
Journal of Physics Communications

PAPER • OPEN ACCESS

SU(2) orientational ordering in restricted
dimensions: evidence for a Berezinskiĭ-Kosterlitz-
Thouless transition of topological point defects in
four dimensions
To cite this article: Caroline S Gorham and David E Laughlin 2018 J. Phys. Commun. 2 075001

 

View the article online for updates and enhancements.

Related content
The hobbyhorse of magnetic systems: the
Ising model
Eduardo Ibarra-García-Padilla, Carlos
Gerardo Malanche-Flores and Freddy
Jackson Poveda-Cuevas

-

Kosterlitz–Thouless physics: a review of
key issues
J Michael Kosterlitz

-

Berezinskii–Kosterlitz–Thouless transition
and two-dimensional melting
V N Ryzhov, E E Tareyeva, Yu D Fomin et
al.

-

Recent citations
Topological description of the solidification
of undercooled fluids and the temperature
dependence of the thermal conductivity of
crystalline and glassy solids above
approximately 50 K
Caroline S Gorham and David E Laughlin

-

This content was downloaded from IP address 128.237.146.136 on 13/04/2019 at 17:37

https://doi.org/10.1088/2399-6528/aace2a
http://iopscience.iop.org/article/10.1088/0143-0807/37/6/065103
http://iopscience.iop.org/article/10.1088/0143-0807/37/6/065103
http://iopscience.iop.org/article/10.1088/0034-4885/79/2/026001
http://iopscience.iop.org/article/10.1088/0034-4885/79/2/026001
http://iopscience.iop.org/article/10.3367/UFNe.2017.06.038161
http://iopscience.iop.org/article/10.3367/UFNe.2017.06.038161
http://iopscience.iop.org/0953-8984/31/10/105701
http://iopscience.iop.org/0953-8984/31/10/105701
http://iopscience.iop.org/0953-8984/31/10/105701
http://iopscience.iop.org/0953-8984/31/10/105701
http://iopscience.iop.org/0953-8984/31/10/105701


J. Phys. Commun. 2 (2018) 075001 https://doi.org/10.1088/2399-6528/aace2a

PAPER

SU(2) orientational ordering in restricted dimensions: evidence for a
Berezinskiĭ-Kosterlitz-Thouless transition of topological point defects
in four dimensions

Caroline SGorham1 andDavid E Laughlin
Department ofMaterials Science and Engineering, CarnegieMellonUniversity, Pittsburgh, PA 15213,United States of America
1 The author towhomany correspondence should be addressed

E-mail: caroling@cmu.edu and laughlin@cmu.edu

Keywords: restricted dimensions, topological defects,Monte Carlo, quaternion lie algebra, Berezinskiĭ-Kosterlitz-Thouless transition,
n-vector orientational ordering

Abstract
Weemploy the theory of topological phase transitions, of the Berezinskiĭ-Kosterlitz-Thouless (BKT)
type, in order to investigate orientational ordering in four spatial dimensions that is characterized by a
quaternion n−vector (i.e., n=4) order parameter. Due to the dimensionality of the quaternion n
−vector order parameter, the development of orientational order for systems that exist in four spatial
dimensionsmust be viewedwithin the context of ordering in restricted dimensions. Atfinite
temperatures, despite the development of awell-defined amplitude of the n−vector order parameter
within separate regions, ordered systems that exist in restricted dimensions are prevented from
developing global orientational phase-coherence as a consequence ofmisorientational fluctuations
throughout the system. In four dimensions, this gas ofmisorientational fluctuations takes the formof
spontaneously generated topological point defects that belong to the third homotopy group. These
topological point defectsmust become topologically ordered in order to obtain a ground state of
aligned order parameters at zeroKelvin; we argue that this topological transition belongs to the BKT
universality class.We use standard ‘Metropolis’Monte Carlo simulations to estimate the
thermodynamic response functions, susceptibility and heat capacity, in the vicinity of the transition
towards the ground state of perfectly aligned order parameters in our four-dimensional quaternion
n−vector orderedmodel system.On lowering the temperature below a critical value, we identify a
transition that results from theminimization ofmisorientations in the scalar phase angles throughout
the system. The thermodynamic response functions obtained byMonte Carlo simulations show
characteristic behavior of a topological ordering phase transition.

1. Introduction

Nearly 50 years ago, the idea of a topological phase transition driven by the condensation of topological defects
was introduced and applied to understand howone can obtain orientational order in systems that exist in
restricted dimensions [1, 2]. Prior to the description of this novel phase transition, the theoremofMermin and
Wagner [3] had established that systems that exhibit continuous symmetry cannot undergo spontaneous
symmetry breaking in two- and one- dimensions. For ordered systems that exist in restricted dimensions,
despite there being no possibility for conventional global orientational order at nonzero temperatures [3], an
alternative phase transition takes place that allows for a globally phase-coherent ground state. In the case of the
two-dimensionalXYmodel, of complex n−vector (i.e, n=2) order parameters, the nature of this phase
transitionwas explained by Berezinskiĭ [1] andKosterlitz andThouless [2] by the introduction of topological
point defects and a consideration of topological ordering.

In this work, we aremotivated by the pursuit of the development of an analogous topological framework
withinwhich to understand the formation of the solid state fromundercooled liquid systems. The full
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orientational symmetry of the high-temperature liquid is characterized by the 3D group of proper rotations of
solid spheresG=SO(3). This group is a non-Abelian group, and is related to the quaternion numbers by amap
from the three-sphere (S3) onto SO(3) that identifies the antipodal points of S3. The orientational order in three-
dimensional undercooled atomic liquids is therefore related [4] to a quaternion n−vector order parameter.We
consider that the fact that all liquids are forced to undercool below themelting temperatureTM, so that afinite
driving force can be established for the formation of stable clusters, is an effect of ordering in restricted
dimensions forwhich conventional global orientational order is prevented atfinite temperatures [3].

In particular, at temperatures below themelting temperatureTM, the orientational order in an undercooled
liquid is characterized by the preferred orientational symmetry of atomic clustering,HäGwhereG=SO(3). In
order to apply important topological theorems [5, 6], onemust ensure that the groupG is a simply connected
group. Therefore, the relevant orientational order parameter is determined bymaking use of the
homomorphism [5, 6] that exists betweenG=SO(3) and its universal covering group SU(2), which is simply
connected. To do this, one ‘lifts’ the isotropy subgroupHäSO(3) into SU(2)which gives its binary
representation [5–7].

The groupG=SU(2) is the set of unit quaternion elements, which parameterize the unit three-sphere (S3).
The relationship between SU(2) and S3 is analogous to the fact that the circle (S1), i.e., the simplest compact Lie
group, is isomorphic to the unitary groupU(1) such that @ ( )S U 11 . The circle (S1) is parameterized by the
group of unit complex numbers in two-dimensions; this parameterization is given by Euler’s formula:

 q q= + = + = -q ˆ ˆ ˆ ( )ˆe i x x i i: cos sin where, 1. 1i
0 1

2

Thus, the complex number is two-dimensional and is characterized by a single scalar phase angle (θä[0, 2π]):
q q=ˆ ( ) ( )n cos , sin . 2

By replacing the complex numbers  by the quaternion numbers , Euler’s formula can be extended as a versor
[8] (i.e., a quaternion of norm1):

 q t q t= + = -tq ˆ ˆ ( )ˆe: cos sin where, 1. 32

The condition that t = -ˆ 12 means that the pure imaginary number t̂ is a unit-length vector quaternion; t̂
consists of three separate imaginary components: = = = -ˆ ˆ ˆi j k 1

2 2 2
and, =ˆˆ ˆi j k , =ˆ ˆ ˆj k i , =ˆˆ ˆki j . The full

expression of t̂ is:

^ ^ ^ ^t q q q q q= + +( ) ( ) ( )i j kcos sin cos sin sin , 41 1 2 1 2

where (θä[0,π], θ1ä[0,π], θ2ä[0,2π]). Expanding the quaternion versor, it is easily seen that a quaternion
number is four-dimensional:

 = + + +ˆ ˆ ˆ ( )q x x i x j x k: . 50 1 2 3

The quaternion orientation is defined on a three-dimensional curvedmanifold [9, 10] (S3) that is embedded in
4DEuclidean space, for which:

+ + + = ( )x x x x R , 60
2

1
2

2
2

3
2 2

whereR is the radius of the three-sphere. Thus, only three of these four coordinates are independent; these are
the three scalar phase angles of . The quaternion then takes the form:

q q q q q q q q q=ˆ ( ) ( )n cos , sin cos , sin sin cos , sin sin sin . 71 1 2 1 2

When considering n−vector ordering phenomena, e.g., by complex (i.e., n=2) or quaternion (i.e., n=4)
order parameters, it is important to account for the effect of the geometric spatial dimensions of a sample
[11, 12]. Conventional orientational ordering, i.e., by a spontaneous symmetry breaking event, is only possible
within a bulk spatial dimension for a particular n−vector order parameter. The value of the largest geometric
space dimension inwhich global orientational order, characterized by an n−vector order parameter, is no longer
possible atfinite temperatures is a restricted dimension [12] that has been called the lower critical dimension
(Dlow). For n−vector ordered systems that exist in restricted dimensions (i.e., D D low), at temperatures below
a bulk critical transition temperature, separate ordered regions form that exhibit a well-defined amplitude of the
n−vector order parameter [13] and that are weakly-coupled to their neighbors. Theweak-coupling between
nearest-neighbors permitsmisorientational fluctuations that prevent the development of global phase-
coherence at finite temperatures.

In the case of complex n−vector ordered systems, that are characterized by a single phase angle parameter
(θ), misorientational fluctuations in two-dimensions prevent the development of global phase-coherence
[2, 11]. Thus, for complex n−vector ordered systems,Dlow=2.Nevertheless, a transition to amore ordered
state is evident as the temperature of a 2D complex n−vector ordered system is lowered below a critical value.
The nature of this novel phase transitionwas explained by the discretization of thesemisorientational

2
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fluctuations as topological point defects. Below some critical temperature, these point defects form closely
bound pairs and permit a phase-coherent low-temperature state; above this critical temperature, the point
defects are unbound [2] and destroy phase-coherence.

In the current work, we extend the concept of a lower critical dimension to systems that express a quaternion
n−vector order parameter. In analogywith complex n−vector ordered systems,misorientational fluctuations
of the set of three scalar phase angles of a quaternion n−vector order parameter prevent the development of
global orientational order at finite temperatures in four-dimensions. Thus,Dlow=4 in the case of quaternion
n−vector ordered systems.

As has been shown in the case of two-dimensionalXY systems [2], it is convenient to discretize the
misorientational fluctuations that develop in restricted dimensions as topological defect elements [14, 15] that
are spontaneously generated at temperatures just below the bulk critical transition temperature. In particular,
the topological defect elements that are available to an n−vector ordered system,which exhibits a ground state
manifold = Sm wherem=n−1, are [14, 15]:

p = <( ) ( )S r m0 for, 8r
m

p =( ) ( )S . 9m
m

That is, the only kind of non-trivial topological defect that is available to the n-vector ordered systembelongs to
the homotopy group p =( )Sm

m where  =   ¼0, 1, 2, is a lattice of integers that gives the topological
number of the defect. Such topological defect elements exist as point defects [15] in the lower critical dimension
Dlow=n. This general featurewill be applied to the cases of complex and quaternion n−vector ordering in the
following sections.

In the case of complex n−vector orientational ordering in two-dimensions (Dlow=2), the relevant
topological point defects that prevent global orientational ordering atfinite temperatures belong to the
fundamental homotopy group [14] ( p =( )S1

1 ). Similarly, in the case of quaternion n−vector orientational
ordering, the relevant topological point defects belong to the third homotopy group ( p =( )S3

3 ). In restricted
dimensions, a Berezinskiĭ-Kosterlitz-Thouless (BKT) type topological transition [1, 2] driven by the ordering of
these topologically stable point defect elements is required in order to explain how an orientationally phase-
coherent low-temperature state can be obtained at low-temperatures.

In this paper, we study the orientational ordering of a quaternion n−vector ordered system that exists in the
lower critical dimensionDlow=4. Firstly, in section 2, we review the prototypical Berezinskiĭ-Kosterlitz-
Thouless topological ordering transition that allows for the development of a low-temperature globally phase-
coherent state of complex n−vector order in two-dimensions. In section 3, we consider a natural extension of
this topological transition to quaternion n−vector ordered systems that exist in four-dimensions. In section 4,
we presentMonte Carlo (MC) simulations that have been performed to study the thermodynamic response
functions of this four-dimensional system in the vicinity of the topological ordering transition.

2.U(1) systems

2.1.Hamiltonian potential energy and 2DBKT transition
In the case of 2D systems that possessU(1) symmetry at high-temperatures, afinite driving force for complex n
−vector orientational ordering develops below a bulk critical transition temperatureTC. Just belowTC, complex
n−vector order developswithin separate regions/islands (that areweakly-linked to their nearest-neighbors)
rather than across the entire system [13]. These regions/islands are characterized by separate complex n−vector
order parameters that act asO(2) rotors [16, 17], whose orientation has the formof equation (2). Despite the
development of an amplitude of the complex n−vector order parameter within each island,misorientational
fluctuations of the single scalar phase angle parameter (θ)prevent the development of global phase-coherence at
finite temperatures.

Although a conventional ordering phase transition is excluded in this scenario, in order to explain how an
orientationally phase-coherent low-temperature state can be obtained, Berezinskiĭ [1] andKosterlitz and
Thouless [2] introduced the concept of topological point defect excitations (metastable states). The phase-
destabilizingmisorientational fluctuations are naturally discretized as point defects, that undergo a topological
ordering event at afinite temperature <T TCBKT . At high-temperatures, these point defects are spontaneously
generated; at temperatures belowTBKT, point defects and anti-point defects form low-energy bound pairs that
allow for the existence of a phase-coherent low-temperature state [1, 2].

In order to determine the critical transition temperature (TBKT), onemust consider the potential energy due
to coupling between nearest-neighbor order parameters. The potential energy is:

3
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å= -
á ñ

ˆ · ˆ ( )V E n n , 10
ij

i jJ

where n̂j is the complex n−vector order parameter located at site j,EJ is the Josephson interaction energy
between nearest-neighbor rotors [18], and the sum is taken over the nearest-neighbors á ñij . To solve
equation (10), onemust consider that the dot product of imaginary numbers (say,A andB) generalizes to [19]:

å=· ( )†A BA B 11i i

where the † overBi represents the complex conjugate.Making use of the fact that = -î 1
2

, and using a standard
cosine angle difference identity, the potential energy can bewritten in its traditional form:

å q q= - -
á ñ

( ) ( )V E cos . 12
ij

i jJ

A spin-wave approximation can be applied to equation (12), by assuming that the orientation of the rotors varies
smoothly from site to site within the array [18, 20, 21].

In order to apply the spin-wave approximation, one expands the cosine in theHamiltonian by the first two
terms in its Taylor series expansion, i.e., q q- -( )1 i j

1

2
2. Taking the sumover nearest-neighbors corresponds to

the discrete Laplace operator, which can be expressed in terms of partial derivatives: θi−θj=∂x θ, for sites i
and jwhich are nearest-neighbors [22]. This leads to a continuum expression of potential energy [2, 21]:

ò q= ( ( )) ( )V
E

d r r
2

, 13gradient
J 2 2

whereVgradient is the gradient potential energy that is related tomisorientations in θ throughout the system, from
the ground state of perfectly aligned rotors. The critical properties of this systemhave been shown to be
dominated by the long-range effects associatedwithmisorientational fluctuations [2, 21].

Although the ground state of this system is unstable against low-energy spin-wave excitations [1, 3], onemay
characterize a topological ordering transition by the introduction of topological point defects [2] in the
orientational order parameter field. In two-dimensional arrays of complex n−vector order parameters, these
topological excitations arise naturally around elementary closed circuits of nearest-neighbors [14, 23] (i.e.,
elementary plaquettes). Non-trivial point defect configurations are defined around a closed path (Γ) of nearest-
neighbors, where the sumof the relative scalar phase angles (θij=θi−θj) around the circuit is an integer
multiple of 2π. The strength of the topological defect, also known as its winding number, can be any arbitrary
integer k=0,±1,±2,K. Topological defect elements are spontaneously generated belowTC (the group
G=U(1) is broken locally atTC), and are topologically stable against decay [14].

At high-temperatures, topological point defects are stabilized as isolated entities (unbound) due to the large
entropy that is associatedwith their configurational degeneracy (related to the possible placement of the point
defect core within the system [2, 24]). On the other hand, bound pairs of point defects with equal and opposite
topological winding number (i.e., sum-0) are energetically preferred below a critical temperature [25]. This is a
consequence of the Abelian nature of point defects, such that a pathΓ’ enclosing two single point defects with
winding numbers k1 and k2 is homotopic to the two paths enclosing the point defects individually [14] (figure 1).
The critical BKT transition temperature, thatmarks the binding of topological point defects into low-energy
(sum-0) pairs, is determined by considering the competition between the entropy and energy of an isolated point
defect within the context of theHelmholtz free energy: F=Vdefect−TSconfig.

The gradient potential energy associatedwith the slow spatial variation of the scalar phase angle variable (θ)
far from an isolated point defect core [2, 14] is:

Figure 1.A loopΓ′enclosing a pair of point defect cores with equal and opposite winding numberwill be topologically equivalent to
the defect-free state [14].

4
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p= ⎜ ⎟⎛
⎝

⎞
⎠ ( )V E

L

a
ln , 14defect J

where a is the radius of the point defect core and L is the system size. The energy of the point defect increases
logarithmically with the size of the systembecause, at large distances from the defect core, the gradient potential
energy produced is inversely proportional to the distance [2, 14]. As a consequence, the probability of isolated
topological point defects appearing in large systemswill be almost nonexistent at low-temperatures [2, 14, 25].

In two-dimensions, an isolated point defect core can be locatedwithin any elementary closed circuit of
nearest-neighbors; therefore, the configurational degeneracy [2, 24]may be approximated as (L/a)2. The
entropy associatedwith the configurational degeneracy is = ( )S k2 ln L

aconfig B , where kB is the Boltzmann

constant. The totalHelmholtz free energy of an isolated point defect (of strength =∣ ∣k 1) is therefore:

p= -⎜ ⎟⎛
⎝

⎞
⎠( ) ( )F

L

a
E k Tln 2 , 15J B

where the terms in ( )ln L

a
have been collected. Since both energy and entropy depend on the system size

logarithmically, the energy termwill dominate the free energy at low temperatures [2]. For temperatures below
= pT E

kBKT 2 J
B

, point defects should only occur in low-energy bound pairs of opposite signs which are confined

logarithmically. This topological ordering event allows for the development of a low-temperature BKT state,
that is orientationally phase-coherent. The series of transitions followed on the path towards the low-
temperature BKT state are summarized infigure 2.

These free energy arguments, that enable the prediction of the critical BKT transition temperature, are
complementedwell by straightforward topological arguments. For n−vector ordered systems that exist in the
lower critical dimensionDlow, at temperatures just below a bulk critical transition temperature, p =( )Sm

m

point defects are spontaneously generated. These defects are topologically stable, and thus cannot bemade to
disappear with any continuous deformations of the order parameter. Such point defects, when isolated, produce
energetically costly distortions in the scalar phase angle parameters (here, θ(r)) far from their core. However,
owing to the Abelian nature of the p =( )Sm

m homotopy groups [14], pairs of point defects with equal and
opposite sign (sum-0) are possible which do not require such energetically costly distortions [14]. A sum-0 pair
of point defects leads to a configuration of the order parameter far from the pair that can be continuously
distorted to the uniform state [14]. It follows that these low-energy pairs of point defects, which are topologically
equivalent to the uniform (defect-free) state [14], are favored at low-temperatures and represent important
excitations from the orientationally phase-coherent ground state.

2.2. Response functions
In the vicinity of a Berezinskiĭ-Kosterlitz-Thouless transition, the susceptibility (χ) is predicted to diverge
[12, 21] as a function of a diverging correlation length (ζ). In the two-dimensionalXYmodel, it follows from the
relationship betweenχ and ζ (Kosterlitz [21] 1974), that themaximumof the susceptibility is proportional to the
system size as [26, 27]:

c » h- ( )L , 16max
2

where η is a critical exponent of the BKT transition. This is a consequence of the fact that the correlation length ζ
diverges towards amaximumvalue equal to the sample length (L) as the critical temperatureTBKT is approached
fromabove. In the case of 2DBKT transitions, it has been established that the critical exponent η takes on the
value of 1/4 at the transition temperature [12, 21, 27, 28].

Figure 2. In two-dimensions, as the temperature is lowered below the bulk critical transition temperatureTC, a normal fluid
transitions to a resistive fluid that presents a gas ofmisorientational fluctuations in the formof spontaneously generated point defects.
An orientationally phase-coherent state is achieved by a defect-driven topological ordering event at a subsequently lower temperature
TBKT.
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In fact, the critical exponent η depends on temperature as [12]: h =
p( )

k T

E2
B

J
. The value of η=1/4 allows us to

recover the definition the critical BKT temperature: = pT E
kBKT 2 J

B
. The necessary condition for the stability of the

low-temperature phase-coherent state is that h ( )T 1 4, which indicates that point defects are only excited as
bound pairs [25, 28].

Using numericalMonte Carlo simulations [26, 27], one can obtain the value of the critical exponent η. In
particular, the peak values ofχ (i.e.,χmax) scale with a power of the system size L; on a logarithmic scale [26, 27],
one obtains a linearfit: c h= -( ) ( ) ( )Llog 2 log .max Wehave performedMonte-Carlo simulations on two-
dimensionalXY systems in order to determine the critical exponent η of the 2DBKT transition; such a study has
been performed previously by a number of authors [26, 27]. The peak values of the susceptibility as a function of
L, for system sizes (L×L)where L=8,10,12,14,16, are plotted infigure 3 on a log-log scale. A linearfit to the
slope of the data points gives a value of η=0.26±0.04, which is near to the anticipated value of η=1/4.

3. SU(2) systems

As a direct higher-dimensional analogue to the 2D complex n−vector ordered systems, studied in section 2, a
system that possesses SU(2) orientational symmetry at high-temperatures and exists in four-dimensional space
(Dlow=4)will be unable to develop global orientational ordering (by a spontaneous symmetry breaking event)
atfinite temperatures. In such systems, for temperatures below a bulk critical transition temperatureTC, afinite
driving force develops for a quaternion n−vector (i.e., n=4) orientational order parameter. A four-
dimensional arrangement of 4D regions (localized in space) develops, wherein each region expresses an
amplitude of the orientational order parameter. These separate regions are weakly-coupled to their nearest-
neighbors, and act asO(4) rotors with an orientation of the formof equation (7).

In four-dimensions, despite the development of awell-defined amplitude of a quaternion n−vector
orientational order parameter within each separate region, the system as awhole is unable to develop global
orientational order as a result ofmisorientational fluctuations in the order parameter throughout the system.
Despite the inability of the system to undergo a conventional ordering phase transition at the bulk critical
transition temperatureTC, the systemmay still obtain a perfectly orientationally-ordered ground state by the
minimization of potential energy [16]. The potential energy, due to coupling between nearest-neighborO(4)
rotors, is:

å= -
á ñ

ˆ · ˆ ( )V J n n . 17
mn

m n

where n̂m is the quaternion n−vector order parameter located at sitem, J>0 is the interaction energy between
nearest-neighbor order parameters, and the sum is over nearest-neighbors á ñmn .Making use of the fact that

= = = -ˆ ˆ ˆi j k 1
2 2 2

, and using a standard cosine angle difference identity, the potential energy takes the form:

Figure 3. 2D complex n−vector ordered system:χmax versus system length (L) on a log-log scale [26, 27]. The slope of a straight line
through the data is related to the critical exponent η in the vicinity of the BKT transition [2].
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q q q q

q q q q q q

= - å + ´

+ -

(
( [ ( )])) ( )

⟨ ⟩V J cos cos sin sin

cos cos sin sin cos . 18
mn m n m n

m n m n m n1, 1, 1, 1, 2, 2,

As the temperature of the systemofO(4) rotors is lowered towards zeroKelvin, this potential energy function is
minimized by the state of perfectly aligned rotors [16].

In this case, as a higher-dimensional analogue to the two-dimensionalXYmodel [2, 29], an alternative
form of a phase transition should occur that is topological and defect-driven. In order to understand this
transition, it is instructive to discretize themisorientational fluctuations (that force the system to
undercool) as spontaneously generated topological point defect excitations that belong to the third
homotopy group [15], i.e., p =( )S3

3 .With the introduction of third homotopy group point defects and
anti-point defects, as topological excitations, one is able to determine the characteristics of this topological
ordering transition.

To think of defect elements that belong to the homotopy groupπm(S
m), one has to consider howmany

distinct ways anm−sphere can bewrapped around itself. In general, for eachπm(S
m) homotopy group, there are

topologically stable configurations indexed by an integer, i.e., p =( )Sm
m . The number of times them

−dimensional sphere (Sm)wraps around itself is the integer topological number that defines the topological
charge of the defect [14, 30, 31]. Importantly, since the group of integers  is an additive group [6], the
homotopy groupsπm(S

m) are necessarily Abelian [14, 32], i.e., the rule for combiningπm(S
m) defect elements is

that their topological numbers add.
The simplest example of a p ( )Sm

m defect element belongs to the fundamental homotopy group of = S1,
i.e., p =( )S1

1 , as was introduced in section 2. These topological defect elements are of crucial importance to
the explanation of how a low-temperature phase-coherent state can be obtained for complex n−vector ordered
systems that exist in two-dimensions [1, 2, 25], where they exist as point defects. In section 2, both energetic and
topological arguments weremade in discussing this topological ordering transition in two-dimensions. The
topological arguments rely entirely on the Abelian nature ofπm(S

m) defects, bywhich the possibility of the
existence of sum-0 pairs of point defectsmay be anticipated. Such pairs of point defects lead to far-field
configurations of the order parameter that can be distorted continuously to the uniform state [14]. Thus,
whereas isolated point defects (which cannot be removed by any continuous distortion of the order parameter
field)produce energetically costly distortions in the order parameter field, sum-0 pairs do not. It follows that
these sum-0 pairs of topological point defects represent important excitations from the orientationally phase-
coherent ground state.

Similarly, the core of topological defect elements of the third homotopy group of = S3, i.e., p =( )S3
3 ,

are points in four dimensions. Representatives of the third homotopy group are characterized by a topological
number, similar to thewinding number of aπ1(S

1) defect, thatmeasures the number of times amap of
q q qˆ ( )n , ,1 2 in domain spacewraps around the topologicalmanifold = S3. The topological number, which

may be calledB, is calculated by: (1) taking the integral of the Jacobian [33] of themap of Îˆ Sn 3 to, which
counts the volumemapped out on, (2) dividing by (2π2) to arrive at the number of times each point on is
visited. By not taking the absolute value of the Jacobian, both positive and negative topological numbers [30] are
measured. Thus, themaps from S3 to S3 are classified by any integer (positive or negative), i.e.,
B=0,±1,±2..., and there are an infinite number of topologically distinct point defects that belong to the
group p =( )S3

3 .
At temperatures just below the bulk critical transition temperatureTC, topological point defects are free

(unbound) and are spontaneously generated by pairs of opposite topological number. In the classical limit, i.e.,
equation (17), the concentrations of point defects with opposite signs are equal. Although there is a significant
energy cost to introduce isolated point defects, due to largemisorientations in the order parameter far from the
defect core, these isolated excitations are stabilized at high-temperatures by configurational entropy2.On the
other hand, for temperatures below a critical value,minimization of the potential energy (equation (17))
minimizes theHelmholtz free energy (F=Vdefect−TSconfig) and favors the perfect alignment of order
parameters throughout the system. This requires that the topologically stable point defects become bound into
sum-0 pairs that do not require the same energetically costly deformations that plague isolated point defects
[14]. These low-energy paired configurationsminimize the global uncertainty in the scalar phase angles across
the system, and allow for the development of a ground state of perfect orientational order. As the temperature of
the system is driven towards zeroKelvin, continuous distortions of the order parameter field can bring the two
point defects that comprise a sum-0 pair together and cause them to annihilate. Thus, such paired

2
Assuming a simple hyper-cubic lattice (4), the possible positions for the placement of an isolated point defect core (located at the center of

any closed hyper-volumemade by nearest-neighbors) can be approximated as (L/a)4 where L is the system size and a is the radius of the
point defect core. The configurational entropy per point defect is then: = ( )S k4 ln L

aconfig B .
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configurations of third homotopy group point defects represent important excitations from the orientationally-
ordered ground state of four-dimensional quaternion n−vector ordered systems.

4. 4DMonteCarlo simulations

4.1.Methods
Weuse a numerical ‘Metropolis’MonteCarlo (MC) algorithm to estimate thermodynamic response functions
in the vicinity of the transition towards the orientationally-ordered low-temperature state of a four-dimensional
systemof quaternion n−vector order parameters (i.e.,O(4) rotors). The potential energy due to coupling
between nearest-neighbors takes the formof equation (17). For simplicity, theO(4) rotors are arranged at the
sites of a simple hyper-cubic (4) lattice such that each rotor has a set of eight nearest-neighbors, i.e., the kissing
number [34] is eight.Wemake use of periodic boundary conditions, and consider system sizes L×L×L×L
for: L=3,4, 5, 6,7,8.

Five separate samples, initializedwith different randomnumber generators, are used to compute the
physical observables for each system size L. The initial configuration of quaternion n−vector order parameters
within the 4D array is constructed by generating a randomized distribution of scalar phase angles (θ, θ1, θ2)
throughout the system. At each temperature, 1000Monte Carlo steps are taken to achieve thermal equilibrium,
and 2000 subsequent steps are used to collect the statistical data required to compute the physical observables.
On each step L4 rotors are selected in turn, and at random, and an attempt ismade to change its state. The
authors note that, the limited number of steps taken is a consequence of the higher dimensionality of themodel
which pushes the limits of our resources due to the serial nature of our code.

Figure 4. (A)Energy and (B) order parameter per site versus temperature for various lattice sizes (L×L×L×L): L=3, 4, 5, 6, 7, 8
(◦,,, ∗,  , à).
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As theMonte Carlo simulation proceeds, physical observables of interest are computed. The critical
behavior of a topological ordering transitionmay be determined by considering the thermodynamic response
functions: heat capacity and susceptibility [12, 21, 26, 27]. The total susceptibility of a systemofN rotors is
proportional tofluctuations in the order parameter:

Figure 5. (A) Specific heat and (B) susceptibility versus temperature for various lattice sizes (L×L×L×L): L=3, 4, 5, 6, 7, 8
(◦,,, ∗,  , à).

Figure 6. 4Dquaternion n−vector ordered system:χmax versus system length (L) on a log-log scale [26, 27].
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c = á ñ - á ñ[ ˆ̃ ˆ̃ ] ( )
Nk T

n n
1

, 19
B

2 2

where = åˆ̃ ˆn ni
N

i, and n̂i is the orientational order parameter per site i. Similarly, the specific heat is
proportional to energyfluctuations:

= á ñ - á ñ[ ] ( )C
Nk T

E E
1

, 20V
B

2
2 2

where E is the total energy of the system. Figures 4(A) and (B) plot the observed energy and order parameter per
site, which show evidence of a phase transition that results from the alignment of order parameters as the
temperature is lowered below a critical value.

4.2. Response functions
The specific heat and susceptibility response functions are plotted versus temperature in figures 5(A) and (B), for
the six lattice sizes studied. It can be seen that the peak height of the specific heat does not depend on L for large
enough system sizes (L=6, 7, 8), and converges to a single value. This is an indication of a topological ordering
transition [27, 35]. In the case of 2DBKT transitions, the fact that the specific heat is independent of the lattice
size for large enough lattices [27, 35] is well-known and this behavior has been used bymany authors as an
indication of the BKT transition character [27, 35].

In contrast to the specific heat, the peak value of the susceptibility does scalewith system size over all length
scales [26, 27]. Figure 6 plots the peak values ofχ versus system size on a log-log scale; a linearfit to the data
points, i.e., c g=( ) ( )Llog logmax , can bemadewith a slope of γ=2.25±0.1. This finding shows afinite
scaling relationship [21, 26, 27] between the susceptibility and a diverging correlation length [21], which is
another characteristic of a topological ordering transition. An analytical prediction of the value of γ requires
analogous renormalization-groupwork to that of Kosterlitz [21] (1974).

5. Conclusions

Wehave detected a phase transitionwithin a quaternion n−vector (i.e., n=4) ordered system in four-
dimensions using numericalMonte Carlo simulations. In light of the fact that the lower critical dimension for
the quaternion n−vector ordered system is four, we have considered the transition to the low-temperature
orientationally-ordered state within the context of a topological ordering phase transition of the Berezinskiĭ-
Kosterlitz-Thouless (BKT) type. In order to understand the nature of this novel phase transition, we have
introduced point defects that belong to the third homotopy group as topological excitations.We have provided
topological arguments which show that, below a critical temperature, these topological point defects bind into
low-energy pairs and thereby allow for the existence of an orientationally-ordered low-temperature state.

In order to verify the transition type, wemonitored the response functions of specific heat and susceptibility
for several lattice sizes using ourMonte Carlo simulations.We found that the specific heat is independent of the
lattice size for large enough lattices, which is indicative of a topological ordering transition. Furthermore, we
found evidence of strongfinite size scaling of the susceptibility with a power of the lattice size. This kind of strong
scaling is known to occur in the vicinity of a BKT-type topological ordering transition. Thus, we conclude that
ourMonte Carlo results provide evidence that the transition to the orientationally-ordered low-temperature
state of a quaternion n−vector ordered system in four-dimensions belongs to the Berezinskiĭ-Kosterlitz-
Thouless universality class of topological ordering phase transitions.

To summarize, in the current paper, we have extended the concept of topological ordering transitions to a
higher-dimensional algebra domain (i.e., quaternions). As futurework, we suggest that this quaternion n
−vectormodelmay be applied to real systems in order to understand the topological nature of the liquid-to-
solid phase transition in three-dimensions, for which undercooling below themelting temperature is necessary.
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