the signature Σ4 with the
typing of its processes

x : nat ` Ping :: (w : astream)

w : astream ` Pong :: (y : nat)

x : nat ` PingPong :: (y : nat)

We de�ne processes Ping, Pong, and PingPong over Σ4 as:

y ← PingPong← x =

w ← Ping← x; % spawn process Ping (i)

y ← Pong← w % continue with a tail call

y ← Pong← w =

Lw.νastream; % send νastream to le� (ii-Pong)

Lw.head ; % send label head to le� (iii-Pong)

caseLw (µack ⇒ % receive µack from le� (iv-Pong)

caseLw ( % receive a label from le�

ack ⇒ Ry.µnat; % send µnat to right

Ry.s; % send label s to right

y ← Pong← w)) % recursive call

w ← Ping← x =

caseRw (νastream ⇒ % receive νastream from right (ii-Ping)

caseRw ( % receive a label from right

head ⇒ Rw.µack; % send µack to right (iii-Ping)

Rw.ack ; % send label ack to right

w ← Ping← x % recursive call

| tail ⇒ w ← Ping← x)) % recursive call
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(i) Program P6 starting from PingPong, spawns a new process Ping and continues as Pong:
(ii-Pong) Process Pong sends an astream unfolding and then a head message to the le�, and then
(iii-Pong) waits for an acknowledgment, i.e., ack , from the le�.
(ii-Ping) At the same time process Ping waits for an astream �xed point unfolding message from
the right, which becomes available a�er step (ii-Pong). Upon receiving the message, it waits to
receive either head or tail from the right, which is also available from (ii-Pong) and is actually a
head . So (iii-Ping) it continues with the path corresponding to head , and acknowledges receipt of
the previous messages by sending an unfolding messages and the label ack to the right, and then
it calls itself (ii-Ping).
(iv-Pong) Process Pong now receives the two messages sent at (iii-Ping) and thus can continue by
sending a nat unfolding message and the label s to the right, and �nally calling itself (ii-Pong).
Although both recursive processes Ping and Pong at some point wait for a �xed point unfolding
message, this program runs in�nitely without receiving any messages from the outside, and thus
is not reactive.

�e back-and-forth exchange of �xed point unfolding messages between two processes in the

previous example can arise when at least two mutually recursive types with di�erent polarities

are in the signature. �is is why we need to incorporate priorities of the type variables into

the guard algorithm.

Remark 6.3. In Example 6.5, for instance, waiting to receive an unfolding message νastream of

priority 2 in line (ii-Ping) is not enough to ensure that the recursive call is guarded because

later in line (iii-Ping) the process sends an unfolding message of a higher priority (1).

To prevent such a call from being guarded we form a list for each process. �is list stores the

information of the �xed point unfolding messages that the process received and sent before a

recursive call for each type variable in their order of priority.

Example 6.6. Consider the signature and program P6 as de�ned in Example 6.5. For the process
x : nat ` w ← Ping← x :: (w : astream) form the list

[ack− received , ack− sent , astream− received , astream− sent , nat− received , nat− sent ].

Types with positive polarity, i.e., ack and nat, receive messages from the le� channel (x) and send
messages to the right channel (w), while those with negative polarity, i.e., astream, receive from
the right channel (w) and send to the le� one (x). �us, the above list can be rewri�en as

[xack, wack, wastream, xastream, xnat, wnat].

To keep track of the sent/received messages, we start with [0, 0, 0, 0, 0, 0] as the value of the list,
when the process x : nat ` Ping :: (w : astream) is �rst spawned. �en, similar to the �rst ver-
sion of our algorithm, on the steps in which the process receives a �xed point unfolding message,
the value of the corresponding element of the list is decreased by one. And on the steps it sends a
�xed point unfolding message, the corresponding value is increased by one:



Session-typed processes 78

w ← Ping← x = [0, 0 , 0 , 0, 0, 0]

caseRw (νastream ⇒ [0, 0,−1, 0, 0, 0]

caseRw (head ⇒ Rw.µack; [0, 1,−1, 0, 0, 0]

Rw.ack ;w ← Ping← x [0, 1,−1, 0, 0, 0]

| tail ⇒ w ← Ping← x)) [0, 0,−1, 0, 0, 0]

�e two last lines are the values of the list on which process Ping calls itself recursively. �e guard
condition as described in Remark 6.3 holds i� the value of the list at the time of the recursive
call is less than the value the process started with, in lexicographical order. Here, for example,
[0, 1,−1, 0] 6< [0, 0, 0, 0], and the guard condition does not hold for this recursive call.

We leave it to the reader to verify that no ma�er how we assign priorities of the type variables in
Σ4, our condition rejects PingPong.

�e following de�nition captures the idea of forming lists described above. Rather than directly

referring to type variables such as ack or astream we just refer to their priorities, since that is

the relevant information.

De�nition 6.4. For a process

x̄ : ω ` P :: (y : B),

over the signature Σ, de�ne list(x̄, y) = [fi]i≤n such that

1. fi = (x̄i, yi) if ε(i) = µ, and

2. fi = (yi, x̄i) if ε(i) = ν,

where n is the lowest priority in Σ.

In the remainder of this section we use n to denote the lowest priority in Σ (which is numeri-

cally maximal).

Example 6.7. Consider the signature Σ1 and program P3 := 〈{Copy}, Copy〉, from Example
6.2:
Σ1 := nat =1

µ ⊕{z : 1, s : nat}, and

y ← Copy← x = caseLx (µnat ⇒ caseLx ( z ⇒ Ry.µnat;Ry.z; waitLx; closeRy

| s⇒ Ry.µnat;Ry.s; y ← Copy← x))

By De�nition 6.4, for process x : nat ` Copy :: (y : nat), we have n = 1, and list(x, y) =

[(x1, y1)] since ε(1) = µ. Just as for the naive version of the algorithm, we can trace the value of
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list(x, y):

y ← Copy← x = [0, 0]

caseLx (µnat ⇒ [−1, 0]

caseLx (z ⇒ Ry.µnat; [−1, 1]

R.z; waitLx; closeRy [−1, 1]

| s ⇒ Ry.µnat; [−1, 1]

Ry.s; y ← Copy← x [−1, 1]

Here, [−1, 1] < [0, 0] and the recursive call is classi�ed as guarded.

To capture the idea of decreasing/increasing the value of the elements of list( , ) by one, as

depicted in Example 6.6 and Example 6.7, we distinguish between di�erent generation of chan-

nels. A channel transforms into a new generation of itself a�er sending or receiving a �xed

point unfolding message.

Example 6.8. Process x : nat ` y ← Copy← x :: (y : nat) in Example 6.7 starts its computa-
tion with the initial generation of its le� and right channels:

x0 : nat ` y0 ← Copy← x0 :: (y0 : nat).

�e channels evolve as the process sends or receives a �xed point unfolding message along them:

y0 ← Copy← x0 =

caseLx0 (µnat ⇒ x0  x1

caseLx1 (z ⇒ Ry0.µnat; y0  y1

Ry1.z; waitLy1; closeRx1

| s ⇒ Ry0.µnat; y0  y1

Ry1.s; y1 ← Copy← x1))

On the last line the process

x1 : nat ` y1 ← Copy← x1 :: (y1 : nat)

is called recursively with a new generation of variables.

In the inference rules introduced in Section 6.6, instead of recording the value of each element

of list( , ) as we did in Example 6.6 and Example 6.7, we introduce Ω to track the relation

between di�erent generations of a channel indexed by their priority of types.

Remark 6.5. Generally speaking, xα+1
i < xαi is added to Ω, when xα receives a �xed point

unfolding message for a type with priority i and transforms to xα+1
. �is corresponds to the

decrease by one in the previous examples.
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If xα sends a �xed point unfolding message for a type with priority i is sent on xα, which then

evolves to xα+1
, xαi and xα+1

i are considered to be incomparable in Ω. �is corresponds to

increase by one in the previous examples, since for the sake of lexicographically comparing the

value of list( , ) at the �rst call of a process to its value just before a recursive call, there is no

di�erence whether xα+1
is greater than xα or incomparable to it.

When xα receives/sends a �xed point unfolding message of a type with priority i and trans-

forms to xα+1
, for any type with priority j 6= i, the value of xαj and xα+1

j must remain equal.

In these steps, we add xαj = xα+1
j for j 6= i to Ω.

A process in the formalization of the intuition above is therefore typed as

xα : A `Ω P :: (yβ : B),

where xα is the α-th generation of channel x. �e syntax and operational semantics of the pro-

cesses with generational channels are the same as the corresponding de�nitions introduced in

Section 5.5; we simply ignore generations over the channels to match processes with the previ-

ous de�nitions. We enforce the assumption that channel xα transforms to its next generation

xα+1
upon sending/receiving a �xed point unfolding message in the typing rules of Section

6.6.

�e relation between the channels indexed by their priority of types is built step by step in Ω

and represented by≤. �e re�exive transitive closure of Ω forms a partial order≤Ω. We extend

≤Ω to the list of channels indexed by the priority of their types considered lexicographically.

We may omit subscript Ω from≤Ω whenever it is clear from the context. In the next examples,

we present the set of relations Ω in the rightmost column.

6.4 Mutual Recursion in the Local guard algorithm

In examples of previous sections, the recursive calls were not mutual. In the general case,

a process may call any other process variable in the program, and this call can be mutually

recursive. In this section, we incorporate mutual recursive calls into our algorithm.

Example 6.9. Recall signature Σ4 from Example 6.5

Σ4 := ack =1
µ ⊕{ack : astream},

astream =2
ν &{head : ack, tail : astream},

nat =3
µ ⊕{z : 1, s : nat}

De�ne program P7 = 〈{Idle, Producer}, Producer〉, where

z : ack ` w ← Idle← z :: (w : nat)

x : astream ` y ← Producer← x :: (y : nat),
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and processes Idle (or simply I) and Producer (or simply P ) are de�ned as:

w ← I← z = caseLz (µack ⇒ caseLz (ack ⇒ Rw.µnat;Rw.s;w ← P← z))

y ← P← x = Lx.νastream;Lx.head ; y ← I← x.

We have list(x, y) = [(x1, y1), (y2, x2), (x3, y3)] and list(z, w) = [(z1, w1), (w2, z2), (z3, w3)]

since ε(1) = ε(3) = µ and ε(2) = ν.

By analyzing the behavior of this program step by step, we see that it is a reactive program that
counts the number of acknowledgements received from the le�. �e program starts with the process

x0 : astream `∅ y0 ← Producer← x0 :: (y0 : nat).

It �rst sends one message to le� to unfold the negative �xed point type, and its le� channel evolves
to a next generation. �en another message is sent to the le� to request the head of the stream and
a�er that it calls process y0 ← Idle← x1.

y0 ← Producer← x0 = [0, 0, 0, 0, 0, 0]

Lx0.νastream; [0, 0, 0, 1, 0, 0] x1
1 = x0

1, x
1
3 = x0

3

Lx1.head ; y0 ← Idle← x1 [0, 0, 0, 1, 0, 0]

Process x1 : ack ` y0 ← Idle ← x1 :: (y0 : nat), then waits to receive an acknowledgment
from the le� via a positive �xed point unfolding message for ack and its le� channel transforms
into a new generation upon receiving it. �en it waits for the label ack , upon receiving it, sends
one message to the right to unfold the positive �xed point nat (and this time the right channel
evolves). �en it sends the label s to the right and calls y1 ← Producer← x2 recursively:

y0 ← Idle← x1 = [0, 0, 0, 1, 0, 0]

caseLx1 (µack ⇒ [−1, 0, 0, 1, 0, 0] x2
1 < x1

1, x
2
2 = x1

2, x
2
3 = x1

3

caseLx2 (ack ⇒ Ry0.µnat; [−1, 0, 0, 1, 0, 1] y1
1 = y0

1 , y
1
2 = y0

2

Ry1.s; y1 ← Producer← x2)) [−1, 0, 0, 1, 0, 1]

Observe that the actual recursive call for Producer occurs at the last line (in red) above, where
Producer eventually calls itself. At that point the value of list(x2, y1) is recorded as [−1, 0, 0, 1, 0, 1],
which is less than the value of list(x0, y0) when Producer was called for the �rst time:

[−1, 0, 0, 1, 0, 1] < [0, 0, 0, 0, 0, 0].

�e same observation can be made by considering the relations introduced in the last column

list(x2, y1) = [(x2
1, y

1
1), (y1

2, x
2
2), (x2

3, y
1
3)] < [(x0

1, y
0
1), (y0

2, x
0
2), (x0

3, y
0
3)] = list(x0, y0)



Session-typed processes 82

since x2
1 < x1

1 = x0
1. �is recursive call is guarded regardless of the fact that [0, 0, 0, 1, 0, 0] 6<

[0, 0, 0, 0, 0, 0], i.e.

list(x1, y0) = [(x1
1, y

0
1), (y0

2, x
1
2), (x1

3, y
0
3)] 6< [(x0

1, y
0
1), (y0

2, x
0
2), (x0

3, y
0
3)] = list(x0, y0)

since x1
1 = x0

1 but x1
2 is incomparable to x0

2. Similarly, we can observe that the actual recursive
call on Idle, where Idle eventually calls itself, is guarded.

To account for this situation, we introduce an order on process variables and trace the last seen
variable on the path leading to the recursive call. In this example we de�ne Idle to be less than
Producer at position 2 (I ⊂2 P). We incorporate process variables Producer and Idle into the
lexicographical order on list( , ) such that their values are placed exactly before the element in
the list corresponding to the sent unfolding messages of the type with priority 2.

We now trace the ordering as follows:

y0 ← Producer← x0 = [0, 0, 0, P, 0, 0, 0]

Lx0.νastream; [0, 0, 0, P, 1, 0, 0] x1
1 = x0

1, x
1
3 = x0

3

Lx1.head ; y0 ← Idle← x1 [0, 0, 0, I, 1, 0, 0]

y0 ← Idle← x1 = [0, 0, 0, I, 1, 0, 0]

caseLx1(µack ⇒ [−1, 0, 0, I, 1, 0, 0] x2
1 < x1

1, x
2
2 = x1

2, x
2
3 = x1

3

caseLx2(ack ⇒ Ry0.µnat; [−1, 0, 0, I, 1, 0, 1] y1
1 = y0

1 , y
1
2 = y0

2

Ry1.s; y1 ← Producer← x2 [−1, 0, 0, P, 1, 0, 1]

[−1, 0, 0, P, 1, 0, 1] < [0, 0, 0, I, 1, 0, 0] and [0, 0, 0, I, 1, 0, 0] < [0, 0, 0, P, 0, 0, 0] hold, and both
mutually recursive calls are recognized to be guarded, as they are, without a need to substitute
process de�nitions.

However, not every relation over the process variables forms a partial order. For instance,

having both P ⊂2 I and I ⊂2 P violates the antisymmetry condition. Introducing the position

of process variables into list( , ) is also a delicate issue. For example, if we have both I ⊂1 P

and I ⊂2 P, it is not determined where to insert the value of Producer and Idle on the

list( , ). De�nition 6.6 captures the idea of Example 6.9. It de�nes the relation ⊆, given that

the programmer introduces a family of partial orders such that their domains partition the set

of process variables V . We again assume that the programmer de�nes this family based on the

intuition of why a program satis�es strong progress. De�nition 6.9 ensures that ⊆ is a well-

de�ned partial order and it is uniquely determined in which position of list( , ) the process

variables shall be inserted. De�nition 6.8 gives the lexicographic order on list( , ) augmented

with the ⊆ relation.
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De�nition 6.6. Consider a program P = 〈V, S〉 de�ned over a signature Σ. Let {⊆i}0≤i≤n
be a disjoint family of partial orders whose domains partition the set of process variables V ,

where (a) X ∼=i Y i� X ⊆i Y and Y ⊆i X , and (b) X ⊂i Y i� X ⊆i Y but X 6∼=i Y .

We de�ne ⊆ as

⋃
i≤n ⊆i, i.e. F ⊆ G i� F ⊆i G for some (unique) i ≤ n. It is straightforward

to see that ⊆ is a partial order over the set of process variables V . Moreover, we de�ne (c)

X ∼= Y i� X ∼=i Y for some (unique) i, and (d) X ⊂ Y i� X ⊂i Y for some (unique) i.

To integrate the order on process variables (⊂) with the order <, we need a pre�x of the list

from De�nition 6.4. We give the following de�nition of list(x, y, j) to crop list(x, y) exactly

before the element corresponding to a sent �xed point unfolding message for types with pri-

ority j.

De�nition 6.7. For a process

x̄ : A ` P :: y : B,

over signature Σ, and 0 ≤ j ≤ n, de�ne list(x̄, y, j), as a pre�x of the list list(x̄, y) = [vi]i≤n

by

1. [] if i = 0,

2. [[vi]i<j , (x̄j)] if ε(j) = µ,

3. [[vi]i<j , (yj)] if ε(j) = ν.

We use these pre�xes in the following de�nition.

De�nition 6.8. Using the orders ⊂ and ≤, we de�ne a new combined order (⊂, <) (used in

the local guard condition in Section 6.7).

F, list(x̄, y) (⊂, <) G, list(z̄, w)

i�

1. If F ⊂ G, i.e., F ⊂i G for a unique i, then list(x̄, y, i) ≤ list(z̄, w, i), otherwise,

2. if F ∼= G and list(x̄, y) < list(z̄, w), otherwise

3. list(x̄, y,min(i, j)) < list(z̄, w,min(i, j)), where F is in the domain of ⊆i and G is in

the domain of ⊆j .

By conditions of De�nition 6.6, (⊂, <) is an irre�exive and transitive relation and thus a strict

partial order.
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Example 6.10. Consider the signature of Example 6.9

Σ4 := ack =1
µ ⊕{ack : astream},

astream =2
ν &{head : ack, tail : astream},

nat =3
µ ⊕{z : 1, s : nat}

and program P7 := 〈{Idle, Producer}, Producer〉 with the relation ⊂ de�ned over process
variables as Idle ⊂2 Producer. For process x : astream ` Producer :: (y : nat):

list(x, y) = [(x1, y1), (y2, x2), (x3, y3)],

list(x, y, 3) = [(x1, y1), (y2, x2), (x3)],

list(x, y, 2) = [(x1, y1), (y2)],

list(x, y, 1) = [(x1)], and

list(x, y, 0) = [].

To check that the recursive calls in Example 6.9 are guarded we observe that

• Producer, list(x2, y1) (⊂, <) Idle, list(x1, y0) since list(x2, y1, 2) < list(x1, y0, 2),
and

• Idle, list(x1, y0) (⊂, <) Producer, list(x0, y0) since list(x1, y0, 2) = list(x0, y0, 2)

and Idle ⊂2 Producer.

6.5 A modi�ed rule for cut

�ere is a subtle aspect of the local guard condition that we have not discussed yet. We need

to relate a fresh channel, created by spawning a new process, with the previously existing

channels. Process yα : A ` (x ← Px;Qx) :: (zβ : B), for example, creates a fresh channel

w0
, spawns process Pw0 providing along channel w0

, and then continues as Qw0 . For the sake

of our algorithm, we need to identify the relation between w0
, yα, and zβ . Since w0

is a fresh

channel, a naive idea is to make w0
incomparable to any other channel for any type variable

t ∈ Σ. To represent this incomparability in our examples we write “∞” for the value of the

fresh channel. While sound, we will see in Example 6.11 that we can improve on this naive

approach to cover more guarded processes.

Example 6.11. De�ne the signature

Σ5 := ctr =1
ν &{inc : ctr, val : bin},

bin =2
µ ⊕{b0 : bin, b1 : bin, $ : 1}.
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which provides numbers in binary representation as well as an interface to a counter. We explore
the following program P8 = 〈{BinSucc, Counter, NumBits, BitCount}, BitCount〉, where

x : bin ` y ← BinSucc← x :: (y : bin)

x : bin ` y ← Counter← x :: (y : ctr)

x : bin ` y ← NumBits← x :: (y : bin)

x : bin ` y ← BitCount← x :: (y : ctr)

We de�ne the relation ⊂ on process variables as BinSucc ⊂0 Counter ⊂0 BitCount and
BinSucc ⊂0 NumBits ⊂0 BitCount. Process yβ ← Counter ← wα as its name suggests
works as a counter wherew : bin is the current value of the counter. When it receives an increment
message inc it computes the successor of w, accessible through channel z. If it receives a val

message it simply forwards the current value (w) to the client (y). Note that in this process, both
calls are guarded according to the condition developed so far. �is is also true for the binary
successor process BinSucc, which presents no challenges. �e only recursive call represents the
“carry” of binary addition when a number with lowest bit b1 has to be incremented.

�e process wβ ← NumBits ← xα counts the number of bits in the binary number x and sends
the result along w, also in the form of a binary number. It calls itself recursively for every bit
received along x and increments the result z to be returned along w. Note that if there are no
leading zeros, this computes essentially the integer logarithm of x.

�e process de�nitions are as follows, shown here already with their termination analysis.

wβ ← BinSucc← zα = [0, 0, 0, 0]

caseLzα (µbin ⇒ [0, 0,−1, 0] zα+1
1 = zα1 , z

α+1
2 < zα2

caseLzα+1 (b0 ⇒ Rwβ .µbin; [0, 0,−1, 1] wβ+1
1 = wβ1

Rwβ+1.b1 ;wβ+1 ← zα+1 [0, 0,−1, 1]

| b1 ⇒ Rwβ .µbin; [0, 0,−1, 1] wβ+1
1 = wβ1

Rwβ+1.b0 ;wβ+1 ← BinSucc← zα+1 [0, 0,−1, 1]

| $⇒ Rwβ .µbin;Rw
β+1.b1; [0, 0,−1, 1] wβ+1

1 = wβ1

Rwβ+1.µbin;Rw
β+2.$; wβ+2 ← zα+1)) [0, 0,−2, 2] wβ+2

1 = wβ+1
1

yβ ← Counter← wα = [0, 0, 0, 0]

caseRyβ (νctr ⇒ [−1, 0, 0, 0] yβ+1
1 < yβ1 , y

β+1
2 = yβ2

caseRyβ+1 (inc ⇒ z0 ← BinSucc← wα; BinSucc ⊂0 Counter

yβ+1 ← Counter← z0 [−1, ∞, ∞, 0]

| val ⇒ yβ+1 ← wα)) [−1, 0, 0, 0]
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wβ ← NumBits← xα = [0, 0, 0, 0]

caseLxα (µbin ⇒ [0, 0,−1, 0] xα+1
1 = xα1 , x

α+1
2 < xα2

caseLxα+1 (b0 ⇒ z0 ← NumBits← xα+1; [?, 0,−1, ?] z0
1

?
= wβ1 , z

0
2

?
= wβ2

wβ ← BinSucc← z0 BinSucc ⊂0 NumBits

| b1 ⇒ z0 ← NumBits← xα+1; [?, 0,−1, ?] z0
1

?
= wβ1 , z

0
2

?
= wβ2

wβ ← BinSucc← z0 BinSucc ⊂0 NumBits

| $⇒ Rwβ .µbin;Rw
β+1.$; wβ+1 ← xα+1)) [0, 0,−1, 1]

yβ ← BitCount← xα = w0 ← NumBits← xα; yβ ← Counter← w0

�e program starts with process BitCountwhich creates a fresh channelw0, spawns a new process
w0 ← NumBits← xα, and continues as yβ ← Counter← w0.

�e process NumBits is reactive. However with our approach toward spawning a new process,
the recursive calls have the list value [∞, 0,−1,∞] 6< [0, 0, 0, 0], meaning that the local guard
condition developed so far fails.

Note that we cannot just de�ne z0
1 = wβ1 and z0

2 = wβ2 , or z0
1 = z0

2 = 0. Channel z0 is a
fresh one and its relation with the future generations depends on how it evolves in the process
wβ ← BinSucc ← z0. But by de�nition of type bin, no ma�er how z0 : bin evolves to some zη

in process BinSucc, it won’t be the case that zη : ctr. In other words, the type ctr is not visible
from bin and for any generation η, channel zη does not send or receive a ctr unfolding message.
So in this recursive call, the value of zη1 is not important anymore and we safely put z0

1 = wβ1 . In
the improved version of the condition we have:

wβ ← NumBits← xα = [0, 0, 0, 0]

caseLxα (µbin ⇒ [0, 0,−1, 0] xα+1
1 = xα1 , x

α+1
2 < xα2

caseLxα+1 (b0 ⇒ z0 ← NumBits← xα+1; [0, 0,−1,∞] z0
1 = wβ1

wβ ← BinSucc← z0 BinSucc ⊂0 NumBits

| b1 ⇒ z0 ← NumBits← xα+1; [0, 0,−1,∞] z0
1 = wβ1

wβ ← BinSucc← z0 BinSucc ⊂0 NumBits

| $⇒ Rwβ .µbin;Rw
β+1.$; wβ+1 ← xα+1)) [0, 0,−1, 1]

�is version of the algorithm recognizes both recursive calls as guarded. In the following de�nition
we capture the idea of visibility from a type more formally.
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De�nition 6.9. For type A in a given signature Σ and a set of type variables ∆, we de�ne

c(A; ∆) inductively as:

c(1; ∆) = ∅,
c(⊕{` : A`}`∈L; ∆) = c(&{` : A`}`∈L; ∆) =

⋃
`∈L c(A`; ∆),

c(t; ∆) = {t} ∪ c(A; ∆ ∪ {t}) if t =a A ∈ Σ and t 6∈ ∆,

c(t; ∆) = {t} if t =a A ∈ Σ and t ∈ ∆.

We put priority i in the set c(A) i� for some type variable t with i = p(t), t ∈ c(A; ∅). We say

that priority i is visible from type A if and only if i ∈ c(A).

In Example 6.11, we have c(bin) = {p(bin)} = {2} and c(ctr) = {p(bin), p(ctr)} = {1, 2}
which means that bin is visible from ctr but not the other way around. �is expresses that the

de�nition of ctr references bin, but the de�nition of bin does not reference ctr.

6.6 Typing rules for session-typed processes with channel or-
dering

In this section we introduce in�nitary inference rules for session-typed processes correspond-

ing to derivations in subsingleton logic with �xed points. �is is a re�nement of the process

typing rules presented in Chapter 5 to account for channel generations and orderings intro-

duced in previous sections. �is system rules out communication mismatches without forcing

processes to actually communicate along their external channels. It is the basis for our �nitary

system for the local guard condition in Section 6.7, and Section 6.8 where we prove that our

local guard condition is stricter than Fortier and Santocanale’s validity condition.

�e judgments are of the form

x̄α : ω `Ω P :: (yβ : A),

where P is a process, and xα (the α-th generation of channel x) and yβ (the β-th generation

of channel y) are its le� and right channels of types ω and A, respectively. �e order relation

between the generations of le� and right channels indexed by their priority of types is built

step by step in Ω when reading the rules from the conclusion to the premises. We only consider

judgments in which all variables xα
′

occurring in Ω are such that α′ ≤ α and, similarly, for

yβ
′

in Ω we have β′ ≤ β. �is presupposition guarantees that if we construct a derivation

bo�om-up, any future generations for x and y are fresh and not yet constrained by Ω. All our

rules, again read bo�om-up, will preserve this property.

We �x a signature Σ as in De�nition 5.2, a �nite set of process de�nitions V over Σ, and de�ne

x̄α : ω `Ω P :: (yβ : A) with the rules in Figure 6.1. To preserve freshness of channels and

their future generations in Ω, the channel introduced by Cut rule must be distinct from any
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variable mentioned in Ω. �is system is in�nitary, i.e., an in�nite derivation may be produced

for a given program. However, we can remove the �rst premise from the Def rule and check

typing for each process de�nition in V separately.

6.7 A local guard condition

In Sections 6.1 to 6.4, using several examples, we developed an algorithm for identifying guarded
programs. Illustrating the full algorithm based on the inference rules in Section 6.6 was post-

poned to this section. We reserve for the next section our main result that the programs

accepted by this algorithm satisfy the validity condition introduced by Fortier and Santo-

canale [36].

�e condition checked by our algorithm is a local one in the sense that we check the guard

condition for each process de�nition in a program separately. �e algorithm works on the

sequents of the form

〈ūγ , X, vδ〉; z̄α : ω `Ω,⊂ P :: (wβ : C),

where ūγ is the le� channel of the process the algorithm started with and can be either empty

or uγ . Similarly, vδ is the right channel of the process the algorithm started with (which cannot

be empty). And X is the last process variable a de�nition rule has been applied to (reading the

rules bo�om-up). Again, in this judgment the (in)equalities in Ω can only relate variables z

and w from earlier generations to guarantee freshness of later generations.

Generally speaking, when analysis of the program starts with ūγ : ω ` vδ ← X ← ūγ :: (vδ :

B), a snapshot of the channels ūγ and vδ and the process variable X are saved. Whenever

the process reaches a call z̄α : ` wβ ← Y ← z̄α :: (wβ : ), the algorithm compares

X, list(ūγ , vδ) and Y, list(z̄α, wβ) using the (⊂, <) order to determine if the call is (locally)

guarded. �is comparison is made by the Call rule in the rules in Figure 6.2, and is local in

the sense that only the interface of a process is consulted at each call site, not its de�nition.

Since it otherwise follows the structure of the program it is also local in the sense of Pierce and

Turner [75].

De�nition 6.10. A program P = 〈V, S〉 over signature Σ and a �xed order ⊂ satisfying the

properties in De�nition 6.6 is locally guarded i� for every z̄ : A ` X = Pz̄,w :: (w : C) ∈ V ,

there is a derivation for

〈z̄0, X,w0〉; z̄0 : ω `∅,⊂ Pz̄0,w0 :: (w0 : C)

in the rule system in Figure 6.2. �is set of rules is �nitary so it can be directly interpreted

as an algorithm. �is results from substituting the Def rule (of Figure 6.1) with the Call rule

(of Figure 6.2). Again, to guarantee freshness of future generations of channels, the channel

introduced by Cut rule is distinct from other variables mentioned in Ω.
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xα : A `Ω yβ ← xα :: (yβ : A)
Id

r(v) = {w0
i = vi | i 6∈ c(A) and i ≤ n}

x̄α : ω `Ω∪r(yβ) Pw0 :: (w0 : A) w0 : A `Ω∪r(x̄α) Qw0 :: (yβ : C)

x̄α : ω `Ω (w ← Pw;Qw) :: (yβ : C)
Cut

w

x̄α : ω `Ω P :: (yβ : Ak) (k ∈ L)

x̄α : ω `Ω Ryβ.k;P :: (yβ : ⊕{` : A`}`∈L)
⊕R

∀` ∈ L xα : A` `Ω P` :: (yβ : C)

xα : ⊕{` : A`}`∈L `Ω caseLxα (`⇒ P`) :: (yβ : C)
⊕L

∀` ∈ L x̄α : ω `Ω P` :: (yβ : A`)

x̄α : ω `Ω caseRyβ (`⇒ P`) :: (yβ : &{` : A`}`∈L)
&R

k ∈ L xα : Ak `Ω P :: (yβ : C)

xα : &{` : Al}`∈L `Ω Lxα.k;P :: (yβ : C)
&L

. `Ω closeRyβ :: (yβ : 1)
1R

. `Ω Q :: (yβ : A)

xα : 1 `Ω waitLxα;Q :: (yβ : A)
1L

Ω′ = Ω ∪ {(yβ)p(s) = (yβ+1)p(s) | p(s) 6= p(t)}
x̄α : ω `Ω′ Pyβ+1 :: (yβ+1 : A) t =µ A

x̄α : ω `Ω Ryβ.µt;Pyβ :: (yβ : t)
µR

Ω′ = Ω ∪ {xα+1
p(t) < xαp(t)} ∪ {x

α+1
p(s) = xαp(s) | p(s) 6= p(t)}

xα+1 : A `Ω′ Qxα+1 :: (yβ : C) t =µ A

xα : t `Ω caseLxα (µt ⇒ Qxα) :: (yβ : C)
µL

Ω′ = Ω ∪ {yβ+1
p(t) < yβp(t)} ∪ {y

β+1
p(s) = yβp(s) | p(s) 6= p(t)}

x̄α : ω `Ω′ Pyβ+1 :: (yβ+1 : A) t =ν A

x̄α : ω `Ω caseRyβ (νt ⇒ Pyβ ) :: (yβ : t)
νR

Ω′ = Ω ∪ {(xα+1)p(s) = (xα)p(s) | p(s) 6= p(t)}
xα+1 : A `Ω′ Qxα+1 :: (yβ : C) t =ν A

xα : t `Ω Lxα.νt;Qxα :: (yβ : C)
νL

x̄α : ω `Ω Px̄α,yβ :: (yβ : C) ū : ω ` X = Pū,w :: (w : C) ∈ V
x̄α : ω `Ω yβ ← X ← x̄α :: (yβ : C)

Def(X)

Figure 6.1: In�nitary Typing Rules for Processes with Channel Ordering
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〈ūγ , X, vδ〉; zα : A `Ω,⊂ w
β ← zα :: (wβ : A)

Id

r(y) = {x0
i = yi | i 6∈ c(A) and i ≤ n}

〈ūγ , X, vδ〉; z̄α : ω `Ω∪r(wβ),⊂ Px0 :: (x0 : A) 〈ūγ , X, vδ〉;x0 : A `Ω∪r(z̄α),⊂ Qx0 :: (wβ : C)

〈ūγ , X, vδ〉; z̄α : ω `Ω⊂ (x← Px;Qx) :: (wβ : C)
Cut

x

〈ūγ , X, vδ〉; z̄α : ω `Ω,⊂ P :: (wβ : Ak) (k ∈ L)

〈ūγ , X, vδ〉; z̄α : ω `Ω,⊂ Rw
β .k;P :: (wβ : ⊕{` : Al}`∈L)

⊕R

∀` ∈ L 〈ūγ , X, vδ〉; zα : A` `Ω,⊂ P` :: (wβ : C)

〈ūγ , X, vδ〉; zα : ⊕{` : A}`∈L `Ω,⊂ caseLzα (`⇒ P`) :: (wβ : C)
⊕L

∀` ∈ L 〈ūγ , X, vδ〉; z̄α : ω `Ω,⊂ P` :: (wβ : A`)

〈ūγ , X, vδ〉; z̄α : ω `Ω,⊂ caseRwβ (`⇒ P`) :: (wβ : &{` : A`}`∈L)
&R

(k ∈ L) 〈ūγ , X, vδ〉; zα : Ak `Ω,⊂ P :: (wβ : C)

〈ūγ , X, vδ〉; zα : &{` : A`}`∈L `Ω,⊂ Lz
α.k;P :: (wβ : C)

&L

〈ūγ , X, vδ〉; · `Ω,⊂ closeR :: (wβ : 1)
1R

〈ūγ , X, vδ〉; · `Ω,⊂ Q :: (wβ : A)

〈ūγ , X, vδ〉; zα : 1 `Ω,⊂ waitLzα;Q :: (wβ : A)
1L

Ω′ = Ω ∪ {wβp(s) = wβ+1
p(s) | p(s) 6= p(t)}

〈ūγ , X, vδ〉; z̄α : ω `Ω′,⊂ Pwβ+1 :: (wβ+1 : A) t =µ A

〈ūγ , X, vδ〉; z̄α : ω `Ω,⊂ Rw
β .µt;Pwβ :: (wβ : t)

µR

Ω′ = Ω ∪ {zα+1
p(t) < zαp(t)} ∪ {z

α+1
p(s) = zαp(s) | p(s) 6= p(t)}

〈ūγ , X, vδ〉; zα+1 : A `Ω′,⊂ Qzα+1 : (wβ :: C) t =µ A

〈ūγ , X, vδ〉; zα : t `Ω,⊂ caseLzα (µt ⇒ Qzα) :: (wβ : C)
µL

Ω′ = Ω ∪ {wβ+1
p(t) < wβp(t)} ∪ {w

β+1
p(s) = wβp(s) | p(s) 6= p(t)}

〈ūγ , X, vδ〉; z̄α : ω `Ω′,⊂ Pwβ+1 :: (wβ+1 : A) t =ν A

〈ūγ , X, vδ〉; z̄α : ω `Ω,⊂ caseRwβ (νt ⇒ Pwβ ) :: (wβ : t)
νR

Ω′ = Ω ∪ {zα+1
p(s) = zαp(s) | p(s) 6= p(t)}

〈ūγ , X, vδ〉; zα+1 : A `Ω′,⊂ Qzα+1 :: (wβ : C) t =ν A

〈ūγ , X, vδ〉; zα : t `Ω,⊂ Lz
α.νt;Qzα :: (wβ : C)

νL

Y, list(z̄α, wβ) (⊂, <Ω) X, list(ūγ , vδ) x̄ : ω ` Y = Px̄,y :: (y : C) ∈ V
〈ūγ , X, vδ〉; z̄α : ω `Ω,⊂ w

β ← Y ← z̄α :: (wβ : C)
Call

Figure 6.2: Finitary rules for the local guard condition
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�e starting point of the algorithm can be of an arbitrary form

〈z̄α, X,wβ〉; z̄α : ω `Ω,⊂ Pzα,wβ :: (wβ : C),

as long as z̄α+i
and wβ+i

do not occur in Ω for every i > 0. In both the inference rules and the

algorithm, the next generation of channels introduced in the µ/ν −R/L rules do not occur in

Ω. Having this condition we can convert a proof for

〈z̄0, X,w0〉; z̄0 : ω `∅,⊂ Pz0,w0 :: (w0 : C),

to a proof for

〈z̄α, X,wβ〉; z̄α : ω `Ω,⊂ Pzα,wβ :: (wβ : C),

by rewriting each z̄γ and wδ in the proof as z̄γ+α
and wδ+β , respectively. �is simple propo-

sition is used in the next section where we prove that every locally guarded process accepted

by our algorithm is a valid proof according to the FS validity condition.

Proposition 6.11. If there is a deduction of

〈z̄0, X,w0〉; z̄0 : ω `∅,⊂ Pz0,w0 :: (w0 : C),

then there is also a deduction of

〈z̄α, X,wβ〉; z̄α : ω `Ω,⊂ Pzα,wβ :: (wβ : C),

if for all 0 < i, z̄α+i and wβ+i do not occur in Ω.

Proof. By substitution, as explained above.

To show the algorithm in action we run it over program P3 := 〈{Copy}, Copy〉 previously

de�ned in Example 6.2.

Example 6.12. Consider program P3 := 〈{Copy}, Copy〉 over signature Σ1 where Copy has
types x : nat ` Copy :: (y : nat).

Σ1 := nat =1
µ ⊕{z : 1, s : nat},

y ← Copy← x = caseLx (µnat ⇒ caseLx ( z ⇒ Ry.µnat;Ry.z; waitLx; closeRy

| s⇒ Ry.µnat;Ry.s; y ← Copy← x)).

In this example, following De�nition 6.6 the programmer has to de�ne Copy ⊆1 Copy since the
only priority in Σ is 1. To verify local the guard condition for this program we run our algorithm
over the de�nition of Copy. Here we show the interesting branch of the constructed derivation:
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x1 : 1 `{x1
1<x

0
1} Ry

0.µnat; · · · :: (y0 : nat)

[x1
1, Copy, y

1
1 ] (⊂, <{x1

1<x
0
1}) [x0

1, Copy, y
0
1 ] x : nat ` Copy = (caseLx (· · · ))x,y :: (y : nat) ∈ V

x1 : nat `{x1
1<x

0
1} y

1 ← Copy← x1 :: (y1 : nat)
Call

x1 : nat `{x1
1<x

0
1} Ry

1.s; · · · :: (y1 : 1⊕ nat)
⊕R

x1 : nat `{x1
1<x

0
1} Ry

0.µnat; · · · :: (y0 : nat)
µR

x1 : 1⊕ nat `{x1
1<x

0
1} caseLx1 (· · · ) :: (y0 : nat)

⊕L

x0 : nat `∅ caseLx0 (µnat ⇒ · · · ) :: (y0 : nat)
µL

As being checked by the Call rule, [x1
1, Copy, y

1
1] (⊂, <{x1

1<x
0
1}) [x0

1, Copy, y
0
1] and the recursive

call is accepted. In this particular se�ing in which Copy calls itself recursively, the condition of
the Call rule can be reduced to [x1

1, y
1
1] <{x1

1<x
0
1} [x0

1, y
0
1].

Note that at a meta-level the generations on channel names and the set Ω are both used for

bookkeeping purposes. We showed in this example that using the rules of Figure 6.2 as an

algorithm we can annotate the given de�nition of a process variable with the generations and

the set Ω.

6.8 Local guard condition and FS validity

Fortier and Santocanale [36] introduced a validity condition for identifying valid circular proofs

among all in�nite pre-proofs in the singleton logic with �xed points. �ey showed that the pre-

proofs satisfying this condition, which is based on the de�nition of le� µ- and right ν-traces,

enjoy the cut elimination property. In Chapter 4, we generalized their results to the in�nitary

�rst-order intuitionistic multiplicative additive linear logic. In this section, we translate their

validity condition into the context of session-typed concurrency and generalize it for subsin-

gleton logic. It is straightforward to show that the cut elimination property holds for a proof

in subsingleton logic if it satis�es the generalized version of the validity condition. �e key

idea is that cut reductions for individual rules stay untouched in subsingleton logic and rules

for the new constant 1 only provide more options for the cut reduction algorithm to terminate.

We prove that all locally guarded programs in the session typed system, determined by the

algorithm in Section 6.7, also satisfy the validity condition. We conclude that our algorithm

imposes a stricter but local version of validity on the session-typed programs corresponding

to circular pre-proofs.

Here we adapt de�nitions of the le� and right traceable paths, le� µ- and right ν-traces, and

then validity to our session type system. �ese de�nitions are phrased di�erently from their

counterparts in Section 4.3. Here, we phrase them similar to Fortier and Santocanale’s pa-

per [36]. �eorem 6.18 proves that our earlier de�nition of µ- and ν-traces in Section 4.3,

when restricted to the subsingleton fragment, implies the de�nitions as phrased here.
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De�nition 6.12. Consider path P in the (in�nite) typing derivation of a programQ = 〈V, S〉
de�ned on a signature Σ:

x̄γ : ω′ `Ω′ Q
′ :: (yδ : C ′)

.

.

.

z̄α : ω `Ω Q :: (wβ : C)

P is called le� traceable if z̄ and x̄ are non-empty and z̄ = x̄. It is called right traceable ifw = y.

Moreover, P is called a cycle over programQ, if for someX ∈ V , we haveQ = wβ ← X ← z̄α

and Q′ = yδ ← X ← x̄γ .

De�nition 6.13. A path P in the (in�nite) typing derivation of a programQ = 〈V, S〉 de�ned

over signature Σ is a le� µ-trace if (i) it is le�-traceable, (ii) there is a le� �xed point rule applied

on it, and (iii) the highest priority of its le� �xed point rule is i ≤ n such that ε(i) = µ. Dually,

P is a right ν-trace if (i) it is right-traceable, (ii) there is a right �xed point rule applied on it,

and (iii) the highest priority of its right �xed point is i ≤ n such that ε(i) = ν.

De�nition 6.14 (FS validity condition on cycles). A programQ = 〈V, S〉 de�ned on signature

Σ satis�es the FS validity condition if every cycle C

x̄γ : ω′ `Ω′ y
δ ← X ← x̄γ :: (yδ : C ′)

.

.

.

z̄α : ω `Ω wβ ← X ← z̄α :: (wβ : C)

overQ is either a le� µ-trace or a right ν-trace. Similarly, we say a single cycle C satis�es the

validity condition if it is either a le� µ-trace or a right ν-trace.

De�nitions 6.12-6.14 are equivalent to the de�nitions of the same concepts by Fortier and San-

tocanale using our own notation. As an example, consider program P3 := 〈{Copy}, Copy〉
over signature Σ1, de�ned in Example 6.2, where Copy has types x : nat ` Copy :: (y : nat).

Σ1 := nat =1
µ ⊕{z : 1, s : nat}

y ← Copy← x = caseLx (µnat ⇒ caseLx ( z ⇒ Ry.µnat;Ry.z; waitLx; closeRy

| s⇒ Ry.µnat;Ry.s; y ← Copy← x))

Consider the �rst several steps of the derivation of the program starting with x0 : nat `∅ y0 ←
Copy← x0 :: (y0 : nat):
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x1 : 1 `{x1
1<x

0
1} Ry

0.µnat; · · · :: (y0 : nat)

x1 : nat `{x1
1<x

0
1} y

1 ← Copy← x1 :: (y1 : nat)

x1 : nat `{x1
1<x

0
1} Ry

1.s; · · · :: (y1 : 1⊕ nat)
⊕R

x1 : nat `{x1
1<x

0
1} Ry

0.µnat; · · · :: (y0 : nat)
µR

x1 : 1⊕ nat `{x1
1<x

0
1} caseLx1 (· · · ) :: (y0 : nat)

⊕L

x0 : nat `∅ caseLx0 (µnat ⇒ · · · ) :: (y0 : nat)
µL

x0 : nat `∅ y0 ← Copy← x0 :: (y0 : nat)
Def(Copy)

�e path between

x0 : nat `∅ y0 ← Copy← x0 :: (y0 : nat)

and

x1 : nat `{x1
1<x

0
1} y

1 ← Copy← x1 :: (y1 : nat)

is by de�nition both le� traceable and right traceable, but it is only a le� µ-trace and not a

right ν-trace: the highest priority of a �xed point applied on the le�-hand side on this path

belongs to a positive type; this application of the µL rule added x1
1 < x0

1 to the set de�ning

the < order. However, there is no negative �xed point rule applied on the right, and y1
1 and y0

1

are incomparable to each other.

�is cycle satis�es the validity condition by being a le�µ-trace. We showed in Example 6.12 that

it is also accepted by our algorithm since list(x1, y1) = [(x1
1, y

1
1)] < [(x0

1, y
0
1)] = list(x0, y0).

Here, we can observe that being a le� µ-trace coincides with having the relation x1
1 < x0

1

between the le� channels, and not being a right ν-trace coincides with not having the relation

y1
1 < y0

1 for the right channels. We can generalize this observation to every path and every

signature with n priorities.

De�nition 6.15. Consider a signature Σ and a channel xγ . We de�ne the snapshot of a channel

xα as a list snap(xα) = [xαi ]i≤n = [xγ1 , · · · , x
γ
n], where n is the maximum priority in Σ. For

brevity, we write [xγ ] instead of snap(xα).

As explained in Section 6.3, the re�exive transitive closure of Ω in judgmentxγ : ω `Ω P :: (yδ : C)

forms a partial order ≤Ω. To enhance readability of proofs, throughout this section we may

use entailment Ω  x ≤ y instead of x ≤Ω y.

Lemma 6.16. Consider a �nite pathP in the (in�nite) typing derivation of a programQ = 〈V, S〉
de�ned on a signature Σ,

xγ : ω′ `Ω′ P
′ :: (yδ : C ′)

...

zα : ω `Ω P :: (wβ : C)
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with n the maximum priority in Σ.

(a) For every i ∈ c(ω′) with ε(i) = µ, if xγi ≤Ω′ z
α
i then x = z and i ∈ c(ω).

(b) For every i < n, if xγi <Ω′ z
α
i , then i ∈ c(ω) and a µL rule with priority i is applied on P.

(c) For every c ≤ n with ε(c) = ν, if xγc ≤Ω′ z
α
c , then no νL rule with priority c is applied on

P.

Proof. Proof is by induction on the structure of P. We consider each case for last (topmost)
step in P. �e judgment xγ : ω′ `Ω′ P

′ :: (yδ : C ′) is a premise of the last step.

Case
xγ : ω′ `Ω′ P

′ :: (yδ : C ′) x : ω′ ` X = P ′ :: (y : C ′) ∈ V

xγ : ω′ `Ω′ y
δ ← X ← xγ :: (yδ : C ′)

Def(X)

None of the conditions in the conclusion are di�erent from the premise. �erefore, by

the induction hypothesis, statements (a)-(c) hold.

Case We need to distinguish two cases for the cut rule, since the typing judgment for P ′ can

be the the �rst or le� premise of Cut.

Subcase.

xγ : ω′ `Ω′′∪r(vθ) P
′
y0 :: (y0 : C ′) y0 : C ′ `Ω′′∪r(xγ) Qy0 :: (vθ : C ′′)

xγ : ω′ `Ω′′ (y ← P ′y;Qy) :: (vθ : C ′′)
Cut

y

where r(u) = {y0
j = uj | j 6∈ c(C ′) and j ≤ n} and Ω′ = Ω′′ ∪ r(vθ). All

conditions in the conclusion are the same as the �rst premise (xγ : ω′ `Ω′′ (y ←
P ′y;Qy) :: (vθ : C ′′)): the equations in r(vθ) only include channels y0

and vθ . As a

result Ω′′ ∪ r(vθ)  xγi ≤ zαi implies Ω′′  xγi ≤ zαi , and Ω′′ ∪ r(vθ)  xγi < zαi
implies Ω′′  xγi < zαi . �erefore, by the induction hypothesis, statements (a)-(c)

hold.

Subcase.

uη : ω′′ `Ω′′∪r(yδ) Qa0 :: (x0 : A) x0 : A `Ω′′∪r(uη) P
′
x0 :: (yδ : C ′′)

uη : ω′′ `Ω′′ (x← Qx;P ′x) :: (yδ : C ′)
Cut

x

where r(v) = {x0
j = vj | j 6∈ c(A) and j ≤ n} and Ω′ = Ω′′ ∪ r(uη).

(a) Ω′′∪r(uη)  x0
i ≤ zαi does not hold for any i ∈ c(A): x is a fresh channel and

does not occur in the equation of Ω′′. Moreover, since i ∈ c(A), there is no

equation in the set r(uη) including x0
i . �erefore, this part is vacuously true.

(b) By freshness of x, if Ω′′ ∪ r(uη)  x0
i < zαi , then x0

i = uηi ∈ r(uη) and

Ω′′  uηi < zαi . By the induction hypothesis, i ∈ c(ω) and a µL rule with

priority i is applied on P.



Session-typed processes 96

(c) By freshness of x, if Ω′′ ∪ r(uη)  x0
c ≤ zαc , then x0

c = uηc ∈ r(uη) and

Ω′′  uηc ≤ zαc . By the induction hypothesis, no νL rule with priority c is

applied on P.

Case
. `Ω′ P

′ :: (yδ : C ′)

uη : 1 `Ω′ waitLuη;P ′ :: (yδ : C ′)
1L

�is case is not applicable since by the typing rules Ω′ 6 . ≤ zαi for any i ≤ n.

Case

xα : ω′ `Ω′ P :: (yδ
′+1 : C ′) t =µ C

′ Ω′ = Ω′′ ∪ {(yδ′)p(s) = (yδ
′+1)p(s) | p(s) 6= p(t)}

xα : ω′ `Ω′′ Ry
δ′ .µt;P :: (yδ

′
: t)

µR

For every i ≤ n, if Ω′′ ∪ {(yδ′)p(s) = (yδ
′+1)p(s) | p(s) 6= p(t)}  xγi ≤ zαi , then

Ω′′  xγi ≤ zαi . �erefore, by the induction hypothesis, statements (a)-(c) hold.

Case

xγ
′+1 : ω′ `Ω′ P

′ :: (yδ : C ′)

t =µ ω
′

Ω′ = Ω′′ ∪ {xγ
′+1
p(t) < xγ

′

p(t)} ∪ {x
γ′+1
p(s) = xγ

′

p(s) | p(s) 6= p(t)}

xγ
′

: t `Ω′′ caseLxγ
′
(µt ⇒ P ′) :: (yδ : C ′)

µL

By de�nition of c(x), we have c(ω′) ⊆ c(t). By µL rule, for all i ≤ n, xγ
′+1
i ≤ xγ

′

i ∈ Ω′.

But by freshness of channels and their generations, xγ
′+1

is not involved in any relation

in Ω′′.

(a) For every i ∈ c(ω′) with ε(i) = µ, if Ω′  xγ
′+1
i ≤ zαi then Ω′′  xγ

′

i ≤ zαi . By

the induction hypothesis, we have x = z and i ∈ c(ω).

(b) We consider two subcases: (1) If Ω′  xγ
′+1
i < zαi for i 6= p(t), then Ω′  xγ

′+1
i =

xγ
′

i and Ω′′  xγ
′

i < zαi . Now we can apply the induction hypothesis. (2) If Ω′ 

xγ
′+1
p(t) < zαp(t), then Ω′  xγ

′+1
p(t) < xγ

′

p(t) and Ω′′  xγ
′

p(t) ≤ zαp(t). Since a µL rule is

applied in this step on the priority p(t), we only need to prove that p(t) ∈ c(ω).

By de�nition of c, we have p(t) ∈ c(t) and we can use the induction hypothesis

on part (a) to get p(t) ∈ c(ω).

(c) For every c ≤ n with ε(c) = ν, Ω′  xγ
′+1
c = xγ

′
c as c 6= p(t). �erefore, if

Ω′  xγ
′+1
c = zαc , then Ω′′  xγ

′
c = zαc . By the induction hypothesis no νL rule

with priority c is applied on P.

Case

xγ : ω′ `Ω′ P
′ :: yδ

′+1 : C ′
t =ν C

′

Ω′ = Ω′′ ∪ {yδ′+1
p(t) < yδ

′

p(t)} ∪ {y
δ′+1
p(s) = yδ

′

p(s) | p(s) 6= p(t)}

xγ : ω′ `Ω′′ caseRyδ
′
(νt ⇒ P ′) :: (yδ

′
: t)

νR
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For every i ≤ n, if Ω′′ ∪ {yδ′+1
p(t) < yδ

′

p(t)} ∪ {y
δ′+1
p(s) = yδ

′

p(s) | p(s) 6= p(t)}  xγi ≤ zαi ,

then Ω′′  xγi ≤ zαi . �erefore, by the induction hypothesis, statements (a)-(c) hold.

Case

xγ
′+1 : ω′ `Ω′ Q :: (yδ : C ′) t =ν ω

′ Ω′ = Ω′′ ∪ {xγ
′+1
p(s) = xγ

′

p(s) | p(s) 6= p(t)}

xγ
′

: t `Ω′′ Lx
γ′ .νt;P

′ :: (yδ : C ′)
νL

By de�nition of c(x), we have c(ω′) ⊆ c(t). By νL rule, for all i 6= p(t) ≤ n, xγ
′+1
i =

xγ
′

i ∈ Ω′. In particular, for every i ≤ n with ε(i) = µ, xγ
′+1
i = xγ

′

i ∈ Ω′. But by

freshness of channels and their generations, xγ
′+1

is not involved in any relation in Ω′′.

(a) For every i ∈ c(ω′) with ε(i) = µ, if Ω′  xγ
′+1
i ≤ zαi , then Ω′  xγ

′+1
i = xγ

′

i and

Ω′′  xγ
′

i ≤ zαi . By the induction hypothesis x = z and i ∈ c(ω).

(b) If Ω′  xγ
′+1
i < zαi , then by freshness of channels and their generations we have

i 6= p(t), Ω′  xγ
′+1
i = xγ

′

i and Ω′′  xγ
′

i < zαi . By the induction hypothesis

i ∈ c(ω) and a µL rule with priority i is applied on the path.

(c) For every c ≤ n with ε(c) = ν and c 6= p(t), if Ω′  xγ
′+1
c ≤ zαc , then Ω′ 

xγ
′+1
c = xγ

′
c and Ω′′  xγ

′ ≤ zαc . �erefore, by induction hypothesis, no νL rule

with priority c is applied on the path. Note that Ω′ 6 xγ
′+1
p (t) ≤ zαp (t).

Case
xγ : ω `Ω′ Qk :: yδ : Ak ∀k ∈ L

xγ : ω `Ω′ caseRyδ (`⇒ Q`) :: (yδ : &{` : A`}`∈L)
&R

None of the conditions in the conclusion are di�erent from the premise. �erefore, by

the induction hypothesis, statements (a)-(c) hold.

Case
xγ : Ak `Ω′ Q :: (yδ : C ′)

xγ : &{` : A`}`∈L `Ω′ Lx
γ .k;Q :: (yδ : C ′)

&L

By de�nition of c(x), we have c(Ak) ⊆ c(&{` : A`}`∈L). �erefore, statements (a)-(c)

follow from the induction hypothesis.

Cases �e statements are trivially true if the last step of the proof is either 1R or Id rules.

Lemma 6.17. Consider a path P in the (in�nite) typing derivation of a program Q = 〈V, S〉
de�ned on a signature Σ,

x̄γ : ω′ `Ω′ P
′ :: (yδ : C ′)

...

z̄α : ω `Ω P :: (wβ : C)

with n the maximum priority in Σ.
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(a) For every i ∈ c(ω′) with ε(i) = ν, if yδi ≤Ω′ w
β
i , then y = w and i ∈ c(ω).

(b) If yδi <Ω′ w
β
i , then i ∈ c(ω) and a νL rule with priority i is applied on P .

(c) For every c ≤ n with ε(c) = µ, if yδc ≤Ω′ w
β
c , then no µR rule with priority c is applied on

P .

Proof. Dual to the proof of Lemma 6.16.

�eorem 6.18. A cycle C

x̄γ : ω′ `Ω′ y
δ ← X ← x̄γ :: (yδ : C ′)

...

z̄α : ω `Ω wβ ← X ← z̄α :: (wβ : C)

on a programQ = 〈V, S〉 de�ned over signature Σ is a le� µ-trace if x̄ and z̄ are non-empty and
the list [xγ ] = [xγ1 , · · · , x

γ
n] is lexicographically less than the list [zα] = [zα1 , · · · , zαn ] by the order

<Ω′ built in Ω′. Dually, it is a right ν-trace, if the list [yδ] = [yδ1, · · · , yδn] is lexicographically less
than the list [wβ] = [wβ1 , · · · , w

β
n] by the strict order <Ω′ built in Ω′

Proof. �is theorem is a corollary of Lemmas 6.16 and 6.17.

We provide a few additional examples to elaborate �eorem 6.18 further. De�ne a program

P9 := 〈{Succ, Copy, SuccCopy}, SuccCopy〉, over the signature Σ1, using the process w :

nat ` Copy :: (y : nat) and two other processs: x : nat ` Succ :: (w : nat) and x : nat `
SuccCopy :: (y : nat). �e processes are de�ned as

w ← Succ← x = Rw.µnat;Rw.s;w ← x

y ← Copy← w = caseLw (µnat ⇒ caseLw ( s ⇒ Ry.µnat;Ry.s; y ← Copy← w

| z ⇒ Ry.µnat;Ry.z ; waitLw; closeRy))

y ← SuccCopy← x = w ← Succ← x; y ← Copy← w,

Process SuccCopy spawns a new process Succ and continues as Copy. �e Succ process

prepends an s label to the beginning of the �nite string representing a natural number on

its le� hand side and then forwards the string as a whole to the right. Copy receives this �nite

string representing a natural number, and forwards it to the right label by label.

�e only recursive process in this program is Copy. So program P9, itself, does not have a

further interesting point to discuss. We consider a bogus version of this program in Example

6.13 that provides further intuition for �eorem 6.18.
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Example 6.13. De�ne program P10 := 〈{Succ, BogusCopy, SuccCopy}, SuccCopy〉 over the
signature

Σ1 := nat =1
µ ⊕{z : 1, s : nat},

�e processes x : nat ` Succ :: (w : nat), w : nat ` BogusCopy :: (y : nat), and x : nat `
SuccCopy :: (y : nat), are de�ned as

w ← Succ← x = Rw.µnat;Rw.s;w ← x

y ← BogusCopy← w = caseLw (µnat ⇒ caseLw ( s ⇒ Ry.µnat;Ry.s; y ← SuccCopy← w

| z ⇒ Ry.µnat;Ry.z ; waitLw; closeRy))

y ← SuccCopy← x = w ← Succ← x; y ← BogusCopy← w

Program P10 is a non-reactive bogus program, since BogusCopy instead of calling itself re-
cursively, calls SuccCopy. At the very beginning SuccCopy spawns Succ and continues with
BogusCopy for a fresh channel w. Succ then sends a �xed point unfolding message and a succes-
sor label viaw to the right, while BogusCopy receives the two messages just sent by Succ through
w and calls SuccCopy recursively again. �is loop continues forever, without any messages being
received from the outside.

�e �rst several steps of the derivation of x0 : nat `∅ SuccCopy :: (y0 : nat) in our inference
system (Section 6.6) are given below.

x0 : nat `∅ w1 ← x0 :: (w1 : nat)
Id

x0 : nat `∅ Rw1.s; · · · :: (w1 : 1⊕ nat)
⊕R

x0 : nat `∅ Rw0.µnat; · · · :: (w0 : nat)
µR

x0 : nat `∅ w0 ← Succ← x0 :: (w0 : nat)
Def

· · · w1 : nat `{w1
1<w

0
1} y

0 ← SuccCopy← w1 :: (y0 : nat)

w1 : 1⊕ nat `{w1
1<w

0
1} caseLw1 (· · · ) :: (y0 : nat)

⊕L

w0 : nat `∅ caseLw0 (µnat ⇒ · · · ) :: (y0 : nat)
µL

w0 : nat `∅ y0 ← BogusCopy← w0 :: (y0 : nat)
Def

x0 : nat `∅ w ← Succ; y0 ← BogusCopy← w :: (y0 : nat)
Cut

w

x0 : nat `∅ y0 ← SuccCopy← x0 :: (y0 : nat)
Def

Consider the cycle between

x0 : nat `∅ y0 ← SuccCopy← x0 :: (y0 : nat)

and
w1 : nat `{w1

1<w
0
1} y

0 ← SuccCopy← w1 :: (y0 : nat).
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By De�nition 6.13, this path is right traceable, but not le� traceable. And by De�nition 6.12, the
path is neither a right ν-trace nor a le� µ-trace:

1. No negative �xed point unfolding message is received from the right and y0 does not evolve
to a new generation that has a smaller value in its highest priority than y0

1 . In other words,
y0

1 6< y0
1 since no negative �xed point rule has been applied on the right channel.

2. �e positive �xed point unfolding message that is received from the le� is received through
the channel w0, which is a fresh channel created a�er SuccCopy spawns the process Succ.
Although w1

1 < w0
1 , since x0

1 is incomparable to w0
1 , the relation w1

1 < x0
1 does not hold.

�is path is not even a le�-traceable path.

Neither [w1] = [w1
1] < [x0

1] = [x0], nor [y0] = [y0
1] < [y0

1] = [y0] hold, and this cycle does not
satisfy the validity condition. �is program is not locally guarded either since [w1

1, y
0
1] 6< [x0

1, y
0
1].

As another example consider the program P6 = {Ping, Pong, PingPong}, PingPong〉 over

the signature Σ4 as de�ned in Example 6.5. We discussed in Section 6.3 that this program is

not accepted by our algorithm as locally guarded.

Example 6.14. Recall the de�nition of signature Σ4:

Σ4 := ack =1
µ ⊕{ack : astream},

astream =2
ν &{head : ack, tail : astream},

nat =3
µ ⊕{z : 1, s : nat}

Processes
x : nat ` Ping :: (w : astream),

w : astream ` Pong :: (y : nat),

x : nat ` PingPong :: (y : nat)

are de�ned as

w ← Ping← x = caseRw (νastream ⇒ caseRw ( head ⇒ Rw.µack;Rw.ack ;w ← Ping← x

| tail ⇒ w ← Ping← x))

y ← Pong← w =Lw.νastream;Lw.head ;

caseLw (µack ⇒ caseLw (ack ⇒ Ry.µnat;Ry.s; y ← Pong← w))

y ← PingPong← x = w ← Ping← x; y ← Pong← w

�e �rst several steps of the proof of x0 : nat `∅ PingPong :: (y0 : nat) in our inference system
(Section 6.6) are given below (with some abbreviations).
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x0 : nat `B w2 ← Ping← x0 :: (w2 : astream)

x0 : nat `B Rw2.ack ; · · · :: (w2 : ⊕{astream})
⊕R

x0 : nat `A Rw1.µack; · · · :: (w1 : ack)
µR
x0 : nat `A · · · :: (w1 : astream)

x0 : nat `A caseRw1 (· · · ) :: (w1 : ack & astream)
&R

x0 : nat `∅ caseRw0 (νastream ⇒ · · · ) :: (w0 : astream)
νR

x0 : nat `∅ w0 ← Ping← x0 :: (w0 : astream)
Def

w0 : astream `∅ · · · :: (y0 : nat)

x0 : nat `∅ w ← Ping← x0; y0 ← Pong← w :: (y0 : nat)
Cut

x0 : nat `∅ y0 ← PingPong← x0 :: (y0 : nat)
Def

where A = {w1
1 = w0

1, w
1
2 < w0

2, w
1
3 = w0

3}, and B = {w1
1 = w0

1, w
2
2 = w1

2 < w0
2, w

2
3 = w1

3 =

w0
3}. �e cycle between the processes

x0 : nat `∅ w0 ← Ping← x0 :: (w0 : astream)

and
x0 : nat `B w2 ← Ping← x0 :: (w2 : astream)

is neither a le� µ-trace, nor a right ν-trace:

1. No �xed point unfolding message is received or sent through the le� channels in this path
and thus [x0] = [x0

1, x
0
2, x

0
3] 6< [x0

1, x
0
2, x

0
3] = [x0].

2. On the right, �xed point unfolding messages are both sent and received: (i) w0 receives an
unfolding message for a negative �xed point with priority 2 and evolves to w1, and then
later (ii)w1 sends an unfolding message for a positive �xed point with priority 1 and evolves
to w2. But the positive �xed point has a higher priority than the negative �xed point, and
thus this path is not a right ν-trace either.

�is reasoning can also be re�ected in our observation about the list of channels in �eorem 6.18:
When, �rst, w0 evolves to w1 by receiving a message in (i) the relations w1

1 = w0
1 , w1

2 < w0
2 ,

and w1
3 = w0

3 are recorded. And, later, when w1 evolves to w2 by sending a message in (ii) the
relations w2

2 = w1
2 , and w2

3 = w1
3 are added to the set. �is means that w2

1 as the �rst element of
the list [w2] remains incomparable to w0

1 and thus [w2] = [w2
1, w

2
2, w

2
3] 6< [w0

1, w
0
2, w

0
3] = [w0].

By �eorem 6.18, a cycle C

x̄γ : ω′ `Ω′ y
δ ← X ← x̄γ :: (yδ : C ′)

.

.

.

z̄α : ω `Ω wβ ← X ← z̄α :: (wβ : C)



Session-typed processes 102

is either a le� µ-trace or a right ν-trace if either [xγ ] <Ω′ [zα] or [yδ] <Ω′ [wβ] holds. Checking

a disjunctive condition for each cycle implies that the FS validity condition cannot simply

analyze each path from the beginning of a de�nition to a call site in isolation and then compose

the results—instead it must unfold the de�nitions and examine every possible cycle in the

in�nitary derivation separately.

In our algorithm, however, we merge the lists of le� and right channels, e.g. [xγ ] and [yδ]

respectively, into a single list list(xγ , yδ). �e values in list(xγ , yδ) from De�nition 6.4 are

still recorded in their order of priorities, but for the same priority the value corresponding

to receiving a message precedes the one corresponding to sending a message. As described

in De�nition 6.8 we merge this list with process variables to check all (immediate) calls even

those that do not form a cycle in the sense of the FS validity condition (that is, when process

X calls process Y 6= X).

By adding process variables to our guard condition there is no need to search for every possible

cycle in the in�nitary derivation. Instead, our algorithm only checks the condition for the

immediate calls that a process makes. As this condition enjoys transitivity, it also holds for all

possible non-immediate recursive calls, including any cycles.

Remark 6.19. We brie�y analyze the asymptotic complexity of our algorithm. Let n be the

number of priorities and s the size of the signature, where we add in the sizes of all types A

appearing in applications of the Cut rule. In time O(n s) we can compute a table to look up

i ∈ c(A) for all priorities i and types A appearing in cuts.

Now let m be the size of the program (not counting the signature). We traverse each process

de�nition just once, maintaining a list of relations between the current and original channel

pairs for each priority. We need to update at most 2n entries in the list at each step and compare

at most 2n entries at each Call rule. Furthermore, for each Cut rule we have a constant-time

table lookup to determine if i ∈ c(A) for each priority i. �erefore, analysis of the process

de�nitions takes time O(mn).

Pu�ing it all together, the time complexity is bounded by O(mn + n s) = O(n (m + s)).

In practice the number of priorities, n, is a small constant so checking the guard condition is

linear in the total input, which consists of the signature and the process de�nitions. As far

as we are aware of, the best upper bound for the complexity of the FS validity condition is

PSPACE [33].

It is also interesting to note that the complexity of type-checking itself is bounded below by

O(m+ s2) since, in the worst case, we need to compute equality between each pair of types.

�at is, checking the guard condition is faster than type-checking.

Another advantage of locality derives from the fact that our algorithm checks each process

de�nition independent of the rest of the program: we can safely reuse a previously checked

locally guarded process in other programs de�ned over the same signature and order⊂without

the need to verify the local guard condition again.
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We are now ready to state our main theorem that proves the local guard algorithm introduced

in Section 6.7 is stricter than the FS validity condition. Since the FS validity condition is de�ned

over an in�nitary system, we need to �rst map our local condition into the in�nitary calculus

given in Figure 6.1.

Lemma 6.20. Consider a path P on a programQ = 〈V, S〉 de�ned on a signature Σ, with n the
maximum priority in Σ.

x̄γ : ω′ `Ω′ P
′ :: (yδ : C ′)

...

z̄α : ω `Ω P :: (wβ : C)

Ω′ preserves the (in)equalities in Ω. In other words, for channels u, v, generations η, η′ ∈ N and
type priorities i, j ≤ n,

(a) If Ω  uηi < vη
′

j , then Ω′  uηi < vη
′

j .

(b) If Ω  uηi ≤ v
η′

j , then Ω′  uηi ≤ v
η′

j .

(c) If Ω  uηi = vη
′

j , then Ω′  uηi = vη
′

j .

Proof. Proof is by induction on the structure of P. We consider each case for topmost step in

P. Here, we only give one non-trivial case. �e proof of other cases is similar.

Case

xα : ω′ `Ω′ P :: (yδ
′+1 : C ′) t =µ C

′ Ω′ = Ω′′ ∪ {(yδ′)p(s) = (yδ
′+1)p(s) | p(s) 6= p(t)}

xα : ω′ `Ω′′ Ry
δ′ .µt;P :: (yδ

′
: t)

µR

(a) If Ω  uηi < vη
′

j , then by the inductive hypothesis, Ω′′  uηi < vη
′

j . By fresh-

ness of channels and their generations, we know that yδ
′+1

does not occur in any

(in)equalities in Ω′′ and thus yδ
′+1 6= uη, vη

′
. �erefore Ω′  uηi < vη

′

j .

Following the same reasoning, we can prove statements (b) and (c).

Lemma 6.21. Consider a �nitary derivation (Figure 6.2) for

〈ū, X, v〉; x̄α : ω `Ω,⊂ P :: (yβ : C),

on a locally guarded programQ = 〈V, S〉 de�ned on signature Σ and order ⊂. �ere is a (poten-
tially in�nite) derivation D for

x̄α : ω `Ω P :: (yβ : C),
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in the in�nitary system of Figure 6.1.

Moreover, for every w̄γ : ω′ `Ω′ z
δ ← Y ← w̄γ :: (zδ : C ′) on D, we have

Y, list(w̄γ , zδ) (⊂, <Ω′) X, list(x̄
α, yβ).

Proof. We prove this by coinduction, producing the derivation of x̄α : ω `Ω P :: (yβ : C). We

proceed by case analysis of the �rst rule applied on 〈ū, X, v〉; x̄α : ω `Ω P :: (yβ : C), in its

�nite derivation.

Case

Y, list(x̄α, yβ) (⊂, <Ω) X, list(ūγ , vδ) x̄ : ω ` Y = P ′x̄,y :: (y : C) ∈ V

〈ūγ , X, vδ〉; x̄α : ω `Ω,⊂ y
β ← Y ← x̄α :: (yβ : C)

Call(Y )

�e program is guarded, so there is a �nitary derivation for

〈x̄0, Y, y0〉; x̄0 : ω `∅,⊂ P ′x̄0,y0 :: (y0 : C).

Having Proposition 6.11 and freshness of future generations of channels in Ω, there is

also a �nitary derivation for

〈x̄α, Y, yβ〉; x̄α : ω `Ω,⊂ P
′
x̄α,yβ :: (yβ : C).

We apply the coinductive hypothesis to get an in�nitary derivation D′ for

x̄α : ω `Ω,⊂ P
′
x̄α,yβ :: (yβ : C),

and then produce the last step of derivation

D′

x̄α : ω `Ω P ′
x̄α,yβ

:: (yβ : C) x̄ : ω ` Y = P ′x̄,y :: (y : C) ∈ V

x̄α : ω `Ω yβ ← Y ← x̄α :: (yβ : C)
Def(Y )

in the in�nitary rule system.

Moreover, by the coinductive hypothesis, we know that for every

w̄γ
′

: ω′ `Ω′ z
δ′ ←W ← wγ

′
:: (zδ

′
: C ′)

on D′, we have

W, list(wγ
′
, zδ
′
) (⊂, <Ω′) Y, list(x̄

α, yβ).

By Lemma 6.20, we conclude from Y, list(x̄α, yβ) (⊂, <Ω) X, list(ūγ , vδ) that

Y, list(x̄α, yβ) (⊂, <Ω′) X, list(ū
γ , vδ).



Session-typed processes 105

By transitivity of (⊂, <Ω′), we get

W, list(wγ
′
, zδ
′
) (⊂, <Ω′) X, list(ū

γ , vδ).

�is completes the proof of this case as we already knowY, list(x̄α, yβ) (⊂, <Ω) X, list(ūγ , vδ).

Case

〈ūγ , X, vδ〉; x̄α : ω `Ω∪r(yβ),⊂ Qz0 :: (z0 : C ′) 〈ūγ , X, vδ〉; z0 : C ′ `Ω∪r(xα),⊂ Q
′
z0 :: (yβ : C)

〈ūγ , X, vδ〉; x̄α : ω `Ω,⊂ (z ← Qz;Q
′
z) :: (yβ : C)

Cut
z

,

where r(w) = {z0
j = wj | j 6∈ c(A) and j ≤ n}. By coinductive hypothesis, we

have in�nitary derivations D′ and D′′ for x̄α : ω `Ω∪r(yβ) Qz0 :: (z0 : C ′) and z0 :

C ′ `Ω∪r(xα) Q
′
z0 :: (yβ : C), respectively. We can produce the last step of the derivation

as

D′
x̄α : ω `Ω∪r(yβ) Qz0 :: (z0 : C ′)

D′′

z0 : C ′ `Ω∪r(xα) Q
′
z0 :: (yβ : C)

x̄α : ω `Ω (z ← Qz;Q
′
z) :: (yβ : C)

Cut
z

Moreover, by the coinductive hypothesis, we know that for every

w̄γ : ω′ `Ω′ z
δ ←W ← w̄γ :: (zδ : C ′)

on D′ and D′′, and thus D, we have

W, list(w̄γ , zδ) (⊂, <Ω′) X, list(x̄
α, yβ).

Cases �e proof of the other cases are similar by applying the coinductive hypothesis and the

in�nitary system rules.

�eorem 6.22. A locally guarded program satis�es the FS validity condition.

Proof. Consider a cycle C on a (potentially in�nite) derivation produced from 〈ū, Y, v〉; z̄α :

ω `Ω wβ ← X ← z̄α :: (wβ : C) as in Lemma 6.21,

x̄γ : ω `Ω′ Px̄γ ,yδ :: (yδ : C) z̄ : ω ` X = Pz̄,w :: (w : C) ∈ V

x̄γ : ω `Ω′ y
δ ← X ← x̄γ :: (yδ : C)

Def

.

.

.

z̄α : ω `Ω Pz̄α,wβ :: (wβ : C) z̄ : ω ` X = Pz̄,w :: (w : C) ∈ V

z̄α : ω `Ω wβ ← X ← z̄α :: (wβ : C)
Def
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By Lemma 6.21 we get

X, list(x̄γ , yδ) (⊂, <Ω′) X, list(z̄
α, wβ),

and thus by de�nition of (⊂, <Ω′),

list(x̄γ , yδ) <Ω′ list(z̄
α, wβ).

�erefore, there is an i ≤ n, such that either

1. ε(i) = µ, xγi < zαi , and xγl = zαl for every l < i, having that x̄ = x and z̄ = z are

non-empty, or

2. ε(i) = ν, yδi < wβi , and yδl = wβl for every l < i.

In the �rst case, by part (b) of Lemma 6.16, a µL rule with priority i ∈ c(ω) is applied on C.

By part (a) of the same Lemma x = z, and by its part (c), no νL rule with priority c < i is

applied on C. �erefore, C is a le� µ- trace.

In the second case, by part (b) of Lemma 6.17, a νR rule with priority i ∈ c(ω) is applied on

C. By part (a) of the same Lemma y = w and by its part (c), no µR rule with priority c < i is

applied on C. �us, C is a right ν- trace.

6.9 Computational meta-theory

In this section we use Fortier and Santocanale’s result to prove a stronger compositional progress

property for (locally) guarded programs.

�eorem 6.23. (Strong Progress) Con�guration x̄ : ω  C :: (y : A) of (locally) guarded
processes satis�es the progress property. Furthermore, a�er �nite number of steps, either

1. C = (·) is empty,

2. or C a�empts to communicate to the le� or right.

Proof. �ere is a correspondence between the Treat function’s internal operations and the

synchronous computational transitions introduced in Section 5.5. �e only point of di�erence

is the extra computation rule we introduced for the constant 1. Fortier and Santocanale’s

proof of termination of the function Treat remains intact a�er extending Treat’s primitive

operation with a reduction rule for constant 1, since this reduction step only introduces a new

way of closing a process in the con�guration. Under this correspondence, termination of the

functionTreat on valid proofs implies the strong progress property for guarded programs.
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As a corollary to �eorem 6.23, computation of a closed guarded program P = 〈V, S〉 with

· ` S = P :: (y : 1) always terminates by closing the channel y (which follows by inversion

on the typing derivation).

We conclude this chapter by brie�y revisiting sources of unguardedness in computation. In

Example 6.1 we saw that process Loop is not guarded, even though its proof is cut-free. Its

computation satis�es the strong progress property as it a�empts to communicate with its right

side in �nite number of steps. However, its communication with le� and right sides of the

con�guration is solely by sending messages. Composing Loop with any process y : nat `
P :: (z : 1) results in exchanging an in�nite number of messages between them. For instance,

for Block, introduced in Example 6.1, the con�guration ·  y ← Loop | y z ← Block ←
y :: (z : 1) does not communicate to the le� or right and a never ending series of internal

communications takes place. �is internal loop is a result of the in�nite number of unfolding

messages sent by Loop without any unfolding message with higher priority being received by

it. In other words, it is the result of Loop not being guarded.

6.10 Incompleteness of guard conditions

In this section we provide a straightforward example of a program with the strong progress

property that our algorithm cannot identify as guarded. Intuitively, this program seems to

preserve the strong progress property a�er being composed by other guarded programs. We

show that this example does not satisfy the FS validity condition, either.

Example 6.15. De�ne the signature

Σ5 := ctr =1
ν &{inc : ctr, val : bin},

bin =2
µ ⊕{b0 : bin, b1 : bin, $ : 1}

and program P11 = 〈{Bit0Ctr, Bit1Ctr, Empty}, Empty〉, where

x : ctr ` y ← Bit0Ctr← x :: (y : ctr)

x : ctr ` y ← Bit1Ctr← x :: (y : ctr)

· ` y ← Empty :: (y : ctr)

with

yβ ← Bit0Ctr← xα = [0, 0, 0, 0]

caseRyβ (νctr ⇒ [−1, 0, 0, 0] yβ+1
1 < yβ1 , y

β+1
2 = yβ2

caseRyβ+1 (inc ⇒ yβ+1 ← Bit1Ctr← xα [−1, 0, 0, 0]

| val ⇒ Ryβ+1.µbin;Ryβ+2.b0 ;Lxα.νctr;Lx
α+1.val; yβ+2 ← xα+1)) [−1, 1, 0, 1]
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yβ ← Bit1Ctr← xα = [0, 0, 0, 0]

caseRyβ (νctr ⇒ [−1, 0, 0, 0] yβ+1
1 < yβ1 , y

β+1
2 = yβ2

caseRyβ+1 (inc ⇒ Lxα.νctr;Lx
α+1.inc; yβ+1 ← Bit0Ctr← xα+1 [−1, 1, 0, 0] xα+1

2 = xα2

| val ⇒ Ryβ+1.µbin;Ryβ+2.b1 ;Lxα.νctr;Lx
α+1.val; yβ+2 ← xα+1)) [−1, 1, 0, 1]

yβ ← Empty← · = [0, , , 0]

caseRyβ (νctr ⇒ [−1, , , 0] yβ+1
1 < yβ1 , y

β+1
2 = yβ2

caseRyβ+1 (inc ⇒ w0 ← Empty← ·; [∞, , ,∞] ctr, bin ∈ c(ctr)

yβ+1 ← Bit1Ctr← w0 [−1, ∞,∞, 0] ctr, bin ∈ c(ctr)

| val ⇒ Ryβ+1.µbin;Ryβ+2.$; closeRyβ+2)) [−1, , , 1]

In this example we implement a counter slightly di�erently from Example 6.11. We have two
processes Bit0Ctr and Bit1Ctr that are holding one bit (b0 and b1 respectively) and a counter
Empty that signals the end of the chain of counter processes. �is program begins with an empty
counter (representing value 0). If a value is requested, then it sends $ to the right and if an in-
crement is requested it adds the counter Bit1Ctr with b1 value to the chain of counters. �en
if another increment is asked, Bit1Ctr sends an increment (inc) message to its le� counter (im-
plementing the carry bit) and calls Bit0Ctr. If Bit0Ctr receives an increment from the right, it
calls Bit1Ctr recursively.

All (mutually) recursive calls in this program are recognized as guarded by our algorithm, except
the one in which Empty calls itself. In this recursive call, yβ ← Empty← · calls w0 ← Empty←
·, where w is the fresh channel it shares with yβ+1 ← Bit1Ctr← w0. �e number of increment
unfolding messages Bit1Ctr can send along channel w0 are always less than or equal to the
number of increment unfolding messages it receives along channel yβ+1. �is implies that the
number of messages w0 ← Empty ← · may receive along channel w0 is strictly less than the
number of messages received by any process along channel yβ . �ere will be no in�nite loop in the
program without receiving an unfolding message from the right. Indeed Fortier and Santocanale’s
cut elimination for the cut corresponding to the composition Empty | Bit1Ctr locally terminates.
Furthermore, since no guarded program de�ned on the same signature can send in�nitely many
increment messages to the le�, P11 composed with any other guarded program satis�es strong
progress.

�is result is also a negative example for the FS validity condition. �e path between yβ ←
Empty ← · and w0 ← Empty ← · in the Empty process is neither le� traceable not right
traceable since w 6= y. By De�nition 6.14 it is therefore not a valid cycle.

Example 6.15 shows that neither our condition nor the FS validity condition are complete. In

fact, using �eorem 6.23 we can prove that no e�ective procedure, including our algorithm,



Session-typed processes 109

can recognize a maximal set Ξ of programs with the strong progress property that is closed

under composition.

�eorem 6.24. It is undecidable to recognize a maximal set Ξ of session-typed programs in
subsingleton logic with the strong progress property that is closed under composition.

Proof. Pfenning and DeYoung showed that any Turing machine can be represented as a process

in subsingleton logic with equirecursive �xed points [31, 73], easily embedded into our se�ing

with isorecursive �xed points. It implies that a Turing machine on a given input halts if and

only if the closed process representing it terminates. By de�nition of strong progress, a closed

process terminates if and only if it satis�es strong progress property. Using this result, we

reduce the halting problem to identifying closed programs P := 〈V, S〉 with · ` S :: x : 1

that satisfy strong progress. Note that a closed program satisfying strong progress is in every

maximal set Ξ.



Chapter 7

Strong progress as a predicate

7.1 Background on processes as formula

�e process-as-formula paradigm has been introduced by Miller [68] in 1993. He embedded

processes in the π-calculus as formulas in a linear logic with non-logical constants. He fur-

ther identi�ed computation of processes as a search for a cut-free sequent proof. He proposed

conjunctive and disjunctive translations as two alternative but dual approaches for embedding

processes as linear logic formulas. In both approaches, the translation is de�ned by induction

over the structure of processes. �e conjunctive translation uses multiplicative and additive

conjunctions (⊗,&) and the existential quanti�er (∃), while the disjunctive one uses multi-

plicative and additive disjunctions (O,⊕) and the universal quanti�er (∀). �e conjunctive and

disjunctive translations identify reduction steps in the π-calculus with entails and entailed-by,

respectively. For example, reducing process P1 to P2 in multiple steps (P1 7→∗ P2) is identi�ed

as the entailment [P1] ` [P2] in linear logic, where formula [Pi] is the conjunctive translation

of process Pi.

Revisions of this embedding to more expressive (�nitary) extensions of linear logic [14, 55, 96]

are used to prove properties about processes, e.g. proofs of progress (deadlock-freedom) for

circular multiparty sessions [54] and bisimilarity for π-calculus processes [96]. Horne and

Tiu [55] studied the embedding of π-calculus processes into a logic called BV, a multiplicative

linear logic extended with a non-commutative self-dual logical operator. �ey showed that

linear implication is strictly �ner than any interleaving preorder in their se�ings. In partic-

ular, they showed that linear implication is sound with respect to weak simulation and trace

inclusion. Cervesato and Scedrov [17] also described encoding of both synchronous and syn-

chronous semantics of concurrent π-calculus processes in �rst-order linear logic. �ey prove

the soundness and completeness of their encoding with regard to the notions of structural

equivalence and computation.

In this chapter, we follow the approach of Miller to embed session-typed processes with an

asynchronous semantics as formulas in the in�nitary �rst-order multiplicative linear logic with

110
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�xed points ( FIMALL∞µ,ν ) that we introduced in Chapter 4. Our embedding is closely related

to Miller’s conjunctive translation, but we present it as a predicate de�ned over con�gurations

using mutual induction and coinduction. Our principal motivation for introducing this embed-

ding is to prove strong progress for binary session types. To achieve our goal, we formalize

the strong progress property as a predicate indexed by session types. We show that the em-

bedding of a con�guration entails the strong progress predicate: we build a derivation for the

entailment in FIMALL∞µ,ν and prove that the derivation is a valid proof if the underlying con-

�guration is guarded. Finally, we build a cut-free valid proof for this entailment and show that

it ensures strong progress of the underlying con�guration when the con�guration is executed

with any synchronous scheduler.

A synchronous scheduler synchronizes sends and receives along internal channels of the con-

�guration; a message can be spawned only if there is a process in the con�guration ready to

receive it. However, a process may spawn a message along an external channel of the con-

�guration without waiting for a receiver. As a result, even a�er restricting the scheduler to

be synchronous, we can prove the strong progress property stated for asynchronous seman-

tics: a con�guration either terminates in an empty con�guration or one a�empting to receive
along an external channel (see Section 5.7). We will leave it to future work to build a derivation

that ensures strong progress of the underlying con�guration when executed with an arbitrary

scheduler.

In essence, in this chapter, we use FIMALL∞µ,ν as an in�nitary metalogic to carry out proof of

strong progress in it. �e formalization of strong progress as a predicate de�ned with nested

least and greatest �xed points and the structure of the strong progress proof in a substructural

metalogic with circular proofs provides a be�er understanding of the nature of the strong

progress property.

In Section 7.2, we present in�nitary inference rules for session-typed processes similar to the

one introduced in Section 6.6. Similar to its counterpart, programs derived in this system

are all well-typed, but not necessarily enjoy strong progress. We impose a guard condition

on processes and prove strong progress using a processes-as-formulas approach for guarded

processes. �e guard condition introduced in this chapter is not a local one. However, it is

straightforward to adapt the proof in Chapter 6 to show that the local guard condition we

described in Section 6.7 is a stricter condition than the one we introduce here; the results of

this chapter also hold for locally guarded processes.

Several notations introduced for FIMALL∞µ,ν calculus overlap with the notations we use in the

context of session-typed processes. For example in both, a signature stores de�nitions and the

relative priority of �xed points. �e overloaded notation is inevitable since our metalogic is

a generalization of the in�nitary subsingleton logic with �xed points based on which binary

session typed processes are de�ned. We use it to our advantage in the last section to prove our

main result using a bisimulation. Whenever possible, we distinguish between the notations

in FIMALL∞µ,ν and session-type processes by using di�erent fonts. For example, we refer to

the �rst-order signature that contains predicates as Σ, and to the signature in session-typed
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processes that contains (not dependent) session types as Σ. In particular, for the rest of this

chapter, we �x a signature Σ with n being the maximum priority in it. We use the type-se�ing

A for session types, and P for process terms to emphasize that they are di�erent from formulas

in FIMALL∞µ,ν .

7.2 Typing rules for session-typed processes

�is section presents an in�nitary type system for session-typed processes with the least and

greatest �xed points and a guard condition on the typing derivations. �e calculus and the

guard condition imposed upon it are re�nements of their counterparts in Chapter 6. Here a

channel evolves to its next generation a�er any sort of communication, not only by sending

or receiving a �xed point unfolding message. �is change is needed to establish a bisimulation

critical to the proof of our main theorem (see Section 7.5). Moreover, we relax the condition

on the cut rule since we are not looking for a local guard condition here. We do not annotate

process terms with generations in the calculus presented in this chapter for brevity.

�e process typing judgments are of the form

x̄α : ω `Ω P :: (yβ : A),

where P is a process, and xα (the α-th generation of channel x) and yβ (the β-th generation of

channel y) are its le� and right channels of types ω and A, respectively. We build Ω to collect

the relation between the generations of le� and right channels indexed by their priority of

types. We only consider judgments in which all variables xα
′

(yβ
′
) occurring in Ω are such

that α′ < α (β′ < β), and impose a freshness condition on the channel introduced by the cut

rule. �is presupposition guarantees that if we construct a derivation bo�om-up, any future

generations for x and y are fresh and not yet constrained by Ω. All our rules, again read

bo�om-up, will preserve this property.

Programs derived in this system are all well-typed, but not necessarily guarded. We use a

list notation to de�ne a guard condition on processes. For a given signature Σ, snapshot of

a channel xα is a list snap(xα) = [xαi ]i≤n, where n is the maximum priority in Σ. Having

the relation between annotated channel in Ω, we can de�ne a partial order on snapshots of

channels
1
. �e le� µ-trace and right ν-trace are de�ned similar to previous de�nitions.

1

�is notation is the same as the list [xα]i ≤ n introduced in Section 6.8 and similar to snap used over gener-

ational variables in Section 4.3. We avoid using the [xα]i ≤ n notation here to avoid confusion with the notation

that we will use in Figure 7.3
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De�nition 7.1. An in�nite branch of a derivation is a le� µ-trace if for in�nitely many chan-

nels x1α1 , x2α2 , · · · appearing as antecedents of judgments in the branch as

.

.

.

x3α3 : A3 `Ω2 Q3 :: (zη : C3)

.

.

.

x2α2 : A2 `Ω1 Q2 :: (yδ : C2)

.

.

.

x1α1 : A1 `Ω0 Q1 :: (wβ : C1)

.

.

.

we can form an in�nite chain of inequalities

snap(x1α1) >Ω1 snap(x2α2) >Ω2 · · · .

Dually, an in�nite branch of a derivation is a right ν-trace if for in�nitely many channels

y1β1 , y2β2 , · · · appearing as the succedents of judgments in the branch as

.

.

.

w̄δ : ω2 `Ω1 Q2 :: (y2β2 : C2)

.

.

.

x̄α : ω1 `Ω Q1 :: (y1β1 : C1)

.

.

.

we can form an in�nite chain of inequalities

snap(y1β1) >Ω1 snap(y2β2) >Ω2 · · · .

De�nition 7.2 (Guard condition for processes). A program de�ned over signature Σ and the

set of process de�nitions V is guarded if any in�nite branch in the derivation of x̄α : ω ` y ←
X ← x :: yβ : B for every x̄ : ω ` X = Px̄,y :: y : B ∈ V is either a le� µ-trace or a right

ν-trace.

It is straightforward to adapt the proof in the previous chapter to show that if a program is

locally guarded, it is also guarded by De�nition 7.2.
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xα : A `Ω y ← x :: (yβ : A)
Id

x̄α : ω `Ω Pw :: (wη : A) wη : A `Ω Qw :: (yβ : C)

x̄α : ω `Ω ((w : A)← Pw;Qw) :: (yβ : C)
Cut

w

· `Ω closeRy :: (yβ : 1)
1R

· `Ω Q :: (yβ : A)

xα : 1 `Ω waitLx;Q :: (yβ : A)
1L

x̄α : ω `Ω∪{yβ=yβ+1} P :: (yβ+1 : Ak) (k ∈ L)

x̄α : ω `Ω Ry.k;P :: (yβ : ⊕{` : A`}`∈L)
⊕R

∀` ∈ L xα+1 : A` `Ω∪{xα=xα+1} P` :: (yβ : C)

xα : ⊕{` : A`}`∈L `Ω caseLx (`⇒ P`) :: (yβ : C)
⊕L

∀` ∈ L x̄α : ω `Ω∪{yβ=yβ+1} P` :: (yβ+1 : A`)

x̄α : ω `Ω caseRy (`⇒ P`) :: (yβ : &{` : A`}`∈L)
&R

k ∈ L xα+1 : Ak `Ω∪{xα=xα+1} P :: (yβ : C)

xα : &{` : Al}`∈L `Ω Lx.k;P :: (yβ : C)
&L

Ω′ = Ω ∪ {(yβ)j = (yβ+1)j | j 6= i}
x̄α : ω `Ω′ Py :: (yβ+1 : A) t =i

µ A

x̄α : ω `Ω Ry.µt;Pyβ :: (yβ : t)
µR

Ω′ = Ω ∪ {xα+1
i < xαi } ∪ {x

α+1
j = xαj | j 6= i}

xα+1 : A `Ω′ Qxα+1 :: (yβ : C) t =i
µ A

xα : t `Ω caseLx (µt ⇒ Qxα) :: (yβ : C)
µL

Ω′ = Ω ∪ {yβ+1
i < yβi } ∪ {y

β+1
j = yβj | i 6= j}

x̄α : ω `Ω′ P :: (yβ+1 : A) t =i
ν A

x̄α : ω `Ω caseRy (νt ⇒ P) :: (yβ : t)
νR

Ω′ = Ω ∪ {(xα+1)j = (xα)j | j 6= i}
xα+1 : A `Ω′ Q :: (yβ : C) t =i

ν A

xα : t `Ω Lx.νt;Q :: (yβ : C)
νL

x̄α : ω `Ω Px̄,y :: (yβ : C) ū : ω ` X = Pū,w :: (w : C) ∈ V

x̄α : ω `Ω y ← X← x̄ :: (yβ : C)
Def(X)

Figure 7.1: In�nitary typing rules for processes with an ordering on channels.
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7.3 Asynchronous Semantics

In this section, we follow the approach of processes-as-formulas to provide an asynchronous

semantics for session-typed processes.

Recall the de�nition of con�guration C as a list of processes that communicate with each other

along their private channels:

C ::= · |msg(M) | proc(P) | (C1 |x:A C2),

where | is an associative, noncommutative operator and (·) is the unit. �e type checking

judgment and rules for con�gurations can be adapted to include generation of channels. �e

type checking rules for x̄α : ω  C :: (yβ : B) are:

xα : A  · :: (xα : A)
emp

x̄α : ω  C1 :: (z0 : A) z0 : A  C2 :: (yβ : B)

x̄α : ω  C1|z:A C2 :: (yβ : B)
comp

x̄α : ω ` P :: (yβ : B)

x̄α : ω  P :: (yβ : B)
proc

x̄α : ω `M :: (yβ : B)

x̄α : ω msg(M) :: (yβ : B)
msg

By assumption, the original con�guration that the computation starts from does not contain

any messages; it only consists of processes, and messages appear in the con�guration through-

out the computation.

We read predicate Msg(xα.b(yβ)) as message b is sent along xα and xα is substituted by its

continuation yβ . It can be interpreted as a translation for msg(Rxα.b;xα ← yβ) when xα is

of a positive type and msg(Lxα.b; yβ ← xα) when xα is of a negative type.

For a con�guration of processes (x̄α : ω)  C :: (yβ : B), we de�ne the recursive predicate

Cfgxα:ω,yβ :B(C) as its translation (Figure 7.2). Similar to Miller’s conjunctive translation we

de�ne spawning by multiplicative conjunction (⊗), choosing between branches by additive

conjunction (&), and bounding channels by existential quanti�er (∃). For example, the trans-

lation for process x̄α : ω ` (z : C) ← Q1;Q2 :: (yη:B) that spawns x̄α : A ` Q1 :: zη:C and

continues as zη:C ` Q2 :: yβ:B is as follows:

∃z.∃η.Cfgx̄α:A,zη :C(Q1)⊗ Cfgzη :C,yβ :B(Q2)
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�e translation of a forwarding process xα:A ` (y ← x) :: yβ:A, is simply to make the channels

equal to each other xα = yβ . Here, α and β range over natural numbers, and channels are

names. To �nd the most general uni�er(mgu) for xα and yβ in the logic, we treat a channel

and its generation as an abstract variable indexed by a natural number. In this case, the mgu

of xα and yβ can be either of them.

Miller’s work is in the synchronous semantics of π-calculus. In a synchronous se�ing, mes-

sages are not spawned as a special form of processes. Instead, senders and receivers wait until

both are ready to perform the message transfer. To model this behavior, Miller added two

non-logical constants send and get to the language of linear logic for receiving and sending

a message, respectively. He described the computation when a pair of matching send and get

appear in the con�guration using a �rst-order Horn clause:

∀x, y, P,Q. ((getxw; Pw ⊗ sendx y;Q) ( (Py ⊗Q))

sendx y;Q is the translation for a process that is ready to send message y along channel x and

continues as Q. And getxw;Pw is the translation for a process that is ready to receive any

messages w o�ered along x and continue according to the content of w as Pw. �is translation

is compatible with the synchronous nature of Miller’s se�ing.

In an asynchronous semantics, the senders output a message and proceed with their continua-

tion. In Section 5.5.3 we modeled outpu�ed messages as speci�c processes containing the value

of the message followed by a forwarding and extended the con�guration grammar to include

them as well. In this chapter, we translate messages as a speci�ed predicate Msg(xα.b(yβ)) in

our logic.

Similar to other cases of spawning a process, we use multiplicative conjunction (⊗) for spawn-

ing a message. Recall from Section 5.5.3 that in an asynchronous semantics a fresh channel is

allocated whenever a new message is spawned. �e forward then links the fresh channel and

the previous one. In this chapter we set the new allocated channel to be the next generation

of the previous one. For example, the process xα : &{`:A`}`∈L ` Lxα.k;P :: yβ:B spawns a

message msg(Lxα.k;xα+1 ← xα) and continues as xα+1 : Ak ` P :: yβ:B. We embed process

xα.k;P as

Msg(xα.k(xα+1))⊗ Cfgxα+1:Ak,yβ :B(P).

To describe receiving a message, we use the dual operator(. Even if we always introduce

the continuation of a spawned message to be the next generation of the previous one, we still

need to consider a general form of the message predicateMsg(xα.b(wη)) since forwarding may

substitute the new generation of a channel (xα+1
) with another channel (wη). As a result, the

continuation channel of the receiving process depends on the content of message it receives.

For example, process zδ : ω ` caseRxα(` ⇒ Q`) :: xα:&{` : A`}`∈L waits to receive a

message Lxα.`;wη ← xα for any channel wη and label ` ∈ L to continue as zδ : ω ` Q` ::
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xα:A`. Following Miller’s conjunctive approach, we translate this process as

∀wη.&{Msg(xα.`(wη))( Cfgzδ:ω,wη :A`
(Q`)}`∈L.

�e following derivation provides an example to show the relation between asynchronous

transitions of con�gurations and entailment of their translations
2
. As apparent in this example

derivation, the use of multiplicative conjunction (⊗) and linear implication (() for modeling

sending and receiving messages is not surprising; they model producing and consuming a

resource in linear logic, respectively.

Msg(xα.k(xα+1)) ` Msg(xα.k(xα+1))
Id

Cfgzδ:ω,xα+1:Ak
(Qk) ` Cfgzδ:ω,xα+1:A`

(Qk)
Id

Msg(xα.k(xα+1)),Msg(xα.k(xα+1))( Cfgzδ:ω,xα+1:Ak
(Qk) ` Cfgzδ:ω,xα+1:A`

(Qk)
( L

Msg(xα.k(xα+1)),&{Msg(xα.`(xα+1))( Cfgzδ:ω,xα+1:A`
(Q`)}`∈L ` Cfgzδ:ω,xα+1:A`

(Qk)
&L

Msg(xα.k(xα+1)),∀wη.&{Msg(xα.`(wη))( Cfgzδ:ω,wη :A`
(Q`)}`∈L ` Cfgzδ:ω,xα+1:Ak

(Qk)
∀L

Using the speci�ed predicate for the messages, we can avoid introducing Miller’s non-logical

constants send and get to the language. �ere will be no need for a Horn clause to capture the

connection between sending a label and receiving it either; the duality between multiplicative

conjunction and linear implication handles this connection. However, our formulation results

in asynchronous semantics: spawning a message is not necessarily synchronized with receiv-

ing it.

As a special case, when a con�guration is of the form · ` closeRy :: yα:1, we spawn a message

Msg(yα.closed( )) with no continuation, and terminate the translation:

Msg(yα.closed( ))⊗ 1

Similarly, we embed the process of the form yα:1 ` waitLy;Q :: (zδ : B) that waits on a

closing message as:

Msg(yα.closed( ))( Cfg·,zδ:B(Q)

One essential di�erence between our logic and Miller’s is that our underlying logic has the

apparatus to internalize inductive and coinductive predicates in the language. �e predicate

Cfg is de�ned inside the language using mutual induction and coinduction. In Figure 7.2 we

present a de�nition of Cfg based on pa�ern matching. �e �rst two cases in the de�nition

of Cfg re�ect the rules for composition of con�gurations and an empty con�guration. In the

second line where two con�gurations are composed, a fresh channel zη is created. Channel zη

2

It is out of this thesis’s scope to prove formally that con�guration transitions are identi�ed with entailment. In

particular, because the transition of a program by de�nition has a �nite nature, one may need to restrict entailment

only to sequents with �nite proofs to get such a result.
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is an internal channel in the composition of con�gurations C1 and C2 and is used by them to

communicate with each other. Channels x̄α and yβ are the externals channels of this compo-

sition.

�e rest of the cases in Figure 7.2 refer to the con�guration consists of a single process (x̄α :

ω) ` P :: (yβ : B). For identity (row 3) we put the generational channels to be equal to each

other. Cut (row 4) spawns a new process Q1 o�ering along a fresh variable zη and continues

as Q2 which is using the resource o�ered along zη . Processes Q1 and Q2 communicate along

their private channel zη .

�e de�nition of predicate Cfg in rows 5-14 of Figure 7.2 captures the operational meaning

of session types presented in Tables 5.1 and 5.2. For the cases in which the process sends a

message along a channel (rows 5,8,9,12,13), we �rst declare the message and then proceed the

computation with the rest of the process. In the cases where the process needs to receive a

message to continue (rows 6,7,10,11,14), the predicate is de�ned as a conjunction of the pos-

sible continuations, universally quanti�ed for the possible continuations. �e de�nition may

proceed with each continuation channel and label provided that the label is declared via a

message predicate Msg.

In the last case a process variable is unfolded while instantiating the le� and right channels ū

and w in the process de�nition with proper channel names x̄ and y, respectively. All cases of

Cfg except the last one are de�ned recursively on a process with a smaller size; we de�ne the

predicate in these cases as a least �xed point. In the last case a process variable Y is replaced by

its de�nition Q of a possibly larger size; accordingly the predicate is de�ned as a greatest �xed

point in this case. Since the behaviour of a recursive process cannot be de�ned by induction

on its size, we put the priority of the ν-term in the last case to be higher than µ-terms in the

other cases to express that the behaviour is de�ned coinductively. �e �rst n priorities in the

signature are reserved for the recursive cases in the de�nition of the strong progress predicate

which we will introduce in Section 7.4.

�e process terms and session types are not part of the Cfg predicate; they are parameters.

We build the equivalent formula for Cfg using existential quanti�ers for each pa�ern and⊕ to

unify the cases into a single formula. Here, we show a part of the equivalent formula corre-

sponding to the �rst 7 lines of Figure 7.2, where ci and di stand for variables in FIMALL∞µ,ν :

Cfgx̄α:d1,yβ :d2(d3) = (∃c1, c2, z, c. (d3 = c1|z:cc2) ⊗ ∃z.∃η.Cfgx̄α:d1,zη :c(c1)⊗ Cfgzη :c,yβ :d2(c2))

⊕ ((d3 = ·)⊗ 1)

⊕ (d3 = y ← x) ⊗ xα = yβ

⊕ (∃c1, c2, z, c. (d3 = (z : c)← c1; c2) ⊗ ∃z.∃η.Cfgx̄α:d1,zη :c(c1)⊗ Cfgzη :c,yβ :d2(c2))

⊕ d2 = 1⊗ (d3 = closeRy) ⊗ Msg(yβ .closed( ))⊗ 1

⊕∃c1.d1 = 1⊗ d3 = waitLx; c1 ⊗ Msg(yβ .closed( ))( Cfg·,yβ :d2(c1)

⊕∃c1, L, ~A`∈L.d2 = &{`:A`}`∈L⊗
d3 = caseRy(`⇒ c`)`∈L ⊗ ∀wη.&{` : Msg(yβ .`(wη))( Cfgx̄α:d1,wη :A`

(c`)}
⊕ · · ·
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1. Cfgxα:A,xα:A(·) =n+2
µ 1

empty con�guration

2. Cfgx̄α:ω,yβ :B(C1|z:CC2) =n+2
µ ∃z.∃η.Cfgx̄α:ω,zη :C(C1)⊗ Cfgzη :C,yβ :B(C2)

composition of con�gurations

3. Cfgxα:A,yβ :A(y ← x) =n+2
µ (xα = yβ)

forward

4. Cfgx̄α:ω,yβ :B((z : C)← Q1 ; Q2) =n+2
µ ∃z.∃η.Cfgx̄α:A,zη:C(Q1)⊗ Cfgzη :C,yβ :B(Q2)

spawn

5. Cfg·,yβ :1(closeRy) =n+2
µ Msg(yβ .closed( ))⊗ 1

6. Cfgxα:1,yβ :A(waitLx;Q) =n+2
µ Msg(xα.closed( ))( Cfg·,yβ :A(Q)

session type: 1
7. Cfgx̄α:ω,yβ :&{`:B`}`∈L(caseRy(`⇒ Q`)`∈L) =n+2

µ ∀wη.&{` : Msg(yβ .`(wη))( Cfgx̄α:ω,wη :B`
(Q`)}`∈L

8. Cfgxα:&{`:A`}`∈L,yβ :B(Lx.k;Q) =n+2
µ Msg(xα.k(xα+1))⊗ Cfgxα+1:Ak,yβ :B(Q)

session type: &{` : A`}`∈L
9. Cfgx̄α:ω,yβ :⊕{`:B`}`∈L(Rw.k;Q) =n+2

µ Msg(yβ .k(yβ+1))⊗ Cfgx̄α:ω,yβ+1:Bk
(Q)

10. Cfgxα:⊕{`:A`}`∈L,yβ :B(caseLx(`⇒ Q`)`∈L) =n+2
µ ∀wη.&{` : Msg(xα.`(wη))( Cfgwη :A`,yβ :B(Q`)}`∈L

session type: ⊕ {` : A`}`∈L
11. Cfgx̄α:ω,yβ :t(caseRy(νt ⇒ Q)) =n+2

µ ∀wη.Msg(yβ .νt(w
η))( Cfgx̄α:ω,wη :C(Q)

12. Cfgxα:t,yβ :B(Lx.νt;Q) =n+2
µ Msg(xα.νt(x

α+1))⊗ Cfgxα+1:C,yβ :B(Q)
session type: t =i

ν C ∈ Σ

13. Cfgx̄α:ω,yβ :t(Ry.µt;Q) =n+2
µ Msg(yβ .µt(y

β+1))⊗ Cfgx̄α:ω,yβ+1:C(Q)
14. Cfgxα:t,yβ :B(caseLx(µt ⇒ Q)) =n+2

µ ∀wη.Msg(xα.µt(w
η))( Cfgwη :C,yβ :B(Q)

session type: t =i
µ C ∈ Σ

15. Cfgx̄α:ω,yβ :B(Y) =n+1
ν Cfgx̄α:ω,yβ :B(Q[y/w, x/ū])

ū : ω ` Y = Q :: (w : B) ∈ V

Figure 7.2: De�nition of predicate Cfg.

�e last case (row 15 in Figure 7.2) where the predicate is a greatest �xed point is de�ned using

an abbreviation. We can unfold this abbreviation using �nitely many intermediate predicates

CallY (for each Y ∈ V ) as:

Cfgx̄α:ω,yβ :B(Y) =n+2
µ CallY (x̄α : ω, yβ : B)

CallY (x̄α : ω, yβ : B) =n+1
ν Cfgx̄α:ω,yβ :B(Q[y/w, x/ū]) ū : ω ` Y = Q :: (w : B) ∈ V.

For a signature consisting of only two �xed point de�nitions t =µ A, s =µ B and a program

with two process variables ū : ω ` Y = Q :: (w : B), and ū : ω′ ` X = P :: (w : C), the part of

equivalent formula corresponding to lines 13 and 15 in Figure 7.2 is de�ned as:

Cfgx̄α:d1,yβ :d2(d3) = · · ·
⊕ ∃c1.d2 = t⊗ d3 = Ry.µt; c1 ⊗Msg(yβ .µt(y

β+1))⊗ Cfgx̄α:d1,yβ+1:A(c1)

⊕∃c1.d2 = s⊗ d3 = Ry.µs; c1 ⊗Msg(yβ .µs(y
β+1))⊗ Cfgx̄α:d1,yβ+1:B(c1)

⊕ d3 = X⊗ CallX(x̄α:d1, y
β :d2)

⊕ d3 = Y ⊗ CallY (x̄α:d1, y
β :d2)
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7.4 A predicate for strong progress

Strong progress in an asynchronous se�ing states that a program eventually terminates either

in an empty con�guration or one a�empting to receive along an external channel. In Section

5.7, we showed that recursion destroys strong progress similar to the way adding circularity to

a calculus breaks down cut elimination. In this section, we introduce a predicate that formalizes

the concept of strong progress for a con�guration of processes in the language of FIMALL∞µ,ν .

We �rst focus on a particular case in which the con�guration is closed, i.e. it does not use any

services on the le�. We need to show the computational behavior of con�guration ·  C ::

(yβ : B) as de�ned in Figure 7.2 ensures that its external channel yβ:B will be eventually closed

or blocked by waiting to receive a message. In the la�er case, as soon as the message becomes

available, yβ evolves to the continuation provided by the message (wη), and the continuation

has to maintain the same property. In Figure 7.3 we de�ne a predicate [yβ : B] to formalize this

property.

Similar to the de�nition ofCfg we use pa�ern matching to de�ne [yα : B] (Figure 7.3). We intro-

duce a case for each session type such that [yα : B] in each case is de�ned using the main con-

nective of its underlying session type B. �e �rst line in the de�nition of [yα : B] corresponds to

the case in which yβ terminates; in this case we declare that yβ is closed (Msg(yβ.closed( )))

and terminate (1). For positive types (⊕ and positive �xed points), the provider declares a mes-

sage of a correct type along yβ while the continuation channel yβ+1
has to enjoy the strong

progress property. For negative types (& and negative �xed points), the channel waits on a

message along yβ . Upon receipt of such a message, the continuation channel wη has to main-

tain the strong progress property.

�e recursive de�nitions in all cases are de�ned based on the underlying session type structure.

�e structure of the underlying session type is itself de�ned using a mutual inductive and

coinductive: a session type is either built using a composition of types with smaller sizes,

or de�ned inductively as a positive �xed point, or de�ned coinductively as a negative �xed

point. When the underlying session type is a positive �xed point t, the predicate [yβ : t] is

inductively de�ned on the structure of t and inherits its priority from t. When the session

type is a negative �xed point t =i
ν A, the predicate is de�ned as a greatest �xed point based

on the structure of t and again inherits its priority from t. In the la�er case, predicate [yβ : t]

ensures a property that is desired by strong progress: the channel yβ is blocked until it receives

a message. In this case the property is de�ned coinductively since a�er a message along yβ:t

is received, the predicate holds for the continuation.

Moreover, when the message is received, the continuationwη continues to maintain the desired

property. If the underlying session type is a composition of smaller ones (rows 2 and 4), the

predicate is de�ned inductively on the size of session types. �e priority n + 2 refers to an

induction based on size. We will see the priority assigned to each case ensures that if a program



Session-typed processes 121

[yβ : 1] =n+2
µ Msg(yβ.closed( ))⊗ 1

[yβ : &{` : A`}`∈L] =n+2
µ ∀wη.&{` : (Msg(yβ.`(wη))( [wη : A`])}`∈L

[yβ : t] =i
ν ∀wη.Msg(yβ.νt(w

η))( [wη : A] t =i
ν A ∈ Σ

[yβ : ⊕{` : A`}`∈L] =n+2
µ ⊕{` : (Msg(yβ.`(yβ+1))⊗ [yβ+1 : A`])}`∈L

[yβ : t] =i
µ (Msg(yβ.µt(y

β + 1))⊗ [yβ+1 : A]) t =i
µ A ∈ Σ

Figure 7.3: De�nition of predicate [yβ : A].

is guarded, then there is a valid derivation in the system of Figure 4.1 proving the predicate

that formalizes strong progress.

Next, we brie�y explain how to convert the de�nition of Figure 7.3 to a formula in the language

of FIMALL∞µ,ν . For t =i
ν A ∈ Σ, the de�nition [yβ : t] is an abbreviation. We can unfold the

abbreviation, using �nitely many intermediate predicates Unfoldt (for each t =ν A ∈ Σ):

[yβ : t] =n+2
µ Unfoldt(y

β)

Unfoldt(y
β) =i

ν ∀wη.Msg(yβ.νt(w
η))( [wη : A] t =i

ν A ∈ Σ

It means that we do not have a single closed encoding of session-typed programs and strong

progress, but we have a di�erent encoding for every signature Σ. Having this abbreviation

helps us in the proof of the strong progress theorem: we can assign a matching generational

variable yβ to every predicate [yβ : t] occurring in the derivation. �e structure of the deriva-

tion or its validity won’t be a�ected by the abbreviation, but it ensures that the generation of

variables steps at the same pace as the generation of channels (see the proof of Lemma 7.3).

Using the predicate de�ned in Figure 7.3, strong progress for closed con�guration · ` C ::

(yβ:B) is formalized as

Cfg·,yβ :B(C) ` [yβ : B].

�e generalization of this judgment to an open con�guration xα : A  C :: (yβ : B) is straight-

forward:

[xα : A],Cfgxα:A,yβ :B(C) ` [yβ : B]

Con�guration C satis�es strong progress if assuming strong progress for xα : A we can prove

strong progress of yβ : B.

7.5 A direct proof for strong progress

In this section, we give a direct proof for the strong progress property of guarded programs

with asynchronous communication. �e major steps of the proof are as follows:

1. For a con�guration of processes x̄α : ω ` C :: (yβ : B), we show that there is a (possibly

in�nite) derivation for [x̄α : ω],Cfgxα:A,yβ :B(C) ` [yβ : B] (Lemma 7.3).
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2. We show that when de�ned over a guarded program the derivation introduced in Step

1. is a valid proof. �e idea is to introduce a validity-preserving bisimulation between

the annotated derivation given in Lemma 7.3 and the typing derivation of processes.

3. Finally, we show that a valid cut-free proof for [x̄α : ω],Cfgxα:A,yβ :B(C) ` [yβ : B],

ensures strong progress of a con�guration of guarded processes x̄α : ω  C :: yβ : B

when executed with a synchronous scheduler (�eorem 7.8).

�e detailed proof for each step is given below.

Lemma 7.3. For a con�guration of processes x̄α : ω ` C :: (yβ : B), there is a (possibly in�nite)
derivation for [x̄α : ω],Cfgxα:A,yβ :B(C) ` [yβ : B].

Proof. For an open con�guration xα : A ` C :: yβ:B, it is enough to build a circular derivation

for

? [xα : A],Cfgxα:A,yβ :B(C) ` [yβ : B].

If the con�guration is closed, it is enough to build a derivation ? Cfg·,yβ :B(C) ` [yβ:B] for a

closed con�guration · ` C :: yβ : B. For the sake of brevity we write ? [x̄α : ω],Cfgx̄α:ω,yβ :B(C) `
[yβ : B] as a generalization for both open and closed con�gurations, where [x̄α : ω] is either

empty or [x̄α : ω], and it is empty if and only if x̄ : ω is empty. We provide a circular derivation

for each possible pa�ern of C. Here are the circular derivations when C is an empty con�gu-

ration and a composition of con�gurations, respectively:

[xα : A] ` [xα : A]
ID

[xα : A], 1 ` [xα : A]
1L

? [xα : A],Cfgxα:A,xα:A(·) ` [xβ : A]
µL

?

[x̄α : ω],Cfgx̄α:ω,zζ :C(C1) ` [zζ : C]

?

[zζ : C],Cfgzζ :C,yβ :B(C2) ` [yβ : B]

[x̄α : ω],Cfgx̄α:ω,zζ :C(C1),Cfgzζ :C,yβ :B(C2)) ` [yβ : B]
Cut

[x̄α : ω],Cfgx̄α:ω,zζ :C(C1)⊗ Cfgzζ :C,yβ :B(C2)) ` [yβ : B]
⊗L

[x̄α : ω],∃z.∃ζ.(Cfgx̄α:ω,zζ :C(C1)⊗ Cfgzζ :C,yβ :B(C2)) ` [yβ : B]
∃L

? [x̄α : ω],Cfgx̄α:ω,yβ :B(C1 |z:C C2) ` [yβ : B]
µL

�e derivation built above is based on the de�nition of the strong progress formula by pa�ern

matching. We brie�y explain how to unfold this derivation to an in�nite de�nition in the sys-

tem of Figure 4.6 without pa�ern matching. Consider the �rst two lines in expanded de�nition

of predicate Cfg:

Cfgx̄α:d1,yβ :d2(d3) = (∃c1, c2, z, c. (d3 = c1|z:cc2) ⊗ ∃z.∃η.Cfgx̄α:d1,zη :c(c1)⊗ Cfgzη :c,yβ :d2(c2))

⊕((d3 = ·)⊗ 1)⊕ · · ·

To prove the judgment ?[xα : A],Cfgxα:A,yβ :B(C) ` [yβ : B] without pa�ern matching, we �rst

need to unfold the de�nition of Cfgxα:A,yβ :B with a µL rule. Next, we apply an ⊕L rule on the

resulting formula which is the right side of the above de�nition. A�er this step, we are in a



Session-typed processes 123

quite similar situation to the pa�ern matching argument: we have to prove several branches

each corresponding to a pa�ern of C. In some cases, we may need to apply extra equality and

⊕ rules in the derivation without pa�ern matching. However, for all cases the �xed point rules

applied in a cycle are the same in the derivations built with and without pa�ern matching.

For the cases in which the con�guration consists of a single process we give an annotated

derivation with generational variables and track the relationship between their generations.

�e annotations of in�nitary derivations in FIMALL∞µ,ν are introduced in Chapter 4.

Without loss of generality, we annotate predicates of the form [zη : C] with a matching gen-

erational variable zη at the start (the bo�om) of each cycle. We leave it to the reader to check

that this assumption holds as an invariant at the end (the top) of each cycle in the derivation.

Case 1. (y ← x)

xα : [yβ : A] `Λ1 yβ : [yβ : A]
ID

xα : [xα : A], cη+1 : (xα = yβ) `Λ1 yβ : [yβ : A]
= L

? xα : [xα : A], cη : Cfgxα:A,yβ :A(y ← x) `Λ yβ : [yβ : A]
µL

Λ1 = Λ ∪ {cη+1
n+2 < cηn+2} ∪ {c

η+1
i = cηi | i 6= n+ 2}.

Case 2. (closeRy)

wδ : Msg(yβ.closed( )) `Λ4 zγ : Msg(yβ.closed( ))
ID

· `Λ5 yβ+2 : 1
1R

cη+1 : 1 `Λ5 yβ+2 : 1
1L

cη+1 : 1 `Λ3 yβ+1 : [· : ·]
µR

wδ : Msg(yβ.closed( )), cη+1 : 1 `Λ3 yβ+1 : Msg(yβ.closed( ))⊗ [· : ·]
⊗R

cη+1 : Msg(yβ.closed( ))⊗ 1 `Λ2 yβ+1 : Msg(yβ.closed( ))⊗ [· : ·]
⊗L

cη+1 : Msg(yβ.closed( ))⊗ 1 `Λ1 yβ : [yβ : 1]
µR

? cη : Cfg·,yβ :1(closeRy) `Λ yβ : [yβ : 1]
µL

Λ1 = Λ ∪ {cη+1
n+2 < cηn+2} ∪ {c

η+1
i = cηi | i 6= n + 2}, Λ2 = Λ1 ∪ {yβ+1

n+2 <

yβn+2} ∪ {y
β+1
i = yβi | i 6= n + 2} Λ3 = Λ2 ∪ {cη+1 = wδ}, Λ4 = Λ3 ∪ {yβ+1 =

zγ},Λ5 = Λ3 ∪ {yβ+2
n+2 < yβ+1

n+2} ∪ {y
β+2
i = yβ+1

i | i 6= n+ 2}

Case 3. (waitLx;Q)
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wω : Msg(xα.closed( )) `Λ3
zκ : Msg(xα.closed( ))

ID

?

cη+1 : Cfg·,yβ :B(Q) `Λ4
yβ : [yβ : B]

xα+2 : 1, cη+1 : Cfg·,yβ :B(Q) `Λ4 yβ : [yβ : B]
1L

xα+1 : [· : ·], cη+1 : Cfg·,yβ :B(Q) `Λ3
yβ : [yβ : B]

µL

wω : Msg(xα.closed( )),xα+1 : [· : ·], cη+1 : Msg(xα.closed( ))( Cfg·,yβ :B(Q) `Λ3
yβ : [yβ : B]

( L

xα+1 : Msg(xα.closed( ))⊗ [· : ·], cη+1 : Msg(xα.closed( ))( Cfg·,yβ :B(Q) `Λ2
yβ : [yβ : B]

⊗L

xα : [xα : 1], cη+1 : Msg(xα.closed( ))( Cfg·,yβ :B(Q) `Λ1 yβ : [yβ : B]
µL

? xα : [xα : 1], cη : Cfgxα:1,yβ :B(waitLx;Q) `Λ yβ : [yβ : B]
µL

Λ1 = Λ ∪ {cη+1
n+2 < cηn+2} ∪ {c

η+1
i = cηi | i 6= n+ 2}, Λ2 = Λ1 ∪ {xα+1

n+2 < xαn+2} ∪ {xα+1
i =

xαi | i 6= n+ 2} , Λ3 = Λ2 ∪ {xα+1 = wω}, Λ4 = Λ3 ∪ {xα+2
n+2 < xα+1

n+2} ∪ {x
α+2
i = xα+1

i | i 6=
n+ 2}

Case 4. ((z : C)← Q1;Q2)

?

xα : [x̄α : ω],wω : Cfgx̄α:ω,zζ :C(Q1) `Λ2
zζ : [zζ : C]

?

zζ : [zζ : C], cη+1 : Cfgzζ :C,yβ :B(Q2) `Λ2
yβ : [yβ : B]

xα : [x̄α : ω],wω : Cfgx̄α:ω,zζ :C(Q1), cη+1 : Cfgzζ :C,yβ :B(Q2)) `Λ2 yβ : [yβ : B]
Cut

xα : [x̄α : ω], cη+1 : Cfgx̄α:ω,zζ :C(Q1)⊗ Cfgzζ :C,yβ :B(Q2)) `Λ1 yβ : [yβ : B]
⊗L

xα : [x̄α : ω], cη+1 : ∃z.∃ζ.(Cfgx̄α:ω,zζ :C(Q1)⊗ Cfgzζ :C,yβ :B(Q2)) `Λ1
yβ : [yβ : B]

∃L

? xα : [x̄α : ω], cη : Cfgx̄α:ω,yβ :B((z : C)← Q1;Q2) `Λ yβ : [yβ : B]
µL

Λ1 = Λ ∪ {cη+1
n+2 < cηn+2} ∪ {c

η+1
i = cηi | i 6= n+ 2} and Λ2 = Λ1 ∪ {wω = cη+1}.

Case 5.(Lx.k;Q)

wω : Msg(xα.k(xα+1)) `Λ3 zκ : Msg(xα.k(xα+1))
ID

?

xα+1 : [xα+1 : Ak], cη+1 : Cfgxα+1:Ak,yβ :B(Q) `Λ3 yβ : [yβ : B]

xα+1 : Msg(xα.k(xα+1))( [xα+1 : Ak],wω : Msg(xα.k(xα+1)), cη+1 : Cfgxα+1:Ak,yβ :B(Q) `Λ3
yβ : [yβ : B]

( L

xα+1 : Msg(xα.k(xα+1))( [xα+1 : Ak]}, cη+1 : Msg(xα.k(xα+1))⊗ Cfgxα+1:Ak,yβ :B(Q) `Λ2
yβ : [yβ : B]

⊗L

xα+1 : ∀wη.&{` : Msg(`, xα+1 : A`(w
η))( [wη : A`]}`∈L, cη+1 : Msg(xα.k(xα+1))⊗ Cfgxα+1:Ak,yβ :B(Q) `Λ2 yβ : [yβ : B]

∀L/&L

xα : [xα : &{` : A`}`∈L], cη+1 : Msg(xα.k(xα+1))⊗ Cfgxα+1:Ak,yβ :B(Q) `Λ1 yβ : [yβ : B]
µL

? xα : [xα : &{` : A`}`∈L], cη : Cfgxα:&{`:A`}`∈L,yβ :B(Lx.k;Q) `Λ yβ : [yβ : B]
µL



Session-typed processes 125

Λ1 = Λ ∪ {cη+1
n+2 < cηn+2} ∪ {c

η+1
i = cηi | i 6= n+ 2}, Λ2 = Λ1 ∪ {xα+1

n+2 < xαn+2} ∪ {xα+1
i =

xαi | i 6= n+ 2} , Λ3 = Λ2 ∪ {cη+1 = wω}.

Case 6. (Ry.k;Q) Dual to Case 5.

Case 7. (caseLx(`⇒ Q`)`∈L)

∀k ∈ L

wω : Msg(xα.k(xα+1)) `Λ3 zζ : Msg(xα.k(xα+1))
Id

?

xα+1 : [xα+1 : Ak], cη+1 : Cfgxα+1:Ak,y
β :B(Qk) `Λ3 yβ : [yβ : B]

wω : Msg(xα.k(xα+1)),xα+1 : [xα+1 : Ak], cη+1 : Msg(xα.k(xα+1))( Cfgxα+1:Ak,y
β :B(Qk) `Λ3 yβ : [yβ : B]

( L

xα+1 : Msg(xα.k(xα+1))⊗ [xα+1 : Ak], cη+1 : Msg(xα.k(xα+1))( Cfgxα+1:Ak,y
β :B(Qk) `Λ2 yβ : [yβ : B]

⊗L

xα+1 : Msg(xα.k(xα+1))⊗ [xα+1 : Ak], cη+1 : &{` : Msg(xα.`(xα+1))( Cfgxα+1:A`,y
β :B(Q`)}`∈L `Λ2 yβ : [yβ : B]

∀L/&L

xα+1 : ⊕{` : Msg(xα.`(xα+1))⊗ [xα+1 : A`]}`∈L, cη+1 : ∀wη.&{` : Msg(xα.`(wη))( Cfgeη :A`,y
β :B(Q`)}`∈L `Λ2 yβ : [yβ : B]

⊕L

xα : [xα : ⊕{` : A`}`∈L], cη+1 : ∀wη.&{` : Msg(xα.`(wη))( Cfgwη :A`,y
β :B(Q`)}`∈L `Λ1 yβ : [yβ : B]

µL

? xα : [xα : ⊕{` : A`}`∈L], cη : Cfgxα:⊕{`:A`}`∈L,yβ :B(caseLx(`⇒ Q`)`∈L) `Λ yβ : [yβ : B]
µL

Λ1 = Λ ∪ {cη+1
n+2 < cηn+2} ∪ {c

η+1
i = cηi | i 6= n+ 2}, Λ2 = Λ1 ∪ {xα+1

n+2 < xαn+2} ∪ {xα+1
i =

xαi | i 6= n+ 2} , Λ3 = Λ2 ∪ {xα+1 = wω}.

Case 8. (caseRy(`⇒ Q`)`∈L) Dual to Case 7.

Case 9. (Lx.νt;Q) where t =k
ν C

wω : Msg(xα.νt(x
α+1)) `Λ3

zζ : Msg(xα.νt(x
α+1))

ID
?

xα+1 : [xα+1 : C], cη+1 : Cfgxα+1:C,yβ :B(Q) `Λ3
yβ : [yβ : B]

xα+1 : Msg(xα.νt(x
α+1))( [xα+1 : C],wω : Msg(xα.νt(x

α+1)), cη+1 : Cfgxα+1:C,yβ :B(Q) `Λ3 yβ : [yβ : B]
( L

xα+1 : ∀wη.Msg(xα.νt(w
η))( [wη : C],wω : Msg(xα.νt(x

α+1)), cη+1 : Cfgxα+1:C,yβ :B(Q) `Λ3 yβ : [yβ : B]
∀L

xα+1 : ∀wη.Msg(xα.νt(w
η))( [wη : C], cη+1 : Msg(xα.νt(x

α+1))⊗ Cfgxα+1:C,yβ :B(Q) `Λ2
yβ : [yβ : B]

⊗L

xα : [xα : t], cη+1 : Msg(xα.νt(x
α+1))⊗ Cfgxα+1:C,yβ :B(Q) `Λ1

yβ : [yβ : B]
νL

? xα : [xα : t], cη : Cfgxα:t,yβ :B(Lx.νt;Q) `Λ yβ : [yβ : B]
µL

Λ2 = Λ1∪{cη+1
n+2 < cηn+2}∪{c

η+1
i = cηi | i 6= n+ 2}, Λ1 = Λ∪{xα+1

i = xαi | i 6= k} ,
Λ3 = Λ2 ∪ {cη+1 = wω}.

In the proof of this case, we use the abbreviated de�nition of [xα : t]. If we use the

following expanded de�nition instead

[yβ : t] =n+2
µ Unfoldt(y

β)

Unfoldt(y
β) =i

ν ∀wη.(Msg(yβ.νt(w
η))( [wη : A]),
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we need to apply an extra µL rule with priority n + 2 on the predicate [xα : t]. Imme-

diately a�er this µL rule, we apply the νL rule with priority k < n + 1. �is implies

that the extra µL rule does not play a role in validity of the derivation. As a result, the

validity of the derivation given here implies validity of the derivation using the non-

abbreviated de�nition. Furthermore, if we use the non-abbreviated de�nition we will

have xα+2 : [xα+1 : C] at the end (the top) of the cycle. �us, we decided to use the

abbreviated de�nition to make sure that the generation of position variables steps at

the same pace as the generation of channels. �is decision will help us to describe the

bisimulation between the derivation built here and the typing derivation of processes in

a more elegant way.

Case 10. (Ry.µt;Q) Dual to Case 9.

Case 11. (caseLx(µt ⇒ Q)) where t =k
µ C

wω : Msg(xα.µt(x
α+1)) `Λ3

zζ : Msg(xα.µt(x
α+1))

ID
?

xα+1 : [xα+1 : C], cη+1 : Cfgxα+1:C,yβ :B(Q) `Λ3
yβ : [yβ : B]

wω : Msg(xα.µt(x
α+1)),xα+1 : [xα+1 : C], cη+1 : Msg(xα.µt(x

α+1))( Cfgxα+1:C,yβ :B(Q) `Λ3
yβ : [yβ : B]

( L

wω : Msg(xα.µt(x
α+1)),xα+1 : [xα+1 : C], cη+1 : ∀wη.Msg(xα.µt(w

η))( Cfgwη:C,yβ :B(Q) `Λ3
yβ : [yβ : B]

∀LL

xα+1 : Msg(xα.µt(x
α+1))⊗ [xα+1 : C], cη+1 : ∀wη.Msg(xα.µt(w

η))( Cfgwη :C,yβ :B(Q) `Λ2 yβ : [yβ : B]
⊗L

xα : [xα : t], cη+1 : ∀wη.Msg(xα.µt(w
η))( Cfgwη :C,yβ :B(Q) `Λ1

yβ : [yβ : B]
µL

? xα : [xα : t], cη : Cfgxα:t,yβ :B(caseLx(µt ⇒ Q)) `Λ yβ : [yβ : B]
µL

Λ1 = Λ∪{cη+1
n+2 < cηn+2}∪{c

η+1
i = cηi | i 6= n+2},Λ2 = Λ1∪{xα+1

k < xαk}∪{x
α+1
i =

xαi | i 6= k} , Λ3 = Λ2 ∪ {xα+1 = wω}.

Case 12 (caseRy(νt ⇒ Q)) Dual to Case 11.

Case 13. (y ← Y ← x)

?

xα : [xα : A], cη+1 : Cfgxα:A,yβ :B(Q) `
Λ∪{cη+1

i =cηi |i 6=n+1} yβ : [yβ : B]

? xα : [xα : A], cη : Cfgxα:A,yβ :B(y ← Y ← x) `Λ yβ : [yβ : B]
νL

In cases 1-13 a predicate annotated with a position variable c in a branch can be interpreted

as the (potential) computational continuation of the predicate Cfg() in the conclusion (at the

bo�om) of the block. Also, the only predicates that occur as a cut formula are of the form

[xα : A].

Furthermore, in all the cases a rule is applied on [xα : A] only if there is a process in the

antecedents willing to receive or send a message along channels x or y via a Msg predi-

cate: there is a predicate in the antecedents of the form Msg(xα.b(xα+1)) ⊗ Cfg (P ) or

∀wη.&{Msg(xα.b`(w
η))( Cfg (P`)}`∈L (or ∀wη.Msg(xα.b(wη))( Cfg (P )).
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Observe that in each circular branch a position variable vδ annotating a predicate [vδ : D] is

only related by < with it a future or previous generation of itself vγ . �ese observations are

important in particular in the proof of �eorem 7.8.

We need to show that when de�ned over a guarded program the derivation introduced above

is a valid proof. Since a con�guration is always �nite, it is enough to prove validity of the

annotated derivation built using Cases 1-13 for a single process P.

We use a validity-preserving bisimulation between the annotated derivation and the typing

derivation of process P. �e notation Ω � a ≤ b stands for “the relation a ≤ b can be deduced

from the re�exive transitive closure of set Ω”.

De�nition 7.4. De�ne relationR between process typing judgments

yβ : B `Ω P :: (xα : A)

de�ned over Σ and annotated sequents in FIMALL∞µ,ν :

xα : A `Ω P :: (yβ : B) R xα : [xα : A], cη : Cfgxα:A,yβ :B(P) `Ω′ yβ : [yβ : B],

· `Ω P :: (yβ : B) R cη : Cfg·,yβ :B(P) `Ω′ yβ : [yβ : B],

where
3

for i ≤ n,

• Ω � xαi ≤ w
ζ
i i� Ω′ � xαi ≤ wζ

i , and

• Ω � yβi ≤ w
ζ
i i� Ω′ � yβi ≤ wζ

i .

We de�ne two stepping rules over the typing derivation of a process and the derivation built

in the proof of Lemma 7.3.

De�nition 7.5. We de�ne two stepping rules ↪→ and ⇒ over processes and annotated se-

quents, respectively:

• x̄α : ω `Ω P :: (yβ : B) ↪→ z̄δ : ω′ `Λ Q :: (wγ : D) i� there is a rule in the in�nitary

system of Figure 7.1 of the form

· · · z̄δ : ω′ `Λ Q :: (wγ : D) · · ·

x̄α : ω `Ω P :: (yβ : B)

•

(i)xα : [x̄α : ω], cη1 : Cfgx̄α:ω,yβ :B(P) `Ω yβ : [yβ : B] =⇒

(ii) zδ : [z̄δ : ω′],dη2 : Cfgz̄δ:ω′,wγ :D(Q) `Λ wγ : [wγ : D]

i� (i) is the conclusion of one of the blocks 1-13 in the proof of Lemma 7.3 and (ii) is a

? assumption of it.

3n is the maximum priority of �xed points in Σ.
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Next we prove that relation R is a validity preserving bisimulation with regard to ↪→ and⇒
transitions.

Lemma 7.6. R forms a bisimulation between the derivation given for

?xα : [x̄α : ω], cη : Cfgx̄α:ω,yβ :B(P) `Ω′ yβ : [yβ : B]

and the typing derivation of process

x̄α : ω `Ω P :: (yβ : B).

Proof. �e proof of this bisimulation is straightforward. It follows from the way we built proof

blocks for each case in Lemma 7.3, and the typing rules for annotated processes in Figure 7.1:

→:

x̄α : ω `Ω P :: (yβ : B) xα : [x̄α : ω], cη : Cfgx̄α:ω,yβ :B(P) `Ω′ yβ : [yβ : B]

z̄γ : ω′ `Λ Q :: (wδ : D) zγ : [z̄γ : ω′],dθ : Cfgz̄γ :ω′,wδ:D(Q) `Λ′ wδ : [wδ : D]

R

R

�e proof is by considering di�erent cases for ↪→:

Case 1. (waitLx;Q)

1.Premise xα : 1 `Ω waitLx;Q :: yβ : B ↪→ · `Ω Q :: yβ : B

2.Case 3 of Lemma 7.3 xα : [xα : 1], cη : Cfgxα:1,yβ :B(waitLx;Q) `Ω′ yβ : [yβ : B]⇒
cη+1 : Cfg·,yβ :B(Q) `Λ′ yβ : [yβ : B]

3.De�nition of Λ′ for i ≤ n,Λ′ � yβi ≤ zγi i� Ω′ � yβi ≤ zγi .

4.By assumption and line 3 for i ≤ n,Λ′ � yβi ≤ zγi i� Ω � yβi ≤ z
γ
i

5.By line 4 · `Ω Q :: yβ : B R cη+1 : Cfg·,yβ :B(Q) `Λ′ yβ : [yβ : B]

Case 2. (Lx.νt;Q)

1.Premise xα : t `Ω Lx.νt;Q :: yβ : B ↪→ xα+1 : C `Λ Q :: yβ : B

2.Case 9 of Lemma 7.3 xα : [xα : t], cη : Cfgxα:t,yβ :B(Lx.νt;Q) `Ω′ yβ : [yβ : B]⇒
xα+1 : [xα+1 : C], cη+1 : Cfgxα+1:C,yβ :B(Q) `Λ′ yβ : [yβ : B]

3.De�nition of Λ′ for i ≤ n,Λ′ � yβi ≤ zγi i� Ω′ � yβi ≤ zγi .

4.De�nition of Λ for i ≤ n,Λ � yβi ≤ z
γ
i i� Ω � yβi ≤ z

γ
i .

5.By assumption for i ≤ n,Λ′ � yβi ≤ zγi i� Λ � yβi ≤ z
γ
i

6.De�nition of Λ′ for i ≤ n and zγ 6= xα+1,Λ′ � xα+1
i ≤ zγi i� Ω′ � xαi ≤ zγi .

7.De�nition of Λ for i ≤ n, and zγ 6= xα+1,Λ � xα+1
i ≤ zγi i� Ω � xαi ≤ zγi .

8.By assumption for i ≤ n,Λ′ � xα+1
i ≤ zγi i� Λ � xα+1

i ≤ zγi
9.By lines 5 and 8 xα+1 : C `Λ Q :: yβ : B R xα+1 : [xα+1 : C], cη+1 : Cfgxα+1:C,yβ :B(Q) `Λ′ yβ : [yβ : B]

Cases. �e proof of other cases is similar to the previous ones.
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←.

x̄α : ω `Ω P :: (yβ : B) xα : [x̄α : ω], cη : Cfgx̄α:ω,yβ :B(P) `Ω′ yβ : [yβ : B]

z̄γ : ω′ `Λ Q :: (wδ : D) zγ : [z̄γ : ω′],dθ : Cfgz̄γ :ω′,wδ:D(Q) `Λ′ wδ : [wδ : D]

R

R

�e proof is by considering di�erent cases for⇒.

Case 1. (waitLx;Q)

1.Premise xα : [xα : 1], cη : Cfgxα:1,yβ :B(waitLx;Q) `Ω′ yβ : [yβ : B]⇒
cη+1 : Cfg·,yβ :B(Q) `Λ′ yβ : [yβ : B]

2.By 1L typing rule xα : 1 `Ω waitLx;Q :: yβ : B ↪→ · `Ω Q :: yβ : B

3.De�nition of Λ′ for i ≤ n,Λ′ � yβi ≤ zγi i� Ω′ � yβi ≤ zγi .

4.By assumption and line 3 for i ≤ n,Λ′ � yβi ≤ zγi i� Ω � yβi ≤ z
γ
i

5.By line 4 · `Ω Q :: yβ : B R cη+1 : Cfg·,yβ :B(Q) `Λ′ yβ : [yβ : B]

Case 2. (Lx.νt;Q)

1.Premise xα : [xα : t], cη : Cfgxα:t,yβ :B(Lx.νt;Q) `Ω′ yβ : [yβ : B]⇒
xα+1 : [xα+1 : C], cη+1 : Cfgxα+1:C,yβ :B(Q) `Λ′ yβ : [yβ : B]

2.By νL typing rule xα : t `Ω Lx.νt; Q :: yβ : B ↪→ xα+1 : C `Λ Q :: yβ : B

3.De�nition of Λ′ for i ≤ n,Λ′ � yβi ≤ zγi i� Ω′ � yβi ≤ zγi .

4.De�nition of Λ for i ≤ n,Λ � yβi ≤ z
γ
i i� Ω � yβi ≤ z

γ
i .

5.By assumption for i ≤ n,Λ′ � yβi ≤ zγi i� Λ � yβi ≤ z
γ
i

6.De�nition of Λ′ for i ≤ n and zγ 6= xα+1,Λ′ � xα+1
i ≤ zγi i� Ω′ � xαi ≤ zγi .

7.De�nition of Λ for i ≤ n, and zγ 6= xα+1,Λ � xα+1
i ≤ zγi i� Ω � xαi ≤ zγi .

8.By assumption for i ≤ n,Λ′ � xα+1
i ≤ zγi i� Λ � xα+1

i ≤ zγi
9.By lines 5 and 8 xα+1 : C `Λ Q :: yβ : B R xα+1 : [xα+1 : C], cη+1 : Cfgxα+1:C,yβ :B(Q) `Λ′ yβ : [yβ : B]

Cases. Similar to the previous cases.

Lemma 7.7. If
x̄α : ω `∅ P :: (yβ : B)

is a guarded process, then a derivation built in Lemma 7.3 for

xα : [x̄α : ω], cη : Cfgx̄α:ω,yβ :B(P) `∅ yβ : [yβ : B]

is valid.

Proof. By assumption there is an (in�nitary) guarded typing derivation D1 for process x̄α :

ω `∅ P :: (yβ : B). By Lemma 7.6, we build a bisimilar (in�nite) derivation for ?xα : [x̄α : ω], cη :

Cfgx̄α:ω,yβ :B(P) `∅ yβ : [yβ : B] using Cases (1-13) in Lemma 7.3. Consider an in�nite path p2
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in D2 and its bisimilar path p1 in D1:

· · · · · ·

x̄α : ω `Ω P :: (yβ : B) xα : [x̄α : ω], cη : Cfgx̄α:ω,yβ :B(P) `Ω′ yβ : [yβ : B]

z̄γ : ω′ `Λ Q :: (wδ : D) zγ : [z̄γ : ω′],dθ : Cfgz̄γ :ω′,wδ:D(Q) `Λ′ wδ : [wδ : D]

· · · · · ·

∗ ∗

R

k k

R

∗ ∗

By de�nition ofR,

• if Λ � snap(zγ) < snap(xα), then Λ′ � snap(zγ) < snap(xα), and

• if Λ � snap(wδ) < snap(yβ), then Λ′ � snap(wδ) < snap(yβ).

By the above property if path p1 is guarded, then p2 is valid.

�eorem 7.8. For the judgment x̄α : ω  C :: (yβ : B) where C is a con�guration of guarded
processes, there is a valid cut-free proof for [x̄α : ω],Cfgxα:A,yβ :B(C) ` [yβ : B] in FIMALL∞µ,ν .
Validity of this proof ensures the strong progress property of the con�guration C when executed
with a synchronous scheduler.

Proof. We introduced a derivation for

? [x̄α : ω],Cfgx̄α:ω,yβ :B(C) ` [yβ : B]

in Lemma 7.3, and proved that for a con�guration of guarded processes the derivation is valid.

It is enough to show that this valid proof ensures the strong progress property of con�guration

C. Here x̄α and yβ are external channels of the con�guration C.

Consider a run of a con�guration of guarded processes C scheduled by a synchronous sched-

uler. We run the cut elimination algorithm on the valid proof introduced in Lemma 7.3 such

that the steps of the cut elimination algorithm simulates the transition steps of the con�gu-

ration. Moreover, we show that in the simulated run of the cut elimination algorithm if an

external reduction is applied on a predicate of the form [xα : A] then there is a process in the

con�guration willing to communicate along the channel xα : A.

Our cut elimination algorithm in Section 4.4 is non-deterministic in the sense that there might

be two applicable internal reductions (Prd) available in the Treat function. We proved that no

ma�er what reduction rule we choose, the algorithm will terminate on valid proofs. We can ex-

pand this non-determinism to other steps in the Treat function and choose non-deterministically

between IdElim, Merge, and Prd. �e proof of Lemma 4.7 (termination of the treat function)
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remains valid since we do not assume an order between these steps in the proof. We can go

one step further and execute the termination condition (provided in the while clause ) on the

Treat function non-deterministically: when an external reduction rule is available, the Treat

function can either terminate or continue with IdElim, Merge, or Prd. Of course, when IdElim,

Merge, or Prd are not applicable, the function has to terminate. �e proof of Lemma 4.7 (termi-

nation of the treat function) remains valid a�er this change: the trace of the algorithm remains

the same, and we can form a contradiction from the assumption that the trace is in�nite.

By the structure of the proof, we know that the �rst step in the cut elimination algorithm is

to apply an external reduction (Flip rule) on Cfgxα:ω,yβ :B(C) to unfold its de�nition. �e tape

transforms to

[x̄α : ω], T ` [yβ : B]

where T is the de�nition given based on the pa�ern of C.

In fact, we can prove that throughout the cut elimination procedure, we repeatedly get a

branching tape of the form

[x̄α : ω], T1 ` [zη1
1 : D1], [z

η1
1 : D1], T2 ` [zη2

2 : D2], · · · [zηmm : Dm], Tm+1 ` [yβ : B]

whereTi+1 is the de�nition of a predicateCfg
z
ηi
i :Di,z

ηi+1
i+1 :Di+1

(Ci+1), and it explains the behavior

of the computational continuation of C with regards to channels z̄ηii and z̄
ηi+1

i+1 . Put zη0
0 = xα

and z
ηm+1

m+1 = yβ . �e channels zηii for 1 ≤ i ≤ m are the internal channels of the con�guration,

and channels xα and yβ are the external channels.

Moreover, we prove that if an external reduction rule is applied on [xα : ω] or [yβ : B], there is

a process willing to send or receive a message along xα or yβ .

�is property holds a�er the very �rst rule of cut elimination (an external reduction on Cfg(C)
which leads to the tape [x̄α : ω], T ` [yβ : B]. We want to prove that the property explained

in the previous paragraph holds as an invariant on the tapes being produced by the cut elimi-

nation algorithm if we apply the algorithm in the order enforced by the transition steps of the

con�guration. �e proof describes a weak simulation with the simulation relation relates

[x̄α : ω], T1 ` [zη1
1 : D1], [z

η1
1 : D1], T2 ` [zη2

2 : D2], · · · [zηmm : Dm], Tm+1 ` [yβ : B]

where Ti+1 is the de�nition of a predicate Cfg
z
ηi
i :Di,z

ηi+1
i+1 :Di+1

(Ci+1) and the con�guration of

processes C1 |z1 · · · |zm Cm+1. We show that for each transition step of a con�guration, we

can take one or more steps of the cut elimination algorithm such that the resulting branching

tape is related to the con�guration a�er taking the step:

Case 1. Forwarding:

�ere is a judgment on the tape which is of the form:

[uγ : F], uγ = wδ ` [wδ : F].
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We apply an external reduction (= L) on the antecedent uγ = wδ . �is rule renames

channels uγ and wδ with their most general uni�er zη . Since uγ and wδ are abstract

variables, we can assume that the most general uni�er is equal to the o�ering channel

wδ .

We apply identity elimination on the identity judgment [zη : F] ` [zη : F]. �e rest

of the tape preserves the property of interest, since we only renamed computationally

identical channels in it.

Case 2. Spawn: �ere is a judgment on the tape that is of the form

[ūγ : ω′],∃v.∃ζ.(Cfgūγ :ω′,vζ :E(C1)⊗ Cfgvζ :E,wδ:F(C2)) ` [wδ : F].

We apply two external reduction rules (∃ and ⊗) on it to get the judgment

[ūγ : ω′], (Cfgūγ :ω′,vζ :E(C1),Cfgvζ :E,wδ:F(C2))) ` [wδ : F].

By the structure of the proof we built in Lemma 7.3 this judgment is proved using a cut

rule. We apply Merge on the cut rule. It replaces them with two judgments connected

with a fresh internal channel vζ :

[ūγ : ω′], (Cfgūγ :ω′,vζ :E(C1) ` [vζ : E] [vζ : E],Cfgvζ :E,wδ:F(C2)) ` [wδ : F].

C1 is the con�guration (or a process) spawned and C2 is the continuation. With two

other external reductions on theCfg predicates, we unfold the de�nition of the predicates

based on their pa�ern and get back to a tape satisfying the invariant.

Case 3. Communication along an internal channel: �ere is a process in the con�gura-

tion that is willing to send along wγ : A and one that is willing to receive along wγ : A.

By the way that we built the derivation in Lemma 7.3, in the related branching tape there

is a judgment in which a le� rule is applied on [wγ : A], and another judgment in which

a right rule is applied on [wγ : A].

We provide the steps of the cut elimination algorithm for a case in which the protocol of

communication is an internal choice (⊕) in Figure 7.4. �e other cases are similar. It is

straightforward to observe that both processes P and Qk are the computational contin-

uations of the original processes in the con�guration: (Rw.k;P) sends the label k along

the internal channel wγ and steps to P. Process caseLw(` ⇒ Q`)`∈L when receiving

label k along channel wγ steps to Qk. Similar to Step 1. with two external reductions

on the Cfg predicates, we get back to a tape satisfying the invariant.

We get an extra (green) tape with the single judgment

Msg(wγ .k(wγ+1)) ` Msg(wγ .k(wγ+1))
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[zη : C],Cfgzη :C,wγ :⊕{`:A`}`∈L(Rw.k;P) ` [wγ : ⊕{` : A`}`∈L]

[wγ : ⊕{` : A`}`∈L],Cfgwγ :⊕{`:A`}`∈L,vδ:D(caseLw(`⇒ Q`)`∈L) ` [vδ : D]

⇓ External reduction(µ)

[z̄η : ω],Msg(wγ .k(wγ+1))⊗ Cfgz̄η :ω,wγ+1:Ak
(P) ` [wγ : ⊕{` : A`}`∈L]

[wγ : ⊕{` : A`}`∈L], ∀uη.&{` : Msg(wγ .`(uη))( Cfguη :A`,vδ:D
(Q`)}`∈L ` [vδ : D]

⇓ principal reduction(µ)

[z̄η : ω],Msg(wγ .k(wγ+1))⊗ Cfgz̄η :ω,wγ+1:Ak
(P) ` ⊕{` : (Msg(wγ .`(wγ+1))⊗ [wγ+1 : A`])}`∈L

⊕{` : (Msg(wγ .`(wγ+1))⊗ [wγ+1 : A`])}`∈L,∀uη.&{` : Msg(wγ .`(uη))( Cfguη :A`,vδ:D
(Q`)}`∈L ` [vδ : D]

⇓ principal reduction(⊕)

[z̄η : ω],Msg(wγ .k(wγ+1))⊗ Cfgz̄η :ω,wγ+1:Ak
(P) ` (Msg(wγ .k(wγ+1))⊗ [wγ+1 : Ak])

(Msg(wγ .k(wγ+1))⊗ [wγ+1 : Ak]),∀uη&{` : Msg(wγ .`(uη))( Cfguη :A`,vδ:D
(Q`)}`∈L ` [vδ : D]

⇓ External reduction(∀/&)

[z̄η : ω],Msg(wγ .k(wγ+1))⊗ Cfgz̄η :ω,wγ+1:Ak
(P) ` (Msg(wγ .k(wγ+1))⊗ [wγ+1 : Ak])

(Msg(wγ .k(wγ+1))⊗ [wγ+1 : Ak]), (Msg(wγ .k(wγ+1))( Cfgwγ+1:Ak,vδ:D
(Qk) ` [vδ : D]

⇓ External reduction(⊗)

[z̄η : ω],Msg(wγ .k(wγ+1)),Cfgz̄η :ω,wγ+1:Ak
(P) ` (Msg(wγ .k(wγ+1))⊗ [wγ+1 : Ak])

(Msg(wγ .k(wγ+1))⊗ [wγ+1 : Ak]), (Msg(wγ .k(wγ+1))( Cfgwγ+1:Ak,vδ:D(Qk) ` [vδ : D]

⇓ Principal reduction(⊗)

Msg(wγ .k(wγ+1)) ` Msg(wγ .k(wγ+1)) [z̄η : ω]Cfgz̄η :ω,wγ+1:Ak
(P) ` [wγ+1 : Ak]

Msg(wγ .k(wγ+1)), [wγ+1 : Ak],Msg(wγ .k(wγ+1))( Cfgwγ+1:Ak,vδ:D(Qk) ` [vδ : D]

⇓ External reduction(()

Msg(wγ .k(wγ+1)) ` Msg(wγ .k(wγ+1)) [z̄η : ω],Cfgz̄η :ω,wγ+1:Ak
(P) ` [wγ+1 : Ak]

[wγ+1 : Ak],Cfgwγ+1:Ak,vδ:D(Qk) ` [vδ : D] Msg(wγ .k(wγ+1)) ` Msg(wγ .k(wγ + 1))(identity elimination)

⇓ External reduction× 2

Msg(wγ .k(wγ+1)) ` Msg(wγ .k(wγ+1)) [z̄η : ω], TP ` [wγ+1 : Ak]
[wγ+1 : Ak], TQk ` [vδ : D]

Figure 7.4: A run of the cut elimination algorithm on communicating processes.

We also add a similar extra judgment

Msg(wγ .k(wγ+1)) ` Msg(wγ .k(wγ+1))

to the current tape by a⊗ principal reduction. Both of these judgments are closed by an

ID-elim.

Case 4. Communication along an external channel: there is a process in the con�gu-

ration that wants to communicate along an external channel. By the way that we built

the derivation in Lemma 7.3, in the related branching tape an external reduction can be
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(1) [xα : ⊕{` : A`}`∈L],Cfgxα:⊕{`:A`}`∈L,vδ:D(caseLx(`⇒ Q`)`∈L) ` [vδ : D]

⇓ External reduction(µ)

(2) [xα : ⊕{` : A`}`∈L],∀wη.&{` : Msg(xα.`(wη))( Cfgwη :A`,vδ:D
(Q`)}`∈L ` [vδ : D]

⇓ External reduction(µ)

(3) ⊕{` : (Msg(xα.`(xα+1))⊗ [xα+1 : A`])}`∈L,∀wη.&{` : Msg(xα.`(wη))( Cfgwη :A`,vδ:D
(Q`)}`∈L ` [vδ : D]

⇓ External reduction(⊕)

(4) ∀k ∈ L (Msg(xα.k(xα+1))⊗ [xα+1 : Ak]), ∀wη.&{` : Msg(xα.`(wη))( Cfgwη :A`,vδ:D
(Q`)}`∈L ` [vδ : D]

⇓ External reduction(∀/&)

(5) ∀k ∈ L (Msg(xα.k(xα+1))⊗ [xα+1 : Ak]), (Msg(xα.k(xα+1))( Cfgxα+1:Ak,vδ:D(Qk) ` [vδ : D]

⇓ External reduction(⊗)

(6) ∀k ∈ L Msg(xα.k(xα+1)), [xα+1 : Ak],Msg(xα.k(xα+1))( Cfgxα+1:Ak,vδ:D(Qk) ` [vδ : D]

⇓ External reduction(()

(7) ∀k ∈ L [xα+1 : Ak],Cfgxα+1:Ak,vδ:D(Qk) ` [vδ : D] Msg(xα.k(xα+1)) ` Msg(xα.k(xα+1))(Id elim)

⇓ External Reduction(µ)

(8) ∀k ∈ L [xα+1 : Ak], Tk ` [vδ : D]

Figure 7.5: A run of the cut elimination algorithm when there is a process communicating

along an external channel.

applied on predicates [xα : ω] or [yβ : B].

In Figure 7.5 we provide the steps of our cut elimination algorithm when there is a pro-

cess waiting to receive a message along xα : ⊕{`:A`}`∈L. In this case a rule can be

applied on the predicate [xα : ⊕{` : A`}`∈L]. �e cases for other types are similar. First

observe that by the structure of the proof, this is only the case if in the con�guration

a process communicates along a le� external channel xα of type ⊕{` : A`}`∈L. More-

over, in Line 4 of Figure 7.5 the algorithm creates multiple branches: the continuation

of processes caseLx(` ⇒ Q`)`∈L depends on the potential label k ∈ L that it receives

along the external channel xα. �e tape we have at the end of each branch corresponds

to a potential con�guration in the computation. On line (8) we unfold the de�nition of

Cfgxα+1;Ak,vδ:D
(Qk) predicate to get the invariant we are looking for.

On line (7) we create an extra branch containing a single (green) judgment

Msg(xα.k(xα+1)) ` Msg(xα.k(xα+1)).

�is tape can be closed by a single ID-elim rule.

Consider the cut-free proof returned by our algorithm. By the property proved above, it is

enough to show that an external reduction will be applied on [xα : ω] or [yβ : B]. We use
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linearity and validity of the cut-free output derivation. If there are no in�nite branches in

the proof then by linearity of the calculus we know that a rule is applied on [x̄α : ω] and

[yβ : B]. In the in�nite case, recall that the predicate Cfg for a recursive process is de�ned

coinductively; no subformula of it in the antecedents can be a part of an in�nite µ-trace. �us

an external reduction (�ip rule) has to be applied on [xα : ω] or [yβ : B] to produce a judgment

of the derivation. �is completes the proof as it shows that the con�guration will eventually

communicate with one of its external channels.

We can take one step further, and show that the con�guration either terminates or it will

eventually communicate with one of its external channels by receiving a message. Consider a

branch in the cut-free valid proof as described above. If the branch is �nite it is straightforward

to see that the computation terminates. By a similar reasoning to the previous paragraph, in

an in�nite branch either [xα : ω] has to be a part of an (in�nite) µ-trace or [yβ : B] has to be

a part of an (in�nite) ν-trace. Without loss of generality assume that [xα : ω] is a part of a

µ-trace. Since the traces are in�nite, there has to be an occurrence of a least �xed point type

t in a predicate [xγ : t] on the branch. As a result, there will be a process in the computation

such that it communicates along xγ , and by the type of xγ , we know that it will be receiving a

�xed point unfolding message.



Chapter 8

Implementation

We have implemented the guard condition introduced in Chapter 6 on top of an existing in-

terpreter for subsingleton processes in SML; it is available publicly [22]. In this section, we

discuss the details of our implementation.

8.1 Syntax

Tables 8.1 and 8.2 summarize the syntax we used for the programs. Each row of Table 8.1

presents an abstract session type and its corresponding presentation in the implementation.

Table 8.2 shows the corresponding expression in the implementation for each process term.

�e underlying implementation of subsingleton processes supports recursive de�nitions of

session-types but does not di�erentiate them into positive and negative �xed points as required

by our guard condition. To add positive and negative �xed points, we designed their syntax as

particular cases of internal and external choices. A positive �xed point t =µ A is implemented

as a unary internal choice with a speci�c (reserved) label mu t and continuation A. Similarly,

a negative �xed point t =ν A is implemented as a unary external choice with a label nu t and

continuation A. �is design allows us to introduce positive and negative �xed points to the

underlying implementation with minimal change to the syntax, and it perfectly captures the

computational semantics of sending and receiving �xed point unfolding messages as de�ned

in Chapter 5. We discuss our design choice for implementing the priorities of positive and

negative �xed points in Section 8.3.

A program includes a list of �xed point de�nitions, process declarations, and process de�ni-

tions.

1 type t = +{mu_t:A}

2 type s = &{nu_s:B}

3 proc f: t|-s

4 proc f = P

Listing 8.1: Program syntax.
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Abstract Syntax Concrete Syntax

1 1

⊕{`:A, · · · } +{l:A, . . . }
&{`:A, · · · } &{l:A, . . . }
t =i

µ A t = ⊕{mu t:A}
t =i

ν A t = &{nu t:A}

Table 8.1: Abstract and Corresponding Concrete Syntax for Types

Abstract Syntax Concrete Syntax

closeRx close R

waitLx wait L

Rx.k R.k
caseLx(`⇒ P)`∈L case L(l => P | . . . )
caseRx(`⇒ P)`∈L case R(l => P | . . . )
Lx.k L.k
Rx.µt R.mu t

caseLx(µt ⇒ Q) case L(mu t => Q)
caseRx(νt ⇒ Q) case R(nu t => Q)
Lx.νt L.nu t

x← y < − >

(x:A← Q);P Q [A] P

Table 8.2: Abstract and Corresponding Concrete Syntax for Expressions

For example, the code given in Listing 8.1 de�nes type variable t as the positive �xed point of

type A, and type variable s as the negative �xed point of B. Process variable f is declared in

Line 3 such that it uses a resource of type t and o�ers a resource of type s. �e last line de�nes

process variable f as a process expression P.

8.2 Reconstruction of �xed points

Our implementation also supports an implicit syntax where the programmer codes using gen-

eral (equirecursive) session types. In the implicit syntax, we synthesize the �xed points based

on the provided general recursive types: if a general recursive type is de�ned as a positive type

(⊕ or 1), we consider it to be a positive �xed point, and if it is a negative type (&), we consider

it a negative �xed point. We then incorporate �xed point unfolding messages in the program

from the given communication pa�erns. Supporting the implicit syntax liberates the program-

mer from handling �xed point unfolding messages and allows us to check the termination of

many programs implemented for other purposes.

We designed two modes in the implementation: iso and equi, for the programs corresponding

to the explicit and implicit use of �xed points, respectively. �e programmer indicates the

mode for executing their program using a �ag in the program �le. If the �ag is set to iso, the

programmer must de�ne recursive types as positive and negative �xed points, and we do not

need to perform any transformations on the program. If the �ag is set to equi, the programmer
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writes the program considering only general recursive types. We then transform this given

program with a similar method in prior work [23, 24]: insert sending a �xed point unfolding

message as soon as possible (eagerly) and receiving a �xed point unfolding message just before

the communication on that channel (lazily).

8.3 Termination checking

Once the program is parsed and the underlying implementation of subsingleton logic extracts

its abstract syntax tree, we perform a termination check using our guard condition. Recall

that our guard condition works based on priorities de�ned over type variables and the order

between process variables. �e current implementation collects constraints and uses them

to construct a suitable priority ordering over type variables and a ⊂ ordering over process

variables if they exist and rejects the program otherwise.

Our implementation provides a detailed error message when a program does not satisfy the

guard condition. Our experience suggests error messages could be improved further by re-

quiring the programmer to supply priorities of type de�nitions, but we have le� this for future

work. Performing inference allowed us to check a variety of preexisting examples without

change.

8.4 Examples

We have coded all programming examples (terminating or not) in this thesis in the implementa-

tion. For example, the following listing presents the code of PingPong process from Chapter 6.

Line 2 (#test error) refers to the fact that our algorithm should not (and does not) accept this

program since PingPong does not satisfy strong progress.

1 #options --terminate=iso

2 #test error

3

4 type ack =+{ mu_ack: +{ack:astream }}

5 type astream =&{ nu_astream: &{head:ack , tail:astream }}

6 type nat =+{ mu_nat :+{z:1, s:nat}}

7

8

9 proc Ping_Pong: nat |- nat

10 proc Ping_Pong= Ping [astream] Pong

11 proc Ping: nat |- astream

12 proc Ping= caseR(nu_astream => caseR (head=> R.mu_ack;R.ack;Ping

13 | tail=> Ping ))

14 proc Pong: astream |- nat

15 proc Pong= L.nu_astream; L.head; caseL(mu_ack =>

16 caseL (ack=> R.mu_nat;R.s;Pong ))
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We used several test cases to examine our implementation. �e following is an example of a

program with an equi �ag: it implements a constant function that returns the binary repre-

sentation of number six, a copy process over binary numbers, and a process that computes the

successor of a binary number.

1 #options --terminate=equi

2 #test success

3

4 type bits = +{b0 : bits , b1 : bits , $ : 1}

5

6 proc six : bits

7 proc six = R.b0 ; R.b1 ; R.b1 ; R.$ ; closeR

8

9 proc copy : bits |- bits

10 proc copy = caseL ( b0 => R.b0 ; copy

11 | b1 => R.b1 ; copy

12 | $ => R.$ ; waitL ; closeR )

13

14 proc plus1 : bits |- bits

15 proc plus1 = caseL ( b0 => R.b1 ; <->

16 | b1 => R.b0 ; plus1

17 | $ => R.$ ; waitL ; closeR )

Our experience with a range of programming examples shows that our local validity condition

is surprisingly e�ective. In particular, we encoded Turing machines and observed that our im-

plementation guarantees termination of a subclass of Turing machines corresponding to linear

primitive recursive functions. �e code of all examples and test cases is available publicly [22].



Chapter 9

Conclusion

�is thesis establishes a logical foundation for recursive concurrent session types using in-

�nitary linear logics with �xed points. To develop this logical foundation, we appeal to two

well-known paradigms that relate programs to logical systems:

• We form a Curry-Howard correspondence between recursive processes and circular proofs

as introduced by Fortier and Santocanale [36]. We provide an e�ectively decidable local

guard criterion to recognize mutually recursive processes with a strong progress prop-

erty. We show that our guard criterion imposes a stricter requirement than Fortier and

Santocanale’s validity condition, but is local and compositional and therefore more suit-

able as the basis for a programming language.

• We embed session-typed processes and their asynchronous semantics in an in�nitary

�rst order linear logic with �xed points using a processes-as-formulas interpretation. We

then de�ne the strong progress property as a predicate with nested least and greatest

�xed points. We prove strong progress of guarded programs by providing a syntac-

tic proof for this predicate in our calculus and verifying that this proof ensures strong

progress of the underlying program when executed with a synchronous scheduler.

Next, we discuss potential lines of future work for exploring the intersection between non-

wellfounded proof theory and recursive session types.

9.1 Strong progress as a logical relation

Logical relations is a proof method based on forming relations indexed by types. �e rela-

tions are called logical since they are de�ned by induction on the structure of their underlying

type. �e �rst principal application of this method was presented by Tait [93], Girard [42],

Plotkin [76], and Statman [91] for proving strong normalization of simply-typed λ-calculus.
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�e strong progress property for session typed processes is of the same nature as strong nor-

malization in typed λ-calculus. In the se�ing of non-recursive session types, this property is

reduced to termination of the computation and is proved using logical relations [32, 72]. Sim-

ilar to using logical relations to prove strong normalization for simply typed λ-calculus, the

proof of termination for processes relies on an induction over the type structure and no longer

applies a�er adding recursive types. In response, step-indexed logical relations [3–5] have

been developed to prove properties of typed calculi with recursive types. Step-indexed logical

relations are indexed by both types and the number of available future steps. Later Dreyer et

al. [34] provided a more elegant syntactic de�nition of logical relations without referring to

steps to prove properties of system F with isorecursive least �xed points. �eir de�nition is in

the language of a second-order calculus called LSLR with a future modality. �ey encoded a

logical relation as a well-founded recursive second-order relation.

However, neither strong normalization nor strong progress can be formalized as a logical re-

lation indexed by the steps of computation as they are both associated with termination. �e

strong progress predicate presented in Chapter 7 is closely related to the concept of logical

relation since it is also de�ned based on the structure of its underlying type. Moreover, we

observed that in the presence of the greatest �xed points, the de�nition has a mutual inductive

and coinductive nature. One main avenue for future work is to convert our mixed logical rela-

tion for strong progress as a logical relation indexed by (i) the number of unfoldings required

for termination for inductive types and (ii) the number of observations allowed before termina-

tion for coinductive types. We have veri�ed this method for a preliminary se�ing in which the

signature consists of a least �xed point nested inside a greatest one. We will compare the results

with prior work that combines inductive with coinductive reasoning for termination [47].

9.2 A more general guard condition for the subsingleton frag-
ment

In Chapter 6 we showed that the main shortcoming of our guard condition arises when, in-

tuitively, we need to know that a program’s output is “smaller” than its input. Our goal is to

capture more programs with this property as long as the algorithm is still e�ective, compo-

sitional, and predictable by the programmer. We need to generalize the guard condition by

introducing a way to capture the relation between input and output size. We believe this gen-

eralization would be more feasible when our mixed logical relation have been fully developed.

Studying this generalization also allows us to compare our results with the sized-type approach

introduced by Abel and Pientka [2]. In this approach, Abel and Pientka integrate induction and

coinduction by pa�ern and copa�ern matching and explicit well-founded induction on ordinals

[2], following a number of earlier representations of induction and coinduction in type theory

[1]. �e connection to this type-theoretic approach is an interesting item for future research.

�e �rst step in this general direction was taken by Sprenger and Dam [90] who justify cyclic
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inductive proofs using in�ationary iteration and the work by Somayyajula and Pfenning [89]

for shared memory concurrency.

9.3 Recursive binary session types in linear logic

One obvious line of future work is to generalize the results in the subsingleton fragment to

recursive processes de�ned based on intuitionistic multiplicative additive linear logic [74]. In

contrast to the subsingleton fragment, a process in the more general linear se�ing may use

more than one service on its le�. To develop a local guard condition on linear processes, we

need to track the relation between all services that the process uses on the le� and the service

that it provides on the right. Moreover, we need to deal with channel delegation that appears

in the linear se�ing as the semantic of multiplicative conjunction and linear implication.

9.4 Linear logic with adjoint modalities

Binary session types have also been studied in the se�ing of an adjoint logic [74, 78]. In this

se�ing, formulas are not restricted to the linear contexts anymore. �ey can shi� their modes

using upgrade and downgrade adjoint modalities (↑, ↓) to move back and forth between struc-

tural, a�ne, and linear contexts. It would be an interesting project to extend the results pre-

sented in this thesis to the logic with adjoint modalities. �is generalization can be two-fold:

1) introducing ↓ and ↑ mode shi� modalities into our in�nitary �rst-order calculus. So far, we

have a promising preliminary result for a restricted form of shi� modality in FIMALL∞µ,ν , in

which we can only move formulas from the linear context to the structural one. 2) Consider-

ing strong progress property for a guarded subset of recursive session-typed processes de�ned

based on the adjoint logic.
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