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Magnetic Transformations and Phase Diagrams

DAVID E. LAUGHLIN

DAVID E. LAUGHLIN

When magnetic phases are included on phase diagrams some unfamiliar features appear. Most
magnetic transformations are not first-order phase transformations and therefore their
depictions on phase diagrams do not have to follow the well-known construction requirements
such as those based on the Gibbs Equilibrium Phase Rule. In particular, the transformation
from a paramagnetic to ferromagnetic phase should be designated differently than those of the
more widely known first-order transformations. The transformation curve (Curie curve) does
not display a two-phase equilibrium: rather it shows the limit of stability of the disordered
(paramagnetic) phase. In this paper, various examples of phase diagrams which include such
transformations will be presented and discussed. The role of externally applied magnetic fields
will be presented based on fundamental thermodynamic principles and the role that applied
magnetic fields play in changing the degrees of freedom of systems (alloys) will be discussed.
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I. INTRODUCTION: PHASE DIAGRAMS,
PHASES, AND PHASE TRANSFORMATIONS

PHASE diagrams are important items in the toolbox
of metallurgists and materials scientists. Phase diagrams
indicate which phases are in equilibrium under the
specific thermodynamic conditions in which a material
(the system) may find itself. A phase can be defined as:
‘‘…a physically distinct homogeneous portion of a
thermodynamic system delineated in space by a bound-
ing surface, called an interphase interface, and distin-
guished by its state of aggregation (solid, liquid or gas),
crystal structure, composition and/degree of order. Each
phase in a material system generally exhibits a charac-
teristic set of physical, mechanical and chemical proper-
ties and is, in principle, mechanically separable from the
whole.’’[1] When the thermodynamic conditions change,
a phase may transform into one or more different phases.
Phase diagrams designate the thermodynamic conditions
that accompany such phase changes.
Simple unary systems are those that are closed to

changes in composition and whose state is determined by
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two independent thermodynamic variables, usually
taken as the temperature and pressure. Such systems
have three possible regions of phase stability in their
two-dimensional pressure–temperature phase diagrams:

� Areas, in which one phase is present with two
thermodynamic degrees of freedom.

� Curves, on which two phases are in thermodynamic
equilibrium, having one thermodynamic degree of
freedom.

� Points, at which three phases are in thermodynamic
equilibrium with no thermodynamic degrees of
freedom.

In such simple unary systems, the thermodynamic
energy potentials and their natural independent vari-
ables are

Internal energy: U ¼ UðS; VÞ; ½1a�

Enthalpy: H ¼ HðS; PÞ; ½1b�

Helmholtz free energy: A ¼ AðT; VÞ; ½1c�

Gibbs free energy: G ¼ GðT; PÞ: ½1d�

When an additional independent intensive field, such
as the magnetic field, h, is present, a three-dimensional
phase diagram which has the three intensive variables as
its axes (P, T, and h) may have the following stability
regions:

� Three-dimensional regions, in which one phase is
present with three degrees of thermodynamic
freedom.

� Two-dimensional surfaces, on which two phases are
in thermodynamic equilibrium having two thermo-
dynamic degrees of freedom.

� Curves, on which three phases are in thermodynamic
equilibrium with one thermodynamic degree of
freedom.

� Points, at which four phases may exist in thermo-
dynamic equilibrium with no thermodynamic degree
of freedom.

For such systems, one can write the functional form
of the Gibbs free energy as follows:

G ¼ GðT; P; HÞ: ½1e�

The conjugate thermodynamic variable to the inten-
sive magnetic field is the magnetization M, which is also
referred to as the order parameter of the ferromagnetic
phase.

When materials are composed of more than one
chemical component, additional intensive variables are
introduced, known as the chemical potentials. When F
phases are in equilibrium, the chemical potential of each
component is the same in each of the F phases. If the
chemical potentials are not the same, a driving force
exists for diffusion of the components among the phases.

When metallurgists or materials scientists are intro-
duced to phase diagrams, the diagrams are usually the
ones in which the various phase transformations are
first-order phase transformations. Indeed the above
description of the 2-D and 3-D phase diagrams assumes
that the boundaries between phase regions are first-
order boundaries at which the phases on either side of
the boundaries are in equilibrium coexistence. Certain
geometrical conditions are imposed on the diagrams of
first-order transformations, one of which is summarized
in the Gibbs Equilibrium Phase Rule:

Uþ F ¼ CþX : ½2�

Here, F is the number of phases which may be
present, C is the number of components, X is the
number of independent intensive variables (or fields) on
the system, and F is the number of degrees of freedom.
For example, for a simple unary system with pressure
and temperature as the intensive field variables:

Uþ F ¼ 3:

This limits the number of possible phases in equilib-
rium together in such systems to 3 (F ¼ 0) and if there
are three phases in equilibrium they must do so at a fixed
temperature and pressure (i.e., the triple point). If a
magnetic field is present in a unary system, the Gibbs
Equilibrium Phase Rule becomes

Uþ F ¼ 4

because of the additional intensive thermodynamic
variable, h. This is valid even if no magnetic phase is
present, because all materials respond to the application
of the magnetic field through their magnetic
susceptibility.
In this paper, various examples of phase diagrams of

materials which include paramagnetic-to-ferromagnetic
transitions will be discussed. Such transformations are
usually not first-order transformations, and therefore the
common Gibbs Equilibrium Phase Rule does not always
apply at surfaces or curves which delineate these
non-first-order transformations. This is a result of the
fact that equilibrium between the magnetically ordered
and disordered phases does not obtain at their transition
boundaries. Hence, the paramagnetic-to-ferromagnetic
transformation is unlike the familiar first-order trans-
formations usually studied in materials systems.

II. THE
PARAMAGNETIC-TO-FERROMAGNETIC

TRANSFORMATION

If paramagnetic-to-ferromagnetic transformations are
to be included in equilibrium phase diagrams, the two
states must be designated as different thermodynamic
phases. This has not always been accepted by some
metallurgists.[2,3] Indeed the transformation in iron alloys
of the ferromagnetic a phase to the paramagnetic BCC
phase sometimes has not been considered to be a phase
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transformation! See Reference 4 for a brief history of this
discussion. However, the paramagnetic phase and the
ferromagnetic phase not only have distinct magnetic
properties but they also have distinct crystallographic
symmetries. See Figure 1. This figure shows that the
ferromagnetic a phase with a directional orientation of the
magnetic moments (spins) on its atoms along its [001]
direction has a uniaxial symmetry, not a cubic symmetry.
On the other hand, the paramagnetic phase with random
orientation of the moments does have the cubic BCC
symmetry. Paramagnetic and ferromagnetic phases are
distinct andhave different regions of stability and therefore
must be taken into account in phase diagrams of alloys
which have equilibrium phases that are magnetic, be they
ferromagnetic, antiferromagnetic, or ferromagnetic. In this
paper, only the paramagnetic-to-ferromagnetic transfor-
mations will be discussed.

The paramagnetic-to-ferromagnetic transformation
has been studied for well over a century. It is a prime
example of a symmetry breaking transition in which a
continuous symmetry of the magnetic moments (spins)
in the paramagnetic phase reduces to a lower sym-
metry. In the case of Fe, the randomly oriented
magnetic moments of the paramagnetic phase, with
magnetic symmetry ¥¥m (or O(3)), are reduced to the
uniaxial symmetry 1

m ; the symmetry of an axial vector
which represents the magnetization. When the axial
symmetry is aligned along the [001] and is intersected
with the symmetry of a BCC structure, one obtains
the space group for the ferromagnetic phase as I 4

m :
See Figure 1.* The spontaneous breaking of symmetry

brings with it an order parameter (in this case, the
magnetization, M), an emerging stable-ordered phase,
ground-state excitations called magnons, as well as

defects such as magnetic domain walls and in some
cases magnetic vortices.

III. THE CURIE TEMPERATURE

The transformation of a paramagnetic to ferromag-
netic phase on cooling, begins immediately below a
temperature called the Curie temperature (named after
Pierre Curie, 1859–1906). Below the Curie temperature,
the equilibrium phase has a different symmetry and a
non-zero-order parameter, the magnetization M. At the
Curie temperature, the phase present has a zero

Fig. 2—(a) A one-dimensional phase diagram of a magnetic material
displaying regions of stability of the paramagnetic phase and the
ferromagnetic phase as a function of temperature. At the Curie
temperature (TC), the stable phase is the paramagnetic phase. In this
diagram, the pressure is constant and the applied magnetic field h,
is zero. (b). Schematic heat capacity plots of a magnetic material
(solid curve) and its heat capacity due only to thermal effects (dotted
curve). The difference between the two is shown as the spin heat
capacity (dot-dash curve). The pressure is constant and there is no
applied magnetic field.

Fig. 1—Schematic of the crystal structure of ferromagnetic a iron.
The circles with a direction of rotation represent the magnetic
moments (spins) associated with each atom. It can be seen that the
structure of the ferromagnetic iron is body-centered tetragonal I 4

m

� �
;

since the vertical direction [001] is not equivalent to the directions
[100] and [010]. Also mirror planes parallel to the uniaxial direction
are not present. If the magnetic moments (spins) were randomly
arrayed, the iron would display cubic symmetry (Im3m). As shown
in the figure, the space group of the ferromagnetic phase can be
obtained by intersecting the symmetry of the axial magnetic moment
vector with that of the paramagnetic space group.

*In this paper, I am not using the full magnetic symmetry group
notation. For discussions of magnetic symmetry, see References 5
through 12
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magnetization and is therefore best described as the
paramagnetic phase. See Figure 2(a).

The Curie temperature differs from temperatures
which denote an invariant first-order transition such as
the liquid-to-crystalline transformation of a pure com-
ponent, in that the two phases (paramagnetic and
ferromagnetic) do not coexist in equilibrium with each
other at the Curie temperature. A schematic of the heat
capacity vs temperature plot for a material undergoing a
ferromagnetic-to-paramagnetic transformation is shown
in Figure 2(b). As the temperature of the alloy
approaches the Curie temperature from below, there is
an anomalous increase in the heat capacity over and
above the increase due to the increase in the thermal heat
capacity: that is, over and above that which the heat
capacity of the material would display if there were no
magnetic transformation. See the dotted curve in the
figure. Keesom and Keesom[13] attribute Ehrenfest as the
first to call such transitions Lambda Transitions because
the heat capacity curve has the shape of the Greek letter
lambda. Such transformations occur continuously in
distinction with the abrupt first-order thermodynamic
phase transformations. No latent heat is associated with
Lambda Transitions at their transition temperature. This
is the case for a large variety of order–disorder transfor-
mations. Lambda Transitions are not second-order
transformations after the designation of Ehrenfest[14]:
they differ from a second-order transformation in their
near divergence of the heat capacity as the temperature
approaches TC from below. See Pippard[15] for a thor-
ough discussion of these non-first-order transitions.
These transitions are also called continuous or high-
er-order transformations. Since these magnetic transi-
tions are not first order, the rules for the construction of
the phase diagrams derived from the Gibbs Equilibrium
Phase Rule need not apply. Examples are explored below.

IV. UNARY PHASE DIAGRAMS

We now discuss two-dimensional phase diagrams of
one-component (unary) systems that contain a magnetic
phase. In most thermodynamics texts, the phase dia-
grams of unary systems are those where the thermody-
namic variables are temperature, pressure, or volume. In
such a case, the molar Gibbs free energy (G) is
introduced. For a single-component system, the molar
Gibbs free energy is written as follows:

G � H� TS ¼ Uþ PVm � TS; ½3�

dG ¼ VmdP� SdT; ½4�

where H is the molar enthalpy, T is the temperature, S
is the molar entropy, P is the pressure, and Vm is the
molar volume of the system. Equation [4] is obtained
from Eq. [3] by using the combined First and Second
Laws of Thermodynamics:

dU ¼ TdS� PdVm:

The phase(s) present in equilibrium is (are) the one(s)
which have the minimum value of the Gibbs energy.
Plots of pressure vs volume, pressure vs temperature,
and volume vs temperature of simple one-component
systems are often displayed in thermodynamic texts.
A schematic pressure–temperature phase diagram of

Fe is shown in Figure 3. It can be seen that at low
temperature and pressure P = 1 atm, the phase present
is the ferromagnetic a phase. Upon heating at constant
pressure, the a phase transforms into the paramagnetic
BCC phase (b) at the dot-dash curve. The line is
displayed as dot-dash to point out that there are not two
phases in equilibrium along the curve; only the param-
agnetic phase is present along the line, as discussed
above.
The remaining solid-state phase changes which occur

on heating, the b-to-c and of c-to-d transitions are
classical first-order phase changes. This distinction
between first-order phase change and non-first-order
phase change is important as the concomitant property
changes during the transformations differ greatly. For
example, the point of intersection of the dot-dash curve
with the vapor curve is not a triple point because only
two phases are in equilibrium at that point of the
diagram, namely, the paramagnetic BCC Fe and the
vapor phase of Fe. The points of intersection of the solid
curves delineating equilibrium between the b and c
phases and the c and d phases with the vapor curve are
triple points. So too is the intersection of the d/L curve
and the vapor curve. The solid lines of the diagram
follow the Clapeyron equation for first-order transfor-
mations, namely,

dP

dT
¼ DS

DV
: ½5�

Fig. 3—Schematic of the pressure vs temperature plot of Fe with
zero applied magnetic field. The magnetic transformation curve
(Curie temperature as a function of pressure) is shown as a dot-dash
curve to differentiate it from the first-order two-phase curves.
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For the b/c curve, DS> 0 and DV< 0, so the slope of
the curve is negative. For the c/d curve, DS and DV are
both positive so the slope of the curve is positive.

The slope of the Curie temperature curve cannot be
determined by theClapeyron equation since both,DS and
DV, are equal to zero at the transition. Since, DS = 0, we
can set its total derivative, dDS, equal to zero and obtain

dP

dT
¼ DCP

TVmDa
; ½6�

where Da is the change in the volume expansivity at the
transition and DCP is the change in the heat capacity at
the transition temperature. The slope of dP

dT
for the

a-to-b transition in iron is very large so the Curie curve
is nearly vertical.

V. THERMODYNAMICS OF UNARY SYSTEMS
WITH MAGNETIC PHASES

In considering the thermodynamics of alloy systems
that contain magnetic phases, we must include the
intensive variable of the applied magnetic field, h and
its conjugate extensive variable of magnetization, M.

The combined First and Second Laws of Thermody-
namics is now written to include the magnetic work term

dU ¼ TdS� PdVþ l0VmHdM; ½7�

where l0 is the permeability of vacuum. As can be seen
from the equation, applying a magnetic field displaces
(aligns) the magnetic moments and hence work is done
on the system, thereby increasing its internal energy.

By Legendre transforms, Gibbs free energy-type
thermodynamic potentials can be written in differential
form either as[16]

dG ¼ �SdTþ VdPþ l0VmHdM ½8a�

or as

dG ¼ �SdTþ VdP� l0VmMdH: ½8b�

Equation [8a] gives G = G(T, P, M), in which the
Gibbs free energy is a function of the independent
intensive variables, T and P, as well as the extensive
variable of the magnetization, M.

At constant P,

dG ¼ �SdTþ l0VmHdM: ½9�

Therefore G = G(T, M). We now follow the approach
introduced by Landau and Lifshitz[5] and expand the free
energy as a Taylor series function of the magnetization
about the transition temperature, TC.

G ¼ G0 þ aðT� TCÞM2 þ bM4: ½10�

Here, a and b are positive constants and only even
values of the power of M are included because of the
symmetry of the magnetized state. The temperature TC

is the Curie temperature, at and above which the system
is disordered (M = 0).
For equilibrium, G must be a minimum, thus we have

@G

@M

� �

T

¼ 0 ¼ 2aðT� TCÞM þ 4bM3: ½11�

The roots of this equation are

M ¼ 0 and M2 ¼ � aðT� TCÞ
2b

: ½12�

For T ‡ TC, M = 0, which is the paramagnetic phase
(disordered, high symmetry).
For T<TC, M is non-zero, which is the ferromag-

netic phase (ordered, lower symmetry). The transition
temperature can be found by setting M equal to unity at
T = 0 and is

TC ¼ 2b

a
:

Figure 4 shows plots of G vs M and h vs M for
temperatures above (a and b) and below (c, d) the Curie
temperature.
Figure 4(a) shows that at temperatures above the

Curie temperature, any fluctuation which increases the
magnetization also increases the free energy; hence the
fluctuation in order parameter will diminish. (That is the
meaning of a minimum in free energy being the
equilibrium state!). Figure 4(b) plots the intensive vari-
able of the magnetic field, H ¼ @G

@M

� �
P;T

vs magnetiza-

tion displaying the h–M phase diagram of a
paramagnetic material. At large fields, the magnetiza-
tion reaches a maximum (saturation). When the field is
reversed, the value of M passes through zero, with a
non-zero but finite slope, 1

v ¼ @H
@M

� �
V;T

; on its way to

saturating in the opposite direction. (Here, v is the
magnetic susceptibility.)
Figure 4(c) displays the plot of G vs M at a temper-

ature below the Curie temperature. Here, G is a
maximum at M = 0, indicating that the paramagnetic
phase (M = 0) is unstable. In this model, there are two
equilibrium states with equal and opposite values of M.
If the system is cooled very slowly with no applied
magnetic field, the system transforms to either or both
of the two states (Y or X, see Figure 4(d)). This process
is known as spontaneous symmetry breaking. If, how-
ever, a magnetic field is applied to the system during
cooling, a term must be added to Eq. [10] which favors
the formation of one of the states. This kind of
transformation, occurring under an applied magnetic
field, is known as one with an explicit breaking of
symmetry, since the equilibrium state (X or Y) is
determined by the direction of the magnetic field.
Figure 4(d) plots the intensive variable of the magnetic
field, H ¼ @G

@M

� �
P;T

vs magnetization and displays the

h–M phase diagram of a ferromagnetic material. At
large magnetic fields, the magnetization reaches a
maximum and when the field is reversed the value of
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M changes discontinuously at zero field to the negative
value of the magnetization.

The equilibrium phase diagrams of M vs T and h vs
T are shown in Figures 5(a) and (b). At and above TC,
the phase in equilibrium is the paramagnetic phase,
while below TC the phase present is the ferromagnetic
phase. In Figure 5(a), the two possible states present
below TC are delineated as X and Y. Compare with
Figure 4(c). If a large enough magnetic field is applied in
the downward direction to the system in state X, it will
change the system to one in state Y. See also
Figure 4(d). This change of state is discontinuous since
there is an energy barrier to overcome.

Figure 5(b) shows that at zero applied field, the
possible states are either paramagnetic or ferromagnetic,
depending on the temperature. The slope of the h vs T
curve is zero, since for a discontinuous change from
state X to state Y the slope @H

@T

� �
P
; is proportional to the

change in entropy in going between the two states,
which in this case is zero, since both states X and Y have
the same degree of magnetic order.

In the phase diagram displayed in Figure 3, the
thermodynamic variables are the intensive ones of
pressure and temperature. If we allow for the applica-
tion of an external magnetic field, an extra degree of
freedom must be accounted for. The phase diagram
would be a three-dimensional P–T–h diagram.

The effect of a non-zero applied magnetic field on the
first-order lines of this pressure temperature diagram is
shown in Figure 6. This is a section through P–T–h

space at a fixed field, h. The application of h causes a
shift in the two-phase equilibrium curves from their
positions in the h = 0 plot (Figure 3). It can be seen
that the b/c coexistence curve is shifted to higher
temperatures and the c/d curve is shifted to lower
temperatures. This occurs since the magnetic suscepti-
bilities (v) of b and d are greater than that of c at their
transformation temperatures. In both cases, the phase
with the greater magnetic susceptibility has its region of
stability increased.
This shifting of the two-phase equilibrium curves

follows from the thermodynamic expression for the
Gibbs free energy in Eq. [8b]

dG ¼ �SdTþ VdP� l0VmMdH: ½13�

In the linear region of the M–h curve, we have

v � M

H
: ½14�

Thus at constant pressure and temperature, we write
for each phase

dGi ¼ �l0V
i
mviHdH: ½15�

It can be seen that increasing the magnetic field lowers
the Gibbs energy to a greater extent for the phase which
has the larger magnetic susceptibility. Thus, increasing
the external magnetic field increases the regions of

Fig. 4—The Gibbs free energy vs M plots and the h vs M plots for T>TC (a and b) and for T<TC (c and d). Below TC, one of the two
possible states with non-zero M (X or Y) is stable even when h = 0. The pressure is assumed to be constant in these plots.
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stability of the phases with largest magnetic susceptibil-
ities. At very large applied magnetic fields, the FCC c
phase would be absent at ambient pressure.
In this diagram, the Curie temperature curve would

shift to the higher temperature with the application of a
magnetic field since the field stabilizes the magnetic
phase, but this is not displayed in the figure.

VI. PHASE DIAGRAMS OF BINARY ALLOYS:
NO APPLIED MAGNETIC FIELD H

A. Case 1: Curie Temperature Curves that Do Not
Intersect Other Phase Boundaries

When we investigate the temperature composition
phase diagrams of a binary system of a ferromagnetic
element A with the element B, a question naturally
arises: how will the Curie temperature vary with the
addition of the second element? As with most such
questions, the answer depends on the intrinsic properties
of the elements A and B. For example, if Ni is added to
Co we expect the Curie temperature of the Co-rich alloy
to decrease, since the Curie temperature of Ni is less
than that of Co. This can be rationalized from the
Hamiltonian of the Co-Ni alloy (written in terms of the
Heisenberg exchange), since on average the exchange
energy of such an alloy decreases because of the addition
of the second element with a lower Curie temperature. A
phase diagram of Co-Ni is shown in Figure 7. This
equilibrium phase diagram displays the Curie tempera-
ture of the FCC solid solution of Co and Ni as a
function of composition. On the diagram, the Curie
temperature as a function of composition is designated
by a dot-dash curve. At and above the Curie tempera-
ture, the alloy is FCC and paramagnetic. Below the
Curie temperature, the alloy is ferromagnetic and has
rhombohedral symmetry because the magnetic moments
of the ferromagnetic phase are aligned along one of the
former h111i directions of the FCC paramagnetic phase.

Fig. 5—(a) The order parameter M, vs T plot for the two possible
magnetic states (domains). State X can be changed to state Y
discontinuously by the application of a suitably oriented magnetic
field. (b) Magnetic field h vs T plot showing that the transition
occurs at TC without the application of a magnetic field. In both
diagrams, the pressure is held constant.

Fig. 6—Schematic of the pressure vs temperature plot of Fe with
zero applied magnetic field (solid coexistence curves) and an applied
external magnetic field h (dashed coexistence curves). The
application of the field shifts the coexistence curves in the direction
which increases the stability region of the phase with the larger
magnetic susceptibility, v.

Fig. 7—The Co-Ni binary-phase diagram. The Curie temperature is
denoted by the dot-dashed line. The Co-rich alloys displays a
structural transition to a ferromagnetic hexagonal phase below
422 �C. The curves represent first-order phase boundaries, but are
dashed because they are not accurately known. The pressure is
atmospheric and there is no applied magnetic field.
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The Co-rich side of the diagram has some features
which need explanation. It can be seen that below
422 �C, Co is designated as the e phase, which is a

ferromagnetic version of HCP. Its space group is P 63
m ;

since the magnetic moments are aligned along the [0001]
of the e phase. Above this temperature, pure ferromag-
netic Co has rhombohedral-distorted FCC symmetry. In
Co, the transformation of the ferromagnetic e phase to
the ferromagnetic a phase Co phase is not a magnetic
transformation: it is a structural transformation. The
change in the stacking sequence of the close packed
planes for this transformation causes the transformation
to be sluggish (a reconstructive type). It also necessitates
it be a thermodynamically first-order transformation. At
422 �C, both the ferromagnetic phases of pure Co may
coexist in equilibrium.

Below 422 �C, as Ni is added to Co, the temperature
of the structural transformation temperature is lowered,
and a two-phase region opens up in which two ferro-
magnetic phases coexist: one is the hexagonal e phase,
and the other is the rhombohedral a¢ phase. The curves
are dashed because they are not known with precision,
because of the sluggishness of the transformation
between the hexagonal and rhombohedral ferromag-
netic phases. The curves are first order phase
boundaries.

Figure 8 is a schematic of the diagram drawn to 0 K,
assuming that the ground state of the alloy consists of
two ferromagnetic phases: one ferromagnetic Co (eFM)
and the other ferromagnetic Ni (a0FM). Such a diagram is
in conformity with the restraints of the Third Law of
Thermodynamics since at 0 K, the two phases present
have no configurational entropy (they are the elements
Co and Ni) and no magnetic spin entropy since they are
fully ordered magnetically.[17,18] The horizontal lines in
the two-phase field are tie lines. The space groups of the

phases at 0 K are P 63
m and R3 for the Co and Ni phases,

respectively.

B. Case 2: Curie Temperature Curves that Intersect
First-Order Phase Boundaries

1. The Fe-C phase diagram
The Fe-C binary diagram is one of the most studied

and discussed diagrams in the metallurgical literature. It
contains the transformation of the BCC paramagnetic (b)
phase to the low-temperature ferromagnetic a phase.**

An exaggerated schematic of the diagram in the Fe-rich
region as it often appeared in the early 20th century is
shown in Figure 9. The addition of C to Fe lowers the
Curie temperature of the alloy (very slightly) and the
Curie curve is seen to intersect with a two-phase region
consisting of the c, FCC paramagnetic phase, and the
BCC-based phases, a and b. In the figure, the intersection
is denoted by a dot: this represents the Curie temperature
of the ferromagnetic a phase of Fe which is saturated

with C at that temperature. All alloys within the
two-phase region will on heating have their a, ferromag-
netic phase transform to the paramagnetic b phase at the
temperature shown by the horizontal dot-dash line. This
horizontal line does not denote three-phase equilibrium:
rather, it demarks the Curie temperature of the a phase of
alloys with their compositions within the region. At and
above the dot-dash line, the phases present are param-
agnetic c phase and paramagnetic BCC b phase. Below
the dot-dash line, the phases present are ferromagnetic a
phase and the FCC paramagnetic c phase. Both of these
regions are two-phase regions but they are not separated

Fig. 9—Schematic of a portion of the metastable Fe-C phase
diagram as depicted in the early 20th century. The intersection of the
Curie line with the two-phase field produces 2 two-phase regions
separated by a horizontal line (dot-dash) which denotes the Curie
temperature of the aFM phase which is saturated with C.

Fig. 8—A schematic of the Co-Ni binary-phase diagram which
shows how the lower region of the diagram may look in keeping
with the Third Law of Thermodynamics. Other configurations are
possible if, for example, an intermetallic phase exists in the Co-Ni
system.

**The rationale for returning to the designation of the paramagnetic
BCC phase of Fe as the b phase is discussed in References 4 and 18.
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by a three-phase invariant temperature line as is the case
for first-order phase transformations.

Figure 9 portrays an interesting feature that often
appeared in early 20th-century Fe-C-phase diagrams,
which is a change in the slope of the c/ferrite transfor-
mation curve at its intersection with the horizontal Curie
line. This is in keeping with the fact that the phases in
equilibrium with the c phase are different above and
below the Curie temperature. This means that their free
energies would be different and that the common
tangent of their respective free energy plots would differ
slightly. The change in slope would be very small. An
example of a phase diagram showing this change in
slope is Figure A of McCance’s correspondence on the
Hondo and Takaki paper.[2] Modern phase diagrams do
not show this change in slope.

2. Intersection of Curie temperature curve
with a miscibility gap

More than 50 years ago, Meijering[19] published a
paper in which he discussed various effects that occur
when the Curie temperature curve of a ferromagnetic
transformation intersects a miscibility gap in a binar-
y-phase diagram. Figure 10 is adopted from Figures 1
and 2 of his paper. It can be seen that when the Curie
curve intersects the miscibility gap, an indentation
appears in the phase boundary of the miscibility gap
(exaggerated in the figure). This occurs because at the
point of intersection, the free energy curve of the
ferromagnetic phase departs from that of the dou-
ble-hump free energy curve of the disordered phases of
the miscibility gap. The common tangent construction
produces a phase with a slightly less solubility of B in
the ferromagnetic phase than in the paramagnetic
phase at the temperature of the intersection (T1). The
gap is now divided into two regions: one with the a0PM
and a00PM phases and the other with the a0FM and a00PM
phases present. See Figure 10(b). The former is a
miscibility gap but the later is a two-phase region
consisting of a paramagnetic phase and a ferromag-

netic phase.� The horizontal line between these
two-phase regions is the Curie temperature of the
ferromagnetic phase which forms at the intersection
with the miscibility gap. An alloy which has the critical
composition (Xc) first decomposes into two paramag-
netic phases on cooling. The regions enriched in A
transform continuously into a ferromagnetic phase at
the temperature T1, denoted by the horizontal dot-dash
line. As in the case of the Fe-C diagram, the horizontal
line is not a three-phase invariant line: rather it denotes
the Curie temperature of the alloys within the two
phase a0PM=a00PM region.

Figure 10(a) shows that the free energy of the
ferromagnetic phase departs from the paramagnetic free
energy curve smoothly as is expected for a higher-order

transition. The two common tangents drawn from the
solute-rich minimum to the solute-lean minima display
the slight differences in solubility that exists in the
phases above and below the horizontal line. The
indentation on the B-rich side of the gap is smaller
and is not depicted in the figure.

Fig. 11—Schematic of the intersection of the Curie temperature
curve causing a horn-like two-phase region. The horizontal line is a
invariant three-phase region displaying a monotectoid-like topology.
Free energy curves for the three temperatures are shown in Figs. 12,
13, and 15. The dashed line is the metastable continuation of the
miscibility gap of the two paramagnetic phase. In the diagram, the
pressure is constant and the applied magnetic field is zero.

Fig. 10—Schematic phase diagram showing the intersection of the
Curie temperature curve with a miscibility gap. The intersection
causes a slight change in the solubility of the B solute in the
ferromagnetic material. The horizontal line is the Curie temperature
of all alloys which lie within the two-phase a0PM a00FM phase field. The
dot-dash line is the Curie curve and the dashed line is the
metastable continuation of the miscibility gap of the two
paramagnetic phases (after Meijering[19]).

�The region with the two phases a0FM and a00PM is not a miscibility gap
because it is made up of two phases with different crystal symmetries.
This means that their free energy curves are distinct from one another.
See Figure 10(a).
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3. Curie temperature curve inducing a stable tricritical
point

Another phase diagram that Meijering presented in
his 1963 paper[19] is shown in Figure 11. In this case, the
intersection of the Curie temperature curve is closer to
the critical point of the miscibility gap and the ferro-
magnetic phase displays a metastable gap. The horn-like
two-phase region is a particularly interesting feature of
this diagram. Note that an invariant three-phase line
appears at T3, which resembles that of a monotectoid.
This invariant line shows the coexistence of two para-
magnetic phases and a ferromagnetic phase. Below the
horizontal line, the equilibrium two-phase region con-
sists of a ferromagnetic phase and paramagnetic phase.

The intersection of the Curie curve with the ordered
spinodal curve has been termed a tricritical point.
Sometimes, the tricritical point is a metastable one (that
is, the intersection is within the two-phase portion
shaped like a horn).[20] If the tip of the horn is the point
of intersection, the tricritical point is a stable one. This is
the type we will discuss in this section. See References 21
through 24 for further discussion of this type of phase
diagram.

Figure 12 displays a free energy plot for the alloy
system depicted in Figure 11 at temperature T1. The
branch of the curve representing the ferromagnetic
phase (a0FM) leaves the free energy curve of the param-
agnetic phase (a0PM) continuously, displaying the high-
er-order character of the formation of a ferromagnetic
phase from a paramagnetic phase. Paramagnetic alloys
with compositions of B less than that represented by the
dot are unstable with respect to magnetic ordering. At
temperature T3 (Figure 13), three-phase equilibria is
displayed and this is denoted by a triple tangent line
connecting the ferromagnetic phase with the two para-
magnetic phases. The composition of each of the phases
in equilibrium is denoted by the three dots (1, 4, and 7).
This figure shows that both the ferromagnetic phase and
the paramagnetic phase display miscibility gaps. Point 2
is a spinodal of the ferromagnetic phase and point 3 is

the Curie curve composition at this temperature which
coincides with the other spinodal of the ferromagnetic
phase. The dots 5 and 6 are the spinodals of the
paramagnetic phase at T3.
Figure 14 shows an enlarged portion of the phase

diagram in the region of interest, and the dots denoted
as 1, 2, 3, and 4 are those denoted in the free energy plot
of Figure 13. Figure 14 includes the solute-lean spinodal
curve of the ferromagnetic alloy which is not depicted in
Figure 11.

Fig. 13—Schematic of the free energy curves at T3 of the alloy
system of Fig. 11. The dots 1, 4, and 7 represent the compositions of
the three phases in equilibrium at this temperature. Dots 2 and 3 are
spinodals of the ferromagnetic phase and dots 5 and 6 are spinodals
of the paramagnetic phase.

Fig. 12—Schematic of the free energy curve at T1 of the alloy system
of Fig. 11. The dot designates the composition of the phase which
has T1 as its Curie temperature.

Fig. 14—A portion of the phase diagram displayed in Fig. 11,
including lines of phase instability. The dot-dash curve is the Curie
curve and a spinodal curve for the ferromagnetic phase. The dashed
curves are the spinodal curves for the ferromagnetic phase and the
paramagnetic phase (left to right). The Curie curve corresponds to
the higher solute spinodal curve of the ferromagnetic phase.
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Figure 15 is the free energy plot at T2, which shows
the low-temperature two-phase equilibrium of the fer-
romagnetic phase and the paramagnetic phase as well as
the location of the various phase instabilities. The
regions denoted by the letters A, B, C, and D corre-
spond to the regions with the same notation in the phase
diagram of Figure 14.

From Figures 13 and 15, it can be seen that the Curie
curve intersects the B-rich spinodal of the ferromagnetic
phase at all temperatures. As indicated above, the tip of
the horn is denoted as the tricritical point.

It is of interest to delineate the various transformation
paths that occur in an alloy with this phase diagram
configuration. In each case, the initial state is that of the
high-symmetry phase (aPM) and then the alloy is
quenched to the temperature T2. See Figures 14 and 15.

Quenching alloys of compositions in the ranges
denoted as A, B, C, and D result in the following
transformation paths.

A: aPM �!continuous ferromagnetic ordering
aFM �!nucleation

a0FM þ a00PM;

B: aPM �!continuous ferromagnetic ordering
aFM �!spinodal

a0FM

þ a00FM �!continuous ferromagnetic disordering
a0FM þ a00PM;

C: aPM �!spinodal
a0PM þ a00PM �!continuous ferromagnetic ordering

a0FM
þ a00PM;

D: aPM �!nucleation
a0FM þ a00PM:

The final state for each of the transformation paths
contains the ferromagnetic phase (a0FM) and the param-
agnetic phase (a00PM). Of course the amount of each of the
phases varies following the lever rule. Also, the
microstructure features will vary from sample to sample

as well, since the instability transformations leave
behind characteristic morphologies and boundaries
within the final microstructure.

VII. PHASE DIAGRAMS WITH MULTIPLE
HIGHER-ORDER TRANSITIONS

A. Tetracritical Points

Phase diagrams with intersecting Curie curves (or
transitions of higher order) were first discussed by
Landau in 1937.[25] See also References 26 and 27.
Landau’s Figure 3 is redrawn and shown in Figure 16.
He noted that the stable phase in region I is the
high-symmetry phase, and that both the phases in
regions II and III have symmetries which are subgroups
of the symmetry of the phase in region I. Landau also
noted that phase in region IV has a symmetry which is a
subgroup of both phase II and III as well as a subgroup
of the phase in region I.
The diagram is redrawn in Figure 17 to show possible

ordered phases which would give rise to such an
intersection. Extensions of the ordering transition curves
into the single-phase region of the doubly ordered phase
(B2FM) are shown as thinner dot-dash curves. The phase
with the most symmetry in the case shown in Figure 17

is the paramagnetic BCC phase (A2PM, Im3m). The
ferromagnetic version of this phase A2FM, I 4

m

� �
and the

atomically ordered version (B2PM, Pm3m) are both
subgroups of the A2PM phase. Lastly, the ferromagnetic
atomically ordered phase B2FM, P 4

m

� �
has a symmetry

which is a subgroup of all three of the previous
mentioned phases.
In the phase diagram shown in Figure 17, four critical

curves are seen to meet at a point, called the tetracritical
point. The four critical curves are as follows:

Fig. 15—Free energy plots of the ferromagnetic and paramagnetic
phases at temperature T2. Both phases have miscibility gaps. The
dots 1 and 7 represent the compositions of the equilibrium phases.
The other dots are the spinodals for the respective phases.

Fig. 16—A schematic of the phase diagram that Landau presented
in Ref. [25]. The dot-dash curves represent higher-order transition
curves. This represents a possible configuration of the higher-order
transition curves around a tetracritical point. All phase regions are
single phase. The pressure is constant and there is no applied
magnetic field.
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� Curie temperature curve for the A2 phase:

A2PM �!continuous ferrmagnetic ordering
A2FM;

� Atomic disorder to order curve for the A2 phase:

A2PM �!continuous atomic ordering
B2PM;

� Atomic disorder to order curve for the A2FM phase:

A2FM �!continuous atomic ordering
B2FM;

� Curie temperature curve for the B2PM phase:

B2PM �!continuous ferrmagnetic ordering
B2FM:

At the tetracritical point, the three ordered phases
become disordered and the only phase present in
equilibrium is the high-temperature, high-symmetry
disordered A2PM phase.

Again it is of interest to examine different transition
paths that can occur in various alloys in such a phase
diagram.

An alloy quenched from the A2PM phase to region ‘‘a’’
in the diagram is unstable with respect to magnetic
ordering and then theA2FMphase is unstable with respect
to atomic ordering. The transition is summarized as:

A2PM �!continuous ferrmagnetic ordering
A2FM �!continuous atomic ordering

B2FM:

An alloy quenched to ‘‘b’’ lies below the extension of
the A2 Curie temperature and would therefore become
ferromagnetic before continuously ordering atomically
from A2FM to B2FM.

A2PM �!continuous ferrmagnetic ordering
A2FM �!continuous atomic ordering

B2FM:

These two paths are identical because in both cases,
the alloy is at a temperature below the magnetic
transition A2PM to A2FM which must occur before the
atomically ordered ferromagnetic B2 phase can form.
Such a transition has been called a ‘‘contingent ordering
transition’’ since its occurrence is contingent on the prior
magnetic ordering.
An alloy quenched to ‘‘c,’’ however, is above the

extension of the Curie curve for A2PM to A2FM and
hence undergoes atomic ordering first (continuously)
followed by the continuous ferromagnetic transition to
the B2 ferromagnetic phase.

A2PM �!continuous atomic ordering
B2PM �!continuous ferromagnetic ordering

B2FM:

In this case, the ferromagnetic ordering transition is
contingent on the prior atomic ordering transition of
A2PM to B2PM.
It should be noted that in all cases the final state is

that of the B2FM phase which as pointed out above has a
symmetry which is a subgroup of each of the phases
A2PM, A2FM, and B2PM. However, the microstructures
of the alloys in their final state would differ because of
the various types of domains (magnetic domains and
translational domains) as well as the specific locations of
the domains which depend on the specific sequence of
transformations. The FeSi binary alloy system may have
such a tetracritical point in its phase diagram.[28,29]

B. Bicritical point

There is another interesting configuration that may
occur when two higher-order transition curves intersect,
namely, the bicritical configuration. A phase diagram
with a bicritical point is displayed in Figure 18. For this
type of intersection, the phase field directly below the

Fig. 17—This figure replots the tetracritical phase diagram of Fig. 16,
and includes specific types of phases which could occupy the four
single-phase regions around a tetracritical point. The dot-dash curves
represent Curie curves, and the dot–dot-dash curves represent
higher-order transition atomic ordering curves. The thinner curves are
extrapolations of the high-temperature higher-order transition curves.

Fig. 18—A phase diagram of an alloy system exhibiting a bicritical
point. The dot-dash curve represents the Curie curve of the A2
phase and the dot–dot-dash curve represents the higher-order atomic
ordering transition curve for the A2 phase. The solid curves are the
phase boundaries of the equilibrium two-phase region comprised of
the A2FM and B2PM phases.
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bicritical point is a two-phase field. In this case, the
phase field boundaries are drawn solid since they
represent first-order phase boundaries. This affects the
way the high-temperature high-symmetry phase decom-
poses at lower temperatures.

An alloy quenched from the high-temperature A2PM
phase field to ‘‘a,’’ first magnetically orders to the A2FM
phase. The A2FM phase is a supersaturated
metastable phase until the stable B2PM phase nucleates
from it. The sequence is as follows:

A2PM �!continuous magnetic ordering
A2FM �!nucleation

A2FM þ B2PM:

An alloy quenched from the high-temperature A2PM
phase field to ‘‘b’’ undergoes the following transition path:

A2PM �!continuous magnetic ordering
A2FM �!nucleation

A2FM þ B2PM:

This path is the same path as the previous one, since
the instability curve for the atomic ordering transition is
for paramagnetic phases: A2PM to B2PM. Once the
A2PM-to-A2FM transition has occurred, the atomic
ordering transition must occur by a nucleation and
growth process.

An alloy quenched from the high-temperature A2PM
phase field to ‘‘c’’ undergoes the following transition path:

A2PM �!continuous atomic ordering
B2PM �!nucleation

A2FM þ B2PM:

Here the atomic ordering process can occur contin-
uously but the magnetic A2FM phase must nucleate from
it. Once again all three transitions end up with the same
phases being present, namely, the A2FM and the B2PM
phases. However, the transition paths and hence their
microstructure differ.

The above descriptions of the transformation paths
shown in Figures 14, 17, and 18 are thermodynamic in
character. The proposed sequences are based on the
assumption that unstable transitions occur before first-
order transformations (nucleation). Also it is assumed that
if the alloy is quenched below both instability curves, the
higher-order magnetic transition occurs before the high-
er-order atomic ordering transitions because the magnetic
transitions do not require atomic diffusion. The resulting
microstructures can be quite complex as the various
ordering transitions may give rise to translational and/or
magnetic domainswhichwill complicate the interpretation
of the transitions if only observed by microscopy tech-
niques. The resulting complex microstructures give rise to
interesting magnetic and physical properties.

VIII. EFFECT OF APPLIED MAGNETIC FIELDS
ON BINARY-PHASE DIAGRAMS

The common binary equilibrium phase diagrams
which are utilized by materials scientists display equi-
librium for systems whose independent variables are

composition and temperature with the pressure held
constant. If a magnetic field is applied to a material, the
system gains a degree of freedom and the phase diagram
projected to the temperature composition plane
changes. For example, in the Fe-C system, an applied
magnetic field increases the eutectoid temperature
because the stability field of the ferromagnetic a phase
and the cementite phase increases with applied magnetic
field. Similar to the ternary pseudobinary diagrams, this
opens the three-phase invariant eutectoid line into a
three-phase field and shifts the eutectoid composition to
higher carbon compositions. The eutectoid transforma-
tion is no longer an invariant. See Figure 19.[30]

Consider a binary Fe-C alloy at the eutectoid com-
position with no applied magnetic field. Three phases
would be in equilibrium, namely, the aFM, cPM, and
Fe3C phases. When an external magnetic field is applied,
the aFM-free energy decreases more than the other two
free energy curves because its susceptibility is larger than
that of the other phases. Thus, the three-phase equilib-
rium is disturbed, and the alloy moves into the
two-phase aFM plus Fe3C phase field. The applied field
increases the temperature of the three-phase eutectoid
region. This implies that under the influence of a
magnetic field, an alloy with composition greater than
that of the binary eutectoid composition could decom-
pose into a fully pearlitic constituent. When the tem-
perature is lowered to room temperature and the
magnetic field is removed, the microstructure would
remain in this state unless it is heated. Joo et al.[31] have
some experimental data that are consistent with this
effect. Much work is being done on this topic. See also
References 32 through 34.

Fig. 19—A schematic of the Fe-C metastable phase diagram
showing the effect of an applied magnetic field on the phase
boundaries. An applied magnetic field always enlarges the region of
stability of the phase or phases with the largest susceptibility. Note
that the three-phase line for the reaction c fi aFM+Fe3C is no
longer a constant temperature invariant line since the applied
external magnetic field increases the degrees of freedom in the
system. The pressure is constant in the diagram. After Ref. [30].
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IX. CONCLUSIONS

In this paper, some of the salient features of the phase
boundaries (Curie Lines) of paramagnetic-to-ferromag-
netic transformations have been presented. Important
points include the following:

(1) When the intensive magnetic field h is present,
the thermodynamic system (alloy) has an added
degree of freedom.

(2) The paramagnetic-to-ferromagnetic transforma-
tion need not follow the rules for the construction
of phase diagrams containing first-order
transformations.

(3) The phase boundary between the paramagnetic
phase and its conjugate ferromagnetic phase is
not a coexistence curve: only the disordered
paramagnetic phase is present on the boundary.

(4) The phase boundaries of paramagnetic phases in
phase diagram shift with the application of a
magnetic field h. The lines shift in such a way as
to increase the region of stability of the phase with
the higher magnetic susceptibility.

(5) Equilibrium boundaries between two magnetic
phases may follow the Gibbs Equilibrium Phase
Rule.

(6) Two or more higher-order or continuous transi-
tion curves may be present in some materials and
their intersections produce an array of phase
stability regions and transformations paths which
must be carefully investigated. Bicritical, tricriti-
cal, and tetracritical intersections are discussed in
the paper.

(7) The application of an external magnetic field in
combination with changes in temperature may
produce regions of stability in the phase diagrams
that are not present in the equilibrium diagram
without the applied magnetic fields. This occurs
because of the increase in the degree of freedom in
the system with the application of the intensive
magnetic field variable. This opens up the possi-
bility of obtaining microstructures with
metastable phases present when the magnetic
fields are removed.
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