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Crystallization in three dimensions: Defect-driven topological ordering
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Herein, fundamentals of topology and symmetry breaking are used to understand crystallization and geo-
metrical frustration in topologically close-packed structures. This frames solidification from a new perspective
that is unique from thermodynamic discussions. Crystallization is considered as developing from undercooled
liquids, in which orientational order is characterized by a surface of a sphere in four-dimensions (quaternion)
with the binary polyhedral representation of the preferred orientational order of atomic clustering inscribed on its
surface. As a consequence of the dimensionality of the quaternion orientational order parameter, crystallization
is seen as occurring in “restricted dimensions.” Homotopy theory is used to classify all topologically stable
defects, and third homotopy group defect elements are considered to be generalized vortices that are available
in superfluid ordered systems. This topological perspective approaches the liquid-to-crystalline solid transition
in three-dimensions from fundamental concepts of: Bose-Einstein condensation, the Mermin-Wagner theorem
and Berezinskii-Kosterlitz-Thouless (BKT) topological-ordering transitions. In doing so, in this article, concepts
that apply to superfluidity in “restricted dimensions” are generalized to consider the solidification of crystalline
solid states.
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I. INTRODUCTION

This article aims to elucidate the topological-ordering
mechanisms that lead to solidification of undercooled atomic
liquids into crystalline ground states. A topological viewpoint
is pursued on the liquid-to-solid transition, which unifies
several perspectives. This topological viewpoint on crystal-
lization makes use of a quaternion orientational order pa-
rameter and is thereby a generalization of Bose-Einstein con-
densation phenomena of superfluids (complex) in “restricted
dimensions” (Mermin-Wagner theorem [1]). This perspective
builds on our recent computational work, that elucidates the
topological origins of orientational ordering phase transitions
in 4D quaternion ordered systems [2], that is an extension
of the classical 2D XY model [3]. This generalization is
related to the extension of quantum Hall effect phenom-
ena (topological-order) from 2D to 4D, by considering their
mathematical frameworks within the complex and quaternion
compact (gauge) Lie algebra domains [4–6].

General features of Bose-Einstein condensation of su-
perfluids (complex), for which the free energy function is
a “Mexican hat” and vortices are available as topological
defects, are discussed in Sec. II. In particular, spontaneous
symmetry breaking (SSB) in “bulk dimensions” is distin-
guished from topological-ordering that occurs for complex
ordered systems that exist in “restricted dimensions.” Fur-
thermore, the manifestation of a frustration-induced quantum
phase transition that occurs for complex ordered systems in
“restricted dimensions” is introduced in Sec. II. In Sec. III, the
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concept of Bose-Einstein condensation is generalized beyond
complex ordered systems by making use of a quaternion ori-
entational order parameter to characterize the degree of order
in undercooled atomic liquids. The notions of Berezinskii-
Kosterlitz-Thouless topological ordering transitions [7,8] in
“restricted dimensions,” are therein generalized beyond super-
fluids (complex) to consider the formation of crystalline solid
states (quaternion) including geometrically frustrated topo-
logically close-packed (TCP) structures [9,10] (e.g., Frank-
Kasper structures).

II. SPONTANEOUS SYMMETRY BREAKING AND
ORDERING IN “BULK” AND “RESTRICTED

DIMENSIONS” FOR SUPERFLUIDS (COMPLEX)

A well-known example of SSB is the formation of
superfluid Bose-Einstein condensates of electrons or he-
lium particles, by broken U (1) (complex) symmetry, in
three-dimensions. At high-temperatures, above the Bose-
Einstein condensation temperature (TBEC), the system is
disordered/normal and the free energy is minimized at the
origin of the complex plane [Fig. 1(a)]. This free energy is in-
variant under the symmetry of complex rotations ψ → eiθψ ,
where θ ∈ [0, 2π ]. SSB is only possible for complex ordered
systems that exist in three-dimensions because this dimension
plays the role of a “bulk dimension” for the complex Lie
algebra domain. Below the superfluid transition temperature
TBEC, the free energy that describes the superfluid state is
minimized for a finite amplitude of a complex order parameter
and for any particular ground state [Figs. 1(b) and 1(c)] on
M = S1 that applies globally.

In contrast to SSB, in “bulk dimensions,” systems that exist
in “restricted dimensions” are prevented from undergoing a

2469-9950/2019/99(14)/144106(9) 144106-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.144106&domain=pdf&date_stamp=2019-04-30
https://doi.org/10.1103/PhysRevB.99.144106


CAROLINE S. GORHAM AND DAVID E. LAUGHLIN PHYSICAL REVIEW B 99, 144106 (2019)

(a) (b) (c)

FIG. 1. Superfluid free energy. (a), (b) The vertical axis repre-
sents the superfluid free energy, f = α|ψ |2 + β|ψ |4, for a complex
order parameter field ψ = |ψ |eiθ . The horizontal axes are the real
and imaginary parts of ψ in the complex plane. (a) For T > TBEC,
α > 0, β > 0 and, the U (1) symmetry group of a high-temperature
fluid is unbroken and the free energy is at a minimum for ψ = 0.
The free energy is invariant to complex rotation ψ → ψeiθ , and may
therefore be rotated about the vertical axis for θ ∈ [0, 2π ]. (b) For
T < TBEC, α < 0, β > 0 and, the superfluid spontaneously breaks
the U (1) symmetry at the origin (ψ = 0) by adopting a particular
ground state on M = S1. The complete manifold of degenerate
ground states has O(2) symmetry, and is known as the “Mexican hat.”
(c) Schematic of the ground-state manifold of superfluids, M = S1

of radius |ψ | = √
α/2β and θ ∈ [0, 2π ].

conventional disorder-order phase transition (by SSB) at finite
temperatures (Mermin-Wagner theorem [1]). In complex or-
dered systems (i.e., superfluids), 2D and 1D are considered to
be “restricted dimensions” as a consequence of the abundance
of misorientational fluctuations (in θ ) that develops just below
TBEC and prevents phase-coherency. In these scenarios, a finite
amount of undercooling (below TBEC) is required prior to
the formation of a phase-coherent superfluid state at low-
temperatures.

Phase-coherent superfluid states, that develop in “restricted
dimensions,” do so by a Berezinskii-Kosterlitz-Thouless
(BKT)-type topological ordering transition within the gas
of misorientational fluctuations that take the form of vortex
point defects and anti-defects. In such systems, since both
the energy and entropy of isolated point defects depends
logarithmically on the system size, energy dominates the
thermodynamics at low-temperatures and these defects will
bind into low-energy (sum-0) pairs at the BKT transition tem-
perature. This topological ordering event enables the existence
of a superfluid ground state (phase-coherent) in “restricted
dimensions.”

Superfluid ordered systems that exist in “restricted dimen-
sions” are well-modeled mathematically using O(2) quantum
rotor models [11], more commonly known as Bose-Hubbard
models [12,13], on D-dimensional lattices (for D � 2). These
models allow for the manifestation of frustrated ground states,
as a function of the ratio between the interaction strength
(J) to the hopping amplitude (t) that describes the mobility
of bosons in the system. At zero temperature, in the ther-
modynamic limit, the system can be tuned between phase-
coherent superfluid and phase-incoherent insulator states that
are connected by a quantum phase transition [11].

These low-temperature states are achieved by dual
Berezinskii-Kosterlitz-Thouless transitions [14,15], of con-
densed particle and topological defect degrees of freedom. For
example, in the laboratory, the application of a perpendicular
magnetic field acts to a charged superfluid (superconductivity)

acts to explicitly drive an asymmetry in the concentrations
of magnetic vortices. Those with a sign corresponding to the
direction of the external field become dominant [16,17]; with
critical applied magnetic field, a quantum phase transition can
be achieved and the phase-coherent superfluid is destroyed.

In Sec. III, the formation of crystalline ground states from
clustered undercooled atomic fluids is discussed. In three-
dimensions, a quaternion orientational order parameter char-
acterizes the degree of atomic clustering in the undercooled
fluid such that crystallization is considered to be a direct
higher-dimensional analogy to the formation of superfluids in
“restricted dimensions.”

III. FORMATION OF CRYSTALLINE SOLIDS
FROM UNDERCOOLED ATOMIC FLUIDS IN

“RESTRICTED DIMENSIONS”

As a higher-dimensional realization of orientational or-
dering in “restricted dimensions” (Mermin-Wagner), consider
the process of crystallization in three-dimensions. Above the
melting temperature TM , unclustered particles rotate fully in
three-dimensions and the full orientational symmetry group is
G = SO(3). In considering the structure of topological defects
throughout the system (by homotopy theory [18,19]), it is
important to make use of the universal covering space [20] of
SO(3) which is SU (2). The unitary group of degree two has
the topology of a spherical surface in four-dimensions (i.e.,
S3 ∈ R4). Unit quaternions provide the group structure for
SU (2) ∼= S3, just as unit complex numbers do for U (1) ∼= S1

(see Fig. 2).
On SSB of a compact Lie group [21,22], i.e., complex

(C), quaternion (H), or octonion (O), a set of Goldstone
modes are anticipated for each broken (imaginary) generator
that defines the compact (gauge) group [21,22]. Just as a
single Goldstone mode (phonon) is anticipated on sponta-
neous symmetry breakdown of the U (1) group (superfluids),
a set of three Goldstone modes (phonons) are anticipated on
the breakdown of SU (2) symmetry. In superfluid states, of
broken U (1) symmetry, this single long-wavelength Gold-
stone mode is responsible for the “second sound” that allows
for heat transfer [23–26]. Likewise, it is anticipated that the
three phonon modes responsible for heat transfer in three-
dimensional crystalline solids (1L, 2T) are the anticipated
Goldstone modes on the breakdown of SU (2) symmetry.

Furthermore, the number of imaginary generators that de-
fine the compact group (complex or quaternion) elucidates the
available topological defects in complex or quaternion ordered
systems. Just as superfluids of broken U (1) symmetry permit
π1(S1) vortices (that concentrate external complex rotational
fields), quaternion ordered systems of broken SU (2) symme-
try permit π3(S3) topological defects (that concentrate exter-
nal quaternion rotational fields). Just as vortices are sponta-
neously generated points in two-dimensions that act to prevent
the development of conventional orientational order at finite
temperatures (Mermin-Wagner theorem), π3(S3) topological
defects are spontaneously generated points in four-dimensions
that act to prevent a conventional disorder-order transition
[2,27] at finite temperatures. Undercooling below the melting
temperature is therefore analogous to the prevention of SSB
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FIG. 2. (a) The product of complex numbers (C) may be seen
as 90◦-rotations that span the complex plane with the 2D basis
of {1, î}. Unlike real numbers (R) that are not compact, complex
numbers are compact under standard operations (by including

√−1).
Complex numbers then take the form: z = x + y

√−1 where x and
y are real numbers, and î2 = −1 is an imaginary unit. When x2 +
y2 = 1, a complex number lies on the unit circle. (b) The next
higher-dimensional algebra domain, forming a compact group, are
the quaternion numbers (H). The product of quaternion numbers
may be seen as 90◦-rotations in the quaternion plane that spans
the 4D basis {1, î, ĵ, k̂}. Just as complex numbers are formed as
pairs of real numbers and an imaginary unit (î), quaternion numbers
may be formed in a similar manner as pairs of complex num-
bers: q = (x1 + y1 î) + (x2 + y2 î) ĵ where î ĵ = k̂ and î2 = ĵ2 = k̂2 =
î ĵ k̂ = −1. When x2

1 + y2
1 + x2

2 + y2
2 = 1, a quaternion number lies on

the unit hypersphere (S3). While complex multiplication is Abelian,
the order of operations of quaternion multiplication is important and
hence the group is non-Abelian.

at finite temperatures for complex ordered systems that exist
in “restricted dimensions.”

Crystallization may occur after a finite amount of under-
cooling, as the clustered atomic fluid selects a particular orien-
tational ground state from among the set of degenerate ground
states on M. That is, translational order obtained on the
formation of a crystalline lattice (after a finite amount of un-
dercooling) is coincident with the development of global ori-
entational order (quaternion). At the crystallization transition,
by the adoption of an orientationally ordered ground state, the
topology of the relevant order parameter space changes from
a sphere to a torus. Specifically, in spatial dimensions D � 2,
the spherical orientational order parameter space (M) of the
undercooled liquid changes discretely at the crystallization
transition by “adding a handle” to its surface [28–32]. This
forces the D-dimensional spherical order parameter space to
decompose into the Cartesian product of D spheres:

M : SD → T D ∼= S1 × ... × S1
︸ ︷︷ ︸

D

, (1)

where T D is the D-dimensional torus.
Mechanisms of orientational ordering that drive the forma-

tion of crystalline solids may be elucidated by considering
the discrete change in topology of M at the crystallization
transition (Ref. [27]). The change in topology of the order
parameter manifold at the crystallization transition, as the

FIG. 3. In dimensions D � 2, sphere and tori are topologically
distinct. The genus (h) of a surface M counts the number of ways
that it can be cut into slices without it falling apart. A sphere has
zero genus, and a torus has a singular genus. Hence, spheres are
simply connected and tori are not simply connected (i.e., π1(SD ) = 0
and π1(T D ) �= 0). While spherical surfaces have positive curvature
everywhere, tori have regions of different curvature: spherelike re-
gions of positive curvature (blue), near the hole there is a saddle that
has negative curvature (red), and on the top/bottom circles the local
curvature is zero (gray).

genus topological invariant changes from zero to one, implies
a change in the structure of the fundamental homotopy group
[18,19] of topological defects (Fig. 3).

The genus topological invariant comes from the integration
of curvature over the surface, and is quantified directly via the
Gauss-Bonnet theorem [33,34]. Spherical surfaces have pos-
itive integral Gaussian curvature, and toroidal surfaces have
zero integral Gaussian curvature. The topology of the order
parameter manifold that applies to the undercooled atomic
fluid changes discretely to a torus [Eq. (1)] on the formation
of a crystalline lattice. Thus, the development of translational
order upon crystallization is (in essence) a flattening of atomic
vertices.

In light of this, it is not surprising that many authors have
made use of a flattening method to model the crystallization
process [35–41]. The flattening method that is most com-
monly used is an extension of the standard Volterra process
[42], known as the “iterative flattening method.” By the “iter-
ative flattening method,” the curved order parameter space that
is tessellated by preferred short-range orientational order [36]
is unwrapped into an infinite tiling of Euclidean space. The
discrete change in topology of the order parameter space upon
crystallization ensures that the transition is discontinuous
(first order).

In addition to third homotopy group defects, due to atomic
clustering in undercooled atomic fluids, wedge disclinations
are also spontaneously generated at finite temperatures and
act to prevent the formation of a crystalline solid state at the
melting temperature. Ultimately, to achieve a crystalline solid
at finite temperatures, a topological ordering event within
this gas of wedge disclinations is required. This topological
ordering event forces complementary wedge disclinations
[Figs. 4(a) and 4(b)] to bind into pairs that are considered
to be dislocations [43–46] [Figs. 4(c) and 4(d)] that are
excitations from the crystalline ground state. This concept was
originally discussed for 2D crystallization by Halperin and
Nelson (Ref. [44]), and is reminiscent of orientational order-
ing in 2D XY models [3,7,8]. In the absence of geometrical
frustration, every lattice site in the crystalline ground state
is equivalent and it is free of all topological defects. This
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FIG. 4. (a) Negative and (b) positive wedge disclination point
defects in two-dimensions. (c) Pairs of complementary wedge discli-
nations are edge dislocations, which are translational defects in
the field of atomic displacements of a crystalline lattice [(a)–(c)
taken from Refs. [43]. (d) Positions of atoms drift with respect to
their ideal lattice positions as a closed loop is traversed around
a dislocation. This corresponds to a loop around the central hole
of the toroidal order parameter space, for atomic displacements in
crystalline lattices. Rearranging the atoms slightly deforms the loop,
but does not change the number of times it wraps around the torus
(i.e., Burger’s vector).

is possible because, the plasma of topological defects that
develops just below the melting temperature is balanced be-
tween the concentrations of topological defects with equal and
opposite signs [Figs. 4(a) and 4(b)]. In Secs. III A and III B,
crystallization phase transitions in 2D and 3D are considered
from a topological viewpoint in the absence and presence of
geometrical frustration.

A. Crystallization in two dimensions

For purposes of illustration, consider the crystallization
process in 2D using the “iterative flattening method.” For
two-dimensional solidifying fluids, below the melting tem-
perature, the degree of orientational order is related to the
regular tessellation on the surface of a sphere in three dimen-
sions (S2 ∈ R3) by the preferred orientational order of atomic
clustering. Hence, regular polyhedra that tessellate S2 ∈ R3

act as ideal curved space models of orientational order in
2D undercooled atomic fluids. Only two of the five regular
polyhedra, cubes ({4, 3} ∈ S2) and tetrahedra ({3, 3} ∈ S2),
are developable [47] in flat (Euclidean) plane, these periodic
nets are discussed in Sec. III A 1. Crystallization of short-
range orientational order that is not developable in flat space,
i.e., that is considered to be geometrically frustrated, will be
discussed in Sec. III A 2.

1. Absence of geometrical frustration

The two regular periodic tilings of the Euclidean plane
are by squares and by equilateral triangles, which have the
Schläfli notation [48] of {4, 4} and {3, 6}, respectively. These
2D periodic nets can be generated by unwrapping the rele-
vant developable curved space tessellations of vertices, that
characterize orientational order in the undercooled fluid, onto
the plane. In particular, square nets ({4, 4}) can be generated
by flattening cubic tessellations {4, 3} ∈ S2 onto the plane.
In doing so, the coordination at each vertex increases from

(a)

(b)

FIG. 5. Regular tilings of the plane can be made by: (a) un-
wrapping the faces of the cubic tessellation of {4, 3} ∈ S2 to form
{4, 4} ∈ E 2 and, (b) developing {3, 3} ∈ S2 to generate {3, 6} nets.
[Built using open-source KaleidoTile software (Ref. [49]).]

three to four so that square faces may generate infinite tilings
[Fig. 5(a)]. Similarly, on unwrapping tetrahedra {3, 3} ∈ S2

each vertex becomes six-fold [35] to generate the {3, 6}
infinite tiling [Fig. 5(b)]. These periodic tilings are free of
permanent disclination topological defects in the ground state,
and the topological defects that act as excitations from the
ground state are dislocations.

2. Presence of geometrical frustration

Solidifying systems with fivefold symmetries are unable
to generate infinite tilings of the Euclidean plane [50], in
contrast to systems with short-range orientational order that is
developable in flat space. This is a consequence of geometrical
frustration [40]. For instance, the dodecahedron {5, 3} ∈ S2

can only be unwrapped onto the plane by the introduction of
permanent defects [Fig. 6(a)].

Ordered arrangements of topological defects in geomet-
rically frustrated solids have been evidenced in physical
(three-dimensional) crystalline systems, in cases of icosahe-
dral short-range orientational order [9,10]. These crystalline
solids, known as Frank-Kasper phases [9,10,51], are topo-
logically close-packed (TCP) and the ordered network of
permanent disclination lines that allows for their structural
stability is known as the “major skeleton” network [52]. To
generate a geometrically frustrated crystalline structure, using
the “iterative flattening method,” the vertices of a particular
orientational order parameter space are first inscribed onto
the faces of a developable surface [40] and then mapped into
flat space.

As a two-dimensional example using the “iterative flatten-
ing method” to generate a geometrically frustrated structure,
consider the vertices of an icosahedron {3, 5} ∈ S2 inscribed
onto the faces of a cube [Fig. 6(b)]. Figure 6(c) shows the
infinite tiling of the plane made by the unwrapped the cell
shown in Fig. 6(b). This is a 2D analogy of 3D Frank-Kasper
crystals. In these cases of geometrical frustration, to ensure
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(a)

(b) (c)

FIG. 6. (a) There is no regular pentagonal tiling of the plane
because one cannot unwrap the dodecahedron {5, 3} ∈ S2 onto the
plane without the introduction of permanent defects (gray). (b) Ver-
tices of an icosahedron inscribed onto the faces of a cube. (c) Tiling
of the plane by the unwrapped cube with vertices of icosahedron
inscribed is a 2D analogy of 3D Frank-Kasper structures. Permanent
negative wedge disclinations are introduced at the vertices of the
unwrapped cube (red squares), that correspond to the opening of
some triangular rings of the icosahedron into four-membered rings
[35]. [(b), (c) adapted from Ref. [35], “Iterative flattening method.”]

that the system is space-filling, permanent negative wedge
disclinations are introduced at the vertices of the unwrapped
cube (red squares), as an ordered “major skeleton network.”

In the event of geometrical frustration, there is intrinsic
positive curvature that is associated with the preferred short-
range orientational order of atomic clustering. Physically, this
intrinsic positive curvature (geometrical frustration) explicitly
breaks the symmetry between the concentrations of disclina-
tions in the undercooled liquid towards those that concentrate
negative curvature at their core. This ensures that the overall
Euclidean space remains flat. In scenarios of geometrical
frustration [35,40], these excess negative wedge disclinations
are unable to form bound states upon crystallization and will
persist to the ground state as a periodic arrangement. These
ordered networks of disclination topological defects in TCP
structures are similar to Abrikosov vortex flux lattices that
develop in frustrated thin-film superfluids [16,53].

B. Crystallization in three dimensions

In three dimensions, just below the melting temperature
(TM), the full orientational symmetry group of the high-
temperature liquid [G = SO(3)] is broken locally by atomic
clustering [54–56]. The orientational order parameter space

takes the form [18,19,56]

M = SO(3)

H
≡ SU (2)

H ′ , (2)

where H ⊂ SO(3) and H ′ ⊂ SU (2) is the binary polyhedral
group. Because the group SU (2) is isomorphic to the unit
quaternions, local orientational ordering due to atomic clus-
tering below the melting temperature may be characterized by
the application of a quaternion orientational order parameter
[27]. The underlying space of the unit quaternions is the
surface of a sphere in four dimensions (S3 ∈ R4), which
connects our proposed ordering field theory for crystallization
with earlier models that consider solidification of geometri-
cally frustrated orientational order using a regular “crystal” in
curved space [36,56,57] as a reference state.

Topological stable defects, that can be drawn on the order
parameter space [Eq. (2)], belong to the first and third homo-
topy groups [18,58],

π1(M) = H ′, π3(M) = Z, (3)

where Z = 0,±1,±2... is a lattice of integers. In three-
dimensional atomic systems [58], topological defects that
belong to the first and third homotopy groups are: disclination
lines and instantons; similarly, according to the topological
charge equation [59,60], these defects behave as planes and
points in 4D/(3D+1t) quaternion ordered systems. Owing to
the existence of π3(M) defects as points in 4D/(3D+1t),
solidifying atomic systems must be considered [2,27] to order
in “restricted dimensions.” This is a direct extension of the
Mermin-Wagner theorem [1], that states that continuous sym-
metries cannot be spontaneously broken at finite temperatures
in 2D/(1D + 1t) systems.

That is, just like in the XY model and low-dimensional
superfluids, there is no possibility for conventional long-range
orientational order to develop in three-dimensional solidifying
atomic systems at the melting temperature. Just below TM ,
it is an abundance of misorientational fluctuations taking the
form of a plasma of spontaneously generated topological de-
fects [Eq. (3)] that prevents global orientational-order. Thus,
undercooling is necessary as a consequence of the phase-
destabilizing nature of spontaneously generated topological
defects.

To allow for the development of crystalline solids at finite
temperatures, a defect-driven Berezinskii-Kosterlitz-Thouless
type transition [7,8] must occur within this gas of topo-
logical defects that otherwise prevent the development of
orientational order just below the melting temperature. Ulti-
mately, it is the formation of bound pairs of third homotopy
group defects/antidefects and bound states of complimen-
tary disclinations that drives crystallization [27] at a finite
temperature below the melting temperature (Tdefect-BKT < TM).
Three-dimensional crystallization, in the absence and pres-
ence of geometrical frustration, are discussed separately in
Secs. III B 1 and III B 2. Finally, an anticipated phase diagram
for solidification in the vicinity of critical geometrical frustra-
tion (a “self-dual critical point”) is presented in Sec. III B 3.

1. Absence of geometrical frustration

In the event that the relevant orientational order param-
eter space that characterizes atomic clustering [Eq. (2)] is
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developable in flat space, the crystalline solid state that forms
below a critical temperature is free of permanent topological
defects at zero Kelvin [36]. This is possible because, in the
absence of geometrical frustration, the plasmas of misorien-
tational topological defects that coexist with atomic clusters
in the undercooled fluid are balanced such that there exists
equal concentrations of topological defects with opposite
signs. These balanced plasmas, of third and first homotopy
group defects, can become entirely topologically ordered at
low-enough temperatures [2,8,27], by the formation of bound
states via a defect-driven BKT-like mechanism.

The formation of a perfect crystal is therefore akin to the
formation of perfectly phase-coherent superfluid ground states
in “restricted dimensions,” that are able to exist due to a proto-
typical BKT topological ordering transition within a balanced
(classical) gas of vortices. Limiting ourselves to the discussion
atomic clustering that has symmetries characterized by regular
polytope, cubic crystal are the only space-filling regular tilings
of 3D Euclidean space which derive from the hypercube
{4, 3, 3}. These systems lack geometrical frustration and are
hence flat everywhere. This is possible because no centers
of concentrated curvature exist in the form of permanent
topological defects.

2. Presence of geometrical frustration

In the presence of geometrical frustration, consider the
flattening of the {5, 3, 3} polytope (120-cell) into 3D Eu-
clidean space (Fig. 7) as a three-dimensional analogy to the
flattening of the {5, 3} polyhedron into the plane [Fig. 5(b)].
As a consequence of geometrical frustration, permanent topo-
logical defects are required in the flat space. Just as {5, 3}
and {3, 5} are dual to one another, the dual of the {5, 3, 3}
polytope is the {3, 3, 5} polytope whose vertices are the 120-
elements of the binary icosahedral group (i.e., the lift of
Y ∈ SO(3) into SU (2)). Thus, the {3, 3, 5} polytope repre-
sents the orientational order parameter space of undercooled
solidifying systems that exhibit an energetic preference for
short-range icosahedral coordination of atomic clustering
[36,54,56,61,62]. Such systems are geometrically frustrated,
because, despite the realization of a regular “crystal” on the

(a) (b)

FIG. 7. (a) Perspective projection of the 120-cell polytope
({5, 3, 3} ∈ S3) (taken from Ref. [66]). (b) Net of {5, 3, 3} ∈ S3 in
Euclidean three-dimensional space (created with Stella4D software
from Ref. [67]).

surface of the three-sphere in four-dimensions [36,56,63].
The preferred short-range orientational order (e.g., icosahe-
drally coordinated systems) is unable to fill all of space
(Fig. 7).

Geometrically frustrated crystalline solid states are known
as topologically close-packed (TCP); Frank-Kasper structures
[10], that express short-range icosahedral order, are a par-
ticular instance of TCP crystalline solids. Geometrical frus-
tration is quantified as the curvature mismatch between the
orientational order parameter space of the undercooled liquid
M [Eq. (2)], and flat Euclidean space [36]. This curvature
mismatch explicitly drives an asymmetry in the concentra-
tions of positive and negative disclinations and third homo-
topy group defects [Eq. (3)], to ensure that the overall space
remains flat on average [27]. In particular, excess negative
wedge disclination lines neutralize remnant positive curvature
that is attributed to atomic vertices that retain geometrically-
frustrated coordination [40]. This is in analogy to magnetic
frustration of O(2) Josephson junction arrays in the presence
of an applied magnetic field [14,16], which necessitates that
the concentrations of magnetic vortices are shifted towards
those that carry a sign corresponding to the direction of the
external field [17].

In the presence of frustration, excess signed topological
defects are unable to form bound pairs and persist to the
ground state in a periodic manner [16]. This ensures an ab-
sence of configurational entropy at 0 K, to satisfy the third law
of thermodynamics [64,65]. In analogy to frustrated ground
states of O(2) quantum rotor models [16], geometrically
frustrated crystalline ground states no longer display perfect
long-range orientational order. Instead, the set of scalar phase
angle parameters that characterize the orientational order pa-
rameter will vary from site to site to incorporate the major
skeleton network of topological defects [36,56]. A periodic
array of signed third homotopy group defects, that are points
in (3D + 1t) spacetime, also persist to the ground state of
TCP structures; however, unlike disclination lines, these topo-
logical defects are not observable as structural constituents
in three-dimensions unlike the ordered “major skeleton
network.”

3. Anticipated phase diagram

Figure 8 depicts a schematic of an anticipated phase dia-
gram for three-dimensional crystallization [27], in coordinates
of reduced temperature versus geometrical frustration. A finite
amount of undercooling below the melting temperature (TM)
is required, prior to crystallization. A defect-driven BKT
transition marks crystallization (Tdefect-BKT < TM), separating
the solid state from the undercooled fluid. With increasing
geometrical frustration, Tdefect-BKT is suppressed in the same
way that the transition towards a phase-coherent supercon-
ducting state of O(2) Josephson junction arrays is suppressed
in the presence of a transverse magnetic field [14,16,17].
With increasing geometrical frustration, the distance between
permanent topological defects in the ground state becomes
minimized.

Above a critical value of geometrical frustration, the con-
centrations of topological defects in the undercooled fluid
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FIG. 8. Anticipated phase diagram for crystallization, in coor-
dinates T/TK versus geometrical frustration where TK is the finite
Kauzmann temperature [68,69]. A defect-driven BKT-like topolog-
ical transition occurs at Tdefect-BKT, that separates crystalline solid
states from undercooled fluids that develop below the melting tem-
perature (TM ). With increasing geometrical frustration, Tdefect-BKT is
suppressed towards a minimum value (the Kauzmann temperature,
TK) that marks a first-order transition between crystalline and non-
crystalline solid states.

become entirely biased such that bound states (e.g., disloca-
tions) are unable to form and the ground state is no longer
crystalline. In three-dimensions, the hypothetical solid state
that forms at a critical value of geometrical frustration lacks
translational order but retains short-range orientational order.
It has been suggested previously that [27] the formation of
a solid state at a critical geometrical frustration marks the
so-called “ideal” glass transition that is referred to in the
literature as the Kauzmann point [68].

The transition between geometrically frustrated solid states
and noncrystalline solid states, that occurs at the Kauzmann
point (“ideal” glass transition), takes place at a finite temper-
ature which corresponds to a first-order transition [70]. Non-
crystalline (orientationally disordered) solid states are consid-
ered to be “dual” to crystalline solids, in which topological
defects that persist to 0 K form a tangled arrangement. Unlike
the zero configurational entropy at 0 K in TCP crystalline
structures, this tangled arrangement of defects leads to finite
residual configurational entropy.

IV. SUMMARY AND CONCLUSIONS

Two fundamental concepts that drive the manifestation of a
particular ordered state of matter are: the topology of the order
parameter space and the spatial dimensionality of the ordered
system. In this article, we have discussed a particular exam-
ple of the role of topology in condensed matter physics by
approaching the crystallization process in three-dimensions
using a quaternion orientational order parameter. Owing
to the fact that the solidifying system exists in “restricted
dimensions,” conventional orientational order is prevented
at the melting temperature and undercooling is viewed as.
In light of this, we have suggested that the crystallization
process in three-dimensions is a higher-dimensional realiza-
tion of the formation of phase-coherent complex ordered
systems in “restricted dimensions,” two- and one- (Mermin-
Wagner theorem).

We have emphasized that, it is the discrete change in the
topology of the order parameter space upon the formation of a
crystalline lattice (by the addition of a handle to the otherwise
spherical surface) that forces the emergence of bound states of
topological defects via a defect-driven Berezinskii-Kosterlitz-
Thouless-like transition in three-dimensions. As a conse-
quence of ordering in “restricted dimensions,” geometrical
frustration is possible in three-dimensional crystalline solid
states. Geometrical frustration forces a periodic arrangement
of signed topological defects into crystalline ground states
which are known as topologically close-packed (TCP). Crit-
ical geometrical frustration entirely suppresses the crystalline
ground state, at the Kauzmann point.
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