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Nanoparticle-sized powders have seen more and more use in many of today’s applications. As
particle size decreases, many properties change including the ability to embed the small particles
in liquids and other media. With decreasing size, however, surface energy becomes more
important and can dictate the final shape of the particle. In applications based on polar molecules
attaching to the nanoparticle surface, the surface morphology can become a key design parameter.
A nucleation and growth model has been constructed for truncated body-centered cubic derivative
materials, along with an update to previously published work on face-centered cubic materials.
The model shows that for (110)- and (111)-truncations of a cube with a specified surface energy
for each surface, the critical nuclei and equilibrium growth shapes are the same, supporting the
theory of self-similar growth that had only been mentioned previously, but never proven. In this
analysis, saddle points play an important role in determining the critical nuclei for comparison
with the equilibrium growth shapes.

I. INTRODUCTION

Nanomaterials research is a growing area that is
important for many diverse applications.1 Solid-state,2

liquid-phase,3 and gas-phase4 nucleation and growth the-
ories are important in understanding nanostructures and
controlling their properties. There is a large literature on
synthesis ! structure ! properties ! performance
relationships in magnetic nanoparticles (MNPs), and the
understanding of MNPs relies on studying the increasingly
important influence of atoms at surfaces and interfaces,
which may contribute differently to properties when
compared with atoms in the bulk material. The theory of
MNP nucleation and growth can make important contri-
butions to the understanding of MNP morphologies and

the resulting properties, which are different from bulk. In
this paper we describe the theory of nucleation and growth
of (100)- and (110)-faceted surfaces observed in body-
centered cubic (BCC) MNPs.
An understanding of the role of surface and interface

structure and crystallography on properties of MNPs is an
important, evolving area. In face-centered cubic (FCC)
derivative nanocrystalline ferrite MNPs, for example,
particle morphologies are observed to be faceted with
identifiable crystallographic surface orientations.5–8 It has
been demonstrated that these crystallographic orientations
lead to distinct magnetic properties for the two different
surfaces.6 The surface morphology is also influential in
microstructural development in grain coarsening during
sintering.9

In BCC FeCo/ferrite core–shell nanoparticles, the core
is faceted and orientation relationships between the metal
core and oxide shell have been determined (the shell can
also be faceted, but only at low thicknesses).10,11 The
surface structure is important in understanding the
oxidation process, and the core–shell morphology and
terminating surfaces control the functionalization of these
materials in a variety of applications.10,12–14

Explanations for the evolution of nanoparticle morphol-
ogies in terms of nucleation and growth models are
important for understanding the role of particle morphology
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on physical properties at different sizes.1 In this paper, we
extend the nucleation and growth models of Ref. 4 to
address the observations of (100) and (110) surfaces in
FeCo MNPs. The theory of self-similar growth for homo-
geneous nucleation is also proven, graphically. While this
has been investigated for heterogeneous nucleation of
precipitates, the homogeneous nucleation of nanoparticles
is a simple concept (yet unaddressed in the literature) that
has been mentioned, but not proven.15–17 An analogous 2D
model can analytically show that the critical nuclei and
equilibrium growth shapes are self-similar, although such
a model has not been presented here.

We have calculated both the critical nuclei and
equilibrium growth shapes of BCC FeCo MNPs with
(100) and/or (110) terminating surfaces by considering
the Helmholtz free energies of perfect and truncated
cubes and rhombic dodecahedra. This model considers
volume and surface energy terms in predicting the critical
nucleus shapes. Equilibrium growth shapes are obtained
by minimizing the total surface energy associated with
(100) and (110) surfaces while constraining the volume to
a constant size. Finally, there is a reanalysis of nucleation
and growth for FCC-type materials4 in light of the BCC
analysis.

II. REQUIREMENTS FOR NUCLEATION AND
EQUILIBRIUM GROWTH SHAPES

In order for a material to nucleate, there is a surface
energy barrier that must be overcome. The creation of
surfaces, which always costs energy, can be considered
an introduction of two-dimensional defects. It is for this
reason that heterogeneous nucleation is often preferred
over homogeneous nucleation, because in heterogeneous
nucleation there is already a surface present which can
assist in reducing the energy barrier to nucleate new
surfaces. Irrespective of the mode of nucleation, the
shape of the critical nuclei can be determined to be the
nuclei shape that has the lowest free energy of formation.
While this has often been thought to be the same as the
equilibrium growth shape (often termed “self-similar
growth”), this has not been proven analytically for
three-dimensional objects.15

Beginning very simply, we can look at the general
equations for traditional nucleation and growth shown
below [Eqs. (1) and (2)].

Nucleation :� VDfv þ+rA ; ð1Þ

Growth :+rA : ð2Þ

The nucleation equation has both a volume energy
term and a surface energy term, while the equilibrium
growth shape only has a surface energy term. The
nucleation equation has a 3rd power volume term, and

a 2nd power surface area term, so we get a traditional
nucleation curve, for which the critical nuclei can be found
by setting the first derivative equal to zero (finding the
critical points), and solving for when the curvature (or
second derivative) is less than zero.

While we use the maximum in the nucleation equation
to give us the critical nuclei and nucleation energy barrier,
we instead find the minimum in energy for the equilibrium
growth shape, minimizing the total surface energy. Since
we are maximizing in one case and minimizing in another,
both with two different equations, it seems reasonable to
assume that the shape of the critical nuclei and equilibrium
growth shapes will be different, which is contrary to what
has been previously stated by Christian and Aaronson.15,18

This assumption is based upon the traditional arguments
using a dimension of the shape, whether that be the radius
of a sphere or the edge length of a polyhedra, in a 2D/3D
system. It is inadequate, however, to compare edge lengths
when dealing with the possibility of different shapes. This
will be expanded upon below, with a three-dimensional
analysis for both {110} and {111} faceting of cubes, but
Fig. 1 shows this graphically for FCC based structures.
When plotting the Helmholtz free energy versus the
equivalent edge length of multiple polyhedra [Fig. 1(a)],
it seems that there is one shape with a minimum nucle-
ation energy barrier (the cube), and another which will
provide the minimum energy growth shape at a certain
edge length (the cuboctahedron). While this is surely
easier to plot, this is misleading and incorrect.

To compare different shapes, we need to compare
equivalent volumes, otherwise the energies we are com-
paring are due to different amounts of atoms attaching to
the nucleus, which will alter the energies being compared.
By comparing volumes, we remove the volume free
energy as a variable and we also change the traditional
shape of the nucleation curves [Fig. 1(b)], but we can
now do both nucleation and growth analyses at the same
time. The minimum energy barrier for nucleation will not
change, since we are only transforming the x-axis
dimensions; we don’t change the maxima in energy, but
only their lateral position with respect to each other. The
size of the critical nucleus doesn’t change, but we are
using the volume to compare the polyhedra to each other.
By comparing volumes, however, we can set a constant
volume and compare the energies for the different shapes,
which is a Wulff Construction, in essence (rather than
removing the volume term from the equation, we are just
making it a constant).19,20 We can now see that the
critical nucleus is not different from the equilibrium
growth shape but will be the same [Fig. 1(b)], since the
curve with the minimum nucleation energy barrier will
always be less than any other curve. This is the origin of
the difference between this model and the old model,4 and
thus constitutes an improved formalism for self-similar
growth.
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Instead of choosing three different polyhedra and
comparing them, it is better to allow any degree of
truncation in a given system (BCC and FCC, in the
current paper), and then calculate critical nuclei and
equilibrium growth shapes. This is done analytically
below, but it is essential to briefly discuss the analysis
before continuing. When considering the nucleation of
spheres, surface energy is made isotropic, and the
calculations only consider critical points in one dimen-
sion (the radius). It is therefore only necessary to find the
maximum in the nucleation curve. When expanding the
two-dimensional graph of energy and shape dimension to
a three-dimensional energy, volume, and truncation
amount graph, the surface maximum is no longer of
interest. The volume axis takes the place of the previous
dimension axis, and the truncation axis allows us to plot
all the possible shapes and their energies at one time,
starting from no truncation to full truncation (for BCC,
cube to rhombic dodecahedron; for FCC, cube to
octahedron). We still need to find the maxima along the
volume axis, finding the critical nucleus at each trunca-
tion ratio. But, while we find the maximum in energy
with increasing particle size, we must find the minimum
in energy with changing truncation parameter. This is
illustrated in Fig. 2, where the two directions of interest
are labeled; edge length is used for this schematic, rather
than volume to demonstrate the concept more easily
through graphical means, and to preserve the shape of
the traditional nucleation curves, but in three-dimensions.
While it is not traditionally considered a critical point,
this analysis needs to look at saddle points as the true
minimum in energy, yielding the true critical nucleus and
equilibrium growth shapes for a given surface energy
ratio between faceting faces.21

The saddle figure shown will not always be the shape
of the energy surface, due to constraints on the system;

the saddle point may occur at the edges of the plot
(i.e., full truncation in either direction). And, in fact, none
of the three-dimensional energy surfaces discussed below
will look like Fig. 2, completely, since the truncation
parameter would need to be plotted logarithmically to
show the features accurately in three-dimensions.

III. THREE-DIMENSIONAL MODELS

A. {110} truncations

An in-depth study on the faceting of {100}- and
{111}-type faces has already been published, looking at
ferrite nanoparticles.4 FeCo nanoparticles, however, are
not based on an FCC crystal structure but rather on
a BCC or BCC-derivative structure. Therefore, the
faceting planes will be of {100}- and {110}-types, since
the {110} planes have the fewest broken bonds; this has
been shown for FeCo polydispersed nanoparticles.10,22

The two basic polyhedra are the cube and the rhombic
dodecahedron, represented by only {100} or {110}
facets, respectively. The truncated cube and truncated
rhombic dodecahedron occupy all shapes in between (see
Fig. 3). Similar to the cuboctahedron in Ref. 4, there is
a polyhedron in the middle of the truncation for which all
the edge lengths are equal. This is termed the truncated
rhombic dodecahedron (not to be confused with the rest
of the truncated shapes leading up to the rhombic
dodecahedron). There is no special name for this poly-
hedron, though, since the faces are all equilateral, but not
regular; the angles of the hexagons are not 120°. This
polyhedron, while similar to a truncated octahedron, has
only two-fold symmetry for the hexagonal {110} faces.

To begin to quantitatively describe these polyhedra, we
need to define dimensions which can describe the area of
the {100} and {110} faces, and the volume of the
polyhedra. Figure 4 shows the convention used in this

FIG. 1. Helmholtz free energy plots for a cube, cuboctahedron, and octahedron when the FCC surface energy ratio, r, is 0.6, plotted against
equivalent edge lengths (a) and equivalent volumes (b).
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paper. By projecting the shapes in 2-dimesions, we can
define x as the edge length of the square, {100} faces, and
y as the distance from the end of a {100} face to the next
{100} face, projected parallel to the original face (y

ffiffiffi
2

p
would be the actual distance along the {110} face). In
Fig. 4, we see the relationship between lengths a, b, and
x, where a is the major length of the rhombic dodecahe-
dron, and b is the truncation parameter parallel to a; x is
the edge length of the emerging {100} faces. Cubic
parameters, x and y, can be defined for the rhombic
dodecahedron, and vice versa, as x ¼ 2b

� ffiffiffi
3

p
and

y ¼ 2a
� ffiffiffi

3
p

.
By combining these different edge-length and trunca-

tion parameters, we can get the areas of the {100} and
{110} faces and the volumes of the truncated polyhedra,
as shown in Table I. As the different polyhedra are
truncated, we will have 6 {100} faces and 12 {110} faces
that contribute to the overall surface energy of the
truncated polyhedra. Because the energy of each face
can be different for different materials, the critical nuclei
for a certain surface energy ratio can be found by varying
the truncation parameters, and the middle equilateral
shape can be found when all edge lengths are equal
(i.e., x 5 a). This middle shape, however, is not
necessarily an equilibrium shape, since that will depend

on the ratio of surface energies. Each of these facets has
a different surface energy which we will call c100 and
c110. The bulk energy (free energy of formation of
a solid), Dfv, is independent of shape, and is therefore
a constant that can be ignored when comparing the
different shape energies. The appropriate equation for
calculating the critical nuclei is the Helmholtz free energy
of nucleation, given below:

DFn ¼ �VDfv þ 6c100 A100 þ 12c110 A110 ; ð3Þ

where all the terms are defined above, and Ahkl is the area
of an (hkl) face, while V is the volume of the polyhedron.
By inputting the equations from Table I, we can get an
equation that can be differentiated to find the critical
dimensions for nucleation of a certain shape. To simplify
these calculations, the free energy of nucleation is
normalized by c110, where DFn9 ¼ DFn=c110 and the
ratio of surface energies that can be varied will be r 5
c100/c110. As confirmed by Swaminathan et al., the
coefficient in front of the volume term, Dfv/c110, can be
set to 1 for simplicity; Dfv for all the shapes will be the
same since they have the same crystal structure, and we
can assume that c110 is a constant with only c100 varying
to produce the different values of r.4 In contrast to the

FIG. 2. Schematic of a saddle point, illustrating their necessity in free energy critical point analyses.

FIG. 3. Three-dimensional polyhedra progression formed from the {110}-truncation of a cube.
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previous work with cubes and octahedra, the equations
shown in Table I are continuous between the two end
shapes, whereas the FCC shapes could only reach the
cuboctahedron (a regular polyhedron) continuously; to
reach the octahedron, the same facet grows but with none
of the original cubic edges remaining. Here, however, no
truncation parameter or equation changes are needed to
evaluate the nuclei and equilibrium growth shapes for
BCC-type polyhedra.

We first proceed to determine the critical nuclei for this
system. Let us consider the case of truncating the cube.
By differentiating the free energy equations with respect
to x, y, a, or b for both the cube and rhombic
dodecahedron and setting these new equations equal to
zero, we can get the critical points (xo, yo, ao, and bo) of
the curves as a function of r [see Eqs. (4) and (5)].

@DFn9

@x
¼ �3x2 � 12xy� 6y2 þ 12rxþ 12

ffiffiffi
2

p
y ¼ 0 ;

ð4Þ

@DFn9

@y
¼ �6x2 � 12xy� 6y2 þ 12

ffiffiffi
2

p
ðxþ yÞ ¼ 0 :

ð5Þ
By solving the system of equations for x and y, the first

derivative analysis yields four solutions in terms of r
(referred to below as “Cases”). Only the nonnegative

solutions of x and y are applicable, since our polyhedra
have to have positive edge lengths. Only the equations
for the truncated cube need to be considered, since the
rhombic dodecahedron equations are the same equations
with substitutions for x and y, and will therefore yield the
same results. The first-derivative solutions are summa-
rized below:

(i) xo 5 0, yo 5 0—trivial case
(ii) xo 5 0, yo ¼ 2

ffiffiffi
2

p
(rhombic dodecahedron)—

nonnegative for all r ranges
(iii) xo ¼ 4

ffiffiffi
2

p � r
� �

, yo ¼ �2
ffiffiffi
2

p � 2r
� �

—nonnegative
for 1

� ffiffiffi
2

p
# r #

ffiffiffi
2

p
(iv) xo ¼ 4

ffiffiffi
2

p � r
� �

, yo ¼ �4
ffiffiffi
2

p � r
� �

—nonnegative
for r ¼ ffiffiffi

2
p

(Trivial).
To understand the nature of these critical points, we

can look to the second derivative using combinations of
xo and yo or ao and bo. The second derivative analysis
relies upon the use of the Hessian matrix [Eq. (6)] and the
following conditions23,24:

(i) If det(H) . 0 and fxx(xo,yo) , 0, then (xo,yo) is
a local maximum

(ii) If det(H) . 0 and fxx(xo,yo) . 0, then (xo,yo) is
a local minimum

(iii) If det(H) , 0, then (xo,yo) is a saddle point
(iv) If det(H) 5 0, then the second derivative test is

inconclusive.
Therefore, a relative maximum in the surface plot

occurs when the determinant of the Hessian matrix is
positive but fxx(xo,yo) or faa(ao,bo) is negative. This
traditionally would give us the critical points we need
to look at and their valid regions of application.

H ¼
@2f
@x2

@2f
@x@y

@2f
@y@x

@2f
@y2

" #
or

@2f
@a2

@2f
@a@b

@2f
@b@a

@2f
@b2

" #
: ð6Þ

Following this logic, the second derivative analysis
shows that there is no solution that satisfies our require-
ments for Case 1. Case 2, however, is applicable when
0 # r #

ffiffiffi
2

p
. This solution does not make conceptual

sense, though, since it says that the rhombic dodecahedron
is the preferred shape even when the (110) surface energy
is infinitely larger than the (100) surface energy. This solution
only makes sense above the equality point for the cube and
rhombic dodecahedron equations, where the rhombic
dodecahedron should be favored. This is found to be at
r 5 0.89, by setting the volumes of the two pure shapes
equal to each other, and finding at what surface energy ratio
the total energies of the pure shapes are equal too. Case 3 is
only applicable when r ¼ ffiffiffi

2
p

, which reduces to Case 2, and
Case 4 has no solution, as expected. The analysis for the
rhombic dodecahedron equations yields the same results,
since the equations are substitutionally the same.

These solutions, however, are not correct, since the
cube is never calculated to be a critical nuclei. Therefore,

FIG. 4. Projections of the three-dimensional polyhedra formed from
the (a) {110}-faceting of a cube and the (b) {100}-faceting of
a rhombic dodecahedron, indicating the appropriate measurement
lengths for the model.

TABLE I. Volume and area calculations for the various crystallo-
graphic facets starting either at the cube or the rhombic dodecahedron.

Trunc. cube Trunc. Rh. Dod.

A100 x2 4=3ð Þb2
A110

ffiffiffi
2

p
xyþ y2

�
2

� �� �
2

ffiffiffi
2

p �
3 2abþ a2ð Þ

VT x3 1 6x2y 1 6y2x 1 2y3 8
�

3
ffiffiffi
3

p� �
b3 þ 6b2aþ 6a2bþ 2a3ð Þ
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it can be assumed that the analysis for this system is not
trivial, and is not analogous to the process described by.4

If the maxima of the x–y plot are found through first and
second derivatives and the appropriate use of the Hessian
matrix, then there is only one maximum that is found at
x 5 0 and y ¼ 2

ffiffiffi
2

p
, even when the surface energy ratio,

r, is 0 (meaning that the c110 energy is infinitely larger
than the c100 surface energy); yet, the cubic critical
nucleus should be found at least at this extreme. So,
further inspection of the curves is needed to understand
the appropriate maxima and minima.

By inspecting the equations further, it is not just
a maximum in the energy space of x–y that should be
considered, but saddle points are also important. A lack
of consideration of the saddle points would cause us to
miss the actual critical nucleus, which is the minimum of
all the nucleation energy barriers. There will always be
a maximum in the nucleation curve for any shape,
yielding a critical nucleus. This maximum can obviously
be found by setting the first derivative equal to zero for
that shape. However, if we change the shape (meaning
the x/a edge-length ratio), we will get a change in the
critical nucleus size and energy barrier. By extending this
to all possibilities in the x–y plane, we essentially get
a series of maxima that line up with each other in polar
arrays, which will keep the truncation ratio the same. So
if we pick a certain angle in the x–y plane, we have
chosen a certain shape and can find the critical nuclei size
for the truncation. In combining all these possibilities,
however, we want to choose the overall minimum energy
barrier to be overcome to nucleate a shape at that desired
surface energy ratio, r. As we change that surface energy
ratio, the minimum will change, but since we are looking
for the minimum in the calculated energy maxima, this
point needs to be a saddle point. This is made especially
evident when the energies of the rhombic dodecahedron
and cube are equal, at r5 0.89. It was concluded in Ref. 4
that it is when the energies are equal that the critical
nucleus switches from cube to octahedron, or in our case
from cube to rhombic dodecahedron. In contrast, this
paper posits that this switch does not happen at a single
point but rather over a range of points. For BCC poly-
hedra, this would be continuous from the cube to the
rhombic dodecahedron. For the FCC polyhedra, with an
intermediate cuboctahedron, there will be two different
transitory regions: one region in between the cube and
cuboctahedron, and then another transition region between
the cuboctahedron and the octahedron. Figure 5 shows the
BCC case where r5 0.89, and therefore the free-energy of
the cube and rhombic dodecahedron are equal. But, as is
shown, the energy can still decrease, and it is a minimum
at an edge length ratio of x/a 5 3.30963.

In choosing the saddle point condition for the Hessian
matrix (det(H) , 0), a different set of critical points can
be found for the transitions between these regions. For

Case 1, the answer is still trivial, although the applicable
range is when 0 # r ,

ffiffiffi
2

p
. For Case 2, the rhombic

dodecahedron is preferred when r >
ffiffiffi
2

p
. For Case 3,

solutions can be found when 1
� ffiffiffi

2
p

# r ,
ffiffiffi
2

p
, which

correspond to variable truncations between the cube and
rhombic dodecahedron; at the upper limit, the shape is the
rhombic dodecahedron, and at the lower limit the shape is
a cube. For Case 4, there are no solutions. The cube is
again never mentioned in the solutions above, however,
this can be correctly understood by looking at the curves
and realizing that the cubic energy minimum is not
necessarily at a point when the first derivative is zero,
since it is an end-point and therefore cannot truly be
evaluated with that requirement; a similar problem exists
for the rhombic dodecahedron. If r # 1

� ffiffiffi
2

p
, then the

critical nuclei are cubes; if r $
ffiffiffi
2

p
, then the critical

nuclei are rhombic dodecahedra. However, if
1
� ffiffiffi

2
p

, r ,
ffiffiffi
2

p
, then it is a truncated shape.

This is the same condition as seen for the equilibrium
growth shapes. The equilibrium growth shapes are de-
termined by a minimization of surface energy, which can
be calculated by a Wulff construction, where the volume
is held constant and only the surface energies are taken
into account. While it initially seems necessary to keep
the growth shape volume above the critical nuclei size,
this is not necessary since the volume only subtracts
a constant from all the equations if it is held constant for
all polyhedra. By keeping the volume constant, we can
see the effect of truncation on the Helmholtz free energy,
as depicted in Fig. 6. The volume is set at 1, and the edge
lengths x and a are varied in the appropriate ratios to
maintain that volume. These curves are almost identical
to those that can be shown for surface to volume ratios as
a function of truncation. Setting the volume free energy
to 1, we can see three regimes of equilibrium growth

FIG. 5. Helmholtz free-energy of the nucleation of a cube, truncated
cube, and rhombic dodecahedron when the surface energy ratio, r, is
0.89, and the free energy of the cube and rhombic dodecahedron are,
therefore, equal.
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shapes with changing r values. At low and high r values,
there is a smooth transition in energy between the cube
and the rhombic dodecahedron truncations, with the
minima lying at the pure shapes in accordance with the
r values reported above. At middle values of r, however,
the minimum lies at some truncated shape. The two
transitions when a truncated critical nucleus becomes and
ends being stable are r ¼ 1

� ffiffiffi
2

p
and r ¼ ffiffiffi

2
p

, again in
accordance with above. Figure 7 shows pictorially the
transition regions for critical nuclei and equilibrium
growth shapes, and the polyhedra that are stable in each
region.

These conclusions agree with the analyses and obser-
vations by Wang et al.,25 Saito et al.,26 and Hayashi
et al.27 In addition, the particles observed by Jones et al.
had similar truncations,11 resembling particles near the
rhombic dodecahedron side of the surface energy ratios
(or ratio of growth speed for different planes, as described
by Wang et al.). While the nanoparticle techniques used
by the former papers produced monodispersed powders
where sizes can be varied, the techniques used by Jones
et al. produced polydispersed powders with a wide
particle size distribution. Those particles produced at
high temperatures yielded primarily rhombic dodecahe-
dra or truncated rhombic dodecahedra, while those
particles produced at room temperature yielded cubes or
truncated cubes. This was attributed by Wang et al. to

growth kinetics at lower temperatures, which overwhelms
the atoms’ ability to form the equilibrium shape due to
limited atomic motion. It should be noted, therefore, that
the morphology of nanoparticles produced during sput-
tering, gas evaporation, and other nonequilibrium techni-
ques can have a kinetic shape instead of an equilibrium
shape. At higher temperatures, however, the atoms have
more ability to find their preferred lattice positions and
truncation amounts since they are not as constrained to
stay in their initial position as determined by the de-
position technique. Plasma torch synthesis, therefore, has
an interesting possibility to produce many varied shapes
and sizes, which depends on where in the argon plasma
they nucleate (determining the temperature of nucleation)
and the distance remaining for them to grow before
reaching temperatures which limit diffusion (determined
by the temperature gradient and the nucleation location).
This was the basis of the shape changes postulated by
Swaminathan et al. for the cube–octahedron cases.4

Those seen by Jones et al., however, all resemble poly-
hedra on the side of the rhombic dodecahedra (pure and
slightly truncated) or are spherical (as also seen by Wang
et al. for the smallest particles).

B. {111} truncations

The cube and octahedron truncations can be analyzed
in the same way, and yield slightly different results from
those reported previously.4 For critical nuclei, it was
previously shown that the transition between the cube
and octahedron occurs at the surface energy ratio of c100/
c111 � 0.95. We can see from Fig. 8 that the free energy
maxima for these two polyhedra are equal, and if we plot
them against volume, both energy curves will be equal.
As can be noted, however, the cuboctahedron has
a maximum that is lower in energy than both of the
assumed critical nuclei; the cuboctahedron, therefore, has
a smaller energy barrier that would need to be overcome
to nucleate. The cuboctahedron is not actually the lowest
energy here, though. The actual preferred shape lies
a little further toward the octahedron side. This again
prompts a new analysis by utilizing saddle points.

The first derivative analysis for the cube and octahedron
truncations is the same as reported previously. In these
analyses, a pure cube is defined by only x and a pure
octahedron is defined by only x1.y and y1 are the truncation
parameters for the cube and octahedron, respectively, and
are parallel to x and x1, extending to the original polyhedra
vertices.4 For the cube the first derivative solutions are:

(i) x 5 0, y 5 0—trivial case
(ii) x ¼ 4

ffiffiffi
3

p � 3r
� �

, y ¼ �2
ffiffiffi
3

p � 3r
� �

—nonnegative
for r ¼ 1

� ffiffiffi
3

p
(Trivial)

(iii) x ¼ 4
ffiffiffi
3

p � 2r
� �

, y ¼ �2
ffiffiffi
3

p � 3r
� �

—nonnega-
tive for 1

� ffiffiffi
3

p
# r #

ffiffiffi
3

p �
2

(iv) x5 4r, y5 0 (cube)—nonnegative for all r (r$ 0).

FIG. 6. A plot of the free energy of nucleation versus truncation
parameter for BCC materials (at constant volume).

FIG. 7. The critical points of the surface energy ratio, r, for both
the critical nuclei and the equilibrium growth shapes of BCC
materials.
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For the octahedron, they are:
(i) x1 5 0, y1 5 0—trivial case
(ii) x1 ¼ 2

ffiffiffi
6

p
, y1 5 0 (octahedron)—nonnegative for

all r
(iii) x1 ¼ �2

ffiffiffi
6

p � 2
ffiffiffi
2

p
r

� �
, y1 ¼ 2

ffiffiffi
6

p � ffiffiffi
2

p
r

� �
—

nonnegative for
ffiffiffi
3

p �
2 # r #

ffiffiffi
3

p
(iv) x1 ¼ �4

ffiffiffi
6

p � ffiffiffi
2

p
r

� �
, y1 ¼ 2

ffiffiffi
6

p � ffiffiffi
2

p
r

� �
—

nonnegative for r ¼ ffiffiffi
3

p
(Trivial).

The second derivative analysis yields different critical
nuclei than those reported by Swaminathan et al. due to the
criterion of saddle points, rather than maxima. For the
cube, we will ignore Case 1, since this does not correspond
to any polyhedra. Case 2 also corresponds to no polyhedra.
Case 3 is applicable when 1

� ffiffiffi
3

p
# r #

ffiffiffi
3

p �
2, and Case

4 is applicable when 0 , r , 1
� ffiffiffi

3
p

. So, for the range of
Case 4 we will get the cube, and for Case 3, we will have
a truncated shape, ending with the cuboctahedron atffiffiffi
3

p �
2. The transition between the cube and truncated

cubes begins at 1
� ffiffiffi

3
p

, which is why neither shape is
solely applicable at that r value.

For the octahedron equations, we will again ignore
Case 1. Case 2 corresponds to an octahedron and is
applicable when r >

ffiffiffi
3

p
. Case 3 is applicable whenffiffiffi

3
p �

2 # r #
ffiffiffi
3

p
, corresponding to truncated octahedra,

and ending with the cuboctahedron at
ffiffiffi
3

p �
2. Case 4 is not

applicable to polyhedra. So, again we see that the
transition between truncated and pure shapes r ¼ ffiffiffi

3
p� �

could correspond to either shape, since that is the
transition point. And, all polyhedra meet at r ¼ ffiffiffi

3
p �

2,
where the cuboctahedron connects the two sets of
equations and truncations. This intermediate shape is only
stable at one point, but is necessary since the truncation
parameters need to change when we get to this Archime-
dean solid. This is not necessary in the {110} case above
since there is no intermediate Archimedian solid.

These answers make more conceptual sense than those
reported previously, where there was an overlapped
region of cube and octahedron critical nuclei. Here,
however, it is well defined that when r is less than
1
� ffiffiffi

3
p

we will have a pure cube nucleate. When r is
between 1

� ffiffiffi
3

p
and

ffiffiffi
3

p
, we will observe continuous

truncation shapes between the cube and octahedron, with
an intermediate cuboctahedron at r ¼ ffiffiffi

3
p �

2. Above
r ¼ ffiffiffi

3
p

, the octahedron will be the critical nucleus (see
Fig. 9). It is comforting to note that the cutoffs for this
system are determined by

ffiffiffi
3

p
, since these are dealing

with truncations with a normal along the cubic body
diagonal, and the previous system was determined byffiffiffi
2

p
, since that system was concerned with truncation

normals along the face diagonals. In both cases, the
equilibrium growth shapes are the same as the critical
nuclei, and when the free energy is plotted against
volume, rather than truncation parameter, this can be
observed. As was noted above, the critical nuclei for
r 5 31/6/21/3 is a truncated octahedra, which is slightly
less truncated than the cuboctahedron. This is in agree-
ment with the second derivative analysis, since 31/6/21/3 is
larger than

ffiffiffi
3

p �
2, which puts it in the truncated octahe-

dron regime.

IV. CONCLUSION

It has been shown that critical nuclei and equilibrium
growth particles have the same polyhedra, and therefore
proceed through self-similar growth, as was previously
postulated but not proven. This verification relies upon
a graphical analysis comparing the volume of shapes,
rather than edge lengths as is normally done when
assuming spherical particles. The analysis of critical nuclei
utilizes saddle points to find the critical edge length
parameters, which combine the search for an energy barrier
(local maximum) for a certain particle shape, with the
finding of the minimum energy barrier by comparing the
nucleation barrier for all possible polyhedra for that crystal
structure. This analysis relies primarily upon the surface
energy ratio, and not any volumetric considerations.

The critical polyhedra proceed continuously from one
pure shape to another pure shape (fully truncated) with
changing surface energy ratio, with no intermediate shape
taking any precedence through the transition. For BCC
polyhedra, this proceeds from a cube (for r #

ffiffiffi
2

p �
2)

FIG. 8. Helmholtz free-energy of nucleation of a cube, cuboctahedron,
and octahedron when the surface energy ratio, r, is c100/c111 5 31/6/21/3

� 0.95.

FIG. 9. The critical points of the surface energy ratio, r, for both
the critical nuclei and the equilibrium growth shapes of FCC
materials.
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through all (110)-truncations (
ffiffiffi
2

p �
2 # r #

ffiffiffi
2

p
) until

the rhombic dodecahedron (r $
ffiffiffi
2

p
). In the case of

FCC polyhedra, the cuboctahedron only holds a transi-
tionary place due to the necessity of changing calculation
parameters, when the original edge lengths no longer
exist. It is, however, just a stopping point for analytical
purposes, and nothing more (even though it is an
Archimedean solid). The FCC solids proceed from cube
(for r #

ffiffiffi
3

p �
3) through all (111)-truncationsffiffiffi

3
p �

3 # r #
ffiffiffi
3

p� �
until the octahedron r $

ffiffiffi
3

p� �
.
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