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8.1 Introduction

8.1.1 General Concepts: Classification of Phase Transformations

This chapter is about diffusional phase transformations. It is appropriate to first define the terms phase
and phase transformation. A phase is a physically distinct homogeneous portion of a thermodynamic
system delineated in space by a bounding surface, called an interphase interface, and distinguished by
its state of aggregation (solid, liquid or gas), crystal structure, composition and/or degree of order. Each
phase in a material system generally exhibits a characteristic set of physical, mechanical and chemical
properties and is, in principle, mechanically separable from the whole.

A phase transformation in a material system occurs when one or more of the phases in a system
changes their state of aggregation, crystal structure, degree of order or composition resulting from
a reconfiguration of the constituent particles (atoms, molecules, ions, electrons, etc.) comprising the
phase. This reconfiguration is a change in the thermodynamic state leading to a more stable condition
described by appropriate thermodynamic potentials such as a decrease in the Gibbs free energy (G) at
constant temperature (T) and pressure (P). Whether describing the freezing of a metal or the onset of
ferromagnetism in iron (Fe), a change in phase is indicated when small changes in relevant thermo-
dynamic variables produce marked changes and sometimes dramatic qualitative changes in the nature
of the system. These changes can occur abruptly (discontinuously) or gradually (continuously) at
critical values of certain thermodynamic variables. The decrease in free energy accompanying the
reconfiguration is often referred to as the thermodynamic “driving force” for the phase change.

In his well-known collected works Gibbs formulated the fundamental conditions for equilibrium of
phases in a thermodynamic system based on a simple principle of mathematics. If a system has a total
of x variables which are related by r equations, the number of independent variables which can be
altered without changing the state of equilibrium is x� r. We call the parameter F¼ x� r the variance or
degrees of freedom of the system. If the state of an individual phase is completely determined by its
temperature, pressure and composition then the total number of variables associated with a system
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composed of P phases is P(Cþ 1) wherein (C� 1) composition variables must be specified to describe
the composition of a phase. If the temperature and pressure are uniform throughout the system and the
chemical potentials of the individual chemical species are equal within the coexisting phases, the
number of equations relating the variables is (P� 1)(Cþ 2); thus, the variance of the system is
F¼ P(Cþ 1) – (P� 1)(Cþ 2)¼ Cþ 2� P. This is the famous Gibbs phase rule which is usually written
as Pþ F¼ Cþ 2. Care must be exercised in properly specifying the number of components C; it is not
always simply the number of elements present in the system. The variance or degrees of freedom can be
understood as the number of thermodynamic variables that can be changed arbitrarily (within limits)
by an experimenter without causing the disappearance of phases or the appearance of new
phases while probing the system. It should be mentioned that if the chemical species are reactive and
there are R independent reaction equilibria among the N species, the variance is then given by
F¼ C� Rþ 2� P. Finally, it should be clear that the phase rule Pþ F¼ Cþ 2 will be altered if other
thermodynamic variables are essential in the description of a phase such as electric and magnetic fields
as well as stress.
8.1.2 Diffusional and Nondiffusional Transformations

Phase transformations in the solid state may be divided into two broad categories: (1) those requiring
the movement of atoms over distances of the order of atomic spacings or greater effected by essentially
stochastic thermally activated jumps down a chemical potential gradient often accompanied by
significant redistribution of solute and composition changes and (2) those whose atoms at the
boundary of the new growing phase are displaced in a synchronous and coordinated fashion, over
fractions of atomic spacings. The former are called diffusional transformations and are the subject of
this chapter. The latter are often called displacive transformations (or sometimes martensitic).
Following Frank, Professor Christian has referred to the former type of transformations as civilian (they
occur with little or no atomic coordination) and the latter as military transformation, since the atomic
motions occur cooperatively and in step with each other.
8.1.3 Replacive and Reconstructive Transformations

Diffusional transformations can be classified as either replacive or reconstructive (Buerger, 1948, 1951).
In the former, the atomic jumps merely rearrange the positions of the species on the underlying lattice
whereas in the latter the new phase that arises generally has a very different crystal structure. Replacive
diffusional transformations are of two types: those in which the solute atoms cluster together to form
a solute-enriched phase and those in which the solute and solvent atoms form an atomically ordered
arrangement which is crystallographically related to the parent phase. (Of course, ordering of the phase
could occur after the clustering step or vice versa. See Section 8.6.3 subsequently.) Replacive trans-
formations may occur with complete coherency between the new phase and its matrix phase. On the
other hand, reconstructive diffusional transformations involve an atom by atom disassembling of the
parent phase and an atom by atom assembling of a new phase. The new phase generally forms with an
interface that is incoherent with that of the matrix. An incoherent interface is one in which there is no
systematic matching of atomic planes at the interface boundary.

Diffusional transformations can differ from each other with respect to their thermodynamic char-
acter, resultant microstructures and kinetics. In the following section we give an overview of such
classifications.
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8.1.4 Discontinuous and Continuous Transformations: Gibbs (1875, 1876, 1877, 1878)

In well-known (but seldom read) papers Gibbs (1875, ff) distinguished between two fundamentally
distinct types of phase transformations, namely those that are initiated by fluctuations that are large in
degree but small in spatial extent and those that are initiated by fluctuations that are small in degree and
relatively large in spatial extent.

(A phase) “.may be capable of continued existence in virtue of properties which prevent the
commencement of discontinuous changes. But a phase which is unstable in regard to continuous changes
is evidently incapable of permanent existence on a large scale except in consequence of passive resis-
tances to change.” (Gibbs, 1875, ff, our emphasis).

Here, Gibbs contrasts changes in what we call today an order parameter, such as the difference in
composition, atomic order or magnetization within a phase, with changes that result in the
formation of an entirely new phase. A single phase may not be able to continuously change via
infinitesimal fluctuations of order parameter, but could change if a large enough fluctuation in the
order parameter were to appear. This kind of transformation is called by Gibbs a discontinuous change
(transformation). This kind of transformation contrasts with continuous changes or transformations.
Continuous transformations require only infinitesimal changes in order parameter to proceed and
initially occur within the existing phase. Discontinuous transformations are those which require large
fluctuations in order parameter and hence they form a new phase clearly distinguishable from the
initially existing one.

Thus, Gibbs introduces two types of phase transformations: those which are initiated by fluctuations
that are small in spatial extent but large in degree (discontinuous) and those which are initiated by
fluctuations that are small in degree but large in spatial extent (continuous).

From the time of this article by Gibbs, until 1956, nearly all research on the initiation of phase
transformations was done in terms of discontinuous transformations, the so-called nucleation and growth
transformations. In 1956, Mats Hillert, working on his graduate degree at MIT, ushered in the spinodal
era by discussing decomposition by a continuous transformation which was later termed by Cahn as
“spinodal decomposition” (Cahn, 1961).

The distinction between continuous and discontinuous transformations includes aspects of ther-
modynamics, kinetics and microstructure. Thermodynamics is included in the use of such terms as
stable and unstable for the phases under consideration. Also, the changes in the thermodynamic
functions may be continuous or discontinuous with the advancement of the transformation. The
kinetics of the two types of transformation are different in the sense that in a continuous trans-
formation there is no sharp change in the kinetics as a function of time, whereas for discontinuous
transformations (those that are diffusional) the reaction often starts off slowly and speeds up with time.
See Section 8.3 subsequently. The microstructural differences are included in the idea of the extent of
the spatial range of the fluctuations. For continuous changes the initiation of the change occurs within
a single phase, that is, there is no sharp interface between two incipient phases. Also it occurs in all
regions of the sample, not just localized regions as in nucleation events.
8.1.5 Homogeneous and Heterogeneous Transformations: Christian (2002)

Another classification of phase transformations has been given by Professor J. W. Christian in his classic
treatise (Christian, 2002). Heterogeneous transformations involve the spatial partitioning of the system
into regions that have transformed and regions which have not transformed. Such regions are separated by
an interphase interface. Homogeneous transformations occur uniformly throughout the entire system
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and the changes occur continuously in time as well as uniformly in space. Therefore, all homogeneous
transformations are continuous according to this viewpoint.

This classification is similar to that of Gibbs discussed earlier. All nucleation and growth processes
are heterogeneous transformations, just as they are discontinuous transformations. It should be noted
that homogeneous nucleation is a heterogeneous transformation. Homogeneous transformations are
continuous.

8.1.6 First- and Higher Order Phase Transitions: Ehrenfest (1933)

In the early 1930s, Ehrenfest (1933) suggested a very useful scheme for distinguishing different types of
phase transformations/transitions based on the behavior of certain thermodynamic variables in the
vicinity of the phase change. The ORDER of a phase transition in this thermodynamic classification is
defined according to the lowest differential/derivative of the relevant thermodynamic potential such as
the Gibbs free energy which is discontinuous. The discontinuous first derivatives of the Gibbs free
energy which define a FIRST-ORDER transition are as follows:
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for which it emerges that the entropy S is discontinuous at the transition temperature Tt and the
phase change occurs isothermally with a discontinuity in H and a so-called latent heat of trans-
formation DHt. It follows from the basic definition of a heat capacity that the heat capacity or
specific heat CP will exhibit an infinite discontinuity at the transition temperature. The following
second derivatives of the free energy are discontinuous at the onset of a SECOND-ORDER
transition: �
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¼ b is the compressibility. Such transitions have no latent heat nor coexistence of

phases at the transition temperature. The specific heat/heat capacity at the transition temperature shows
a finite discontinuity according to the Ehrenfest thermodynamic classification. SECOND-ORDER
transitions are rare in nature: however, the transition from the normal state to the superconducting
state in zero magnetic field is the textbook example of such a transition. The majority of phase changes
in materials are FIRST ORDER but there is a plethora of transitions which are clearly not FIRST ORDER
or SECONDORDER; that is, they are third order or higher. However, in practice, it is extremely difficult
to analyze behavior explicitly associated with these higher order derivatives; thus, we find it useful to
talk about FIRST-ORDER, SECOND-ORDER and HIGHER ORDER transitions (sometimes called l

transitions). All higher order transitions occur without a latent heat similar to second-order behavior
but display markedly different behaviors with respect to their signature discontinuities in CP. The nature
of these singularities is yet to be fully resolved theoretically.

8.1.7 Landau Classification

In Section 2.5 a detailed discussion of the Landau approach and classification of phase transitions will
be presented. In the Landau method the free energy is written as a Taylor series expansion with respect
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to one or more order parameters which characterize the system and from this analysis two distinct types
of transformation behavior become evident: those in which the curvature of the free energy of the high-
temperature phase becomes zero at the transition temperature TC and negative immediately below and
those for which the curvature is positive at the transition temperature but may become negative at
temperatures well below the equilibrium transition temperature. The former are identical to the second-
order (continuous) transitions of Ehrenfest whereas the latter are the same as first-order (discontin-
uous) transitions discussed earlier. Far below the equilibrium transition TC the first-order transition
may exhibit thermodynamic (and kinetic) behavior associated with a continuous transformation under
these nonequilibrium conditions since at a temperature T�

i < TC the curvature of the free energy
functional of the disordered phase becomes negative rendering the disordered state unstable. The
temperature T�

i is an instability temperature and it should be noted that for second-order
transitions TC¼ T�

i .

8.1.8 Summary

This chapter deals with solid-state transformations in which atomic diffusion plays a major role. In
this brief introductory summary we have distinguished between transformations that are continuous
and homogeneous and those which are discontinuous and heterogeneous in nature. More details of
these transformation modes will be discussed in the following sections. All second/higher order
transitions are expected to proceed continuously and homogeneously. All first-order transitions
might be expected to occur discontinuously and heterogeneously at and in the vicinity of the
equilibrium transition temperature. However, well below the equilibrium transition temperature the
intrinsically first-order transition can occur continuously and homogeneously under these
nonequilibrium conditions.
8.2 Energetics

In the thermodynamics of phase stability the Gibbs free energy is of major importance and utility. This
thermodynamic state function generally defined by

G ¼ Eþ PV � TS ¼ H � TS (1)

provides a tool for evaluating the relative stability of competing phases and quantitatively evalu-
ating the thermodynamic “driving forces” for phase transformations as a function of relevant
thermodynamic parameters such as temperature (T), pressure (P), composition (X) and, in some
instances, can be generalized to include applied electric and/or magnetic fields. The internal energy
(E) and entropy (S) of a phase can often provide a direct connection with factors relating to atomic
structure and interatomic interactions. Initially, we will restrict ourselves to G¼G(T,P,X). If
G(T,P,X) is known then virtually all the thermodynamic properties of a material system can be
deduced, in principle, from familiar derivatives of the Gibbs free energy and related quantities. For
this reason the free energy is often called the characteristic function of the system. (The Helmholtz
free energy F¼ E� TS differs from the Gibbs free energy by the familiar PV term which is only
significant at relatively high pressures in the case of condensed phases). At constant T and P systems
tend to evolve toward a state of lower free energy and stable equilibrium is characterized by
a minimum in the free energy functional. Of course, local minima in the free energy of the system
can occur, producing metastable states.
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8.2.1 Allotropic/Polymorphic Transformations

One can write the Gibbs free energy of a solid crystalline phase a as

GaðT; PÞ ¼ GaðT0; P0Þ þ
ZP
P0

VadP þ
ZT
T0

SadT (2)

using the thermodynamic identities,
�
vGa

vP

�
T
¼ Va and

�
vGa

vT

�
P
¼ �Sa where Va and Sa are the molar

volume and entropy of the a phase, respectively; both molar quantities generally are a function of T and
P. Ga (T0, P0) is the free energy of the a phase in some arbitrary reference state defined by T0 and P0. This
free energy functional can be used to calculate a free energy surface in the thermodynamic space G(T.P)
for the a phase and similarly for the vapor and liquid phases as well as an alternative solid phase b.
These free energy surfaces intersect and that portion of each surface which represents the lowest free
energy corresponds to the stable phase in a particular P–T range. The intersection of these surfaces
produces two or more phases in equilibrium shown in the familiar P–T diagram such as the coexistence
of a liquid and solid phase over a range of temperature and pressure along the melting curve.
See Figure 1.

Along this curve/line in the P–T the free energy of the solid phase GS¼GL, that is, the molar
free energies of the solid and liquid phases are equal. Thus, dGS¼ dGL for any movement along the
melting curve giving dGS¼ VSdP� SSdT¼ VLdP� SLdT¼ dGL resulting in the well-known Clapeyron
equation

dP
dT

¼ SL � SS

VL � VS (3)
P = 1 atm

T → Tt

Mel�ng

curve

Tm

L

Vapor

Triple
point

Tc

β

Figure 1 Schematic Pressure–Temperature phase diagram of a material displaying two allotropic solid phases. Tt is the
transition temperature from the low-temperature a phase to the higher temperature b phase and Tm is the melting point
of b at P¼ 1 atm.
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where (SL� SS) is the entropy of melting (fusion) and for any point on the curve can be written as

DSS/L ¼ DHS/L

Tm
(4)

where DHS/L is the latent heat of melting (fusion) at the melting point Tm; The quantity (VL� VS)
is the volume change DVS/L accompanying the phase change. Clearly, the slope of the melting
curve is determined by the relative molar volumes or densities of the liquid and solid phases along
the coexistence curve. A similar analysis can be applied to the line representing two-phase equi-
librium between allotropic or polymorphic modifications in the P� T diagram as discussed
subsequently as well to the sublimation and vaporization curves giving rise to the Clausius–
Clapeyron equation.

If we restrict our discussion to isobaric conditions, say P¼ 1 atm, we can write the Gibbs free energy
of a phase as a function of temperature as follows:

GðTÞ ¼ HðTÞ � TSðTÞ ¼ H0 þ
ZT
0

CPdT � T
ZT
0

CP

T
dT (5)

or
T2 T 3
GðTÞ ¼ H0 �
Z
0

4Z
0

CP

T
dT5dT

using the thermodynamic relationship (vG/vT)¼ –S with H0 essentially an integration constant.
Of course, H0 is the enthalpy of the phase at T¼ 0 K which for a solid phase is related to the cohesive
energy recalling that Hz E for condensed phases. It is evident that various contributions to the heat
capacity or specific heat play a central role in determining the variation of the free energy of a phase with
temperature and thus the relative stability of the phases of the system.

Many materials including a number of important pure metals can exist in different stable
crystalline forms at different temperatures and pressures. This phenomenon is called polymorphism
or allotropy and the various crystalline forms are called polymorphs or allotropes. When the
substances are pure elements (Ti, Zr, Sn, Fe, C) the terms allotropy and allotropes are preferred
whereas when referring to compounds (SiO2, ZrO2, TiO2, BN) the terms polymorphism and
polymorphs are more appropriate. Allotropic and polymorphic transformations are important in
a wide variety of engineering materials but, of course, from a technological point of view the
occurrence of allotropy in iron (Fe) is most prominent giving rise to the eutectoid reaction in
Fe–C–X alloys which is the basis for the heat treatment of engineering steels. Our discussion of
allotropy/polymorphism will deal primarily with pure metals but we shall arrive at a number of
important general conclusions.

Let us start our thermodynamic analysis of allotropy with a metal like zirconium (Zr) which is rather
straightforward compared with iron (Fe) which will be addressed subsequently because magnetic
effects are essentially absent in Zr. At one atmosphere pressure (P¼ 1 atm), pure Zr exhibits a stable hcp
(a) structure from 0–1143 K and transforms to a bcc structure (b) which is stable from 1143 K to its
melting point at 2125 K. The heat of transformation DHa/b

t is 1040 cal mol�1 and the heat of fusion
DHf is approximately 4900 cal mol�1. These latent heats are characteristic of the first-order nature of the
a/ b and b/ L transformations. In this one-component system the a, b and L phases are essentially
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Figure 2 Schematic of the energy vs. atomic separation for an assembly of atoms showing a minimum in the energy
at r0, the equilibrium spacing. This curve is the result of long-range attractive interactions and short-range repulsive
interactions.
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the thermodynamically “competing” phases; we shall focus our attention on the relative stability of
the solid a (hcp) and b (bcc) phases. Using the foregoing results for the free energies of the solid phases
we write

GaðTÞ ¼ Ha
0 þ

ZT
0

Ca
P dT � T

ZT
0

Ca
P

T
dT (6)

and

GbðTÞ ¼ Hb
0 þ

ZT
0

Cb
P dT � T

ZT
0

Cb
P

T
dT (7)

for the a and b allotropes, respectively. The lead terms are the enthalpies Ha
0zEa0 and Hb

0zEb0 at
0 K of these phases and are related to the cohesive energy of the solids. Imagine that the atoms
of the metal are placed on the lattice sites of a bcc lattice with a lattice spacing that is so large
that the atoms do not interact. If the lattice spacing is then progressively reduced to the order of
the size of the atoms themselves, the energy of the assembly will vary essentially like that shown
in Figure 2 and a minimum will appear in the energy versus interatomic spacing which will
determine the equilibrium spacing of the crystal in the bcc arrangement; similarly, for the hcp
structure. In general, the nature of the energy versus spacing curve is determined by long-range
attractive and short-range repulsive interactions and can often be described by an expression of
the form

EðrÞ ¼ �A
rn

þ B
rm

(8)

where r is a interatomic spacing and A, B, m and n (m> n) are constants; E(r) is the change in energy
relative to the noninteracting assembly. The minimum in the curve E(r¼ r0)¼ EC is approximately the
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cohesive energy of the solid related to the energy required to vaporize the solid into its constituent
atoms. The energy of the solid at T¼ 0 K given earlier also includes a zero point vibrational energy, thus

E0 ¼ EC þ EVIB0

where E0 is a composite term of the cohesive energy term (negative) and the zero point vibrational
energy (positive). The cohesive energy of zirconium is approximately 125–150 kcal mol�1 and the zero
point vibrational energy is estimated to be less than one percent the cohesive or binding energy.

When considering the thermodynamics of allotropy in a metal like Zr, it is clear from the foregoing
formulation of the free energies of the a and b phases that the heat capacity of a particular phase is
critical in determining the variation of its free energy with temperature. The heat capacity of a solid
phase, in general, can be considered to be composed of three parts: CL

P the so-called lattice heat capacity
associated with the thermal vibrations of the constituent atoms or ions about their equilibrium posi-
tions, Ce

P the electronic heat capacity arising from thermal excitation of free or conduction electrons in
the vicinity of the Fermi level of a metallic solid and Cm

P the magnetic contribution associated with
disordering or decoupling of electron spins in ferromagnetic or antiferromagnetic solids. Thus, the total
heat capacity of the a and b phases can be written as

CP ¼ CL
P þ Ce

P þ Cm
P

with the different components varying in a manner specific to the phase in question (a or b). In
a paramagnetic metal such as zirconium (Zr), the magnetic contribution to the heat capacity or free
energy is considered to be negligible ðCm

P ¼ 0Þ.
For our purposes, the lattice or vibrational component of the heat capacity is adequately described by

the Debye theory of the specific heat or heat capacity. Theoretical approaches to the vibrational heat
capacity generally calculate CV rather than CP but they are readily related through the thermodynamic
relationship

CP � CV ¼ a2VT
b

where a is the coefficient of thermal expansion, b the compressibility and V the molar volume, and to
a good approximation can be written as

CP ¼ CV
�
1þ 10�4 T

�
cal deg�1 mol�1:

According to the Debye theory the expression for the lattice heat capacity CL
V as a function of

temperature is given as follows

CL
V ¼ 9R

�
T
qD

�3 Zxm
0

x4ex

ðex � 1Þ2 dx (9)

where x ¼ hn
kBT

and xm ¼ hnmax

kBT
where n is a vibrational frequency and nmax is the “cut-off” frequency or

maximum vibrational frequency in the vibrational or phonon spectrum of the normal modes char-

acterizing the solid; the parameter qD ¼ hnmax

kB
is called the Debye characteristic temperature and h, kB



Figure 3 (a) Lattice heat capacity, CV as a function of the temperature for different materials with different Debye temper-
atures. For Pb, qD¼ 88 K; Ag, qD¼ 215 K, Al, qD¼ 385 K and Diamond, qD¼w2000 K. (b). Master lattice heat capacity
curve. After Smallman (1963).
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and R have their usual meanings. This integral cannot be evaluated analytically; however, extensive

tables have been computed numerically for CL
V as a function of

T
qD

. Also, values of the Debye energy,

entropy and free energy have been compiled as a function of
T
qD

. Figure 3a and b shows the Debye heat

capacity as a function of the temperature for different materials with different Debye temperatures and

versus reduced temperature,
T
qD

. When plotted as a function of
T
qD

the data essentially lie on a master

curve in this approximation. At low temperatures T< 0.02 qD, the lattice heat capacity is to a very good
approximation given by

CL
V ¼ 234R

�
T
qD

�3

(10)

in agreement with experiment. This T3 law is a major triumph of the Debye theory. At high temperatures
CL
V approaches the classical Dulong–Petit limit of 3R. Note that at the Debye temperature, CL

V essen-
tially reaches the classical limit (about 0.96 the value of 3R). Also, it is readily shown that the zero point

vibrational energy in the Debye approximation is given by
9RqD
8

.

The Debye frequency nmax¼ nD (w1012 to 1014 s�1) and the Debye temperature qD ¼ hnD
kB

are related

to the strength of the bonding and the elastic properties of the solid. If one thinks roughly in terms of
the atoms of atomic mass m being coupled by springs of stiffness l, the characteristic vibrational

frequency might be expected to vary as
�
l

m

�1=2

. Carbon, which is elastically stiff and composed of

relatively light atoms, has a Debye temperature of about 1860 K whereas lead is soft and heavy with
a Debye temperature of 102 K. We will see that the Debye temperatures of different allotropic forms can



Figure 4 Schematic diagram showing the variation of G, H and –TS as a function of temperature for the a, b and liquid
phases in a system exhibiting an allotropic phase change at T¼ Tt. After Smallman (1963).
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play a central role in the relative stability of phases. The Debye temperatures for the allotropes of Zr are
approximately qD (hcp)¼ 260 K and qD (bcc)¼ 212 K.

The electronic contribution to the heat capacity for a metallic solid deriving from thermal excitation
of the conduction electrons is predicted from the quantum theory of solids to be dependent on the
density of states near the Fermi level and given by Ce

V ¼ GT where G is a constant and for most metals is
typically about 10�3 to 10�4 cal deg�2 mol�1. Transition metals generally show somewhat higher
values because of their relatively high density of states. For example, G for Cu and Ag is about
1.5� 10�4 whereas for g-Fe and a-Fe, G is 8� 10�4 and 12� 10�4, respectively. For zirconium
(Zr; 4 d2 5 s2), Ga(hcp) is 7.1� 10�4 and Gb(bcc) is 4.4� 10�4 cal deg�2 mol�1. It should be clear that
the electronic contribution is expected to be important only at very low and very high temperatures.

With the thermodynamic machinery and data described briefly here it is possible to plot the
energies (E, H), entropies (S) and free energies (G) of the a and b phases as a function of temperature
as shown schematically in Figure 4. The thermodynamic properties of the liquid phase can also be
computed (the heat capacity of the liquid phase is approximately CP¼ 8.0 cal mol�1 deg�1). The
reader is reminded that the slopes of the free energy curves are directly related to the entropies of the

competing phases, Sa, Sb and SL through the thermodynamic identity
�
vG
vT

�
P
¼ �S. It is left to the

reader to show how one can estimate the cohesive energy of the b phase in the thermodynamic
analysis described earlier.

This thermodynamic analysis of phase stability and allotropy in zirconium (Zr) leads to some very
important general conclusions. At low temperatures the more close-packed (hcp) a phase with stronger
bonding (greater cohesive energy) tends to be favored because of the relative importance of the energy
and entropic terms in the expression for the free energy G¼ Eþ PV� TS. The more open (bcc) b phase
with higher internal energy is the phase of higher vibrational entropy as the temperature is increased.
This is made clear by examining Figure 5a where the relative heat capacities of the bcc (b) and hcp (a)
phases are shown schematically. The heat capacity of the more weakly bonded b phase with its lower



(a) (b)

Figure 5 (a) Schematic showing relative lattice heat capacities and Debye temperatures for a (hcp) and b (bcc) allotropes in
metals such as titanium (Ti) and Zirconium (Zr). (b) Schematic of the relative heat capacities of gray tin (qD¼ 260 K) and white
tin (qD ¼ 212 K)
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characteristic temperature qD (and lower nD) lies above that of the more strongly bonded a phase
(higher qD and nD) as they approach the Dulong–Petit limit. The leads to a higher entropy of the b phase
eventually stabilizing it as its steeper G versus T curve falls below that of the a phase at high temper-
atures. Indeed, in many cases, the structure (in metals and nonmetals) of closest packing is favored at
low T and a more open structure, one with weaker bonding and greater vibrational entropy, becomes
stable at high T. See Th, Ti, Sr, Hf, Tl, Li, Na as well as NaCl-type to CsCl-type transformations.
Importantly, these general conclusions cannot be applied in such a straightforward manner when
directional bonding and magnetic effects become major considerations.

An interesting case in this regard is allotropy in tin (Sn) where at one atmosphere pressure (P¼ 1 atm)
below about 286 K this element is stable in a diamond cubic structure called gray Sn (a) and above this
transition temperature the stable form is ordinary Sn (b) possessing the usual metallic properties and
exhibiting a body-centered tetragonal structure. The gray Sn is quite brittle and is a semiconductor. The
densities of these two allotropes are quite different with r(a) and r(b) being about 5.75 g cm�3 and
7.28 g cm�3, respectively; therefore, there is a large volume expansion (approximately 27%) accom-
panying the b/ a transformation. This large volume expansion renders the transformation very slug-
gish. Importantly, the lower density diamond cubic form has a Debye temperature qD(a)¼ 230 K
compared with qD(b)¼ 200 K for the higher density metallic white Sn. See Figure 5b. The gray Sn with
a coordination z¼ 4 is more strongly bonded than the white Sn z¼ 6; the nearest-neighbor distance in
the directionally bonded diamond cubic structure is 0.280 nm compared with 0.302 nm in the metallic

bct phase with space group I
41
a
md. The metallic phase is the phase which is stabilized by the vibrational

entropy above 286 K. The difference in bonding is of central importance here.
The allotropic behavior of iron (Fe) is of paramount importance not only because of its techno-

logical significancedit might be said to essentially form the basis of an entire industrial and techno-
logical eradbut also because it represents a most important example of where magnetic contributions
to the free energy have a profound effect on the stability of the competing phases. At one atmosphere
pressure, Fe is stable as a body-centered cubic (bcc) structure from 0 K to about 1183 K where it



Figure 6 Schematic of the heat capacities of the competing phases in Fe at 1 atm pressure. After Haasen (2001). Note the
peak of the g phase heat capacity at low temperature represents its Neel temperature.
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transforms to a face-centered cubic (g) allotrope which is stable to approximately 1673 K wherein it
reverts back to a stable bcc (d) structure before melting at about 1808 K.

Zener (1955) was one of the first to attempt rigorously to understand the allotropy of Fe in terms of
the physical properties and behavior of the solid phases emphasizing the importance of magnetism
(Cm

P ). Weiss and Tauer (1956) refined these ideas emphasizing the division of the heat capacity
explicitly into lattice (CL

P), electronic (C
e
P) and magnetic (Cm

P ) components as discussed earlier. Figure 6
shows a representation of the heat capacities of the competing phases in Fe at one atmosphere pressure.
These authors then took the existing data and calculated the thermodynamic properties (H,S and G) of
the a(bcc) and g(fcc) phases. (Of course, the high temperature d(bcc) phase is the reemergence ther-
modynamically of the a phase.) This was followed by an elaborated analysis by Kaufman et al. (1963)
emphasizing a more rigorous description of the magnetic properties, particularly of the suggested low-
temperature magnetic properties of the g(fcc). These two works represent the seminal approaches to the
subject. At low temperatures where entropy effects are expected to be less important, the ferromagnetic
a(bcc) is the phase of lowest internal energy, the magnetic ordering lowers the energy by zRTC
(z2000 cal mol�1), where TC is the Curie temperature (1141 K) of the ferromagnetic phase, but as the
temperature increases a magnetic transition (w50–80 K) occurs in the competing g(fcc) phase asso-
ciated with the antiferromagnetic/ paramagnetic state at an Néel temperature TN or a Schottky-like
two-level (high-spin/low-spin) specific heat anomaly. This magnetic effect in the g(fcc) imparts
significant entropy to the phase and the –TS term in the free energy stabilizes the g(fcc) phase with
respect to the magnetically ordered ferromagnetic bcc phase above 1183 K (this effect dominates
differences in Debye temperature or electronic contributions to the heat capacity). However, between
about 775 and 1141 K disordering of the spins in the ferromagnetic state leads to a ferromagne-
tic/ paramagnetic transition in the a-Fe and this increased magnetic entropy stabilizes the a phase
with respect to the g phase at elevated temperatures to the melting point. The thermodynamic results
are summarized schematically in the Gibbs free energy versus temperature curves depicted in Figure 7.
Importantly, it is the magnetic disordering or Schottky-like anomaly in the g phase at low temperatures
which is postulated to give rise to a stable fcc allotrope over a restricted temperature range and if it were
not for this transition the g phase would not appear. The range of stability of g-Fe is determined by
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Figure 7 Schematic of the free energies of a and g iron vs. temperature showing the return of a at higher temperature.
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a delicate balance of relatively large contributions to the thermodynamics of the phases and the
maximum value of (Ga�Gg) is only about 15 cal mol�1; thus, it is not surprising that alloying
elements can selectively stabilize the a and g phases as is well known in ferrous physical metallurgy.
More recent investigators (Massalski and Laughlin, 2009) have focused on elucidating and amplifying
these conclusions with the latter discussing the old “b-iron” controversy and the definition of a phase
and phase transition. Finally, the T� P for Fe is shown in Figure 8 showing that allotropic phase
Figure 8 Schematic plot of the temperature vs. pressure phase diagram of iron. Note that at low pressure only the a,g,d and
liquid phases are stable, whereas at high pressures ε (hcp) becomes a stable phase.
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changes can be induced in the system by pressure as exemplified by the appearance of ε-Fe at high
pressures.
8.2.2 Thermodynamics of Alloys: Energetics and Stability of Solutions

The Gibbs free energy of an alloy phase at constant temperature (T) and pressure (P) can be written as

G0 ¼
Xn
i

mini (11)

where G0 is the extensive free energy and ni is the number of moles of species i contained in the phase
and mi is the chemical potential of species i in solution defined by

mi ¼
�
vG0

vni

�
T;P;nj

(12)

wherein mi is also called the partial molar free energy Gi. This fundamental definition applies to
substitutional and interstitial solute elements in crystalline phases. From basic solution thermody-
namics the chemical potential of a species in solution also can be written as

miðT; PÞ ¼ m0i ðT; PÞ þ RT ln ai (13)

where m0i ðT; PÞ is the chemical potential in a specified standard state (e.g. the free energy per mole of
pure i at the given T and P) and ai is the activity of the species i in solution. The chemical potential or
partial molar free energy defined above can be understood as the free energy per mole of species i
contributed to the total free energy of a solution of given composition or as the change in free energy
when one mole of i is added to a large quantity of solution at constant composition. Partial molar
quantities related to the enthalpy ðHiÞ and entropy ðSiÞ can be defined in a similar fashion and we can
write Gi ¼ Hi � TSi.

In multicomponent and polyphase systems we will find it convenient to write the free energy of
a solution as a molar quantity, that is, Ga is taken to be the free energy per mole of the a phase and
given by
GaðT; PÞ ¼ G
�
T;P;Xa

A;X
a
B ;. Xa

M

�
(14)

with Xa
M referring to the mole fractions of the components A, B, .M, wherein

PM
i
Xa
M ¼ 1, that is, only

M� 1 mole fractions specifying the composition of a phase are independent. Thus, at constant T and P,

Ga ¼ Xa
Am

a
A þ Xa

Bm
a
B þ. (15)

A binary or two-component system A–B can be described thermodynamically by Ga (T,P,X) where X
is the mole fraction of B in the a phase, and at constant T and P we can write

Ga ¼ ð1� XÞmaA þ XmaB (16)

In a multicomponent polyphase system composed of a, b, g, . phases, the criterion for chemical
equilibrium is that mai ¼ m

b
i ¼ m

g
i ¼. for all components i¼ 1,2,., C across the system. (Note that the
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number of components may be less than the number of species in systems exhibiting ionic or covalent
bonding.) For two phases a and b in thermodynamic equilibrium in a binary system (C¼ 2), maA ¼ m

b
A

and maB ¼ m
b
B. A material system is composed of C components when (C� 1) composition variables are

required to describe a phase.
The activity of a chemical species introduced in Eqn (13) is more rigorously defined as the ratio of

fugacities ai ¼ fi
f 0i
where fi is the fugacity of the species in solution and f 0i is the fugacity in a specified

standard state such as the pure component at a given temperature (T) and total pressure (P). In this case,
the activity of the pure substance is taken as unity. The fugacity fi of component i is, to a good
approximation, equal to the partial vapor pressure pi of i over the solution. Thus, the activity of

component i can be written as ai ¼ pi
p0i

where p0i is the vapor pressure of pure i. Other standard states can

be invoked for convenience such as the infinitely dilute solution of species i. An ideal solution is defined
by setting ai¼ Xi (Raoult’s law) where Xi is the mole fraction or atomic fraction of i in solution, as
discussed earlier. Thus, for an ideal solution

mi � m0i ¼ RT ln Xi (17)

at constant total pressure P. Generally, solutions are not ideal and the deviation from ideal behavior is
taken into account by writing ai¼ giXi where gi is called the activity coefficient. Dilute solutions often
obey Henry’s law and gi¼ go¼ constant over a restricted composition range. The deviation from
ideality expressed by gi can be greater or less than unity depending on the atomic interactions of the
various species in solution, as will be discussed subsequently.

Let us consider forming a binary liquid or solid solution by dissolving B in A and consider the
energetics of this process or reaction, namely,

AðpureÞ þ BðpureÞ/ðA;BÞsolution
The free energy change accompanying the formation of the solution is called the free energy of

mixing, DGM¼DHM� TDSM, where DHM is the heat (enthalpy) of mixing and DSM is the entropy of
mixing. In this brief review of the thermodynamics of alloys we will make extensive use of an approach
often called graphical thermodynamics (Gibbs, 1873), particularly the use of free energy–composition
diagrams in numerous contexts. Figure 9 shows schematically the free energy per mole of solution, G,
as a function of composition, X, for a binary system exhibiting complete solubility in the liquid and/or
solid state. The prominent dashed line shows the free energy of a mechanical mixture of the compo-
nents A and B as a function of composition and the free energy of mixing, DGM, is indicated graphically
with respect to the mixture of the components. The free energy per mole of solution can be written as

G ¼ ð1� XÞGA þ XGB þ DGM (18)

where GA¼ m0A and GB¼ m0B are the free energies per mole of the pure components A and B, respectively,
and DGM is the change in the free energy on mixing.

For an ideal solution,

DGid
M ¼ RTfð1� XÞlnð1� XÞ þ X ln Xg (19)

whereas, in general, DGM can be expressed as

DGM ¼ RTfð1� XÞln aA þ X ln aBg ¼ RT
��

1� X
��
mA � m0A

�þ X
�
mB � m0B

��
(20)



Figure 9 Free energy vs. composition curve of a binary system showing the chemical potentials of the A and B components in
the alloy phase as well as those in their pure state.

Diffusional Phase Transformations in the Solid State 867
or

DGM ¼ RTfð1� XÞln gA þ X ln gBg þ RTfð1� XÞlnð1� XÞ þ X ln Xg (21)

It is readily shown that if the solute of a dilute solution obeys Henry’s law (aB¼ g0XB), then the
solvent obeys Raoult’s law (aA¼ XA) using the Gibbs–Duhem equation (1� X)dmAþ XdmB¼ 0 which
stems from the property that the Gibbs free energy is homogeneous function of first order. Writing
G¼ (1� X)mAþ XmB for a binary solution and differentiating with respect to X and employing the
Gibbs–Duhem relation leads to two very important relations widely used in the graphical thermody-
namics of solutions:

mA ¼ G� X
dG
dX

(22)

and

mB ¼ Gþ ð1� XÞ dG
dX

(23)

as shown in Figure 9. We shall see that this provides a basis for the common tangent construction which
illustrates graphically chemical equilibrium in phase mixtures. If the binary A–B phase represented by
the G vs. X in Figure 9 is a solid phase then clearly the stable components A and B have the same crystal
structure.

If we employ a DGM vs. X curve to denote the energetics of the solid solutions, the intercepts
represent relative partial molar quantities mA � m0A and mB � m0B. See Figure 10. Since

DGM ¼ DHM � TDSM (24)

one can write the heat of mixing as

DHM ¼ ð1� XÞ�HA �H0
A

�þ X
�
HB �H0

B

�
(25)



Figure 10 (a) DG of mixing plot for a binary solution. (b) Plot showing DG, DH and DS of mixing of the solution phase.
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whereHA and HB are the partial molar enthalpies of A and B in solution;H0
A andH0

B are the enthalpies
of pure A and B per mole, respectively. Here we extend our definition of an ideal solution wherein

DHM ¼ 0 and DSM ¼ DSidM ¼ �R½ð1� XÞlnð1� XÞ þ X ln X� (26)

The later of which is called the ideal entropy (configurational) of mixing, calculated using
elementary statistical thermodynamics applied to the random placement of the A and B atoms on the
lattice sites. The ideal entropy of mixing has a maximum value of 1.38 cal mol�1 at X¼ 0.5 and is
symmetric about this value. A reference state or solution model for the energetics of the A–B solution is
the regular solution wherein DHm is taken to be non-zero and DSM¼DSidM (which has a built-in
contradiction as discussed subsequently).

If the energetics of the solid solution are modeled in terms of short-range pairwise interactions or
interatomic bonds between the A and B atoms on the lattice sites (assuming in the zeroth approxi-
mation interactions between first nearest-neighbors only (see Figure 11) described by bond energies
EAA, EBB and EAB (taken to be negative), then assuming random occupation of the N lattice sites
(N¼NAþNB, NA and NB being the number of A and B atoms, respectively) one finds that the heat of
mixing DHm can be written in a straightforward manner as

DHM ¼ ðnAAEAA þ nBBEBB þ nABEABÞ �N
z
2
½ð1� XÞEAA þ XEBB� (27)

where nAA; nBB and nAB are the number of A–A, B–B and A–B bonds in a random solid solution
(statistical distribution) and z is the first nearest-neighbor coordination of a lattice site. Clearly, the first
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Figure 11 Schematic showing A–A, B–B and A–B first nearest-neighbor bonds.
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term represents the enthalpy/energy of the solution and the second term is the enthalpy/energy of
a mechanical mixture of the pure components. Importantly, it can be shown that DHM can also be
expressed as

DHM ¼ NzXð1� XÞ
�
EAB � ðEAA þ EBBÞ

2

	
¼ NzXð1� XÞV (28)

indicating that if DHM> 0 (V> 0) A–A and B–B bonds are favored (there is a tendency for the atoms to
surround themselves with like nearest-neighbors or clustering; if DHM< 0(V< 0), A–B first nearest-
neighbor bonds are favored indicating a tendency for ordering.

At high temperatures the configurational entropy will tend to produce a random distribution of
the species in solution; however, as the temperature is lowered the mutual interactions of the A and
B atoms will give rise to clustering (DHM> 0) or ordering (DHM< 0) effects referred to earlier. In
the case of DHM> 0 the atomic interactions can lead to the appearance of a miscibility gap and
phase separation below a temperature critical TC as shown in Figure 12a. In the simple regular

solution model developed here, TC ¼ 2
DHM

R
(at X¼ 0.5). The two-phase field derives from the

appearance of a double-well free energy G(X)¼H(X)� TS(X) versus composition (X) curve
depicted in Figure 12b showing a common tangent construction establishing chemical equilibrium
between two phases a1 and a2 having different compositions but the same crystal structures. We call

attention to the two inflection points
�
vG2

vX2 ¼ 0
�

in the G(X) vs. X curve since it can be shown that

supersaturated solutions lying between these points where
vG2

vX2 < 0 are thermodynamically unstable

with respect to diffusional processes leading to phase separation. Supersaturated solutions on the

G(X) vs. X curve where
vG2

vX2 > 0 between the inflection points (the so-called chemical spinodes) and

the equilibrium compositions are metastable with respect to phase separation. Small composition
fluctuations in a metastable solution tend to decay because they entail a local increase in free energy
whereas fluctuations in unstable solutions will tend to amplify spontaneously (see the chord
construction in Figure 12c) and lead to phase separation. Furthermore, the diffusion coefficient in



Figure 12 (a) Symmetric miscibility gap of an A–B alloy. (b) Free energy vs. composition curve of the alloy shown in (a) at
temperature T2. (c) Free energy vs. temperature curve for an alloy with an asymmetric miscibility gap, displaying by the cord
construction the stability at 1 and instability at 2.
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a binary system is proportional to
vG2

vX2 which indicates that diffusive flow will occur up the

concentration gradient (uphill diffusion) leading to spontaneous unmixing in thermodynamically
unstable supersaturated solid solutions. This diffusional instability is often referred to as spinodal
decomposition of the supersaturated state.

For the simple case of a miscibility gap let us explore further the properties of the G(X) vs. X curve
and introduce the concept of the overall “thermodynamic driving force” for a precipitation reaction
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within a metastable supersaturated solid solution, that is, the free energy change DGTotal for the phase
reaction:

a0ðX0Þ/a1
�
Xa1
e

�þ a2
�
Xa2
e

�
(29)

wherein the supersaturated a0 phase of composition X0 quenched from temperature T1 to T2 decomposes
or phase separates within the miscibility gap into an equilibrium phase mixture of phases a1 and a2 of
compositions Xa1

e and Xa2
e , respectively, the relative proportions given by the lever rule. Within the

graphical thermodynamics of Figure 12b the decrease in the free energy accompanying phase separation
can be shown to be the segment –ST (free energy change per mole of solution a0) where S is a point on the
tangent to theG vs. X curve at X0 and T is the point on the common tangent at the overall composition X0.
However, during the initial stages of formation of the two-phase mixture in a supersaturated matrix of
composition X0 (nucleation), the formation of a small region of composition XN (nucleus) is accom-
panied by a release of free energy per mole of the nucleus indicated by �PQ in Figure 13. The matrix is
effectively infinite in extent with respect to a small fluctuation and acts as a chemical potential reservoir,
that is, the small fluctuation forming a potential nucleus occurs without disturbing the matrix compo-
sition or chemical potential. The free energy change (per mole of the nucleus or embryo)�PQ is given by

DG ¼ XN
mNB � mMB
�þ �1� XN�
mNA � mMA

�
(30)
Figure 13 Free energy vs. composition diagram of an alloy with a miscibility gap, showing the driving force (PQ) for the
nucleation of B-enriched phase from an alloy of composition X0. XM is the composition of the initial nuclei.



Figure 14 Free energy vs. composition diagram of an alloy with a and b phases of different crystal structure, showing the
driving force for the nucleation of b phase from an alloy of composition X0. See text.
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where mNB and mNA refer to the chemical potentials of B and A in the nucleus/embryo of composition XN

and mMB and mMA refer to the chemical potentials of B and A in the matrix of composition X0. The free
energy release is the “effective” thermodynamic driving force for the formation of a nucleus/embryo of
second phase of composition XN within the supersaturated matrix. It should be noted that a fluctuation
beyond Rwhere the tangent to the free energy vs. composition (G vs. X) curve at the matrix composition
intersects the G vs. X curve is needed to release free energy; smaller fluctuations than R actually increase
the free energy locally and tend to decay.

Two-phase equilibrium between phases of different crystal structures is depicted in Figure 14 using
the graphical thermodynamic representation and common tangent construction. The common tangent
construction establishes the equilibrium compositions of the conjugate phases Xa

e and Xb
e and the

equality of the chemical potentials maA ¼ m
b
A and maB ¼ m

b
B. If a solid solution a of composition Xa¼ X0 is

rapidly cooled/quenched from to T3 to produce a supersaturated state a0, there is an overall thermo-
dynamic driving force DGTotal (per mole of solution) for the precipitation reaction:

a0ðX0Þ/ae
�
Xa
e

�þ be
�
Xb
e

�
(31)

which is the free energy release accompanying the formation of the equilibrium two-phase mixture as
discussed earlier and represented graphically by �S0T0 in the associated G vs. X diagram. Again the
segment �P0Q0 is the effective driving force or free energy released per mole of a small b nucleus or
embryo of composition XN which might form during the initial stages of precipitation (as above) and
P00Q00 is the free energy released if the nucleus/embryo has the composition Xb

e .
Assuming Henry’s law is obeyed by the solute (X) and that Raoult’s law is obeyed by the solvent, the

expression for the overall free energy change (DGTotal; see Figure 14) for the precipitation reaction

a0/ae þ be
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can readily be shown to be

DGTotal ¼ RT

"
Xa ln

Xa
e

Xa
þ ð1� XaÞln

�
1� Xa

e

�
ð1� XaÞ

#
(32)

However, the free energy released per mole of a b nucleus of the equilibrium composition Xb
e

(�P00Q00) is shown to be

DGN ¼ RT

"
Xb
e ln

Xa
e

Xa
þ �1� Xb

e

�
ln

�
1� Xa

e

�
ð1� XaÞ

#
(33)

If the b nucleus is dilute in A, ð1� Xb
e Þz0 and thus the effective driving force governing the

formation of a b nucleus can be approximated by

DGN ¼ �RT ln
Xa

Xa
e
¼ �RT lnðSSÞ (34)

where SS is the supersaturation of the a0 matrix.
It should be pointed out that in an in-depth treatment of the nucleation problem in supersaturated

solid solutions DGN is related to the important parameter DGV which is the free energy released per unit
volume of the nucleus or embryo and given by DGV¼DGN/VN where VN (Vb) is the molar volume of
the nucleus.

8.2.2.1 Coherent Phase Equilibria
The effect of elastic stress on phase equilibria in coherent multiphase systems represents an important
but complex problem in the thermodynamics of solids. Cahn (1962b) in his seminal work on spinodal
decomposition clearly showed the major influence that stress and elastic misfit can have on thermo-
dynamic stability and microstructural evolution in cubic crystals leading to the concept of a coherent
spinodal and a fundamental understanding of the occurrence of crystallographically alignedmodulated
structures in spinodally decomposing systems. Importantly, he recognized that the thermodynamics of
stressed solids had not been addressed rigorously and essentially represented an inadequately solved
problem in phase equilibria. Larche and Cahn (1973) and Robin (1974) in the early 1970s revealed
that to describe the thermodynamics of coherent phase equilibria some fundamentally new questions
had to be addressed and some basic concepts modified to properly describe the nature of the conjugate
phases comprising metastable phase mixtures with elastic strain energy as a major contribution to the
free energy of the system. Williams (1980, 1984) addressed the problem in a rather straightforward
manner combining elasticity and solution thermodynamics applying his analysis to basic free ener-
gy–composition schemes showing clearly that the elastic energy of coherent phase mixtures can lead to
novel and sometimes subtle changes in our thermodynamic description of heterogeneous phase
equilibria. For example, two-phase fields are found to contract markedly and sometimes disappear
completely as well as showing discontinuities in volume fraction as phase boundaries are crossed.
Furthermore, the study of coherent phase equilibria has shown that thermodynamic equilibrium
within a phase does not require the uniformity of the individual chemical potentials of the components
but a constant so-called diffusion potential related to the difference in chemical potentials mA – mB. One
also finds the equilibrium compositions of the metastable phases can be greater or less than the
compositions of the unconstrained incoherent phases. This pioneering work mentioned earlier was
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followed by rigorous generalized treatments of the thermodynamics of elastically stressed crystals
exemplified by the work of Voorhees and Johnson (2004), Pfeifer and Voorhees (1991), Johnson and
Voorhees (1987), Johnson and Mueller (1991) and Ardell and Maheshwari (1995). A perusal of this
literature shows that many of the results are strongly dependent upon the model used to represent the
two-phase mixture, boundary conditions and assumptions regarding the variation of lattice parameters
with composition in the conjugate phases. Khachaturyan in his classic treatise (1978) and subsequent
work (1983) has developed a formalism emphasizing the central role of elastic energy in phase
transformations occurring in the solid state.

For pedagogical reasons let us look at some relatively simple analyses which illustrate many of
the salient and novel effects alluded to above. Essentially following Williams (1980, 1984),
consider two cubic phases a and b with lattice parameters aa and ab within an incoherent two-phase
state which are isotropically strained to have identical lattice parameters in a coherent metastable
phase mixture; the lattice parameters are assumed composition independent. In this first approxi-
mation the compositions of the metastable conjugate phases remain the same as the unstressed
equilibrium compositions established by the common tangent construction. The total free energy of
the coherent phase mixture is written as a sum of the chemical free energies of the a and b phases in
the unstressed state plus an elastic coherency strain energy which is a quadratic function of both the
misfit strain and the volume fraction of the b phase. These free energies are shown graphically in
Figure 15a. The nonlinear elastic term extends from point A to B passing through the intersection
points X0 and X00. Clearly a two-phase mixture is only stable between X0 and X00 but the lever rule is
applied to compositions A and B in this case. The elastic energy has contracted the extent of the
coherent two-phase field compared with the incoherent equilibrium state and results in disconti-
nuities in the metastable volume fractions of a and b phases as the compositions X0 and X00 are
crossed. If the elastic energy curve rises above the point W the metastable two-phase region
disappears. This point W is called the Williams point. A more general case is shown in Figure 15b
which allows for a composition dependence of the lattice parameters and a variation in the
compositions of the metastable coherent conjugate phases. The metastable coherent two-phase field
is contracted to the region between X0 and X00 and the metastable phases are X0

a and X0
b, respectively;

the lever rule is applied using these compositions. (Note: the morphology assumed has been
a random array of spheres.)

The case of a miscibility gap can be addressed applying the same methodology. Allowing the
lattice parameters of the conjugate phases to vary linearly with composition and assuming
constant elastic properties yields a modified suppressed miscibility gap similar to result in the
earlier work of Cahn (1962b). See Figure 15c. Here the metastable equilibrium compositions of
the phases in the coherent state are delineated by the tangency of the elastic energy curve to the
free energy–composition curve.

8.2.2.2 Magnetism:Phase Equilibria and Phase Diagrams
In our discussion of the allotropy of iron (Fe) we called attention to the critical role of magnetism
(ferromagnetism and antiferromagnetism) in the relative stability of phases and cited early seminal
papers on the subject. Here we wish to briefly examine a general approach to describing the contri-
bution of magnetic effects to the heat capacity or specific heat specifically related to the occurrence of
ferromagnetism in metals and alloys due primarily to Hillert and Jarl (1978) and extended by Inden
(1976, 1981). Although the exact nature of the singularity of the heat capacity Cmag

P in the vicinity of the
higher order ferromagnetic/ paramagnetic transition is yet to be resolved theoretically, Inden intro-
duced an accurate semiempirical operational description of the magnetic contribution to the heat



Figure 15 (a) Free energy–composition scheme showing superposition of elastic energy extending from A to B wherein the
compositions of the conjugate phases remain the same as in the unstressed state. The coherent two-phase field has contracted
to X 0–X 00 but the lever rule is applied to the compositions A and B of the conjugate phases. The point W where the coherent
two-phase field would disappear is called the Williams point. (b) More general case of coherent two-phase equilibrium where
the compositions of the conjugate phases are changed to A 0 and B 0 and the two-phase field has contracted to X 0–X 00 with the
lever rule applied to compositions A0 and B 0. (c) Coherent two-phase equilibrium with attendant elastic energy applied to
a miscibility gap.
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capacity or specific heat taking into account the thermal disruption of both the LRO and SRO of the
spins associated with the phase transition which is written as

Cmag
P ðLROÞ ¼ KLROR ln

�
1þ s3

1� s3

�
for s ¼ T

TC
� 1: (35)



Figure 16 (a) Schematic phase diagram showing the intersection of a line of critical points (Curie temperature) with a simple
miscibility gap delineating different magnetic phases aP, a0P , a

00
P and aF. (b) A line of critical points in a binary phase diagram

showing the emergence of a tricritical point and two-phase region.
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and

Cmag
P ðSROÞ ¼ KSROR ln

�
1þ s�5

1� s�5

�
for s � 1 (36)

where TC is the Curie temperature with KLRO and KSRO being two constants characterizing the ferro-
magnetic and paramagnetic states, respectively. With several simplifications and the aid of series
expansions the magnetic contribution to the free energy can be approximated by

Gmag ¼ RTf ðs; pÞln ðbþ 1Þ (37)

where f (s. p) is a complex function of s and includes a parameter p which is a constant defined as the
fraction of the total spin disordering enthalpy absorbed above the Curie temperature (destruction of
short-range order/SRO) and is given as p¼ .28 for fcc metals and 0.40 for bcc metals; b is the average
magnetic moment (Bohr magnetons) of the atoms comprising the system. To effectively apply this
formalism to alloys the salient parameters must be carefully evaluated as a function of composition.
This remains an important and challenging problem in alloy physics and computational thermody-
namics (Lukas et al., 2007).

Meijering (1963a) analyzed the interaction of a line of higher order transition such as a Curie
temperature locus within a binary phase diagram with a miscibility gap as shown in Figure 16a. The
magnetic transition can significantly distort the shape of the miscibility gap compared with the usual
topology but also can markedly distort the associated spinodal curve. Later Nishizawa et al. (1979)
discussed similar effects specifically in ferromagnetic a–Fe systems including the technologically
important Fe–Cr system. Later Inden (1981 and 1982) analyzed the general behavior of second-/higher
order lines in binary phase diagrams including atomic ordering. An important feature of the analysis is
that a higher order line can terminate at a sharp critical point (tricritical point) within the interior of the
binary diagram giving rise to a two-phase region, for example equilibrium between ferromagnetic and
paramagnetic phases of different compositions in a two-phase region. See Figure 16b.

8.2.3 Metastability

A phenomenon of major importance in the thermodynamics and kinetics of phase transformations,
particularly in the area of precipitation from supersaturated solid solution, is the formation of
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Figure 17 Free energy vs. composition curve of an alloy that has a and b as equilibrium phases at the temperature shown,
but also has a metastable phase g0. The compositions of the stable and metastable equilibria are shown.
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metastable phases in the phase reaction in preference to the nucleation and growth of the thermody-
namically stable precipitate. Indeed, in the heat treatment of age hardening alloys we find that the
decomposition of the supersaturated state often proceeds through a series of metastable states before
the emergence of the stable equilibrium precipitate and the optimum physical and mechanical prop-
erties invariably develop in association with the formation of fine-scale metastable precipitates within
the parent matrix. We will see subsequently that this occurs as a result of favorable nucleation kinetics
despite the fact that the thermodynamic driving forces discussed earlier are greatest for the formation of
the equilibrium second phase. In Figure 17 we show a rather straightforward graphical representation
of a competing g0 phase that can form in a supersaturated a0 establishing a metastable equilibrium
phase mixture composed of a0 and g0; stable equilibrium is the aþ b two-phase mixture. The meta-
stable equilibrium gives rise to a metastable solvus shown in Figure 18 deriving from a metastable
common tangent construction with respect to the g0 phase. We see that the metastable g0 phase has
a greater solubility in the a phase than the equilibrium precipitate. Furthermore, it is clear from the
graphical thermodynamics that the overall driving force DGTotal is less for the phase reaction
a0/ a0 þ g0 than for the formation of the stable equilibrium phase mixture aþ b. Also, it can be
shown by graphical thermodynamic construction that the “effective driving force” for nucleation of the
b is greater than that for the nucleation of the metastable phase, g0.

8.2.3.1 Eutectoid Decomposition
An important solid-state transformation in alloys is the case of eutectoid decomposition which has
played a central role in governing the heat treatment of engineering steels. Also the proeutectoid
reaction (a precipitation reaction) has been engineered to tailor the microstructure of hypoeutectiod
compositions to achieve extraordinary combinations of properties (strength, ductility, etc.) for
a wide range of technological applications. The eutectoid reaction per se is associated with a phase
diagram configuration as shown in Figure 19 and can be written generally as g/ aþ b, that is,
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Figure 18 A simple eutectic phase diagram of a binary A–B alloy. The dotted line represents the metastable solvus line for the
metastable g0 solid phase.

Figure 19 A simple eutectoid phase diagram for the alloy A–B. On cooling, the g phase transforms to a and b at the invariant
temperature.
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a high-temperature g phase decomposes into two phases a and b having different crystal structures. A
schematic free energy–composition diagram for the eutectoid decomposition of an undercooled g

phase of eutectoid composition XE at some temperature below the equilibrium eutectoid reaction
isotherm is depicted in Figure 20 where DG¼DGTotal for the eutectoid reaction is given by SE. The
eutectoid reaction involves a codeposition of two phases often exhibiting a characteristic morphology.
The eutectoid microconstituent in carbon and low-alloy steels generally exhibits a classic lamellar
morphology similar to that arising in eutectic freezing and this mode of transformation is often called
cellular phase separation as will be discussed later.

An interesting feature of the free energy scheme depicted in Figure 20 is that a g composition of S0
can lower its free energy by transforming to a metastable a0 phase without a change in composition.
This alternative reaction path can involve either of two transformation mechanisms, namely, the well-
known diffusionless martensitic transformation or diffusional massive transformation. The free energy
change S0E0 is the thermodynamic driving force for these compositionally invariant transformation



Figure 20 Free energy vs. composition curves for the three phases a, b and g at the temperature T 0.
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modes. The martensitic transformation involves a characteristic distortion or strain which converts the
parent phase (g) to the product phase (a0) often at very high velocities. The atoms within the unit cell of
the parent phase generally move small distances relative to the unit cell dimensions essentially shearing
from one crystal structure to another in the absence of thermally activated atomic jumps of individual
atoms but rather involving a cooperative or synchronous shearing of groups of atoms. The massive
transformation on the other hand occurs by a diffusional nucleation and growth mechanism involving
short-range thermally activated and uncorrelated atomic jumps across a migrating transformation front
or interphase interface (Massalski, 1958, 1970).

8.2.4 Atomic Ordering in Alloys: Superlattices

Solid solution formation is a basic phenomenon in modern physical metallurgy and materials science.
The introduction of different atomic species onto the sites of a crystalline solid to form an alloy gives
rise to a structural modification which can markedly influence the properties of the metallic material.
(Note: the solute may enter the solid solution interstitially or substitutionally; in this discourse we will
focus our attention on atomic arrangements in subtitutional solid solutions.)

The mixing of atomic species on the sites of a solid solution may not be random even under
equilibrium conditions, that is, the probability of a pair of sites being occupied by specific atoms is not
simply equal to the probability obtained by multiplying their respective atomic fractions. These
nonrandom distributions of atomic species derive from different interatomic interactions between, say,
A–A, B–B and A–B pairs of atoms in a binary solution. Indeed, randomness is the exception rather than
the rule in real alloy systems. When the A and B atoms in a binary alloy have a preference for like atoms,
that is, A–A and B–B pairings, the behavior is termed clustering. If the energetics of the solution favor
unlike A–B pairings, the deviation from randomness is called ordering. If the preference for A–B pairs
persists only over a few to several interatomic distances, the solid solution is said to exhibit short-range
order (SRO); whereas, if these correlations persist over large distances compared with the unit cell
dimensions, the ordering is denoted long-range order (LRO) and the crystal structure and atomic
arrangements can be described in terms of interpenetrating sublattices occupied preferentially by A and
B atoms creating an ordered solid solution or superlattice. See Figure 21. In this figure the gray atoms
represent average occupancy by white and black atoms: that is, the disordered binary phase.



(a) (b) (c)

(d) (e)

Figure 21 Disordered atomic structures and ordered atomic structures. (a) A1 (fcc, Cu), (b) L12 (Cu3Au), (c) L10 (CuAu), (d)
A2 (bcc, W), (e) B2 (CsCl).
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These superlattices tend to form in the vicinity of stoichiometric ratios, for example, A3B, AB, and
are often referred to as intermetallic compounds, particularly when the ordered phase melts
congruently or when the intermediate solid solution exists over a narrow composition range. We are
going to be most interested in ordered (LRO) solid solutions which become disordered at elevated
temperatures, that is, the LRO breaks down above a critical temperature but some SROmay persist. In
the ordered state, the degree of LRO is not necessarily perfect, but is disrupted by thermal energy
(temperature) and deviations from stoichiometry. Subsequently we shall quantify the description of
the degree of order in a solid solution, but before doing this let us look briefly at the history of this
phenomenon.

Tammann (1919) suggested that LRO could develop in a substitutional metallic solid solution.
Earlier work by Kurnakow et al. (1916) indicated intriguing behavior in Cu–Au alloys of properties
such as electrical resistivity in the vicinity of Cu3Au and CuAu compositions, depending on the thermal
treatment of these alloys. Bain (1923) and Johannson and Linde (1925) first reported “superlattice
diffraction lines” in X-ray powder diffraction patterns. Indeed, because new periodicities appear in the
structure of the ordered solution compared with the “disordered” parent phase, new “reflections”
appear in the diffraction pattern. For example, in the A3B superlattice viewed as a crystallographic
derivative of a parent disordered FCC solid solution wherein the atomic sites are statistically occupied by
“average” atoms, the distance between identical planes is doubled along the h100i directions as a result
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of the atomic or chemical ordering. New superlattice lines appear as a result of the new and larger
d-spacings. The disordered FCC solid solution is properly viewed as a crystal based on an FCC Bravais
lattice with the basis being a “statistical” or “average atom” occupying the points of the Bravais lattice.
The A3B (L12) superlattice is a crystal structure based on the simple cubic Bravais lattice with an A3B
arrangement decorating the lattice points. See Figures 21 a, b. Importantly, this change in Bravais lattice
constitutes a thermodynamic phase change or phase transformation.

These exciting new ideas and results percolated in the 1920s and stimulated a great deal of theoretical
attention. In the 1930s a truly classic paper by Bragg and Williams (1934) appeared based on a rather
simple statistical thermodynamic approach defining the underlying energetics of the solid solution in
terms of an ordering energy related to the work done,W, in interchanging A and B atoms in an ordered
structure from “right” sites to “wrong” sites among the sublattice sites characterizing the superlattice.
They introduced an LRO parameter based on the occupancy of the appropriate sublattices and
formulated the underlying energetics of the solution in terms of an ordering energy due to unspecified
long-range forces acting on the individual atoms, the strength of which is proportional to the degree of
atomic order; the (configurational) entropy of the ordered solution was formulated assuming random
mixing of the different atomic species on the aforementioned sublattices of the emerging ordered
structure. Importantly, the original Bragg–Williams theory makes no explicit use of short-range forces or
pairwise interaction energies as incorporated later in the so-called quasichemical approaches.
The assumption of random mixing on the sublattices fails to account for any local correlations or SRO.
The degree of ordering is defined solely in terms an occupancy of the sublattices or the LRO parameter
defined explicitly below. However, as we shall see the Bragg–Williams approach captured salient
features of the ordering transformation in AB (CuZn) and A3B (Cu3Au) compositions in cubic solid
solutions and is referred to as the zeroth approximation in the scheme of quasichemical descriptions,
which generally write the solution energetics in terms of AA, BB and AB bond energies (pairwise
interaction energies) (Bethe, 1935; Guggenheim, 1952). Indeed, the original Bragg–Williams formu-
lation of the problem is found to be basically equivalent to a quasichemical approach incorporating AA,
BB and AB bond energies in its underlying physics when the assumption of random mixing on the
sublattices (regular solution) is invoked and is essentially homologous to the Weiss molecular field
theory of ferromagnetism (Weiss, 1907). In the modern parlance of cluster variation methods (CVM),
Bragg–Williams theory is a point cluster approximation (de Fontaine, 1973). The quasichemical
approach of Bethe, emphasizing pairs of atom is a mean field theory in which pairs are immersed in
a mean field in contrast to the Bragg–Williams formulation wherein single atomic species are effectively
immersed in the background of the mean field derived from an “average” environment.

The Bragg–Williams theory introduces an LRO parameter based on occupancy of the appropriate
sublattices, A atoms on a sublattice sites, B atoms on b sublattice sites (“right” sites) and B atoms on
a sites, A atoms on b sites (“wrong” sites), and so on. We first will examine the equiatomic AB alloy
undergoing the A2(bcc)/ B2(sc) ordering transition. See Figure 21d and e. The degree of LRO is
formulated quantitatively most generally as

h ¼ ðra � XAÞ
Yb

¼
�
rb � XB

�
Ya

(38)

where ra is the fraction of a-sites occupied by A atoms (“right” atoms) and rb is the fraction of
b-sites occupied by B atoms (“right” atoms); Ya is the fraction of a-sites and Yb is the fraction of
b-sites in the ordered superstructure, respectively. XA and XB are the atomic fractions of A and B in
the alloy. This expression for h is applicable to stoichiometric and nonstoichiometric compositions
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and has a maximum value of unity in the perfectly ordered stoichiometric alloy. Clearly for non-
stoichiometric compositions the maximum possible value is less than one. Using this description
the order parameter varies from h¼ 0 in the disordered state (random solid solution) to h¼ 1 in the
perfectly ordered state and most importantly the intensities of the “superlattice reflections” in
diffraction patterns are generally found to vary as h2 for both stoichiometric and nonstoichiometric
compositions.

As mentioned earlier, the Bragg–Williams ordering energy or interchange energy is assumed to be
related to the work done, W, in interchanging A and B atoms in the ordered structure from “right”
sites to “wrong” sites among the sublattice sites characterizing the superlattice or superstructure. In
this theory the interchange energy is assumed to be linearly related to the degree of order in the
emerging superlattice as W¼ hW0 where W0 is the interchange energy when the alloy exhibits
a state of perfect order (h¼ 1). An expression for the equilibrium degree of order h as a function of
temperature was developed in terms of a simple kinetic equation describing the atomic transfer
between sublattice sites (atomic transfer from “right” sites to “wrong” sites and the reverse); the
forward and back reaction rates were set equal at equilibrium. The ratio of the rate constants

(equilibrium constant) was set equal to a Boltzmann-like term exp
�
� W
kBT


, where W¼ hW0 and kB

is the familiar Boltzmann constant in accord with basic chemical thermodynamics. When the
solution energetics are written in terms of AA, BB and AB nearest-neighbor bond energies
(EAA, EBB and EAB) the interchange energy term W0 is readily shown to be equal to
W0¼�z(2EAB� EAA� EBB) where z is the nearest-neighbor coordination. When 2EAB< EAAþ EBB
unlike pairs are favored, that is, the system tends to show ordering. This Bragg–Williams formu-
lation gives the variation of h with temperature as

ln
�
1 � h

1 þ h

�
¼ �W0h

2kBT
(39)

or,

h ¼ tanh
�
W0h

4kBT

�
(40)

which can be solved numerically. See Figure 22.
The results for the A2/ B2 disorder–order show a continuous change in the degree of order from

h¼ 1 at low temperatures to h¼ 0 at the critical temperature TC, which can be shown to be given by

TC ¼ W0

4kB
. There is no latent heat associated with the phase transition and thermodynamic analysis

reveals a finite discontinuity in the specific heat or heat capacity (Cv or CP) at the critical temperature TC
as depicted in Figure 23.

This behavior shows all the earmarks of an Ehrenfest transition of Second Order (Ehrenfest, 1933).
The Bragg–Williams theory does describe, at least qualitatively, the general behavior of systems such as
CuZn (b-brass); however, the experimental results in terms of the behavior of the specific heat in the
vicinity of the critical temperature are more complex. The neglect of local correlations (SRO) is clearly a
major shortcoming of this zeroth approximation wherein SRO is found to persist even above TC.
See Figure 24. Indeed, a complete solution to this singularity has not yet been achieved. See Pippard
(1966).



Figure 22 The order parameter vs. temperature plot for a Bragg–Williams second-order transition. Note the infinite slope as
T approaches TC. After Nix and Shockley (1938).
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If the solution thermodynamics are formulated in terms of pairwise interaction energies for the A–B
binary alloy assuming randommixing on the sublattices, the free energy of mixing of the ordering alloy
can be written as

FM ¼ EM � TSM ¼ NzV

�
cð1� cÞ þ h2

4

�
� kBT ln u (41)
CV

TC

Temperature,

Figure 23 Plot of heat capacity vs. temperature for a Bragg–Williams second-order transition. Note the finite discontinuity at
the critical temperature.



Figure 24 Variation of CP vs. temperature plot for CuZn. Notice that the shape looks like the Greek letter lamda. This curve is
different than that predicted by the Bragg–Williams treatment. After Nix and Shockley (1938).
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where N is the total number of atoms in the alloy, z¼ z1¼ 8 is the coordination number of the first
nearest-neighbor shell for the B2 structure, c is atomic fraction of B atoms,

V ¼ 1
2

�
2E1AB � E1AA � E1BB

�
;

where the superscripts refer specifically to first or nearest-neighbor (n–n) interactions (later we will
generalize the Bragg–Williams model to include 2nd n–n interactions), and kBln u is the configura-
tional entropy term (the vibrational entropy contribution is neglected). The u term is the number of
possible arrangements or microstates corresponding to thermodynamically equivalent macrostates or
distributions of A and B atoms on the sites of the sublattices (thermodynamic probability). The
configurational entropy derived assuming random mixing on the sublattices can be written as

SM ¼ kB ln u ¼ kB ln

�
N
2

�
!

�
N
2

�
!

�
Na

A

�
!
�
Na

B

�
!
�
Nb

A


!
�
Nb

B


!

(42)

where Na
A and Na

B are the number of A and B atoms on the a sites and Nb
A and Nb

B are the number of
A and B atoms on the b sites, respectively. Using the usual Stirling’s approximation, and counting the
number of AA, BB and AB bonds in terms of the concentration c and the sublattice occupancies, the free
energy of mixing can be written as a function of c and h as follows:

FMðc; hÞ ¼ Nz1V

�
cð1� cÞ þ h2

4

�
þNkBT

2

n�
1� c þ h

2


ln
�
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þ
�
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�
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�
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ln
�
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2


þ
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�
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o
(43)



Diffusional Phase Transformations in the Solid State 885
the first term being the heat of mixing Hm¼Nz1V c (1� c) associated with forming a disordered solid
solution of A and B atoms statistically occupying the sites of a bcc solid solution and V< 0 for the

ordering system. Taking
vFM
vh

¼ 0 and
v2FM
v2h

¼ 0 yields h ¼ tan h

�
� 4Vh

kBT

�
and TC ¼ �4V

kB
, consis-

tent with the classic Bragg–Williams results outlined earlier.
The Bragg–Williams approach or zeroth approximation of the quasichemical models can readily be

extended to the case of A1(fcc)/ A3B (L12, sc) ordering where

FM ¼ Nz1V

�
cð1� cÞ þ h2

16

�
� kBT ln u. (44)�

3N
�
!

�
N
�
!

with SM ¼ kB ln
4 4

ðNa
AÞ!ðNa

BÞ!
with the a and b sublattices for the A3B superstructure shown in Fig-

ure 21b. The expanded entropy term becomes

SM ¼ �NkB
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(45)

Taking
vFM
vh

¼ 0 yields the equilibrium value of the order parameter h for the A3B composition as

a function of temperature given by the transcendental equation as follows:

ln

 
ð1þ 3hÞð3þ hÞ

3ð1� hÞ2
!

¼ �2z1Vh
3kBT

(46)

For FM¼ FM(h,T) there exists a critical temperature TC such that FM(h*,TC)¼ FM(0,TC) with
vFMðh�; TCÞ

vh
¼ vFMð0; TCÞ

vh
¼ 0. At the critical temperature TC, one finds by successive approximation,

h*¼ 0.463 and the critical temperature approximately given by TC ¼ � 0:137z1V
kB

. The variation of h

with temperature is depicted in Figure 25 and clearly displays a markedly different behavior than the
A2/ B2 transition. At the critical temperature TC the order parameter h undergoes a discontinuous
change from h¼ h* to h¼ 0 and represents an equilibrium between an ordered phase (h¼ h*) and
a disordered phase (h¼ 0) with an associated latent heat DHt given approximately by 0.78
TC cal�1 mol�1 (Nix and Shockley, 1938). These thermodynamic features indicate a first-order transi-
tion according to the Ehrenfest classification.

The Bragg–Williams approximation does predict a first-order transition for the A1/ A3B (L12)
ordering in agreement with experiment, but the quantitative limitations are strikingly evident when one
compares the value of h*¼ 0.463 with the generally observed values of 0.7–0.8. Higher level theoretical
approximations, for example cluster methods, predict values nearer 0.9. Furthermore, the more
rigorous theoretical treatments predict lower critical temperatures by as much 50% (Christian, 2002).

As demonstrated earlier, the Bragg–Williams model captures essential features of AB and A3B
ordering (the B2 and L12 superstructures being crystallographic derivatives of bcc and fcc parent
phases, respectively) showing the occurrence of two-phase equilibrium between a disordered phase



Figure 25 The Bragg–Williams LRO parameter vs. temperature plot for the fcc to L12 transition. The discontinuity at the
critical temperature signals that this is a first-order (Ehrenfest) transition. After Nix and Shockley (1938).
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(h¼ 0) and an imperfectly ordered phase (0< h< 0) at T¼ TC for the L12 ordering but no such two-
phase equilibrium for the B2 ordering occurs which shows a continuous transition from h¼ 1 to
h¼ 0 at TC. The phase transitions are identified as first-order and second order according to the well-
known Ehrenfest criteria. The free energies of the phases formulated earlier included a composition
dependence although in the thermodynamic analysis we emphasized the stoichiometric composi-
tions. Computational thermodynamic analysis using the general expressions for the free energies Fm
(c, h, T) allows one to generate a temperature (T) versus composition (C) phase diagram and the
ordering transitions are mapped into a conventional binary phase diagram in Figure 26. In the late
1930s Nix and Shockley (1938) compiled an extensive review of the subject including various early
theoretical approaches.
8.2.4.1 First and Second Nearest–Neighbor Interactions
The energetics of binary substitutional metallic solid solutions based on pairwise interaction energies or
A–A, B–B and A–B bonds within a zeroth approximation quasichemical approach can be readily
extended to include both first nearest-neighbor (1st nn) and second nearest-neighbor (2nd nn)
interactions by distinguishing two so-called interchange energies:

V ¼ 1
2

�
2E1AB � E1AA � E1BB

�
U ¼ 1

2

�
2E2AB � E2AA � E2BB

� (47)

where EiAA; E
i
BB and EiAB refer to the ith nearest-neighbor interaction energiesdall taken to be negative

reflecting the “strength” of the A–A, B–B and A–B bonds, respectively. In the usual approaches



Figure 26 The Bragg–Williams phase diagram for A1(fcc) and L12 phases. Note the two-phase region (A1þ L12) between
the ordered L12 phase and the disordered fcc phase, since this transition is first order.
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incorporating only 1st nn interactions, V< 0 favors unlike A–B bonds and the system is classified as
having a tendency for ordering. For V> 0, like A–A and B–B pairs are favored within the solid solution
and the system has a tendency for clustering and phase separation. The heat or enthalpy of mixing can be
written as DHm¼NzC(1� c)V for a bcc or fcc assembly of N atoms where (1� c) and c are the atomic
fractions of the species A and B, respectively; z is the 1st nn coordination of the structure. Clearly,
DHm< 0 indicates a tendency for ordering and DHm> 0 is indicative of a clustering system. Im-
portantly, in the 1st nn approximation ordering and clustering effects are essentially mutually
exclusivedthe system either tends to order (SRO or LRO) or shows clustering and a tendency to phase
separate. However, extending this pairwise interaction model to include 2nd nn interactions, the model
becomes richer in terms of possible behaviors since the 1st nn and 2nd nn (and higher) interactions
may be of opposite sign. Ordering and phase separation are no longer mutually exclusive behaviors and
the association of a miscibility gap within an ordering system emerges and this interplay of ordering
and clustering tendencies can markedly influence the thermodynamic stability of a solution with
respect to ordering and phase separation. Spinodal decomposition can actually be involved in the
formation of ordered precipitates during the decomposition of supersaturated solid solutions (see e.g.
Soffa and Laughlin, 1982, 1988, 1989).

Following the straightforward approach of Ino (1978) in the case of A2 / B2 ordering, the
free energy of mixing is written as a function of the composition c and order parameter h as
follows:

FMðc; hÞ ¼ Ncð1 � cÞ½z1V þ z2U� þNh2

4
½z1V � z2U� þ entropy terms (48)

wherein we have included the 2nd nn intereaction energies with z1¼ 8 and z2¼ 6 referring to coor-
dination of the 1st nn and 2nd nn shells for the A2/ B2 ordering; h is the usual Bragg–Williams (LRO)



Figure 27 (a) Interplay of ordering and phase separation in an A2/B2 ordering system showing phase separation of the
partially ordered B2 phase and associated spinodal locus. (b) Free energy–composition curves showing ordering and phase
separation at low temperatures.
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order parameter which in the case of the A2/ B2 transition in a stoichiometric A–B alloy can be
written simply as
h ¼ R�W
RþW

(49)

with R being the total number of “right”atoms andW the total number of “wrong” atoms occupying the

conventional a and b sublattices of the B2 superlattice denoted previously. The entropic terms in this
generalized Bragg–Williams model are the same as those in Eqn (40) assuming random mixing on the
sublattices.

This free energy functional can lead to a phase diagram configuration shown schematically in
Figure 27 for the case UzjV j

3 with V < 0 and U > 0. In this situation a miscibility gap appears in the
system below the order/disorder line of critical points along with an associated chemical spinodal locus�
v2FM
vc2

¼ 0
�
. An alloy of composition cz 0.25 cooled from the a (A1; disordered bcc) single-phase field

will order upon crossing the A2/ B2 critical temperature giving rise to an imperfectly ordered B2
superlattice and as the temperature is further decreased the alloy will phase separate into two imperfectly
ordered B2 phasesdB20 þ B200dof different compositions. At still lower temperatures one phase will
become disordered and the other will increase in composition and degree of order resulting in an
equilibrium two-phase mixture of solute-depleted a (A1; disordered bcc)þ solute-enriched B2 (ordered;
sc). An associated free energy–composition diagram is depicted in Figure 27b showing the solution
energetics and instabilities deriving from the expanded model which includes higher order interactions.

The generalized Bragg–Williams model including 1st and 2nd nn interactions can be extended to
A1(fcc)/ L12(A3B; sc) ordering systems discussed earlier. (The reader is reminded that A2/ B2
ordering is generally a second-order/higher order transition whereas A1/ L12 is first order according
to the Ehrenfest classification.) The free energy of mixing of the fcc-based solid solution relative to the
pure components A and B can be written as

FMðc; hÞ ¼ Ncð1� cÞ½12V þ 6U� þNh2

16
½12V � 18U� þ entropic terms (50)
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and again the entropic terms assuming random mixing on the conventional sublattices a1, a2, a3 (the
three designated a sublattices are crystallographically equivalent) and b are identical to those formu-

lated previously. For
U
jV jz0:4 with V < 0 and U > 0 one finds a phase diagram configuration and

stability loci depicted in Figure 28a. This description of the phase boundaries and stability limits
includes a locus T�

i which represents instability with respect to ordering and a chemical spinodal (TS)
locus instability with respect to phase separation contingent on prior ordering (condition spinodal
instability). Figure 28a and b shows a summary of these results in graphical form including a free
energy–composition diagram. This will be discussed, in detail, in a subsequent section on precipitation of
ordered phases within supersaturated solid solutions.What is clear is that in both cases (the A2/ B2 and
the A1/ L12 ordering systems) the inclusion of 1st and 2nd nn interactions leads to a substantiallymore
Figure 28 (a) The phase boundaries and instability loci and (b) the free energy vs. composition curves at three temperatures
for U

jV jz0:4 for the L12 ordering. After Soffa et al. (2010).
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complex solution behavior which can allow for varied diffusional paths involving ordering and clustering
in the transformation of the system as it approaches equilibrium (Soffa et al., 2010).

8.2.4.2 The Ground State of Binary Alloys with V< 0
Following Richards and Cahn (1971) we can write the enthalpy of mixing of an A–B alloy up to second
neighbors as

DHM ¼ NV

�
Zð1Þ
AB þ Zð2Þ

AB
U
V

	
(51)

where U and V are defined above, Zi
AB is the number of ith neighbor A-B bonds per atom and N is the

total number of atoms in the alloy. The values of Zi
AB can be easily calculated by considering the

number of A-B bonds in the unit cell and dividing by the number of atoms in the unit cell. At 0 K (the
ground state) the structure which minimizes DHM is the equilibrium structure. Thus if V< 0, the
equilibrium state is the one which maximizes the expression

h
Zð1Þ
AB þ Zð2Þ

AB
U
V

i
, whereas for V> 0 the state

which minimizes it is the equilibrium state.

If both V and U are positive, the expression DHM ¼ NV
h
Zð1Þ
AB þ Zð2Þ

AB
U
V

i
is minimized for both

Zð1Þ
AB and Zð2Þ

AB equal to zero, that is no opposite first or second neighbors. At 0 K the equilibrium state
of A–B alloys would be composed of a pure A phase and a pure B phase with fractions determined by
the lever rule. Any other configuration would have a larger (more positive) enthalpy of mixing and
therefore not be in a state of stable equilibrium.

8.2.4.2.1 BCC Ground States

Let us look at the two ordered phases of 50% B based on the bcc structure (B2 and B32) shown in
Figure 29a and b.

It can be seen that for the B2 structure, Zð1Þ
AB ¼ 4 and Zð2Þ

AB ¼ 0, whereas for the B32 structure
Zð1Þ
AB ¼ 2 and Zð2Þ

AB ¼ 3. Thus, if we compare the two expressions that are to be maximized to determine
the stable state:

for B2 :

"
4þ 0

U
V

#

for B32 :

"
2þ 3

U
V

#

it is seen that the expression for B32 is larger than that for B2 when U
V > 2

3. That is, B32 is the stable
ordered phase when U

V > 2
3: otherwise B2 is the stable phase. This implies that second neighbors are of

importance in the B32 structure.
One other case could be compared with these two ordered phases, namely a completely disordered

50% B alloy. For this case the average Zð1Þ
AB ¼ 2 and Zð2Þ

AB ¼ 1:5. For UV > 0 B32 has the lower enthalpy of
mixing and therefore is more stable. But for U

V < 2
3 B2 is the stable phase. Thus, if V< 0, the homoge-

neously disordered phase is never the one with the lowest enthalpy of mixing. Note that for the case of
negative U

V the use of first and second neighbor interaction energies shows that a configurationally
disordered phase is not stable at 0 K in agreement with the third law of thermodynamics.

At 25% B for U
V > 0 the phase with the D03 structure is the stable one since all of the B atoms

have opposite first and second neighbors, which is favored when both U and V< 0. Between
the composition 0% B and 25% B, a two-phase mixture of pure A and fully ordered stoichiometric



Figure 29 (a) The B2 (CsCl) structure. (b) The B32 (NaTl) structure. (c) The D03 (BiF3) structure. (d) The L12 (fcc derivative)
structure. (e) The D022 (fcc derivative) structure.
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D03 has the lowest enthalpy of mixing and is therefore the stable configuration. Between the
composition 0% B and 25% B, a homogeneously ordered D03 phase (order parameter less than
unity) may have the same configurational enthalpy of mixing (it is degenerate with the two-phase
mixture) but since it has configurational entropy, it is not a stable phase at 0 K according to the
third law of thermodynamics.

A diagram showing the stable phases for bcc derivative ordered structures is shown in Figure 30a.

8.2.4.2.2 FCC Ground States

Figure 29d and e displays two possible ordered phases that have derivative structures of the FCC (A1)
structure, namely the L12 (Cu3Au) and D022 (Ti3Al) structures. It can be seen that for the L12 structure,
Zð1Þ
AB ¼ 3 and Zð2Þ

AB ¼ 0, whereas for the structure D022, Z
ð1Þ
AB ¼ 3 and Zð2Þ

AB ¼ 0:5. Thus, if we compare
the two expressions that are to be maximized to determine the stable state:

for L12 :

"
3þ 0

U
V

#

for D022 :

"
3þ 0:5

U
V

#

it is seen that the expression for D022 is larger than that for L12 when
U
V

> 0. That is, D022 is the more

stable ordered phase whenever there is a tendency for next near neighbors to prefer to be opposite.



Figure 30 (a) A partial ground state diagram for bcc derivative ordered phases. (b) A partial ground state diagram for fcc
derivative ordered phases.
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Other cases of FCC derivative structures could be explored. For example the AB alloy (50%
each) has three possible ordered phases: L10, L11 and the so-called A2B2 structure (space group
I 41
a md). By similar reasoning as shown above it can be shown that for U

V < 0 L10 is the ground
state phase: for 0 < U

V < 1
2 the A2B2 structure is the ground state and for U

V > 1
2 L11 is the ground

state structure. A partial ground state phase diagram for FCC derivative structures is shown in
Figure 30b.

More complete ground state diagrams for BCC and FCC can be found in Richards and Cahn (1971).
An HCP ground state diagram is found in Singh and Lele (1991).
8.2.4.3 k-Space Solution Energetics
Let us now briefly introduce an extension of the familiar Bragg–Williams quasichemical treatment
employed earlier using the language of Khachaturyan’s static concentration wave (SCW) formalism
(Khachaturyan, 1978, 1983) which has been employed extensively by Khachaturyan and others.

In this “k-space energetics” the site occupancies and interchange energies are formulated in k-space
(reciprocal space) through the use of Fourier analysis and the discrete Fourier transform. In this
approach the site occupation probability n(r) is given by

nðrÞ ¼ cþ
X

QðkÞexpðik$rÞ (52)

where Q(k) is the amplitude of the Fourier component with wave vector k and c is the average
composition; r¼ xa1þ ya2þ za3 is a vector in real space locating the atomic positions (x,y,z) within the
conventional unit cell. Here the atomic arrangement is viewed as a superposition of concentration
waves with wave vectors k and amplitude Q(k) localized in the first Brillouin zone. Furthermore, the
interchange energies are represented by a Fourier transform V(k) as follows:

VðkÞ ¼
X

VðrÞexpðik$rÞ (53)
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where the summation is over the 1st and 2nd nn shells. For the case of fcc-based L12 ordering
the superstructure can be generated by the emergence of a set of concentration waves {k0} comprising
a so-called “star” of the structure (dictated by symmetry) and written as

k0 ¼ 2p
�
a�1 þ a�2 þ a�3

�
and the occupation probability written as

nðrÞ ¼ cþ
X

ðghÞexpðik0$rÞ
where g is a constant depending on the crystal structure and equal to 1/4 for the L12 superstructure and h

is the order parameter. Thus, for the evolution of the L12 superstructure:

nðrÞ ¼ cþ h

4

X
exp
�
2p

x
a


þ exp

�
2p

y
a


þ exp

�
2p

z
a


(54)

resulting from the growthof three symmetrically related concentrationwaves along [100], [010] and [001],
respectively. The Fourier transforms of the interchange parameter for 1st and 2nd nn interactions yield

Vðk0Þ ¼ �4V þ 6U (55)

Vð0Þ ¼ 12V þ 6U (56)

where V and U are the 1st and 2nd nn interchange parameters defined above; the term V(0) for k¼ 0
(Brillouin zone center) is associated with the disordered reference solid solution. In this formalism the
free energy functional for the fcc solid solution is written as

Fmðc; hÞ ¼ Ncð1� cÞVð0Þ � 3
16

Nh2Vðk0Þ þ entropic terms (57)

wherein the entropic terms are identical to those derived above assuming random mixing on the
sublattices of the superstructure.

8.2.4.4 k-Space Solution Energetics/L1o
The k-space formulation of fcc-based solution energetics and stability analysis has been extended to the
A1/ L1o ordering transition by Cheong and Laughlin (1994) and Soffa et al. (2011) employing the
generalized Bragg–Williams approach (1st nn and 2nd nn interactions) including an elastic relaxation
term in the free energy. The free energy of mixing of an A–B binary solution is written as

Fmðc; hÞ ¼ Ncð1� cÞ½12V þ 6U� þNh2

4
½4V � 6U� þ entropic terms (58)

where the entropic terms are given by

Sm ¼ �NkB
2

nh
ð1� cÞ þ h

2

i
ln
h
ð1� cÞ þ h

2

i
þ
h
c� h

2

i
ln
h
c� h

2

i
þ
h
cþ h

2

i
ln
h
cþ h

2

i
þ
h
ð1� cÞ � h

2

i
ln
h
ð1� cÞ � h

2

io
(59)



(a) (b)

Figure 31 (a) FCC unit cell and (b) the L10 unit cell based on the FCC unit cell.
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assuming random mixing on the L1o sublattice sites within a conventional fcc unit cell. See Figure 31.
These can be then be transposed to the k-space representation as follows:

Fmðc; hÞ ¼ Ncð1� cÞ½Vð0Þ� �Nh2

4
Vðk0Þ þ entropic terms (60)

where k0 ¼ 2pa�3 and V(0)¼ 12Vþ 6U and V(k0)¼�4Vþ 6U. This model based on a rigid cubic lattice
will lead to a second-order/higher order A1/ L10 transition similar to the result arrived at in the classic
workofNix and Shockley (1938). Guggenheim in1952using a quasichemical approach and a tetrahedron
approximationwas able to capture thefirst-order character of theA1/ L12 transitionwithin this precursor
of the modern CVM. Interestingly, Larikov et al. (1975) asserted that the phase change is first order
if changes in lattice dimensions are incorporated into the free energy functional within a modified
Bragg–Williams model. If an elastic energy term deriving from the elastic relaxation stemming from the
cubic to tetragonal transformation strain is grafted on to the free energy expression in Eqn (60) in the form
EELASTIC¼�Ne4h4where e is an elastic strain coupling termwhich is a functionof the transformation strain
and elastic constants, the ordering transition becomes first order. (See Cheong and Laughlin, 1994).
8.2.5 Landau Theory of Phase Transformations

In the late 1930s, Landau (1937) proposed that all secondorder transitions (including the ferromagnetic to
paramagnetic transition in iron) and many first order phase transitions such as atomic ordering in alloys
can be characterized by one or more so-called generalized order parameters (h). The order parameter
describes salient properties of an assembly of constituent particles, that is electrons, atoms, ions, spins, and
changes systematically as a critical temperature Tc (at constant pressure), for example, is approached. The
order parameter describes the evolution of the system in terms ofmeasurable physical parameters and has
an equilibrium value for a given set of relevant thermodynamic variables (T, P, E,H,.). The behavior of
the order parameter in the vicinity of the critical point serves as a useful basis for classifying the nature of
the phase transition/transformation. The order parameter h can be formulated to describe the

(1) magnetization of a ferromagnet
(2) polarization of a dielectric
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(3) occupancy of sublattices in an alloy superstructure
(4) fraction of superconducting electrons in a metal and
(5) atomic displacements associated with structural phase changes

When normalized, h¼ 0 at high temperatures in the disordered state and becomes finite in the ordered
state at low temperatures with h/ 1 as T/ 0.

The essential hypothesis of the Landau theory is that the free energy difference between the
ordered (h> 0) and disordered states (h¼ 0), G(h) can be expanded in a power series in the order
parameter in the neighborhood of the critical point, that is, the free energy is assumed to be an
analytic function of h in the vicinity of h¼ 0. Landau recognized that this may not be rigorously
true but suggested that this would not affect the general character of the transformation arising in
the model. Ginzburg, Levanyuk and Sobyanin (1987) quantified the region in which the expansion
is not valid and showed that when long-range fields (electric, magnetic, strain) and interactions are
involved, the region in which the Landau theory fails is small, of the order of a degree or two.
Furthermore, it should be mentioned that Landau’s phenomenological theory is essentially a “mean
field” theory and basically a generalization of the Weiss molecular field theory approximation to
ferromagnetism (Weiss, 1907).

Landau wrote the free energy difference

GðhÞ ¼ Gðhs0Þ � Gðh ¼ 0Þ

between states of finite order parameter (ordered states) and states h¼ 0 (disordered states) as

GðhÞ ¼ Ah2 þ Bh3 þ Ch4 þ Dh5 þ Eh6 þ. (61)

where the coefficients A,B,C, . are generally functions of temperature (T) and pressure (P), that is,
A(T,P), B(T,P), C(T,P). At constant pressure, A can be taken as a linear function of temperature given by

A ¼ aðT � T0Þ (62)

with B, C, essentially constants, in the first approximation. Importantly, the coefficient A¼ a(T� T0) is
such that the parameter a is a positive constant for the case where the high-temperature phase is the
high-symmetry phase. In general, symmetry considerations play an important role in analyses based on
the Landau theory. The coefficient A clearly represents the curvature of the G(h) versus h plot at h¼ 0
and changes sign at T¼ T0. Furthermore, T0 will be identified as an instability temperature wherein the
high-temperature phase at h¼ 0 becomes thermodynamically unstable with respect to a low-
temperature ordered phase.

When truncating the expansion beyond fourth order, namely,

GðhÞ ¼ Ah2 þ Bh3 þ Ch4 (63)

there are two broad classes of interest, namely, where B¼ 0 and Bs 0. (Note: for B¼ 0 there are also
two cases of interest, C> 0 and C< 0; however, for C< 0 wemust include a sixth order term to keep the
free energy positive at large values of the order parameter.)

For the case B¼ 0, G(h) is an even function of h, that is

GðhÞ ¼ Gð � hÞ (64)



Figure 32 Gibbs free energy for the case of the Landau expansion with A and Cs 0. At TC the disordered phase becomes
unstable. T1> T2> TC¼ T0> T3> T4. This represents a higher order transition.
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and A¼ a(T – T0) changes sign at T¼ T0. The behavior of G(h) as a function of temperature and the
variation of the order parameter with temperature are shown in Figure 32.

This is the signature of a SECOND-ORDER transition in the Landau theory. The equilibrium order
parameter varies continuously from zero to a finite value on cooling through the transition or critical
temperature T¼ TC¼ T0. (Note that the physical states of the system for þh and �h are essentially

identical.) At equilibrium, for T< TC, taking
vG
vh

hGh ¼ 0 yields the following equation:

h ¼
�� a

2C


ðTC � TÞ

1
2

(65)

and inserting h¼ 1 at T¼ 0 K gives
� a
2C


¼ 1

TC
, leading to the well-known result

h ¼
�ðTC � TÞ

TC

�1
2

¼
�
1� T

TC

�1
2

(66)

which is identical to the result deriving frommean field approaches with a so-called critical exponent of
1/2 . This SECOND-ORDER or continuous transition is virtually identical to the behavior predicted by
Ehrenfest (1933). In this case, T¼ TC¼ T0¼ T�

i , the critical temperature TC can be identified with the
parameter T0 which is an instability temperature T�

i for the disordered phase on cooling. Below
TC¼ T�

i small fluctuations about the disordered state (h¼ 0) experience no intrinsic thermodynamic
restoring force and the free energy is monotonically decreasing to equilibrium ordered states þh*
and �h* with the magnitude of h* increasing continuously as T is decreased below TC. At TC , Gh¼ 0
and Ghh¼ 0 at h¼ 0, that is, just above or at T¼ TC finite fluctuations away from the disordered state
(h¼ 0) lead to small changes in the free energy of the system and tend to appear profusely throughout
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the system because of the flattening of the G(h) versus h curve near h¼ 0, virtually as premonitory
signaling of the phase transition. Just below the critical temperature TC, minima appear in the free
energy at small values of h and the free energy decreases monotonically to these equilibrium values.

This model describes the salient features of a second-order phase transition and the behavior of
relevant thermodynamic properties of the system in a straightforward manner.

The difference in Gibbs free energy between the ordered state and disordered state, GO is found by
substituting the equilibrium value of h in 2.65 into 2.63 (with B¼ 0). One obtains
GO ¼ �aðTC � TÞ2
2TC

(67)
The entropy S of the system varies continuously through the transition and the entropy change can

be found from SO ¼ �vGO

vT
as
SO ¼ �a
ðTC � TÞ

TC
(68)
The heat capacity relative to the disordered state at constant pressure is thus
DCO
P ¼ T

�
vSO
vT

�
¼ aT

TC
: (69)

which produces a finite discontinuity in the heat capacity at T¼ TC equal to the coefficient a. See
Figure 22.

Finally, the enthalpy difference HO is equal to¼GOþ TSO:
HO ¼ a
2

�
T2 � T2

C

�
TC

(70)

This equation shows an absence of a latent heat of transformation at TC. However, the slope of the
variation of the order parameter h with temperature as h/ 1 at T¼ 0 K is negative in this mean field
model, which is at variance with the predicted slope of zero according to the requirements of the Third
Law of Thermodynamics.

The SECOND-ORDER transition behavior predicted earlier occurs very rarely in real materials.
However, there is one important case that shows the earmarks of a textbook second-order transition,
namely, the normal / superconducting transition in zero field (Stanley, 1971). Most phase transi-
tions/transformations occurring in nature are FIRST ORDER according to Ehrenfest’s thermodynamic
classification and will be discussed subsequently, in detail, but there are important transitions in
materials which are not FIRST ORDER or SECOND ORDER. For example, the magnetic transition in
iron (Fe) at its Curie temperature (1041 K)dparamagnetic/ferromagnetic transitiondis at least third
order (Pippard, 1966). The specific heat of many ferromagnets in the vicinity of the Curie temperature
(TC) exhibits singular behavior quite different than predicted for a second-order transition as discussed
earlier. Similarly, a number of ordering transitions and superlattice formation in alloys which are clearly
not first-order transitions show similar behaviors, for example the A2/ B2 ordering in Cu–Zn alloys
(b-brass). See Figure 24. Indeed, the classic Weiss molecular approach to the magnetic transition in iron
(Fe) and the Bragg–Williams approach to superlattice formation are mean field theories and predict
second-order behavior. The complexities of the behavior near the critical temperature for these
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transitions which are neither first or second order are lumped into a category called HIGHER ORDER or
l-TRANSITIONS (the latter description based on the shape of the specific heat near TC, see Figure 24)
circumventing the need to differentiate discontinuities in third, fourth, and so on, derivatives of the free
energy functional. The complex behavior mentioned earlier derives from short-range ordering effects,
correlations and fluctuations near the critical point and remains a challenge in modern statistical
physics.

If in the Landau expansion the series is again truncated beyond fourth order, but we take B< 0 and
C> 0 with A¼ a(T – T0) as above, we reveal another type of behavior of major importanceda
FIRST-ORDER transition. In this case, A remains finite at T¼ TC and two minima appear at h¼ 0 and
h¼ h*, respectively. This situation represents two-phase equilibrium at TC between a disordered phase
(h¼ 0) and an ordered phase (h¼ h*). This behavior is indicative of a FIRST-ORDER transition
characterized by a discontinuous change in the entropy (S) and enthalpy (H) at the transition
temperature TC associated with a latent heat DHt and DSt¼DHt/TC. For T< TC, a minimum in the free
energy develops with increasing order parameter as the temperature is decreased. A single-phase
ordered state becomes the thermodynamically preferred state of the system with the order parameter
continuously increasing toward unity after the discontinuous jump at T¼ TC. See Figure 33.

Note also that the free energy functional G(h) is no longer an even function of h, that is, G(h)s
G(�h) for this case, that is, it is an odd function of h.

This thermodynamic analysis has implications regarding the possible mechanisms of the ordering
transformation. Here we see in this FIRST-ORDER case that at the higher temperature regime T� TC
there is local maximum between the equilibrium ordered state h¼ h* and the disordered state h¼ 0
including T¼ TC. This represents an intrinsic thermodynamic restoring force within the disordered state
with respect to small fluctuations away from the disordered state h¼ 0; that is, relatively small fluc-
tuations tend to be damped or decay, thus to trigger the transformation, a relatively large fluctuation
away from the initial state is required which releases free energy and allows the system to seek the lower
free energy equilibrium ordered state. This is not the nucleation barrier Dg*, per se to form the ordered
Figure 33 Gibbs free energy for the case of the Landau expansion with A, B and Cs 0. At T2¼ TC the disordered phase has
the same free energy as an ordered phase. At T3 an ordered phase is stable. At T0, if the disordered phase is retained it becomes
unstable with respect to ordering. This represents a first-order transition. Here, T1 > T2 ¼ TC > T3 > T�

i .
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state but a thermodynamic condition which imposes a requirement that the ordered state can only be
achieved by large fluctuations away from h¼ 0da nucleation event. At a temperature T¼ T0¼ T�

i < TC,
the local maximum disappears and the free energy G(h) versus h curve is monotonically decreasing
away from h¼ 0 rendering the disordered state thermodynamically unstable with respect to the
equilibrium ordered state h¼ h*. It can be shown that

TC � T�
i ¼ B2

4aC
(71)

for this case.
This thermodynamic instability appearing when the system is displaced far from equilibrium

suggests that the kinetic behavior will mimic the second-order/higher order transition whereby it is
possible that ordering will occur continuously or homogeneously throughout the undercooled system
without the initial partitioning of the system into transformed and untransformed regions, as is the case
for nucleation and growth processes. In the special case of atomic ordering and superlattice formation
in alloys this involves uniformly occurring preferential atomic jumping into sites which locally increase
the order parameter.

Another case of interest involves the symmetrical FIRST-ORDER behavior wherein A¼ a(T� T0),
B¼ 0, C< 0, D¼ 0 and E> 0; that is, the G(h) functional is symmetric about h¼ 0 with two phases in
thermodynamic equilibrium at T¼ TC and T0¼ Ti< TC. See Figure 34.

As above, only the quadric term is given a temperature dependence and C< 0 and E> 0 are taken as
constants. The sixth order term insures the proper thermodynamic behavior at low temperatures
yielding real solutions for the order parameter. This specific behavior would apply to the A1(fcc)/ L10
superlattice formation in equiatomic AB alloys (Cheong and Laughlin, 1994).

The Landau approach is increasingly entering the metallurgical phase transformation literature and
providing valuable insight in various contexts. For example, it was argued for a number of years that the
well-known BCC/u-phase transformation in Zr-base and Ti-base alloys might be second/higher
order. However, since the atomic displacement (which is the order parameter in this case) character-
izing the transformation produces different structures for hþ versus h� (atomic displacements in
opposite directions), the free energy functional G(h) is an odd function and therefore the transition is
first order (de Fontaine, 1973). In the materials field, in general, the Landau theory has been a partic-
ularly valuable tool in the area of ferroelectric behavior and in analyzing certain displacive trans-
formations (International Tables for Crystallography, 2006). Finally, as mentioned earlier, symmetry
considerations and restrictions emerge quite naturally in the Landau theory and one important result is
that if the transformation is second order or continuous, the symmetry group of the low-temperature
phase must be a subgroup (lower symmetry) of the group of the high-temperature phase.
8.2.6 Surface Energy and Capillarity Effects

A wide variety of effects related to surface or interfacial (free) energy and interface curvature play
a central role in phase transformations and microstructural development. These effects include most
prominently the nucleation and growth of phases, coarsening and the shape and distribution of phases
in polyphase materials. The term capillarity refers to a composite of phenomena related to the ener-
getics and kinetic behavior of surfaces and interfaces and their role in fundamental processes governing
the evolution of material structure during processing and heat treatment. (The term surface is some-
times used to refer strictly to the boundary between a condensed phase and a vapor phase, whereas the



Figure 34 (a) Gibbs free energy for the case of the Landau expansion with A, C and Es 0, but C< 0. At TC the disordered
phase is in equilibrium with an ordered phase ðjhj � 1Þ. The disordered phase becomes unstable with respect to ordering at
T less than or equal to T�

i . This is the case of a symmetrical first-order transition. In the figure T1 > T2 > TC > T3 > T�
i .

(b) Schematic of the phase diagram that corresponds to the free energy curves of the 50%B plot in 34a. Note the region of
homogeneous/spinodal ordering below T�

i .

900 Diffusional Phase Transformations in the Solid State
term interface is considered more general, referring to the region of contact between any two phases as
well as grain boundaries within a single-phase polycrystalline solid. However, these terms are more
often than not used synonymously in the literature and textbooks.)

Surface energy and interfacial effects are of paramount importance when the surface area-to-volume
ratio of a phase is relatively large and/or when the interface has a large curvature. Generally, the effects
of surface energy and curvature derive from the fact that the atomic environments of the atoms at an
interface are different than those residing in the bulk phase. As a result, the energy of the surface atoms
can be quite different than those located in the bulk and, indeed, the energy to add an atom to a surface
or boundary location is generally higher than adding an atom to the bulk; this is essentially the origin of
surface or interfacial energy as an excess thermodynamic quantity and is often described in terms of
unsaturated/dangling bonds or perturbed electronic charge density.
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When discussing the energetics and properties of interfaces three terms arise which must be carefully
distinguished and understood. The surface (free) energy (s) is the quantity associated with the reversible
work required to create a unit area of new surface under prescribed thermodynamic constraints. If the area
of an existing surface is increased by an increment dA, sdA is the surface work expended as the surface is
extended without changing the nature or intrinsic structure of the surface. The surface tension (g) and
surface stress (fij) relate to forces acting within an interface resisting stretching the surface layer and which
determine the forces against which work must be expended in extending the surface; the surface tension
and surface stress essentially act as restoring forces resisting stretching the surface or interface. Importantly,
the surface stress (fij) generally is a second rank tensor quantity describing the plane stress state of the
surface or interface and the surface tension (g) can be viewed as the average of the surface stresses in two
mutually perpendicular directions within the surface. The surface stress at any point in a surface is the
force acting across a line which passes through this point in the limit as the line length goes to zero. The
surface (free) energy (s) is a scalar quantity which has the same fundamental units as the surface stress
and surface tension (J m�2/N m�1/ergs cm�2/dyne cm�1) and for liquids (which are isotropic) s¼ g,
that is, the surface free energy and the surface tension of liquids are identical in the absence of adsorption
or desorption effects. An important feature of the liquid state is that atoms have sufficient mobility to
rearrange themselves during the extension of the surface maintaining a constant surface structure which is
not necessarily the case for a crystalline solid. Furthermore, for crystalline solids, which are generally
anisotropic, s varies with orientation and the equilibrium shape of a crystal is found to be nonspherical,
as discussed more fully subsequently. In the following brief review of the thermodynamics of interfaces
we will emphasize the role of the specific interfacial free energy s associated with a surface, internal
interface or interphase interface and will neglect any adsorption/desorption effects.

Let us now briefly elucidate the relationship between surface (free) energy s and the surface stress
f (fij) in a more fundamental thermodynamic approach. The presence of a surface or interface of area A
in a system contributes an excess Gibbs free energy Gs¼ s A. If we now extend the surface at constant T
and P by an amount dA, there can be two contributions to the surface work required as follows:

dGS ¼ dðsAÞ ¼ sdAþ Ads (72)

where the term s dA is simply the increase in free energy due to the new interfacial area created
maintaining a constant interface structure or constant s in the process, whereas the second term, Ads,
allows that an existing surface may be strained or distorted thereby modifying s. We can use this result
to define the surface stress f as

dGS ¼ fdA ¼ sdAþ Ads ¼ sdAþ A
ds
dA

dA

f ¼ sþ A
ds
dA

(73)

or, more rigorously,

fij ¼ sdij þ vs

vεij
(74)

wherein dA¼ Adijdεij and dεij is a surface elastic strain tensor (assuming the modification of s derives
from elastic distortion of the surface structure). For a crystal surface with threefold or higher rotational
symmetry the normal stresses within the surface are equal and no shear stresses act within the surface.
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This follow from Hermann’s theorem, which states that “.if an r rank tensor has an N fold symmetry
axis and r<N, then this tensor also has a symmetry axis of infinite order along N.” (Hermann, 1934;
Sirotin and Shaskolskaya, 1982). Thus the property is isotropic in the plane perpendicular to N.

Therefore, when the surface stress is isotropic it can be taken as a scalar quantity wherein

f � s ¼ ds
de

(75)

and e ¼ dA
A

is an elastic strain within the surface. Only when
ds
de

¼ 0 does the surface (free) energy s

equal the surface stress f (Howe, 1997; Trivedi, 1999).
The most straightforward thermodynamic definition of s can be written as

s ¼
�
dW
dA

�
T;P;ni

¼
�
dW
dA

�
T;V;ni

(76)

where dW is the reversible surface work required to increase the surface area(A) of a surface or interface
by an amount dA at constant T,P or T,V in a thermodynamic system at constant composition (ni). From
the fundamental relationships for reversible changes in the Gibbs (G) and Helmholtz (F) free energies:

dG ¼ �SdT þ VdP þ sdAþ
X
i

midni (77)

and

dF ¼ �SdT � PdV þ sdAþ
X
i

midni (78)

we can also write

s ¼
�
vG
vA

�
T;P;ni

¼
�
vF
vA

�
T;V;ni

(79)

where s is viewed as a specific interfacial free energy associated with an excess free energy stemming
from the presence of surfaces or interfaces. Sometimes when dealing with processes unfolding at
constant T,V and mi (such as nucleation) the surface (free) energy can be defined as

s ¼
�
dW
dA

�
T;V;mi

(80)

which will be discussed subsequently. Finally, in a crystalline solid, s can be highly anisotropic varying
markedly with the crystallographic direction of the normal to the crystal plane in question. This
anisotropy is readily illustrated using the well-known polar plot shown in Figure 35. The polar plot
can be used to establish the equilibrium shape of a crystal through the Gibbs–Wulff construction as
discussed later in this section.

Let us now consider a closed thermodynamic system (constant composition) at equilibrium
composed of two phases a and b at constant T, V and uniform chemical potentials mi; the b phase is in
the form of a small sphere of radius r embedded in the a phase and the a–b interface is characterized by
a specific surface or interfacial free energy s (assumed to be isotropic). See Figure 36. If a small virtual



Figure 35 Schematic polar plot of a crystal with a fourfold axis of symmetry perpendicular to the plane of the diagram. After
Christian (2002).
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reversible displacement of the interface occurs expanding normal to itself into the a phase, the change
in Helmholtz free energy is given by:

dF ¼ �SdT � PadVa � PbdVb þ sdAþ
X
i

midni (81)

where sdA is the reversible surface work expended in the operation. Under isothermal (dT¼ 0) and
isochoric (dV¼ dVaþ dVb¼ 0) conditions, at constant composition (dnai ¼�dnbi ) and uniform
chemical potential of all species mai ¼ m

b
i at equilibrium dF¼ 0 and it follows that

Pb � Pa ¼ s
dA
dVb

(82)
Figure 36 Small spherical b phase particle of radius r in equilibrium with the matrix a. A thermodynamic analysis of the

a/b equilibrium shows that Pb � Pa ¼ 2s
r

where s is the interfacial free energy.
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Since for a spherical surface
dA ¼ 2

we find that

dVb r

Pb � Pa ¼ 2s
r

(83)

that is, under equilibrium conditions there is a pressure difference across the a–b interface with Pb> Pa.
This is the famous Laplace equation which can be generalized for an arbitrary interface wherein locally

Pb � Pa ¼ s
dA
dVb

¼ s

�
1
r1

þ 1
r2

�
(84)

where r1 and r2 are the local principal radii of curvature at a point defined within two orthogonal planes
intersecting the surface at that point. See Figure 37. This is a fundamental result of the thermodynamics
of capillarity theory.

The Laplace equation can be used to derive the important Gibbs–Thomson relation using the
thermodynamic relation dmT¼ VdP. Consider the a phase in the preceding discussion to be the vapor
phase in equilibrium with a condensed phase (solid or liquid) b for a single-component system.
Figure 37 Principal radii of curvature of a surface element defined in two orthogonal planes A and B passing through the
point P with local normal N

!
.
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The change in chemical potential of the b phase as a result of the pressure change at constant
temperature within the sphere compared with P0, the equilibrium vapor pressure in equilibrium with
b across a flat or plane interface is

mb
�
T; Pb

�� mbðT; P0Þ ¼
ZPb

P0

VbdP (85)

where Vb is the molar volume of the b phase and Pb¼ Pb(r) according to the Laplace equation. To
maintain thermodynamic equilibrium the vapor pressure will change from P0 to Pa(r)¼ P(r). Using the

approximation
Z Pb

P0

VbdPzVbDP with DP¼ Pb� P0w Pb� P since (Pb� P)>> (P� P0), we can now

derive the vapor pressure Pa(r)¼ P(r)¼ P in equilibrium with the small particle or droplet as
a function of the size (r) of the b phase. Since mb (T, Pb)� mb (T, P0)¼ ma(T, P)� ma(T, P0) it follows
that

maðT; PÞ � maðT; P0Þ ¼ RT ln
PðrÞ
P0

¼ 2sVb

r
(86)

after inserting ðPb � P0ÞwðPb � PÞ ¼ 2s
r

from the Laplace equation. This is a version of the

Gibbs–Thomson equation which derives from the influence of the capillarity pressure (Pb� Pa) across
the curved interface.

Importantly, if we are dealing with solutions of condensed phases (solid or liquid), the
change in chemical potential of a species i within the b phase resulting from interface curvature
can be viewed to first order as a change in free energy DPVi where Vi is the partial molar volume
of the component i in solution and DP is the capillarity pressure as above. Thus, the change in
chemical potential of i in solution in the condensed b phase beneath the curved interface can be
written as

m
b
i ðrÞ ¼ m

b
i ðNÞ þ 2sVi

r
(87)

where m
b
i ðNÞ is the chemical potential i beneath a planar interface (r¼N) and m

b
i ðrÞ is the chemical

potential of i within the small spherical b phase of radius r. This is just another version of the
Gibbs–Thomson equation. When the two phases a and b are in equilibrium separated by a planar

interface mbi ðrÞ ¼ m
a=bðNÞ
i whereas with b in the form of a small spherical particle mbi ðrÞ ¼ m

a=bðrÞ
i where

m
a=bðNÞ
i and m

a=bðrÞ
i are the chemical potentials of i in the a phase in equilibrium with the b phase

across a planar interface and a curved interface, respectively. (Note that when r>> 2sVi capillarity
effects are unimportant and bulk thermodynamics prevails.)

Let us look at the influence of capillarity effects on the liquid / solid transformation in a single-
component system, for example the melting of a pure metal at ambient pressure. The thermody-
namics of the transition can be represented graphically in a G vs. T (molar free energy versus
temperature) plot shown in Figure 38. The melting temperature Tm of the bulk solid phase is the
intersection of the free energy curves for the bulk solid and liquid phases where GL¼GS (molar free
energies of the bulk liquid and solid phases, respectively). Now consider an equilibrium between
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Figure 38 Schematic of free energy vs. temperature curve for the liquid phase and a large solid particle and a small solid
particle (dotted line, showing that TM is lowered).
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a small spherical crystallite of radius r with the bulk liquid phase. The molar free energy (chemical

potential) of the solid is now altered by capillarity and is a function of size given by GSðrÞ ¼ GSðNÞ þ
2sS�LVS

r
where the notation (N) refers to the bulk solid. Clearly this Gibbs–Thomson effect modifies

the equilibrium between liquid and solid raising the curve for the solid phase and a melting temper-
ature T 0

mðrÞ defined by GS(r)¼GL¼GL(N) is established effectively lowering the melting point of the
small crystallite compared with that of the bulk solid. This lowering of the melting point of the small
crystallite contains the seeds of a Gibbsian capillarity-based nucleation theory. Indeed, the small
crystallite is in unstable equilibrium with the bulk liquid having an equal probability of growing or
melting at the temperature TMðrÞ and size r. This concept will be explored more fully in Section 8.4 of
this chapter on nucleation.

Let us consider a two-phase mixture in the simple binary phase diagram shown in Figure 39 and the
corresponding free energy vs. composition (X) diagram at a temperature TA. The common tangent
construction depicted in Figure 39b establishes the equality of the chemical potentials of the
components A and B in the conjugate a and b phases in thermodynamic equilibrium. We consider that
the dispersed phase (b) is essentially a nearly stoichiometric compound phase existing over a very
restricted composition range (as indicated in the phase diagram) about the composition AaBb; the
amatrix phase is a solid solution with appreciable solid solubility of B in A. Again the notation (N) will
be used to denote bulk phases or equilibrium in the absence of capillarity effects. We assume that the
overall composition of the alloy X0 is in the two phase field and that the b phase essentially has
a composition of Xb

0 which remains unchanged when capillarity pressure effects are present at small
particle sizes. The dispersed b phase in the a matrix is assumed to be in the form of small spherical
particles on the submicron/nanoscale and are of uniform size with radius r; the a–b interface is
characterized by an interfacial (free energy) sab (isotropic). In Figure 40 the common tangent
construction shows the change in the composition of the amatrix in equilibrium with the b phase from



Figure 39 (a) Binary A–B phase diagram showing equilibrium between a precipitate phase b (AaBb) in a form of small
particles and a matrix phase a. This schematic shows the change in solvus for small particles vs. equilibrium between bulk
phases a and b. (b) Free energy composition curves for the a/b equilibrium in Figure 39a showing the effect of capillarity on
the solid solubility.
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Figure 40 Influence of capillarity on the equilibrium between two phases a (matrix) and b (precipitate) for the general case
wherein the capillarity effects change the equilibrium composition of the matrix and precipitate phases.
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Xa
e ðNÞ to Xa

e ðrÞ as a result of the change in pressure within the b phase resulting from the small particle
size. From construction, this change in solid solubility with particle size can be approximated as
follows:

DPbVbh
Xb
0 � Xa

e ðNÞ
i ¼ RT ln

�
Xa
e ðrÞ

Xa
e ðNÞ

	


1� Xa

e ðNÞ� (88)

and since DPbVb ¼ 2sab
r

RT ln
�
Xa
e ðrÞ

Xa
e ðNÞ

	
¼
�
2sab
r

� 

1� Xa

e ðNÞ�h
Xb
0 � Xa

e ðNÞ
i (89)

where Vb is the molar volume of the b phase. This Gibbs–Thomson equation is an excellent approxi-
mation assuming [(Xa

e ðrÞ � Xa
e ðNÞ)] is small and that the relevant activity coefficients do not change

significantly over this composition range. This Gibbs–Thomson effect essentially defines a new size-
dependent solvus as depicted in Figure 39a. The two-phase equilibrium can be generalized to the case
where the b phase is a solution phase and this is depicted in Figure 40; now the composition of the
dispersed phase in equilibrium with the amatrix can change when the capillarity pressure shifts the free
energy–composition curve andanewcommon tangent is established. This canbeworkedout analytically
aswellwhen the change in chemical potential of thebphase associatedwith this change in composition is
properly taken into account in addition to the change in pressure within the small particles.



Figure 41 Wulff construction using the surface free energy polar plot. The inner envelope of the perpendiculars to the vectors
drawn to each point on the plot gives rise to the equilibrium shape of the crystal. After Christian (2002).
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In our preceding discussion we have briefly mentioned that the surface (free) energy s of a crystalline
solid can be highly anisotropic, that is, the energy of the {111} faces can have a very different energy than
the {100}or {110} faces in a cubic crystal. This is illustrated in thes(n) versusnplotwheren is the normal
to a crystallographic plane in thematerial and thedistance from theorigin in this polar plot (themagnitude
of n) is proportional to the value surface energy characterizing the particular plane; this so-called
Gibbs–Wulff construction has the property that a radius vector n locates a point on the locus generated
and the tangent plane normal to the radius vector at that point is an image of the crystal planedthe Wulff
plane. Thus, one generates an envelope of Wulff planes as a function of n and the inner envelope can be
shown to formafigurewhichminimizes the surface energy

R
sdA anddefines the equilibrium shape of the

crystal. See Figure 41. Depending on the nature of the Wulff plot the crystal can be bounded by contin-
uously curved regionsorextendedflat regions. Ingeneral, cusps in thes(n)dplot result infiniteflat regions.

The equilibrium shape can be used to formulate a generalized Gibbs–Thomson equation based on
the construction shown in Figure 42. It is found that the parameter s(n)/l(n) is an invariant of the
equilibrium shape where l(n) is the normal distance defined in the two-dimensional representation.
This condition insures that the capillarity pressure difference across all surface elements of the equi-
librium shape is the same and thus the chemical potential is invariant along the surfaces and faces
defining the equilibrium shape of the crystal (Johnson, 1965).

The anisotropy of the surface energy of a crystal can be understood structurally in terms of “broken
bonds” associated with so-called terrace, ledge and kink densities for a general orientation as depicted in
Figure 43. Certain atomic configurations will minimize the surface free energy for an arbitrary orien-
tation and distorting these surface structures during stretching contributes to the relationship between
surface stress and surface energy discussed earlier. Furthermore, the orientation dependence of s¼ s(q)
where q is an orientation parameter can lead to a significant torque acting on a surface tending to rotate
the surface plane to a new orientation of lower energy. As a consequence of the orientation dependence
of s nominally flat surfaces can break up into two or more prominent areas of low-index planes called



Figure 42 Schematic of generalized Gibbs–Thomson relation defining the vectors n and l (n) with respect to the plane S. The
parameter s(n)/l(n) is a constant along the locus defining the equilibrium shape. After Johnson (1965).

Figure 43 Terrace–Ledge–Kink (TLK) representation of a typical crystal interface.
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Figure 44 HREM image of facets between a product and parent phase. After Yanar et al. (2002).

Table 1 Typical surface energies in materials (metallic)

Liquid–solid 100–2000 erg cm�2¼mJ m�2

Vapor–solid 500–3000 erg cm�2¼mJ m�2

Solid–solid
Coherent 10–200 erg cm�2¼mJ m�2

Semicoherent 200–400 erg cm�2¼mJ m�2

Incoherent 400–1000 erg cm�2¼mJ m�2

Grain boundary 400–600 erg cm�2¼mJ m�2
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facetswhich canmarkedly lower the overall surface energy even though the surface area is increased. This
occurs readily at higher temperatures where atomic transport is rapid. See Figure 44. This behavior is
described most clearly using the so-called inverse s-plot (1/g plot; Meijering, 1963b).

Table 1 shows a compilation of typical surface energies for various types of interfaces relevant to our
discourse on phase transformations in subsequent sections. Note that solid–liquid interfacial energies
(sS�L) are typically in the range 100–2000 erg cm�2 whereas solid–solid interphase interfacial or
surface energies (sab) can range from 10 to 1000 erg cm�2 depending on the degree of coherency or
crystallographic matching.

In describing the thermodynamics of interphase interfaces Gibbs (1875, ff) pointed out that the
density, energy, entropy, and so on, of the individual phases in contact are not likely to be uniform up
to the plane of contact resulting in a sharp discontinuity of thermodynamic properties. Cahn and
Hilliard (1958, 1959) in their generalized treatment of the thermodynamics of inhomogeneous
systems formulated a thermodynamic treatment of a diffuse interface characterized by a transition layer
as shown in Figure 45 in contrast to the so-called sharp interface. The composition and free energy in
the interfacial region are considered to be continuous functions through transition region. The free



Figure 45 Schematic of composition vs. distance plot through an interphase interface showing the transition layer.
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energy of the two-phase system incorporating the energetics of the transition layer can be written as

G ¼ AnV

ZþN

�N

(
gðCÞ þ k

�
dC
dx

�2
)
dx (90)

where nV is the number of atoms/molecules per unit volume and g(C) is the free energy per atom/

molecule of a homogeneous solution of composition C; the second term k

�
dC
dx

�2

associated with the

local gradient in composition is called the gradient energy with the gradient energy coefficient k assumed
to be a constant. (This term derives from a truncated Taylor expansion of the free energy functional.) The
surface free energy per unit area is calculated by subtracting from this expression the free energy of the
inhomogeneous system the free energy that it would have if the phases actuallywere homogeneous up to
a fiducial sharp interface. This leads to an expression for the surface free energy s (per unit area) given byþN( )
s ¼ nV

Z
�N

DgðCÞ þ k

�
dC
dx

�2

dx (91)

where DgðCÞ ¼ gðCÞ � ½ð1� CÞmeA þ CmeB� with meA and meB being the equilibrium chemical potentials
of species A and B in the two phases. Clearly the Dg(C) term is an excess free energy stemming from the
species being at nonequilibrium compositions with respect to the bulk phases in crossing the interfacial

region. This interfacial free energy functional is a minimum when DgðCÞ ¼ k

�
dC
dx

�2

which produces

a sigmoidal composition profile through the interface. The interfacial free energy with a change in the
variable of integration can alternatively be written as

s ¼ 2nV

ZCb

Ca

½kDgðCÞ�12dC (92)

For further details of this continuum description of a coherent interface the reader is directed to the
seminal papers of Cahn and Hilliard cited earlier and to the text of Howe (1997). Importantly, this
approach to interphase interfaces is central to our modern understanding of spinodal decomposition
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which will be treated, in detail, in subsequent sections. It also has proven very useful in the modeling of
microstructural evolution using the phase field approach.

8.3 Rate Processes in Solids

8.3.1 Basic Concepts

During the latter part of the nineteenth century a number of scientists became interested in the funda-
mental phenomena governing the rate of chemical reactions. This was a timewhen thermodynamics and
the kinetic theory of gases were reaching maturity along with a developing statistical mechanics and the
emergence of physical chemistry as a scientific and academic discipline. The Dutch chemist van’t Hoff in
1884 presented a treatise on reaction rates (Etudes de dynamique chimique). He asserted that a wide
variety of chemical reactions showed a temperature dependence described by an exponential function

with the ratefexp
�
�TR
T

�
where TR is a constant characteristic of the reaction over a broad temperature

range and T is the absolute temperature. In the 1880s Svante Arrhenius on an academic travel grant from
the Swedish Academy of Sciences for a time associated with van’t Hoff in Amsterdam and in 1889 offered
an interpretation of the exponential dependence of reaction rates on temperature by introducing the
concept of activation energy as fundamental to understanding the rate at which a reaction proceeds. The
basic idea is that the rate of a reaction is not governed by the thermodynamic difference between reactants
and products but by an intermediate state of higher (free) energy than both reactants and products which
constitutes a barrierdactivation barrierdthat must be overcome when the reactant and product species
encounter each other through gaseous collisions orwithin solutions. It should bepointed out that during
his scientific sojourn Arrhenius studied with Ludwig Boltzmann in Austria and indeed the “Boltzmann
distribution” andBoltzmann factor indicated that in collisions the number of atomic ormolecular events

which are likely to achieve some threshold energy to allow reaction shouldbeproportional to exp
�
�EA
RT

�
where EA is related to the TR parameter in van’t Hoff’s exponential expression.

During the twentieth century an Arrhenius equation of the type rate ¼ A exp
�
�Q
RT


has been found

to apply to a plethora of rate processes from chemical reactions to diffusion in solids. The rate of

chemical reactions is often formulated as rate ¼ kRCa
AC

b
B where kR is called a specific rate constant and

Ca
A and Cb

B are concentrations of the reactants and a and b are characteristic exponents; the rate
constant generally obeys an Arrhenius relation. In chemical reactions the activated state or “activated
complex” is seen as a critical configuration or distortion of the participating species on a potential
surface in a hyperspace and the reaction proceeds along a “reaction coordinate” from reactants to
products over a saddle point on the potential surface. In modern theoretical statistical mechanical
treatments of the fundamental process the “activated complex” is considered to be a valid thermody-
namic state that is in quasi-equilibrium with the reactant state and the reaction rate is controlled by the
concentration of activated complexes and the rate at which this extraordinary state at the top of the
activation barrier can decompose to the product state. This theoretical superstructure and its various
formulations is often referred to as Absolute Reaction Rate Theory as is comprehensively reviewed in
the classic treatise by Glasstone et al. (1941). A rigorous extension of this formalism particularly
applicable to atomic migration in solids is that due to Vineyard (1957).

The activated state for an elementary diffusional jump from one site to another is viewed as an
intermediate state at the top of the (free energy) barrier separating lattice sites and the thermally activated
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jumps can be seen in terms of Absolute Reaction Rate Theory by considering an assembly of harmonic
oscillators where at any time in the system an equilibrium number of these oscillators is at the top of the

barrier and this species crosses through the activated state with a certain frequency
1
s
where s is the mean

time it takes for themigrating species topass througha regionof spatial extentdwhere thepotential energy
V(x) is assumed to be constant and equal to EA. In general, the potential energy of the oscillator in thewell
is described in the harmonic approximation as V(x)¼ E0þ 1/2 Kx2. Staying with the basic tenets of
Absolute Reaction Rate Theory, the probability that a given oscillator will at any instant of time be at the
top of the activation barrier can be written as a ratio of partition functions (the ratio of the number of
oscillators in the “activated state” comparedwith thenumberof harmonic oscillators vibrating about their
equilibrium positions within the potential well or “reactants”). The ratio of partition functions
essentially relates to an equilibriumconstant for the equilibriumbetween theatoms innormal vibrational
states and the extraordinary species in the activated state. The ratio of partition functions can be written as

Z�
A

ZA
¼

ZX�þd

X��d

exp
�
� VðxÞ

kBT

�
dx

ZþN

�N

exp
�
� VðxÞ

kBT

�
dx

¼
d exp

�
� EM

kBT


ffiffiffiffiffiffiffiffiffiffi
2pkBT

K

q
exp
�
� E0

kBT

 ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

2pkBT

r
exp
�
� EM � E0

kBT

�
(93)

where X* is the coordinate locating the activated state along the reaction coordinate. This ratio of
partition functions also can be interpreted as the ratio of the time spent at the top of the barrier s*
compared with the time in a normal state s0 which is approximately the total time under consideration
(s0 >> s*). From classical statistical mechanics the time for the activated species to pass through the

activated state is given by
d

v�
¼ dffiffiffiffiffiffiffiffiffiffiffiffi

kBT
2pm�

r (v* is the average velocity along the jump direction and m* is

the mass of the migrating species). Therefore, we can write that the average number of crossings per unit
time or the average jump frequency of the migrating species as follows:

u ¼ s��
d

v�

� times
1
s0
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kBT
2pm�

r
d

times
s�
s0

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kBT
2pm�

r
d

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

2pkBT

r
exp
�
� EM � E0

kBT

�

¼ 1
2p

ffiffiffiffiffiffiffi
K
m�

r
exp
�
� EM � E0

kBT

�

u ¼ n exp
�
� DE
kBT

�
(94)

where n is the vibrational frequency (Einstein frequencyz 1012–1014 s�1) and DE¼ EM� E0 is the
height of the activation barrier separating equilibrium sites. This is the rate at which diffusing atoms in
a crystal jump into adjacent vacant sites based on this elementary version of the statistical mechanics of
thermally activated atomic jumping based on a treatment by Girifalco (1971). See Figure 46. (If the



Figure 46 Schematic diagram showing the energetics of an elementary thermally activated atomic jump from XA to X 0
A. The

migrating atom must overcome the activation barrier, Em through thermal fluctuation. In this simple analysis the migrating
atom is viewed as a simple harmonic oscillator within the equilibrium energy well having energy equal to EA. The activated state
is assumed to exist over a region d at the top of the barrier.
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atom is migrating through a periodically varying free energy field then the jump rate can be written as

u ¼ n exp
�
� Dgm

kBT

�
where Dgm is a free energy barrier for migration: see Figures 47 and 48).

Let us briefly return to the essential features of the classic Eyring formulation of reaction rate theory
which was more specifically directed at chemical reaction rates such as A $ A� / B. The rate of
reaction was described explicitly in terms of the concentration of “activated complexes” and the
frequency with which this species A* decomposes along the reaction coordinate to produce the
product state B. The reactant state is assumed to be in equilibrium with the activated state as

mentioned earlier. The concentration of activated species is proportional to exp
�
� DG�

kBT

�
where DG*

is considered a standard free energy of formation of the activated complex associated with an
equilibrium constant

C�
A

CA
¼ K� ¼ exp

�
� DG�

kBT

�
(95)

where C�
A and CA are the equilibrium concentrations of A* and A per unit volume. Writing the equi-

librium constant as a ratio of molecular partition functions per unit volume including translational,
vibrational, rotational, and so on, degrees of freedom and again assuming that the activated state exists
over a distance d along the reaction coordinate the specific rate constant for a simple first-order reaction

�
� dCA

dt ¼ kRCA


is K*CA times

ffiffiffiffiffiffiffiffiffi
kBT
2pm�

q
d

; this last term represents the frequency with which A* passes

through the activated state and decomposes to produce the products similar to the treatment earlier. If



Figure 47 Elementary thermally activated jump viewed as a migration over free energy barriers Dgm.
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one factors out the translational degree of freedom along the reaction coordinate from the total

partition function of the activated complex writing ZA� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pm�kBT

h2

r
times ZA*

’ , then the expression for

the rate constant becomes kR ¼ kBT
h

exp
�
� ðDG�Þ0

kBT

�
where DG*’ is the standard free energy of

formation of an activated species which has no translational degree of freedom along the reaction
Figure 48 Thermally activated atomic migration under the influence of a driving force Dg0 which biases the jumps since the
activation barrier is not the same for jumps from left to right compared with right to left.



Diffusional Phase Transformations in the Solid State 917
coordinate corresponding to decomposition of the state;
kBT
h

is essentially a universal frequencyz1012

to 1014 s�1 governing the rate process; the rate constant for the reaction can also be written as

kR ¼ kBT
h

exp
�ðDS�Þ0

kB

�
exp
�
� ðDH�Þ0

kBT

�

separating out the entropic and enthalpic components of the activation free energy. Clearly the rate
process is expected to show an Arrhenius behavior as a function of temperature (the pre-exponential
term kBT

h shows a weak temperature dependence compared with

exp
�
� ðDH�Þ0

kBT

�

agreeing with the virtually universal experimental result

kR ¼ A exp
�
� Q

kBT

�

Returning to thermally activated atomic jumping during diffusion in solids, let us look at the so-
called Wert–Zener modification. In applying reaction rate theory to their studies of solid-state diffu-
sion Wert and Zener (1950) were theoretically uncomfortable with the idea of not conserving the
number of degrees of freedom in passing from the reactant state to an activated state and thus suggested
factoring out a vibrational degree of freedom from the partition function of an atom in a normal site,

namely
kBT
hn

leading to a modified expression

kR ¼ n exp
�
� ðDG�Þ00

kBT

�

where DG�00 can be interpreted as the work done in taking the migrating atom from its normal state in
an atomic site to the activated state constraining it to vibrate normal to the reaction path.

The Arrhenius concept of an activated state of higher (free) energy separating an initial state from
a final state is universally applied to a wide range of thermally activated processes from chemical
reactions, nucleation and growth, diffusion, coarsening, plastic deformation, and so on, and the
Arrhenius plotdapplied to rate constants, diffusivities, growth rates, and so ondgenerally involves

plotting the natural log of a rate parameter versus
1
T
with the slope equal to �Qexp

R
and generally one

attempts to relate the magnitude of this experimental activation energy Qexp to elementary processes
controlling the rate phenomenon in question.

8.3.2 Diffusion Kinetics

Diffusion is the flow of matter from one region to another in a material system generally driven by
a concentration gradient. However, a more rigorous description of diffusional processes identifies the
“driving force” as a gradient in the chemical potential of the migrating species. This is obvious from the
fact that two phases of vastly differing compositions can coexist in thermodynamic equilibrium but
the chemical potentials of the components are uniform throughout the phase mixture and no diffusive



918 Diffusional Phase Transformations in the Solid State
flow occurs within the compositionally inhomogeneous system. Also, during an allotropic trans-
formation a more stable phase grows into the less stable phase often mediated by short-range diffu-
sional jumps across an advancing interface at constant composition and the net atomic flux to the more
stable phase derives from the local gradient in chemical potential.

Adolf Fick in the middle of the nineteenth century formulated a set of differential equationsdFick’s
First and Second lawsddescribing chemical diffusion analogous to Fourier’s earlier treatment of heat
flow. Fick’s laws of chemical diffusion relate the flow of matter explicitly to the concentration gradient
and are written as

Jx ¼ �D
vc
vx

ð1�DimensionalÞ (96)

and

J
!¼ �DVc ð3�DimensionalÞ (97)

and

vc
vt

¼
v

�
D
vc
vx

�
vx

¼ D
v2c
vx2

ðD constant and c ¼ cðx; tÞÞ

and

vc
vt

¼ �div J
!¼ DV2c ðD constant and c ¼ cðx; y; z; tÞÞ (98)

where D is a phenomenological parameter (like the thermal conductivity in Fourier’s equations) called
the diffusion coefficient or diffusivity; Jx and J (Jx, Jy, Jz) are the fluxes (atoms cm�2 s�1 or mol cm�2 s�1) or
mass flow rates across a unit cross-sectional area in a local concentration gradient. Importantly,
employing the local concentration gradient as the driving force for mass flow within a phase is
acceptable operationally if the absence of a concentration gradient leads to a uniformity of the chemical
potentials and chemical equilibrium; therefore, in many diffusion problems Fick’s laws are invoked.
Fick’s First law relates the concentration gradient to the local concentration gradient and the solution of
Fick’s Second law (the diffusion equation) gives the time evolution of the concentration c(x,y,z,t) for
various initial and boundary conditions.

When describing diffusion fluxes in a material system it is important to define the frame of
reference or coordinate system (which might be moving relative to a fixed reference frame or
laboratory frame) in which the diffusion fluxes are prescribed. In the conventional diffusion couple
setup between two pure metals A and B which interdiffuse across an initial weld interface between
the two metal blocks the concentration profile evolves typically as shown in Figure 49. If the
diffusion fluxes of A and B are described in terms of a coordinate system fixed relative to the ends of
the coupleda laboratory framedthe intermixing can be analyzed in a mathematically convenient
manner employing a single diffusion coefficient DABdthe interdiffusion coefficientdwherein the
fluxes are written as

JA ¼ �DAB
vcA
vx

and JB ¼ �DAB
vcB
vx

(99)



Figure 49 Schematic of interdiffusion between two metals A and B showing the Matano and Kirkendall interfaces wherein the
intrinsic diffusivities are unequal (DB> DA). The Matano interface corresponds to the initial weld interface and the Kirkendall
interface is the plane of the markers which initially were located at the weld interface but moved as a result of the unequal
diffusive flows of the A and B atoms. After Guy and Hren (1974).
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and in this frame JAþ JB¼ 0 or JA¼�JB. In this description the initial weld interface is the so-called
Matano interface across which equal numbers of A atoms have crossed from left to right as B atoms
from right to left. However, the classic Kirkendall–Smigelskas effect dealing with interdiffusion in
substitutional metallic solid solutions indicated that the atomic migration occurs via a vacancy
mechanism and that the A and B atoms do not diffuse down their local concentration gradients at the
same rate, that is, the interdiffusion process actually involves two diffusion coefficients DA and DB
called the intrinsic diffusivities or diffusion coefficients of A and B, respectively. The intrinsic diffu-
sivities relate the diffusional fluxes of A and B to their local concentration gradients in a frame of
reference fixed on a lattice plane in the diffusion-affected zone, that is,

J0A ¼ �DA
vcA
vx

and J0B ¼ �DB
vcB
vx

(100)

where J0AsJ0B.
The unequal rates of migration of A and B lead to a net flux of vacancies across the initial weld

interface and causes the destruction of lattice planes on one side and the creation of lattice planes on the
other side as evidenced by the marker movement in the Kirkendall–Smigelskas experiment (1947).
There is effectively a bulk flow or convective motion in the diffusion-affected zone and lattice planes are
essentially moving with this motion relative to the ends of the diffusion couple. (The bulk flow is
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basically a plastic regression in the solid involving dislocation climb.) In the elegant Darken analysis of
the interdiffusion process it is clear that in the laboratory frame the fluxes JA and JB are composed of two
components:

JA ¼ J0A þ cAVm ¼ �DA
vcA
vx

þ cAVm (101)

and

JB ¼ J0B þ cBVm ¼ �DB
vcB
vx

þ cBVm (102)

where the first term on the right is a purely diffusive flow down the local concentration gradient and the
second term is a bulk flow giving rise to an apparent flux in the laboratory frame where JAþ JB¼ 0; Vm is
the local velocity of the alloy medium relative to the laboratory frame and revealed by the velocity of
markers in the diffusion-affected zone. The interdiffusion coefficient and the intrinsic diffusivities can
be shown to be related at any composition as follows:

DAB ¼ XBDA þ XADB (103)

where XA and XB are the atomic fractions of A and B with DA andDB the intrinsic diffusivities as defined
earlier. Note that these diffusion coefficients are generally a function of composition although the
assumption DAB¼ constant is widely used successfully in a wide variety of practical problems.

The use of the interdiffusion coefficient incorporates the bulk flow into the diffusion fluxes and
allows us to describe the intermixing and time evolution of the concentration versus distance profile
without concerning ourselves with sorting out these effects (bulk flow versus diffusive flow across the
reference plane and DAsDB). If one wants to calculate the time to homogenize an alloy casting or
dissolve a second phase during solution treatment of an age hardening alloy one can just use the
interdiffusion coefficient at the temperature of interest and solve Fick’s Second law.

The simplest expression relating the local chemical potential gradient to the rate of flow/flux of
a diffusing species i for one-dimensional flow along the x-axis can be written as

Ji ¼ �Li
vmi
vx

(104)

where Li is a phenomenological coefficient and
vmi
vx

is the chemical potential gradient of i along the

x-axis. We can also write the diffusion flux in terms of a local diffusion velocity of the migrating species

Vi along the x-axis and a mobility Mi as

Ji ¼ ciVi ¼ �Mici
vmi
vx

(105)

where Mi is the velocity per unit “driving force” (the gradient in chemical potential) and equal to
Li
Ci
.

This flux is a purely diffusive flow of the migrating species down its local chemical potential gradient.
We now relate the diffusion flux to the concentration gradient according to Fick’s First law

J0i ¼ �Di
vci
vx
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where Di is clearly an intrinsic diffusion coefficient or intrinsic diffusivity. Writing

Ji ¼ �Mici
vmi
vci

vci
vx

(106)

and recalling that mi¼ constantþ RT ln ai and ai¼ gici we arrive at the relation

Di ¼ MiRT

�
1þ v ln gi

v ln ci

�
¼ MiRT

�
1þ v ln gi

v ln Xi

�
(107)

wherein the term
�
1þ v ln gi

v ln Xi

�
is called the “thermodynamic factor” which relates the solution ther-

modynamics to aspects of the atomic migration.
We shall elucidate the role of the thermodynamic factor by reviewing the relationship between

atomic jumps from one lattice site to another and between lattice planes in a concentration gradient. If
c1 and c2 are the concentrations (atoms cm�3) of the diffusing species on adjacent planes 1 and 2
(c1> c2) normal to the concentration gradient and of spacing a, the number of atoms of the diffusing
species per unit area of these planes is n1¼ ac1 and n2¼ ac2, respectively. If these atoms are jumping
randomly from site to site with a frequency G s�1 wherein one-sixth of their jumps are down or up the
concentration gradient, on an atomic level there will be a net flux (atoms cm�2 s�1) down the

concentration gradient given by 1
6aGðc1 � c2Þ. The local concentration gradient is essentially �ðc1 � c2Þ

a
and thus the flux can be related to the concentration gradient as follows:

J ¼ 1
6
Ga2ðc1 � c2Þ ¼ �1

6
Ga2

dc
dx

(108)

which is Fick’s First law if the intrinsic diffusivity is taken to beD ¼ 1
6Ga

2. This is an important result relating
a macroscopic phenomenological parameterdD in Fick’s First lawdto the underlying atomistics of the
diffusion process, namely an atomic jump frequencyG and an elementary jump distance a. If the jumps are

restricted tonearest-neighbor sites,a ¼
ffiffiffi
2

p

2
a0 anda ¼

ffiffiffi
3

p

2
a0 for FCCandBCClattices, respectively,wherea0

is the lattice parameter of the conventional cubic unit cell. If the atomic jumps aremediatedby exchangewith
anadjacentvacancy–vacancymechanismdas is the caseofdiffusion in substitutionalmetallic solid solutions
(and self-diffusion in pure metals), the above expression must be modified to include what is called
a “correlation factor” f that accounts for the fact that when the vacancy mechanism is operative the atomic
jumps are not completely random since after executing an elementary atomic jump the diffusing species
statistically is most likely to jump back into the vacant site from whence it came. Thus, we write
D ¼ f
6
Ga2

where f¼ 0.78 and 0.72 for FCC and BCC lattices, respectively.
Using radioactive tracers one can monitor the atomic migration of the tracer into a pure metal or into

a homogeneous alloy in the absence of a concentration gradient, that is, one can analyze the tracer
diffusion process andmeasure self-diffusion coefficients or tracer diffusivities (D�

M;D
�
A;D

�
B) that describe

thenearly random(but including correlation effects) jumpingof the tracer species in apuremetal or alloy.
Let us return to the migration of A and B in a binary alloy in a concentration gradient and recall that the
simple analysis presented earlier for diffusion in the concentration gradient was based on random
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jumping and flow down the gradient is essentially a statistical flow from plane 1 to plane 2 because there
are more atoms on plane 1 than on plane 2 (there is no bias to their individual jumps up or down the
gradient). Therefore, the variation of the free energy of the diffusing atom from site to site looks like that
shown in Figure 47. The activation barrier for jumps from left to right is the same as that for jumps from
right to left leading to random jumping.However, if thediffusing atom “sees” a free energyprofile like that
in Figure 48because of the effects of different atomic environments, for example, the jumpswill be biased
producing what effectively amounts to a drift velocity along the concentration gradient. The diffusive
flow in the concentration gradient can essentially be considered to be composed of two components,
namely, a statistical flow and flow deriving from a “driving force” which produces a drift velocity.

Let us return to the incorporation of the thermodynamic factor into the expression for the intrinsic
diffusivities that is

Di ¼ MiRT

�
1þ v ln gi

v ln Xi

�
:

First we note that for dilute solutions (gi¼ goi ¼ constant) and ideal solutions (gi¼ 1) this becomes
Di¼MiRT which is the famous Nernst–Einstein equation.

Assuming that Mi¼M�
i , we write D

�
i ¼M�

i RT¼MiRT where D�
i is a tracer diffusivity. We then write

Di ¼ D�
i

�
1þ v ln gi

v ln Xi

�

relating the intrinsic diffusivity to the corresponding tracer diffusivity at a given concentration. Thus, the
diffusion flux in a concentration gradient in a binary alloy can be separated into a statistical flow and
a drift term (nonrandom jumping) in the concentration gradient as follows:

Ji ¼ �D�
i
vci
vx

þ ciV
D
m (109)

with the drift velocity VD
m ¼ �Mi

vm0i
vx

and m0i ¼ RT ln gi which is the nonideal contribution to the
chemical potential of the diffusing species i.

At this point in our review we remind the reader that like the thermal conductivity the diffusivities
and mobilities are tensor properties of a crystalline solid (Second Rank polar matter tensors). Thus, for
diffusion the fluxes along the x-, y- and z-axes of a species should be written in terms of the components
of the second rank polar tensor Dij as follows:

J1 ¼ �D11
vc
vx1

� D12
vc
vx2

� D13
vc
vx3

J2 ¼ �D21
vc
vx1

� D22
vc
vx2

� D23
vc
vx3

J3 ¼ �D31
vc
vx1

� D32
vc
vx2

� D33
vc
vx3

(110)

where the notation x/ 1, y/ 2 and z/ 3 is used to relabel the coordinate axes; J1, J2 and J3 are
diffusion fluxes along the 1(x), 2(y) and 3(z) axes, respectively. In this generalized description of
diffusion in an anisotropic crystal we see that composition gradients along orthogonal axes can, in
principle, induce flows along the 1, 2 and 3 coordinate axes. Thus, the net flux vector J(J1, J2, J3) is not

necessarily parallel to the vector Vc; i:e:
�
vc
vx1

;
vc
vx2

;
vc
vx3

�
. However, if the second rank tensor is referred
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to the so-called principal axes the diffusivity tensor Dij takes the following diagonal form

Dij ¼
0
@D11 0 0

0 D22 0
0 0 D33

1
A (111)

wherein gradients along the principal axes always lead to flows parallel to these axes; however, if the
gradientVc is along a direction which is not a principal axis the net flux vector J(J1, J2, J3) is not parallel to
Vc in the general anisotropic case. The nature of the diffusivity tensor is strongly dependent on crystal
symmetry and embodied in Neumann’s Principle: The symmetry elements of any physical property of a crystal
must include the symmetry elements of the point group of the crystal. The symmetry of cubic crystals requires
that D11¼D22¼D33¼D rendering cubic crystals isotropic with respect to diffusion: in fact, cubic
crystals are isotropic with respect to all physical properties which are second rank tensorial properties of
the material including the thermal conductivity. For tetragonal and hexagonal crystalsD11¼D22sD33
and for the orthorhombic case D11sD22sD33. The principal axes for cubic, tetragonal and ortho-
rhombic crystals are along the conventional orthogonal crystal axes of these systems. For hexagonal
crystals the c-axis is a principal axis and orthogonal directions within the basal plane are principal axes.

Let us now revisit the relationship of thermally activated atomic jumps of individual atoms and
macroscopic diffusion behavior. As pointed out earlier virtually all diffusion coefficients empirically
exhibit a temperature dependence of the Arrhenius form

D ¼ D0 exp
�
�Q
RT

�

where Q is called the experimental activation energy for diffusion which is typicallyz 45–65 kcal mol�1

for diffusion in substitutional metallic solid solutions and self-diffusion in pure metals; the pre-
exponential D0 is generallyz 0.1–1.0 cm2 s�1. The activation energy for interstitial diffusion, for
example C in a-Fe and g-Fe isz 20–30 kcal mol�1. We derived a relationship between the diffusivity
(D as in Fick’s laws) of a migrating species and atomistic parameters through the basic equation

D ¼ f
6
Ga2 (112)

where G and a are the average jump frequency and the elementary jump distance, respectively. The
correlation factor, f, is unity for diffusion of interstitial solutes jumping among the atomic sites of
a dilute interstitial solid solution and less than one for diffusion of a substitutional solute in solid
solution migrating via a vacancy mechanism as discussed earlier. The average jump frequency can be
addressed using an elementary interpretation of thermally activated jumping as follows: the diffusing
atom is vibrating about its equilibrium position within a potential well with some frequency
nz 1013 s�1 and the probability that on any oscillation against the barrier separating atomic sites
the atom will be energetic enough to move over the barrier and jump to an adjacent site (if the site
is available to accommodate the migrating species) is from elementary statistical thermodynamics

exp
�
� Dgm

kBT

�
where Dgm is the height of the (free) energy barrier or the (free) energy of activation for the

elementary diffusional jump. (The subscript m explicitly identifies this as an activation free energy for
atomic migration.) See Figure 47. For diffusion occurring via a vacancy mechanism the probability that

the site is vacant is exp
�
� DgV

kBT

�
where Dgv is the (free) energy of formation of a vacant sitez 1 eV in
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a metallic system. If there are z equivalent sites surrounding the migrating atom the average jump

frequency will be nz exp
�
� Dgm þ DgV

kBT

�
with z¼ 12 (fcc) and z¼ 8 (bcc) for nearest-neighbor jumps.

For interstitial diffusion, for example C and N in Fe, the probability that an adjacent interstitial site is

vacant is essentially one so that the jump frequency is given by nz exp
�
� Dgm

kBT

�
. Thus, the diffusivity of

a species controlled by thermally activated jumps mediated by a vacancy mechanism can be written as

D ¼ fa2nz
6

exp
�
� Dgm þ DgV

kBT

�
(113)

and for interstitial diffusion

D ¼ a2nz
6

exp
�
� Dgm

kBT

�
(114)

and are often written as

D ¼ fa2nz
6

exp
�
� Dgm þ DgV

kBT

�
¼ fa2nz

6
exp
�
DSm þ DSV

R

�
exp
�
� DHm þ DHV

RT

�

and

D ¼ a2nz
6

exp
�
� Dgm

kBT

�
¼ a2nz

6
exp
�
DSm
R

�
exp
�
� DHm

RT

�
(115)

respectively. Clearly, these expressions for the diffusivity are of the Arrhenius form D ¼ D0 exp
�
�Q
RT

�
and from a plot of ln D vs. 1T the slope �Q

R
is
�
� DHm þ DHV

R

�
or
�
� DHm

RT

�
, respectively.

The intercept of the plot ln D0 is related to the preexponential parameters. The experimental acti-
vation energyQ is a composite term when a vacancy mechanism is operative composed of the enthalpic
part of the free energy of activation for migration DHm and the enthalpic contribution to the free energy
of formation of vacant sites. In the case of interstitial diffusion Q is related directly to the enthalpic
contribution to the free energy of activation for an elementary thermally activated jump from one
interstitial site to another adjacent site.

Various aspects of atomic migration and thermally activated atomic jumping are often related to the
basic tenets of what is called random walk theory (Shewmon, 1963). The root mean squared distance
amigrating atomwill travel from its initial position in time t after n¼Gt jumps is shown to be R¼ n1/2a
and thus can be related to the diffusivity as R¼ (6Dt)1/2 from our discussion earlier. If the diffusion is
isotropic then R2¼ X2þ Y2þ Z2 and for an arbitrary set of axes is such that R2¼ 3X2 since all directions
X, Y and Z are equivalent and thus the root mean squared travel distance along a particular direction is
X ¼ ffiffiffiffiffiffiffiffi

2Dt
p

. This relation is useful for “back of the envelope” estimates of diffusion distances in
a particular context, for example approximately how thick is a carburized layer after a case-hardening
treatment of steel ball bearings for some time t.

The discussion of mass transport to this point has focused on what we call bulk or lattice diffusion
involving atomic jumps among the normal lattice sites or interstitial sites of the crystalline solid.
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However, we know that most metallic (and ceramic) solids are polycrystalline and contain lattice
defects such as dislocations. Atomic migration along grain boundaries and dislocations can occur much
more rapidly than within the bulk crystal lattice with an activation energy of the order of one-half that
for lattice diffusion. However, although diffusion is more rapid along these short-circuit paths the
fraction of atoms associated with grain boundaries and dislocations is small of order 10�6 to 10�8

depending on the grain size and dislocation density. The contribution of short-circuit paths to overall

mass transport depends on the ratio
Dgbf

DL
or

DPf
DL

where DL is the ordinary lattice or bulk diffusivity

and Dgb and DP are the diffusivities characterizing the grain boundary and dislocation “pipe” high-
diffusivity paths; f is the fraction of atomic sites associated with the short-circuit paths. When these
ratios approach 1 the short-circuit paths start to make a significant contribution to the overall diffusive
flow and the apparent or effective diffusion coefficient is enhanced compared with that deriving from
bulk diffusion alone. This occurs for grain boundary diffusion below about two-thirds the melting
point 2

3 TM and for dislocations below about one-half the melting point 1
2 TM, that is, short paths

become more important at lower temperatures.
Numerous practical problems involving diffusion require a solution to the diffusion equation (Fick’s

Second law) for various initial and boundary conditions and a number of solutions relevant to
materials problems are discussed in texts such as Shewmon (1963), Glicksman (2000), Wilkinson
(2000) and Kirkaldy and Young (1987). It should be pointed out that useful solutions to the diffusion
equation can often be extracted from books on heat flow such as Carslaw and Jaeger (1946) since the
heat flow equation and its solutions can be converted to solutions to diffusion problems through
a change in variables.

8.3.3.1 Johnson–Mehl–Avrami–Kolmogorov (JMAK) Kinetics
In the previous sections the kinetic mechanisms involved in the change of phase have been reviewed. In
this section a general phenomenological approach to the kinetics of phase change is discussed. The
following discussion is based on a series of papers published between 1937 and 1942 (Kolmogorov,
1937; Avrami, 1938, 1940, 1941; Johnson and Mehl, 1939). For a recent commentary see Barmak
(2010) and Hillert (2011).

It is important to be able to understand and delineate how fast a transformation occurs, and to be able
to display this on a simple plot of fraction transformed, X, versus time, t. A typical plot of the volume
fraction transformed, X versus time, t for a first-order phase transformation is shown in Figure 50.

It can be seen that such transformations start off slowly, increase in rate and then slow down as the
transformation nears completion. From the figure it can be seen that the equation for this curve should
display the conditions

X ¼ 0 at t ¼ 0

X ¼ 1 at t ¼ N

dX
dt

¼ 0 at t ¼ 0

dX
dt

¼ 0 at t ¼ N

An equation which satisfies these conditions is

x ¼ 1� expð � ðktÞnÞ (116)



Figure 50 Typical volume fraction transformed, X, vs. time for a first-order phase transformation at a given temperature.
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(Note: some authors place the temperature-dependent constant k outside of the parenthesis in the
above equation. We prefer to keep it within so that it always has the units of inverse time, regardless of
the value of the exponent, n.)

If sufficient data are available, the two constants k and n can be determined from a plot of
ln ln 1

ð1�XÞ vs: ln t: The slope of the plot will be equal to n and the intercept will be nln k. These values
can then be used to determine the fraction transformed at any time at the temperature in question.
The effect of temperature comes into play via the temperature-dependent k(T).

At a given temperature, the maximum rate of transformation occurs at the point of inflection of the
curve, that is, when the second derivative of X with respect to time is equal to zero. The value of Xmax in
terms of the value of n is determined as follows:

X ¼ 1� expð�ðktÞnÞ

dX
dt

¼ nkðktÞn�1ð1� XÞ

d2X
dt2

¼ ðn� 1Þnk2ðktÞn�2ð1� XÞ þ nkðktÞn�1
�
�dX

dt

�

set ¼ 0 and solve :

ðn� 1Þnk2ðktÞn�2ð1� XÞ ¼ nkðktÞn�1ð1� XÞnkðktÞn�1

ðktÞn ¼ n� 1
n

or Xmax ¼ 1� exp
�
� n� 1

n

�

Thus, if the inflection point can be determined, the value of n can be found. This is a second way to
obtain the value of n for a given transformation. This can only be utilized if there is sufficient data to
obtain the point of inflection of the X vs. t plot.

8.3.3.2 Initial Slopes of X vs. Time Curves
From the derivative of Eqn (116) we obtain

dX
dt

¼ nkðktÞn�1ð1� XÞ (117)
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The following can be seen to obtain

(1) n > 1
�
dX
dt

�
t¼0

¼ 0

(2) n ¼ 1
�
dX
dt

�
t¼0

¼ constant ¼ nkn ¼ k

(3) 0 < n < 1
�
dX
dt

�
t¼0

¼ N

(4) n< 0 (not physical)

It can be seen that the expression 116 also allows for initially rapid transformations, if n is less than or
equal to 1.

8.3.3.3 Models for Predicting Values of n and k
From the above equations we have

X ¼ 1� exp½�ðktÞn�
dX
dt

¼ exp½�ðktÞn�nkðktÞn�1

dX
dt

¼ ð1� XÞnkntn�1

(118)

For short times, by expanding the exponential in the first expression and dropping higher order
terms we obtain

X ¼ ðktÞn
dX
dt

¼ nkntn�1
(119)

The difference between equations 118 and 119 is the factor (1� X), which is the fraction of the
sample that is untransformed. This term has been called the “impingement factor” and it takes into
account the fact that the volume fraction available to transform decreases with time.

We have �
dX
dt

�
corrected for impingement

¼ ð1� XÞ
�
dX
dt

�
not corrected for impingement

(120)

The fraction not corrected for impingement is called the extended volume fraction, Xx.
Note, by rearranging Eqn (120) and integrating, the following is obtained:

dX
ð1� XÞ ¼ dXX
�lnð1� XÞ ¼ Xx
ð1� XÞ ¼ expð � XXÞ
X ¼ 1� expð � XXÞ (121)
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Thus if the transformation rate can be modeled in terms of the extended volume fraction trans-
formed (that is, not taking into account impingement) we can obtain the actual transformation fraction
transformed by Eqn (121).

8.3.3.4 Modeling the Nucleation Process
The rate of nucleation, I, is the number of transformation centers, N, coming into existence per unit
time per unit volume of untransformed phase. Thus

I ¼ 1
ð1� XÞ

dN
dt

Avrami (1939) has written

dN
N

¼ �v1dt
N ¼ N0 expð � v1tÞ

whereN is the number of possible nuclei sites remaining andN0 is total number of possible nuclei sites.
(Note that the rate of change of the remaining sites is equal to but opposite in sign to the rate of change
of sites where nucleation has occurred.)

The number of possible sites for nucleation decreases with time. Thus, using the above assumption
of Avrami, we obtain for the rate of nucleation

dN
dt

¼ N0n1 expð� n1tÞ

I ¼
�

1
1� X

�
N0n1 expð� n1tÞ

Two extreme cases may be considered:

(1) n1 is very large:
dN
dt

¼ 0: all nucleation has occurred at t¼ 0.

(2) n1 is very small:

dN
dt

zN0v1 ¼ constant nucleation rate.

8.3.3.5 Modeling the Growth Process
The growth rate, G, of a linear dimension r of the new phase is defined as

G ¼ dr
dt
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There are two cases of interest for solid-state diffusional transformations, those whose rate of growth
is constant

(1) G¼ constant,

thus rft (linear)

(2) Gft�1=2,

hence rft1=2 (parabolic).

8.3.3.6 Modeling the Volume Fraction Transformed
We will look at four special cases for the prediction of the values of k and n.
Case 1a
 I¼ 0
 G¼ constant
Case 1b
 I¼ 0
 G¼ parabolic
Case 2a
 I¼ constant
 G¼ constant
Case 2b
 I¼ constant
 G¼ parabolic
Case 1a
(1) All nucleation at t¼ 0
(2) Particles grow as spheres
(3) G ¼ dr

dt ¼ constant:

Thus: XX ¼ N 4
3pG

3t3and X ¼ 1� exp
�
� 4p

3
NG3t3

�

For this case we obtain n¼ 3 and k ¼
�
4pN
3

�1
3

G

Case 1b
(1) All nucleation at t¼ 0
(2) Particles grow as spheres
(3) G¼ krt

�1/2

Thus dr ¼ krt�1=2dt
r� r0¼ 2krt

1/2

rz 2krt
1/2.

Now XX ¼ 32
3

pk3r Nt3=2

X ¼ 1� exp
�
� 32p

3
k3r Nt3=2

�
For this case we obtain n¼ 3/2 and k ¼

�
32p
3

N

�2
3

k2r

Case 2a (The original Johnson–Mehl Equation)
Assumptions:
(1) I and G not functions of x, t
(2) Random nucleation in untransformed regions
(3) Particles grow as sphere
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At time t, the volume of a spherical particle that formed at s(0< s< t) is

Vol ¼ 4
3
pG3ðt � sÞ3

Thus XX ¼
Z s¼t

s¼0

4
3
pG3ðt � sÞ3Ids ¼ p

3
G3It4

and X ¼ 1� exp
�
� p

3
lG3t4

�

For this case n¼ 4 and k ¼
�
pIG3

3

�1
4

Case 2b
Same assumptions as 2a, but the growth is parabolic in time.

G¼ krt
�1/2

Vol ¼ 4
3
pk3r ðt � sÞ3=2

XX ¼
Z s¼t

t¼0

4
3
pk3r ðt � tÞ3=2Idt¼4

3
2
5
ðpk3r IÞt5=2

X ¼ 1� exp
�
� 8p

15
k3r lt

5=2
�

For this case n¼ 5/2 and k ¼
�
8pk3r I
15

�2
5

From these cases it can be seen that the time exponent n for the growth of the new phase shaped as
spheres is made up of two terms, p and q.
p¼ 0 If all nucleation occurs at t¼ 0
p¼ 1
 If nucleation occurs with time
q¼ 3
 If growth is linear
q¼ 3/2
 If growth is parabolic
Thus, n can be 3
2; 3;

5
2 or 4 for the nucleation and growth of spheres.

Other values of n can be obtained. For example, if the nucleation rate is a function of time, n can be
greater than 4.

If the new phase is not spherical in shape, other values of n can be found. For example, suppose the
particle grows linearly as a plate in two dimensions but the third-dimension parabolic. Then, q is
determined to be 5/2. The value of n could be 5/2 or 7/2, or greater, depending on the nucleation
conditions.

It can be seen that the same value of n could be determined for cases with very different nucleation,
growth or shapes of the new phase. It is always wise to supplement these kinetic studies with actual
metallographic observations of the shape of the new phase.

Other complications can also arise. For example the diffusion fields of the growing particles could
overlap, causing a slowing down of the kinetics. This is called soft impingement and the values of n and
k will no longer be constant for a given temperature.
8.4 Classical Nucleation

Nucleation is basically a fluctuation phenomenon within an undercooled or supersaturated phase that
produces regions of a new phase (or combination of phases) that can grow spontaneously dissipating
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the excess free energy and changing the phase constitution of the material system. The rate of this
basic process during phase transformations occurring in materials systems often determines the
microstructural scale of the transformation products and thus can ultimately influence the
structure–properties relationships in engineering materials. The emergence of the new phase generally
occurs at distinct sites within the parent phase and the number of these transformation centers or nuclei
appearing in a unit volume per unit time essentially defines a nucleation rate. If the nuclei appear at
random sites within the parent phase, the nucleation process is termed homogeneous. The formation of
the new phase may be catalyzed by the presence of singularities in the system such as container walls or
lattice defects and occurs preferentially at these special sites; this nonrandom appearance of the new
phase or phases is called heterogeneous nucleation. The rate of heterogeneous nucleation is clearly
limited by the density of these special sites.

Let us look briefly at the elementary thermodynamics of fluctuation behavior in an isolated system.
Writing the combination of the First and Second Laws of Thermodynamics as

DE ¼ TDSþW (122)

where T is the temperature, W is the work done on or within the system and DS is the entropy change
associated with some process occurring within the system; DE is the associated change in internal
energy of the system. If an appreciable fluctuation occurs locally within the isolated system, DE¼ 0,
one finds

DS ¼ �W
T

(123)

Recalling that DS can be written according to elementary statistical thermodynamics as

DS ¼ kB ln
�
P2
P1

�
(124)

where P2 is the thermodynamic probability of the fluctuated state and P1 is the thermodynamic
probability of the initial metastable state. We see that the less probable fluctuated state entails DS< 0

and a local heterophase fluctuation occurs with a probability related to exp
�
� W
kBT

�
, where W is

essentially the work that must be expended, in principle, to create the fluctuation or perturbation. Such
thermal fluctuations are associated with the initiation of phase transformations in a metastable parent
phase and in the case of a nucleation event the thermodynamic driving force for the phase change can
contribute to the work of formation of the fluctuation or nucleus of the new phase. We therefore expect
that the rate of nucleation will be proportional to a term exp

�
�W

kBT


, where W is the work required to

assemble a critical nucleus as discussed subsequently.
The foundations of what metallurgists and materials scientists, physicists, and chemists call

classical nucleation theory (CNT) were essentially laid by Gibbs (1875, ff) in the late nineteenth
century. He clearly showed that the initiation of a phase transformation in an undercooled or
supersaturated metastable phase produced by crossing a phase boundary in the relevant phase
diagram, generally encounters a “nucleation barrier” inhibiting formation of the thermodynami-
cally preferred phase or phases. This kinetic barrier or inhibition arises because the embryos of the
new thermodynamically more stable phase(s) involve the formation of small regions separated by
an interphase interface requiring an expenditure of (free) energy or work in their creation. This
surface (free) energy or work presents a primary barrier to the formation of the new phase; however,



932 Diffusional Phase Transformations in the Solid State
in the case of solid–solid phase transformations, the appearance of embryos/nuclei of the new
phase may be accompanied by local misfit stresses/strains within the parent and emerging phase as
a result of a difference in molar volume between phases or due to crystallographic mismatch. The
associated elastic energy contributes to the work involved in the formation of the heterophase
fluctuations which trigger the transformation of the system. In the language of the chemist the
nucleation barrier is an activation barrier that controls the rate of the reaction or rate of formation
of the “seeds” of the more stable phase.

Based on the seminal ideas of Gibbs, Volmer and Weber (1926), Farkas (1927) and Becker and
Doering (1935) in the 1920s and 1930s formulated the approach of CNT primarily addressing the
formation of nuclei in supersaturated vapor phases. This VWBD theory embodied the capillarity
thermodynamics of Gibbs and was later modified and refined by Becker (1938), Turnbull and Fisher
(1949), Russell (1970) and Aaronson et al. (2010) and applied to nucleation in condensed phases.
In spite of the uncomfortable assumptions of the classical theory regarding extrapolation of bulk
thermodynamic properties to the small embryos/nuclei and assumptions regarding the nature of the
interphase interfaces between the parent and emerging phase, CNT has provided a useful semi-
quantitative basis for systematizing the transformation behavior in a wide variety of material
systems, and, importantly, for understanding the development of microstructure during the ther-
momechanical processing of engineering materials.
8.4.1 Basic Tenets of CNT

8.4.1.1 Fundamentals: Homogeneous Nucleation
In the first approximation to calculating the rate of nucleation we follow the quasi-equilibrium
approach of Volmer and Weber (1926) which writes the nucleation rate as the product of the equi-
librium concentration of critical nuclei times the rate at which single atoms/molecules (monomers) can
join the nuclei rendering them supercritical and capable of spontaneous growth as transformation
centers of the new phase. Any back flux of supercritical nuclei is neglected. We address the equilibrium
distribution of embryos of various sizes up to the critical size using the usual Gibbs free energy
approximation to describe the energetics of their formation which is not rigorous when the
compressibility of the phases cannot be ignored. For condensed phases this is a useful approximation
and the error entailed is quite small.

Whether in a vapor phase or condensed phase it is assumed that the embryos/nuclei of the incipient
phase form through a series of bimolecular reactions of the form

an þ a1/anþ1

.

.

.

a�n�1 þ a1/a�n:

a�n þ a1/a�nþ1

where the an is a cluster or embryo containing n atoms/molecules (monomers) and a�n is a cluster of
critical size; the last step is considered to be irreversible and governs the effective nucleation rate. The
other bimolecular reactions are in metastable equilibrium and these equilibria determine the
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distribution of embryos of a given size at any time in the system. The irreversible crossing of clusters of
critical size to the supercritical state is assumed to not perturb the metastable equilibrium distribution.
This quasi-equilibrium approach to the nucleation problem is fundamentally similar to the so-called
Absolute Reaction Rate Theory (Glasstone et al., 1941) applied to the description of the rate of
chemical reactions with the critical nucleus (cluster of critical size a�n) playing the role of the so-called
“activated complex” or “transition state”.

The overall reaction for cluster formation can be considered to be

na1 ¼ an

and is assumed to be amenable to a treatment based on standard equilibrium chemical thermody-
namics in terms of an equilibrium constant and the van’t Hoff isotherm yielding an expression for the
equilibrium concentration of embryos of various sizes n given by

Nn

N0
¼ exp

�
� DGn

kBT

�
(125)

where Nn is the equilibrium number of embryos containing n monomers, N0 is the number of unas-
sociated atoms or molecules (essentially equal to the number of atoms or molecules in the system) and
DGn is a standard free energy of formation of embryos of size n. The number of clusters of critical size or
critical nuclei at any time is then

Nn�

N0
¼ exp

�
� DG�

n

kBT

�
¼ exp

�
� DG�

kBT

�
(126)

(It should be noted that the critical nuclei are in unstable thermodynamic equilibrium with the
supersaturated or undercooled parent phase.) See Figure 51a. The undercooled parent phase is char-
acterized by an equilibrium distribution of embryos and nuclei at any time and the nucleation rate is
simply governed by the concentration of critical nuclei C* (number per unit volume) and the rate (u*)
at which single atoms/molecules (monomers) can join these clusters of critical size taking them over the
nucleation barrier and into the realm of spontaneous growth to form regions of the new more stable
phase, that is, Iv¼ C*u*, where Iv is a widely used nomenclature designating the rate of homogeneous
nucleation as the number of nuclei crossing the barrier per unit volume per unit time. In the case of
condensation from a vapor phase u* can be estimated from the kinetic theory of gases. In condensed
systems (liquid/ solid and solid/ solid transformations), the u* term involves a thermally activated
diffusional jump from the parent phase to the critical nucleus and will be discussed in detail subse-
quently. See Figure 51.

Let us now look at the free energy of formation of embryos/nuclei using the conventional approach
where the Gibbs free energy is used to estimate the work of formation of the critical nucleus. It is
assumed that the transformation (a/ b) is occurring at constant composition in a condensed phase
and that bulk thermodynamic properties of the parent and product phases can be extrapolated to the
small length scales involved in the nucleation process including the relevant surface energies and,
furthermore, the interface between the parent and incipient phases is assumed to be sharp. The free
energy of formation of a cluster containing n atoms/molecules, DGn, written as a sum of a volume term
and surface term, neglecting any strain energy accompanying the transformation as follows:

DGn ¼ nvðDGvÞ þ n
2
3Saisi (127)



Figure 51 (a) Free energy of formation of clusters/embryos as a function of n, the number of atoms/molecules in the cluster.
The cluster n* is the cluster of critical size and the free energy of formation is DG*. (b) The number of embryos as a function of
cluster size n, according to Volmer–Weber and Becker–Doring approaches. After Reed-Hill (1972).
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where v is the atomic/molecular volume, DGV is the free energy released per unit volume of the phase
change a/ b, effectively the thermodynamic “driving force” for the transformation, and n

2
3
P

aisi is
the surface energy associated with the cluster/matrix interface expressed as a summation over facets i,
where ai is a geometric parameter, with units of area. Henceforth, this is written as simply as Sas
following the notation of Turnbull (1956). Assuming that the embryos and nuclei develop with an
optimized shape, one finds that DGn as a function of size n, goes through a maximum at n¼ n*. See
Figure 51a. These critical values are given by

n� ¼ �
�
2ðSasÞ
3vDGV

�3

(128)

and
DGn� ¼ DG� ¼ 4ðSasÞ3
27ðvDGVÞ2

(129)

The activation barrier DG* is the minimum work required through thermal fluctuations to create
a heterophase fluctuation that can spontaneously decrease its free energy by growth to macroscopic
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dimensions. The cluster containing n* monomers is the critical nucleus and is in unstable equilibrium
with the undercooled parent phase; the critical nucleus has equal probability of growing or shrinking to
subcritical size whereas embryos with n< n* are more likely to shrink in size. For a spherical nucleus r*,
the following well-known textbook equations result

DG� ¼ 16ps3

3DG2
V

¼ 4pðr�Þ2s
3

(130)

and

r� ¼ � 2s
DGV

(131)

where s is the isotropic surface energy of the a–b interface. We see that in this simple formulation of the
nucleation barrier that the work to create the critical nucleus through thermal fluctuations is one-third
the actual work expended in forming the a–b interface, the other two-thirds is supplied by the ther-
modynamic driving force.

If elastic strains accompany the appearance of the new phase (solid–solid transformation) the
associated strain energy must be considered in the energetics of cluster/embryo formation. Assuming
that the strain energy scales with the volume of the cluster and is independent of shape, in the first
approximation, it is straight forward to write a modified expression for the standard free energy of
formation of a cluster containing n atoms/molecules as

DGn ¼ nvðDGV þ DGSÞ þ n
2
3Sas (132)

where DGS is the attendant strain energy per unit volume of the cluster. Again the free energy of
formation passes through a maximum at DG* and n* given by

DG� ¼ 4ðSasÞ3
27v2ðDGV þ DGSÞ2

(133)

and

n� ¼ �
�

2ðSasÞ
3vðDGV þ DGSÞ

�3

(134)

Since DGV is negative and DGS is positive, the strain energy reduces the effective driving force and can
suppress transformation. Generally, strain energy will increase the undercooling or supersaturation
required for nucleation of the new phase. The strain energy only affects the equilibrium shape of the
critical nucleus when it becomes a significant fraction of the driving force, that is, a critical level of strain
energy is required to markedly influence the nucleus shape.

If the surface and strain energies are functions of the shape and strain, the DG* appears at a saddle
point in a hyperspace DGn ¼ f(n, s, ε) where s is a shape parameter or set of shape parameters and ε is
a set of strains in the matrix and nucleus and n is the number of monomers in the nucleus as before. The
size and shape of the nucleus optimize the surface and strain energies at the saddle point n*, s*, ε*. In
crystalline solids the energetics of nucleation are complicated further by the fact that various orientation
relationships between the parent and product phases can be established and various types of interfaces
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(coherent, semicoherent, and incoherent) and elastic misfits can develop as discussed previously (see
Figure 43). In Figure 52 a coherent quasi-spherical precipitate is depicted showing attendant coherency
strains.

Numerous investigators have approached the estimation of the strain energy attendant to nucleation
in solid–solid transformations. We first mention the classic work of Nabarro (1940) which is strictly
applicable to an incoherent nucleus where the strain energy introduced into the parent phase by an
incompressible nucleus in the shape of a prolate or oblate spheroid is calculated. The results have been
presented in numerous textbook treatments and treatises over the years (e.g. Christian, 2002) showing
a maximum for a sphere and minimum for a disc and an intermediate level for a rod-like geometry.
However, it is generally agreed today that incoherent nucleation is likely to be strain free if the diffusion
of vacancies is possible and therefore these well-known results are not actually applicable to diffusional
nucleation in solids (Russell, 1970).

Eshelby (1957) considered the formation of coherent nuclei of one cubic phase within another
where the strain associated with the transformation is a uniform expansion or contraction, the nucleus
and matrix are assumed to be elastically isotropic and have the same elastic constants. The strain energy
per unit volume of the nucleus, ES, is found to be given by

ES ¼
E
�
ε
T
11

�2
ð1� vÞ (135)

where 3εT11 ¼ DV=V , the fractional volume misfit; E and v are the Young’s modulus and Poisson’s ratio

related to the shear modulus G ¼ E
2ð1þ vÞ in the isotropic approximation. The transformation strain

ε
T
11 is defined as εT11 ¼ d ¼ a0m � a0p

a0m
, the so-called disregistry or stress-free linear transformation strain,

with a0m and a0p being the lattice parameters of the (unconstrained) matrix (m) and precipitate (p)
Figure 52 Coherent nucleus/embryo with attendant coherency strain.
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phases, the term precipitate being used to generically refer to the nucleus/embryo of the new phase. This
strain energy per unit volume of the nucleus/embryo is independent of shape. For volume misfits of
a few to several percent the strain energy can reach values which are a significant fraction of the ther-
modynamic driving force (10–100 erg/cm3).

Eshelby also considered the case of a rigid incompressible matrix and a nucleus with finite elastic
constants (assuming elastic isotropy) and showed that the strain energy per unit volume of the nucleus
is about three times that for the case of equal stiffnesses and given by

ES ¼ 3EPd2

2ð1� 2nPÞ (136)

and for an incompressible nucleus the result is

ES ¼ 3EMd2

ð1þ vMÞ (137)

which is approximately 1.5 times that for equal stiffnesses of the matrix and nucleus. If the trans-
formation has associated shear strain, the Eshelby analysis assuming elastic isotropy and equal elastic
stiffness of the matrix and nucleus predicts a level of elastic shear strain energy per unit volume of the
precipitate which is a function of particle shape:

ES ¼
E
�
ε
T
13

�2
ð1þ vÞ

pð2� vÞ
4ð1� vÞ

c
r

(138)

where εT13 is a shear component of transformation strain tensor of an oblate spheroid lying in the x1� x2
plane and c/r the shape parameter of the oblate spheroid of major axis r and minor axis c (c being along
x3 normal to the plane x1� x2). The strain energy now becomes a function of the particle shape
described by c/r even in the isotropic approximation and equal elastic stiffness. This result generally
favors a plate-like morphology but at the expense of surface energy indicating a nucleus shape which
optimizes the surface energy and strain energy expenditures in the free energy of formation. Finally,
Aaronson et al. (2010) report on the volume strain energy for coherent nuclei/precipitates with
differing but finite elastic constants and considered the role of elastic anisotropy. For “soft” particles
discs are favored; for “hard” particles spheres are the energetically favorable morphology. When the
problem of anisotropy is addressed, clearly the orientation relationship becomes a new variable. It is
found that generally if any anisotropy exists the strain energy is shape dependent.

Before formulating the supposedly more rigorous steady-state theory (Becker-Doering, 1935)
description of the nucleation problem let us derive an expression for the rate of homogeneous
nucleation based on the quasi-equilibrium approach developed earlier. Recall that the nucleation rate is
considered to be given by the product of the concentration of critical nuclei times the rate at which this
activated state can cross over the barrier, that is, the rate at which atoms/molecules (monomers) can
attach themselves to the nuclei taking them into the regime of spontaneous growth accompanied by
a progressive decrease in the free energy of the cluster or heterophase fluctuation. In condensed phases
this latter step of atomic attachment will generally involve a thermally activated diffusional jump across
the interface from parent phase to the nucleus and the rate, u�0 expected to be controlled the number of

monomers in the vicinity of the matrix–nucleus interface times an Arrhenius-type term exp
�
� qm
kBT

�
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where qm is an activation energy for the diffusional jump or atomic migration. Thus, the nucleation rate

can be expressed as

IV ¼ u�C� ¼ Khomo exp
�
� ðDG� þ qmÞ

kBT

�
(139)

where the u* term is the rate of atomic jumping across the interface and C* is the concentration of
critical nuclei in unstable thermodynamic equilibrium with the parent phase. The result is typically

IV ¼ �1030 to 1040
�
exp
�
� ðDG� þ qmÞ

kBT

�
(140)

and a sensible nucleation rate is expected for DG*¼ (60–70) kBT in most material systems. An
important feature of this result is that the onset of nucleation is so sharp that the nucleation rate can be
expected to vary over as much as five or six orders of magnitude in a temperature range of only a few
degrees, that is, there is virtually a critical undercooling or supersaturation required to initiate nucle-
ation (see Figure 53). This precipitous rise or burst slows down and passes through a maximum and
eventually decays exponentially to zero at 0 K. This drop-off stems from the limited atomic mobility at

low temperatures (the exp
�
� qm
kBT

�
term).

The steady-state theory of nucleation developed by Becker and Doering (1935) and others (e.g.
Zeldovich, 1943) attempts to formulate the nucleation problem more fundamentally as a kinetic
process defining the nucleation rate as a steady-state current through the embryo size distribution or
along the n axis of the DGn versus n-plot employed earlier. In this treatment where the nucleation rate is
essentially a steady-state current or diffusion flux in “n-space” account is taken that embryo/clusters
which actually exceed the critical nucleus size described earlier may decompose back to the subcritical
regime and furthermore takes into account that the effective concentration of clusters in the vicinity of
the top of the barrier is perturbed from the metastable equilibrium value. See Figure 51. The current
through the size distribution is written as a difference equation:

j ¼ bðnÞCðnÞ � aðnþ 1ÞCðnþ 1Þ (141)

where b(n) is the rate at which monomers are absorbed by embryos of size n and a(nþ 1) is the rate of
decomposition of embryos of size nþ 1; C(n) nd C(nþ 1) are the steady-state concentrations of
Figure 53 Predicted variation of the rate of homogeneous nucleation as a function of undercooling.
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embryos of sizes n and nþ 1, respectively (C0
n and C0

nþ1 are then taken as the equilibrium concentra-
tions). See Figure 51b. Solving for the steady-state flux yields the following result:

J ¼ Zb�C0
n� ¼ Zu�C� ¼ Zu�N exp

�
� DG�

kBT

�
(142)

wherein Z is called the Zeldovich nonequilibrium factor, b*¼u* is the rate at which single atoms/
molecules (monomers) can join the critical nucleus, C0

n� ¼ C� is the equilibrium concentration of
clusters of size n¼ n* (critical nuclei), N and DG* have their usual meaning previously defined earlier.
The Zeldovich factor is shown to be related to the curvature of the DGn versus n curve at n¼ n*. It
should be pointed out that Zz 10�1 to 10�2 for most systems of interest, thus, the nonequilibrium
factor reduces the predicted nucleation rate by a factor of about 100 and given that the preexponential
for condensed systems is z1030 to 1040 this correction is not likely to be resolved experimentally.
However, the theory indicates that a time-dependent nucleation rate should be observed given by

JðtÞ ¼ Zu�N exp
�
� DG�

kBT

�
exp
�
�s
t


(143)

where s is essentially an incubation time characterizing the approach to steady-state nucleation and

approximately given by sz
1

u�Z
. See Figure 54.

8.4.1.2 Heterogeneous Nucleation
It must be emphasized again that in the vastmajority of phase transformations occurring inmetallurgical
(materials) systems involvingnucleationandgrowthofnewphases, homogenousnucleation is extremely
rare and heterogeneous or catalyzed nucleation generally dominates the phase change at significantly
reduced undercoolings or supersaturations compared with those required to induce homogeneous
nucleation. It is extremely difficult to isolate systems whether undercooled melts, supersaturated vapors
or solid solutions from the influence of catalyzing singularities such as container/mold walls, impurity
particles or lattice defects. Some ingenious experimental approaches such as the classic small droplets
experiments used in the study of solidification (Vonnegut, 1948; Turnbull and Fischer, 1949) have been
designed to isolate the influence of nucleation catalysts. Large undercoolings compared with those
observed for the freezing of bulk melts were observed but the validity of the results and interpretation of
Figure 54 Number of particles nucleated as a function of time, showing an interval of steady-state nucleation.
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these famous experiments has been called into question as to whether the realm of homogeneous
nucleationwas actually observed (Kelton andGreer, 2010).However, theGibbsian capillarity-basedCNT
outlined earlier for homogeneous nucleation provides a framework for constructing an analysis of the
energetics and kinetics of heterogeneous nucleation. (It should be mentioned that Gibbs also addressed
the energetics of heterogeneous nucleation compared with homogeneous nucleation.)

Heterogeneous nucleation preferentially at “special sites” occurs because the interaction of the
embryos/nucleus with the singularity, for example mold wall during freezing, reduces the free energy
barrier DG*, allowing the formation of the new phase at substantially reduced undercoolings. Nucle-
ation of the solid phase during the freezing of undercooled melts is known to take place on impurity
particles and container walls and preferential nucleation in solid–solid transformations is well estab-
lished to occur at grain boundaries and dislocations (Christian, 2002). Generally, catalyzing the
nucleation process on a planar singularity or surface essentially depends on a net reduction of surface
energy required to form a nucleus (in the absence of significant strain energy effects).

Following a simple surface energy/capillarity approach, the free energy of formation of an embryo/
nucleus of a b phase on a surface/substrate(s) within an undercooled a phase can be written as
DGs ¼ AbsWs þ Aabsab þ VbDGV (144)

where Abs is the area of the b–s interface created, Aab is the area of the a–b interface created and Vb is
the volume of the spherical cap (see Figure 55); sab is the isotropic surface energy of the a–b interface
and DGv has its usual meaning, that is, the free energy released per unit volume of the b phase formed.
The parameterWs¼ sbs� sas is the free energy change accompanying the replacement of a unit area of
the a–s interface with a unit area of b–s interface with surface energies sas and sbs, respectively. There
are three relevant interfacial free energies or surface energies sab, sas and sbs and can be related by
sabcos qþ sbS¼ saS assuming an incompressible substrate and mechanical equilibrium at the
junction of the s, b and s phases, where q is called the contact angle from surface chemistry describing
the “wetting” of the substrate by the b phase. Also, the contact angle can be written in terms of Ws as

cos q ¼ �Ws

sab
. For a spherical cap of radius r, Abs¼ pr2sin2q, Aab¼ 2pr2(1�cosq) and

Vb ¼ pr3ð2 � 3 cos q� cos3 qÞ
3

. Inserting these relations into Eqn (144) and setting
vDGs

vr
¼ 0, the

nucleation barrier is found to be
DG�
s ¼

16ps3abf ðqÞ
3DG2

V
(145)

where �
3
�

f ðqÞ ¼ 2� 3 cos qþ cos q

4
(146)

whereby f(q) reduces the nucleation barrier for q<p; that is, the “wetting” of the substrate surface by
the b phase catalyzes the nucleation process. Also, it is found that
r� ¼ � 2sab
DGV

(147)

and therefore the critical radius (of curvature) is identical to that for homogeneous nucleation but the
volume is decreased. Indeed, an interesting result of this analysis is that DG�

s is proportional to the



Figure 55 A schematic of a spherical cap embryo showing the relevant geometric parameters.
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volume of the critical nucleus V*, and it can be shown that for q¼p/2 the nucleation barrier DG�
s is

reduced to exactly one-half that for homogeneous nucleation. Also, note that DG�
s/0 as q/0, that is,

the nucleation barrier vanishes in the case of “perfect wetting”.
The treatment earlier can readily be used to address the heterogeneous nucleation of new phases on

grain boundaries in solid–solid transformations (Christian, 2002). It is well established experimentally
that grain boundaries (surfaces, edges and corners) act as favorable sites for nucleation in metallic and
ceramic materials in conjunction with polymorphic transformations, massive transformations,
precipitation and eutectoid decomposition. A straightforward extension of the foregoing analysis is the
case of an incoherent allotriomorph forming on a grain boundary surface in the shape of a doubly
spherical lens (see Figure 56b). The energetics of formation of an embryo/nucleus on the boundary
surface can be formulated as

DGsðBÞ ¼ VbDGy þ Aabsab � Aaasaa (148)

where Vb is the volume of the b embryo/nucleus, Aab is the area of the a–b interface created and Aaa is
the area of the grain boundary removed and DGv is the free energy released per unit volume accom-
panying the a/ b transformation as above. The geometric terms for this shape are given by

Vb ¼ 2pr3
�
2� 3 cos q� cos3 q

�
3

(149)

Aaa ¼ pr2 sin2 q (150)
2
Aab ¼ 4pr ð1� cos qÞ (151)

where r is the radius of curvature of the spherical cap and q is the contact angle characterizing the
interaction of the embryo/nucleus with the planar grain boundary surface. Clearly, in this case,

2 cos q ¼ saa

sab
, where saa is the grain boundary energy and sab is the interfacial free energy associated

with the new a–b interface. Setting
vDGS

vr
¼ 0, as earlier, one finds that

DG�
SðBÞ

DG�
H

¼ 2� 3 cos qþ cos3 q
2

(152)



Figure 56 Nucleus/embryo geometries for nucleation at grain boundary faces, corners and edges. After Jena and Chaturvedi
(1992).
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where DG�
SðBÞ is the reversible work to create the grain boundary nucleus on the boundary surface and

DG�
H ¼ 16ps3ab

3DG2
V

is the nucleation barrier for homogeneous nucleation of b within the undercooled

a phase. The catalytic potency of the grain boundary surface increases as the ratio saa/sab increases and
the nucleation barrier vanishes as saa/ 2 sab or as q/ 0.

Given the well-known topology of polycrystalline aggregates we know that special grain
boundary sites are located at the intersection of grain boundaries such as three-grain junctions
(edges) and four-grain junctions (corners) and a similar analysis can be carried out for these more
complex embryo/nucleus shapes (see Figure 56c and d). The results indicate a greater reduction in
DG�

s for the grain boundary edge and corner sites, that is, DG�
s (C)<DG�

s (E)<DG�
s (B)<DG�

H as
shown in Figure 57; DG�

s (C), DG
�
s (E) and DG�

s (B) refer to the nucleation barriers at the corner (C),
edge (E) and planar (B) boundary sites, respectively. It should be mentioned that DG�

s / 0 at

different values of
saa

sab
for the corner and edge sites, namely, DG�

s (C)/ 0 as saa/sab/
2
ffiffi
2

pffiffi
3

p and

DG�
s (E)/ 0 as

saa

sab
/

ffiffiffi
3

p
. Importantly, heterogeneous nucleation at grain boundary sites can

markedly reduce the nucleation barrier for the formation of the new more stable phase allowing
transformation to be initiated at substantially reduced undercoolings or supersaturations; however,
the contribution of these sites to an overall nucleation rate is always limited by the density of these
sites in the parent phase, as mentioned earlier. The density of the various sites (surfaces/faces (B),



Figure 57 Nucleation barriers for heterogeneous nucleation on grain boundary sites compared with homogeneous nucle-
ation. After Cahn (1956).
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edges (E), corners (C)) is expected to scale as
d

d
,
�
d

d

�2

and
�
d

d

�3

, respectively, where d is the grain

boundary thickness and d is the average grain diameter
�
d
dz10�5 � 10�6

�
. Cahn (1956) has

analyzed this aspect of the problem, in detail, and shows that corner and edge sites become
important with respect to the overall nucleation rate primarily at very small undercoolings and
when saa

sab
is relatively small. See Figure 57.

Other factors can influence the energetics of nucleation at grain boundaries such as the possibility of
grain boundary nuclei establishing a low-energy coherent or semicoherent interface and an orientation
relationship with one of the grains and an incoherent interface with respect to an adjoining grain with
subsequent grow governed primarily by migration of the more mobile incoherent interphase interfaces.
Also, facets can create low-energy regions along an interphase interface at special orientations (see
Figure 58a and b).

Many investigators dating back to the 1940s suggested that dislocations might be expected to catalyze
nucleation of phases in solid-state transformations. Cahn (1957) presented the first quantitative treat-
ment of heterogeneous nucleation at dislocations addressing the energetic of nucleation of incoherent
nuclei. Gomez-Ramirez and Pound (1973) also subsequently analyzed the case of incoherent nuclei,
whereas Larche’ (1979), Lyobov and Solov’yev (1965) and Dollins (1970) considered the case of
coherent nuclei. In the first approximation, Cahn assumed that an incoherent nucleus/embryo of
cylindrical shape of radius r, forming along a straight dislocation, effectively removes the strain energy



Figure 58 Grain boundary nuclei showing an interplay between coherent (semicoherent) and incoherent segments of the
interphase interface.
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of the dislocation over a unit length. The free energy of formation of the embryo per unit length is
written as

DGðrÞ ¼ pr2DGV � Aln r þ 2prsþ constant (153)

where A is taken as
mb2

4pð1� nÞ for an edge and
mb2

4p
for a screw dislocation; m is the shear modulus and

b is the Burgers vector with all other parameters having their usual meanings.

Taking
vDGðrÞ

vr
¼ 0, it is found that, in general, DG(r) passes through a minimum at small r and then

a maximum at intermediate values of r as a function of r. See Figure 59. A parameter aD ¼ �2ADGV
ps2

emerges as an important variable governing the behavior. For aD> 1 the driving force/strain energy
term dominates the surface energy term and there is no barrier to nucleation on the dislocation and
spontaneous growth of the new phase occurs along and out from the line defect. If aD< 1, a subcritical
metastable cylinder along the line defect is predicted to form along the dislocation (Cottrell atmo-
sphere) at small r and a nucleation barrier appears at larger r¼ r* as shown in Figure 59. Cahn then
addressed the optimum shape of a nucleus and calculated the free energy barrier to form a nucleus on
the dislocation compared with that for homogeneous nucleation. See Figure 59b and 60. Given that
the total number of dislocation sites essentially scales as zN1/3r where N is the total number of
atomic sites in the system and r is the dislocation density, heterogeneous nucleation at dislocations is
expected to become important when aDz 0.5 for rz 108–1010 cm�2. Clearly, aD reflects the cata-
lytic potency of dislocations to induce heterogeneous nucleation in this treatment. Gomez-Rameriz
and Pound (1973) attempted to investigate the dislocation strain field effects in more detail assuming
that the nucleation barrier is relatively insensitive to the nucleus shape. In both cases, dislocations
are predicted to lower the barrier for incoherent nucleation of the new phase. The works of



Figure 59 (a) Free energy of formation of a nucleus on a dislocation for aD< 1 and aD> 1 (after Cahn, 1957). (b) The
nucleation barrier to form a nucleus on a dislocation as a function of aD compared with the barrier for homogeneous
nucleation of a spherical precipitate. After Cahn (1957).

Figure 60 A schematic representation of a nucleus forming along a dislocation line. After Cahn (1957).
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Lyubov and Solovyov (1965), Rollins (1970) and Larche’ (1979) on the nucleation of coherent
precipitates suggest that the elastic interaction of the nuclei and dislocation strain fields significantly
relieves the usual strain energy term in the nucleation energetics. The nuclei form preferentially in the
compressive or expansive regions of the dislocation strain field, that is, in regions that relieve the
largest proportion of the dilatational transformation strains (edge). However, elastic analysis indi-
cates that nucleation can be suppressed near dislocations if the nucleus has a small misfit strain and if
the new phase has a much higher shear modulus than that of the matrix. The analysis of Larche’ of the
coherent nucleation problem suggests that for an edge dislocation the interaction of a misfitting
spherical nucleus/embryo with the elastic field of the dislocation can be folded into a correction to
the effective interfacial free energy term sab wherein the usual expression for sab is replaced by sab �
mb2ð1 þ nÞεT
9pð1 � nÞ where ε

T is the stress-free transformation strain. This correction can be very significant

(z30–40%) in systems with a large eTz 0.05. These analyses for incoherent and coherent nuclei
indicate a significant catalytic potency of dislocations on the nucleation process of similar magnitude
relative to that of homogeneous nucleation, in general.

From this discussion of heterogeneous nucleation in solid–solid transformations it must be
emphasized again that the impact of catalyzed nucleation at singularites in the systemwith respect to the



Table 2 Nucleation site densities (after Nicholson, 1970)

Grain boundary Grain edge Dislocation density Vacancy NV

Defect
density

Grain size,
5� 10�4 m

Grain size,
5� 10�6 m

Grain size,
5� 10�4 m

Grain size,
5� 10�6 m

107/cm2 1010/cm2 10�6

N het
S

N hom
S

10�6 10�4 10�13 10�9 10�8 10�5 10�6
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overall nucleation rate and transformation behavior is always limited by the density of these special sites.
Table 2 after Nicholson (1970) tabulates the typical density of sites relative to that for homogeneous
nucleation. Under circumstances where there is an actual competition between heterogeneous and
homogeneous nucleation, the rate of heterogeneous compared with that for homogeneous nucleation

will scale to a good approximation as ratio of available sites times exp
�
DG�

HET � DG�
HOMO

kBT

�
where

DG�
HET <DG�

HOMO and the ratio of sites NHET/NHOMO<< 1. This analysis clearly indicates that
heterogeneous nucleation will be most significant at small undercoolings or supersaturations. These
conclusions are in excellent agreement with a plethora of experimental results.

Stowell (2002) has subjected the classical (capillarity) theory of nucleation to a critical analysis
incorporating some ideas of Kashchiev (2000) in the evaluation and reevaluation of the data of
LeGoues and Aaronson (1984) and Kirkwood (1970) from studies of well-known precipitation
systems. He found reasonable agreement with the form of the equations of the capillarity model when
noise associated with heterogeneous nucleation during some heat treatments was sorted out. A number
of investigators (Kampmann and Kahlweit, 1970; Wagner and Kampmann, 1991) have called attention
to competitive coarsening during the early stages of nucleation and growth and this will be discussed in
the section on precipitation. Kelton and Greer (2010) in their recent book focused on nucleation in
condensed systems present an extraordinary overview of nucleation applied to a broad range of topics
from materials to biology; however, the treatment of nucleation in Christian’s treatise on trans-
formations [2002] remains the most rigorous treatment of the subject.

We close this section on CNT by pointing out that a treatment of nucleation behavior can be
developed wherein the ad hoc assumptions of a sharp interface between the parent and emerging
phases as well as a uniform composition within the effective nuclei are relaxed. This nonclassical
formulation sometimes referred to as Cahn–Hilliard (1958 and 1959) nucleation will be addressed in
the precipitation section as well.
8.5 Diffusional Growth of Phases

8.5.1 Parent and Product Phases Have the Same Composition

After nucleation of a more stable phase within a metastable phase the nuclei moving over the
nucleation barrier generally enter the stage wherein their growth leads to a continuous decrease in the
free energy of the system. The first case we address is where the growing phase has the same
composition as the parent phase. This analysis is relevant to allotropic/polymorphic and massive
transformation in the solid state. The migration of the interphase interface is assumed to be essentially



Figure 61 Variation of the free energy per atom, g, in the vicinity of the a/b interface during the transformation b/ a;
Dgb/a is the thermodynamic driving force and Dgd is the free energy of activation for an elementary diffusional jump of an
atom from b to a at the interface. The effective thickness of the interface is d.
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isotropic and controlled by thermally activated atomic jumps across the interface involving contin-
uous, nearly random jumping of individual atoms or atomic attachment mediated by a ledge
mechanism. We begin by describing essentially random atomic detachment and attachment at the
interface between two phases a and b where a is the more stable growing phase. The interphase
boundary is assumed to be disordered or incoherent and strain energy effects are assumed negligible.
In the vicinity of the a–b interface the atoms see a free energy profile like that shown in Figure 61. The
atoms are jumping from b to a and from a to b but the energetics of these elementary atomic
processes give rise to a net transfer of atoms from b to a leading to growth of the a phase and the
consumption of the b phase.

Let us assume that the effective number of atoms per unit areaNS at the boundary is the same at both
sides of the interface, that is, Na

S ¼Nb
S ¼NS and the vibrational frequency (attempt frequency) of these

atoms is taken to be nz 1012 s�1. From elementary rate theory we expect the rate of jumping of atoms
from the b phase to the a phase to be described essentially by

dNb/a

dt
¼ NSv exp

�
� Dgd
kBT

�
(154)

wherein the atoms at the interface “attack” the activation barrier Dgdn times per second and the
probability that an atom will have enough (free) energy to surmount the barrier on any attempt is

exp
�
� Dgd
kBT

�
. Similarly, we write for the jumping of atoms from a to b

dNb/a

dt
¼ NSn exp

�
� Dgd þ Dgb/a

kBT

�
(155)

where Dgd is the free energy barrier controlling thermally activated jumps from b to a : the effective
barrier for reverse jumping a/ b is larger by Dgb/a, the thermodynamic “driving force” (per atom) for
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the a/ b transformation. The net flux of atoms (atoms cm�2 s�1) across the interface is given by the
difference in these jump rates and can be written as

dN
dt

¼ dNa/b

dt
� dNb/a

dt
¼ NSn exp

�
� Dgd
kBT

�
1� exp

�
� Dgb/a

kBT

��
(156)

This net flux can be converted to a linear growth rate or interface velocity since a net transfer of NS
atoms across a unit area of interface advances the interface by a distance d, the thickness of the inter-
facial region; thus, we can write the velocity of the interface (cm s�1) as

V ¼ dv exp
�
� Dgd
kBT

��
1� exp

�
� Dgb/a

kBT

��
(157)

The velocity of the interface or growth rate of the more stable low temperature phase a into the
undercooled high-temperature b phase generally will vary directly as the difference in free energy as
a function of undercooling below the equilibrium transformation temperature Tt¼ Tab. See Figure 62. At

temperatures where kBT>> Dgb/a taking
�
1� exp

�
� Dgb/a

kBT

�
after expanding in a Taylor series gives

a velocity Vzdn
Dgb/a

kBT
exp
�
� Dgd
kBT

�
essentially proportional to the thermodynamic driving force.

Recall that
Dgb/a

kBT
is proportional toDT at small undercoolings. At low temperatures kBT<< Dgb / a, the

exp
�
� Dgb/a

kBT

�
term is small and the velocityVzdn exp

�
� Dgd
kBT

�
, that is, the rate of growth is limitedby

the atomic mobility at low temperatures decreasing exponentially as T/ 0 K. See Figure 63. This
description appears to apply very well to the temperature dependence of the growth rate of the trans-
formationa-Sn (white)/ b-Sn (gray)belowTabz 286 K (13 �C). SeeFigure 64a andb.Note that for the
reverse transformation b-Sn (gray)/ a-Sn (white) the growth rate is monotonically increasing with
temperature since the atomic mobility is increasing continuously as the transformation temperature is
raised.
Figure 62 The free energy per atom of the a and b phases as a function of temperature; Tt¼ Tab is the equilibrium transition
temperature for the allotropic/polymorphic phase change.



Figure 63 The growth velocity of the a/b interface as a function of DT (DT¼ Tab – T), predicted by Eqn (156). Note that the
velocity varies approximately linearly with DT for small DT and decreases exponentially at large DT and low temperatures.
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This description of the growth rate for a compositionally invariant transformation is often referred to
in the literature as the Burke–Turnbull analysis (see Burke and Turnbull, 1952) which can be extended
to include the case wherein the atomic attachment and detachment processes involve ledges moving
within the interphase interface. See Figure 65. A modified Burke–Turnbull equation is often invoked
where the velocity of the interface is written as follows:

V ¼ h
l
dv exp

�
� Dgd
kBT

��
1� Dgb/a

kBT

�
(158)

with h being the average ledge height and l the average ledge spacing. This modified version has been
applied to the massive transformation occurring in several systems as discussed subsequently.

8.5.2 Parent and Product Phases Having Different Compositions

Let us consider diffusional growth of a spherical precipitate phase b within a supersaturated solid
solution a of average composition C0. See Figure 66. We assume that during the early and intermediate
stages (times) of growth the matrix composition far from the growing particle remains C0 and a solute-
depleted region exists primarily in the near vicinity of the particle. See Figure 66. In our initial
approximation we assume that growth is diffusion-controlled and that local equilibrium exists at the
a–b interface, that is, the composition of a is Cb

a ¼ Cb
aðNÞ ¼ CE

a which is in thermodynamic equilib-
rium with the b phase of composition Ca

b ¼ Ca
bðNÞ ¼ CE

b given by the phase diagram. If one employs
a so-called quasi-steady-state solution to the diffusion field (this assumes that the concentration profile
in the matrix changes very slowly with time), the solution to Fick’s second law is approximately

CðrÞ ¼ A
r
þ B (159)



Figure 64 Experimental results for the a to b and the b to a transformations in Sn, showing the variation of the growth rate V
as a function of undercooling (a) and superheating (b). After Burgers and Groen (1957).
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where r is the distance from the center of the particle; the instantaneous radius of the particle is taken to
be r¼ R. Since at r>> R the composition is taken to be C0 and at the interface r¼ R the composition is
fixed at CE

a the constants A and B can readily be determined and the solution for the concentration
profile in the matrix is given by

CðrÞ ¼ C0 � R
r

�
C0 � CE

a

�
(160)

and the concentration gradient at the advancing interface is given by

�
vCðrÞ
vr

�
r¼R

¼
�
C0 � CE

a

�
R

(161)



Figure 65 Schematic of the operation of a ledge growth mechanism wherein atomic attachment occurs at the ledge risers.
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Applying a mass balance to the advancing a–b spherical interface requires that

�
CE
b � CE

a

dV
dt

¼ 4pR2
�
D
�
C0 � CE

a

�
R

�
(162)

where
dV
dt

¼ 4pR2dR
dt

and D is an appropriate diffusion coefficient (note: the concentrations C are given

as atoms cm�3 or mol cm�3). Here the growth rate is completely determined by the atomic flux arriving
at the interphase interface via diffusive flow down the concentration gradient in the matrix. The growth
rate is given by

dR
dt

¼ D
R

�
C0 � CE

a

��
CE
b � CE

a

 (163)

and integration from t¼ 0 to t¼ t yields

R2ðtÞ � R2ð0Þ ¼ 2Dt

�
C0 � CE

a

��
CE
b � CE

a

 (164)
Figure 66 Composition profiles in the vicinity of a growing spherical b precipitate within a matrix of initial composition C0. The
solid line represents the diffusionfield in the absence of interface curvature or capillarity effects. Thedashed curves show the effects
of capillarity on the concentration profiles.
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for the time evolution of the particle radius during diffusion-controlled growth with R(0) being the
particle radius at the onset of the growth process. Assuming R(t)>> R(0), the radius R(t) increases as t

1
2

and the volume of the particle VP varies as t
3
2. Ham (1959) showed that provided the shape of

a nonspherical particle (defined by the eccentricity for prolate and oblate spheroids) remains constant

during diffusional growth, the volume will increase as t
3
2 since each dimension will grow as t

1
2. It should

be pointed out that if the growing particle is small enough where capillarity effects come into play, the
concentration profile is changed since the matrix concentration in local equilibrium with the small
particle of radius r will be enhanced approximately to

CaðrÞ ¼ CE
a

�
1þ 2sVb

m

rRT

�
(165)

where s is the interfacial free energy or surface energy of the a–b interface and Vb
mis the molar volume of

the b phase. We have used the simplifying approximation that the atomic fraction XE
bz1 and that

exp
�
2sVb

m

rRT

�
can be approximated

�
1þ 2sVb

m

rRT

�
. The instantaneous growth rate

dR
dt

is modified to

dR
dt

¼ D
R

�
C0 � CE

a

��
CE
b � CE

a

�1� RC

R

�
(166)

where at R¼ RC, the equilibrium concentration Cb
a at the interface reaches C0 and

dR
dt

/0 according to

Eqn (166). Note in this limit the particle is in thermodynamic equilibrium with the supersaturated
matrix. See Figure 66.

Note: The reader is reminded that the capillarity correction for the a–b equilibrium is more rigor-
ously given by

Xb
aðrÞ ¼ Xb

aðNÞexp
0
@2sVb

m

�
1� Xb

aðNÞ�
rRT
�
Xa
b � Xb

aðNÞ

1
A (167)

where Xb
aðrÞ is the matrix composition (atomic fraction) or composition of the a phase in equilibrium

with a spherical b precipitate of composition Xa
b ¼ Xa

bðNÞ ¼ XE
b (assumed to be constant) and Xb

aðNÞ is
the composition of the a phase in equilibrium with b across a flat interface r¼N. Clearly as XE

b/1 the
usual approximations obtain.

Let us consider the case where a steady-state obtains at the interface during diffusional growth as
a concentration CI is established at the interface such that an interfacial reaction governed by a rate
equation KI(Cb� CI) where KI is a rate constant describing the rate at which atoms can join the growing
phase at the interface is equal to the rate at which atoms arrive at the matrix–precipitate interface by
diffusion down amodified concentration gradient in thematrix. If the interfacial reaction is very sluggish
(KI<<D) the interface concentration CI approaches C0 and when CI reaches C0 the reaction is said to
be interface controlled and the depleted region in the vicinity of the growing particle virtually vanishes.
At intermediate steady-state values CE

a < CI< C0 growth is said to governed by mixed control. Note that
in the limiting case CI/C0 the rate of growth becomes a constant value and Rft. See Figure 67.

Another case of interest is where a precipitate phase nucleates copiously along the grain
boundaries of a parent phase forming chunks or semicontinuous slabs which grow out into the



Figure 67 Composition profiles in the vicinity of a growing spherical b precipitate when an interfacial reaction leads to
mixed and interface controlled growth.
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matrix behind a virtually planar reaction front or interphase interface. These grain boundary chunks
are often referred to as grain boundary allotriomorphs. See Figure 68. A classic example of this
situation is the formation of proeutectoid ferrite in steels (Fe–C–X alloys). Upon cooling a plain
carbon steel containing about the 0.4 wt.% C from the austenite phase field, the ferrite (bcc) pro-
eutectoid phase (w0.02 wt.% C) nucleates primarily at the austenite grain boundaries exhibiting two
morphologies, namely “chunky” allotriomorphs and sharp, blade-like growths emanating from the
grain boundary regions into the parent austenite referred to as Widmanstatten “sideplates”. See
Figure 68. Importantly, the grain boundary ferrite nuclei generally establish an orientation rela-
tionship, for example the Kurdjumov–Sachs relationship wherein the closest packed planes and
directions of the two phases are parallel with one of the adjoining grains and subsequent growth
occurs primarily into the other grain where no bicrystallographic relationship exists. The migrating
ferrite–austenite interface is essentially a disordered incoherent phase boundary. We will focus our
attention first on the ferrite slabs (a) which grow into the parent austenite (g) via diffusion of carbon
in front of an advancing planar interphase interface into the austenite. See Figure 69. In the first
approximation we again assume that the carbon concentration at large distances (much larger than
the ferrite allotriomorph thickness) remains C0z 0.4 wt. % in our analysis and that local equilib-
rium prevails at the ferrite–austenite interface, that is, Ca and Cg are the equilibrium compositions of
ferrite and austenite given by the Fe–C phase diagram at the transformation temperature. The carbon
concentration in the austenite in the vicinity of the growing ferrite normal to the reaction front can
be assumed to be adequately described by an error function solution to Fick’s second law based on
the boundary conditions in spite of the moving interface. The carbon distribution in the austenite
can be written as

C ¼ C0 � ðC0 þ CyÞ
"�

1� erf

�
z� r

2
ffiffiffiffiffiffi
Dt

p
�#

(168)



Figure 68 (a) Schematics of ferrite morphologies showing the allotriomorphs and sideplates typical in Fe–C–X alloys. (b)
micrographs displaying morphologies of the allotriomorphs and sideplates typical in Fe–C–X alloys. After Shewmon (1963).

Figure 69 Carbon concentration profile in the parent austenite in front of a growing ferrite slab.
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where the variable z is taken as the distance from the grain boundary and z¼ r is the location of the

advancing ferrite–austenite interphase interface. At the interface
�
vC
vz

�
z¼r

¼ C0 � Cgffiffiffiffiffiffiffiffiffi
pDt

p , and we can

formulate a planar growth rate
dr
dt

as above, equating the flux of carbon rejected into the austenite to the

flux of carbon down the concentration gradient into the austenite as follows:

dr
dt

¼
�
D
pt

�1
2Cg � C0

Cg � Ca
(169)

and integrating show that the thickness of the ferrite slab follows a rate law rft
1
2.

Let us now briefly address the appearance of the striking ferrite morphology called Widmanstatten
sideplates wherein blades or spikes of the a phase shoot out into the parent austenite. The first
approximation to understanding this morphological transformation is to use the simple analysis
applied to the formation of dendrites during the freezing of an alloy. The advance of the solid–liquid
interface generally involves the rejection or enhancement of solute as the solid forms from the liquid
and a concentration gradient develops in the liquid phase in front of the interface. If a thermal fluc-
tuation produces a small bump on an otherwise planar solid–liquid interface the isoconcentration lines
in the liquid will be compressed leading to an enhanced diffusion of solute to or away from the
interface allowing a spike of solid to grow out rapidly ahead of the generally plane front. This “point
effect of diffusion” leads to a breakdown of the planar interface and amounts to an interfacial instability
leading to dendritic growth. See Figure 70. The growth of such spikes in the solid state can be analyzed
using a modified version of the approaches employed earlier for the case of ferrite sideplates assuming
that the sideplates emerge from interfacial instability at the ferrite–austenite interface resulting from the
point effect of diffusion of carbon within the parent austenite. The emergence of a blade-like protu-
berance at the interface will change the local equilibrium concentration of carbon and the effective
concentration gradient at the blade edge or tip because of capillarity. The gradient at the edge with an
effective radius of curvature r can be approximated by�

vC
vr

�
edge

¼ Cg � C0

kr

�
1� rC

r

�
(170)
Figure 70 Compression of the isoconcentration lines in the austenite resulting from a local protuberance developing at the
interface through fluctuations. After Shewmon (1963).
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and the edge velocity written as

Vedge ¼ D
Cg � C0

krðCg � CaÞ
�
1� rC

r

�
(171)

where, as above, rC defines a critical curvature that renders the ferrite in local equilibrium with the
supersaturated austenite of composition C0 and V/ 0; k is a constant of order unity. The growth
velocity of the edge or tip controlled by the diffusion of carbon in the austenite under the influence of
the point effect of diffusion is a maximum for r¼ 2rC. This expression for the growth rate of the blade
or sideplate is the well-known Zener–Hillert equation (Zener 1946 and Hillert, 1957). A more detailed
and rigorous treatment of the problem has been formulated by Trivedi (1970, 1975).

In the case of Widmanstatten sideplates considerations of crystallography and interface structure as
well as mechanism must be folded into a rigorous treatment. A number of investigators using various
approximations have addressed these issues.

The analyses of precipitate growth discussed earlier did not address the case where the diffusion
fields of the growing particles impinge or where the growth of many particles simultaneously leads to
a decrease in the average composition of the matrix well away from the depleted shells surrounding the
growing particles during the latter stages. The treatments earlier were developed pedagogically to show
how a fundamental approach to precipitate growth requires an interplay of thermodynamics and
diffusion kinetics with capillarity or surface curvature often entering the problem as amajor factor when
describing microstructural evolution on a fine scale. One approach to the impingement problem
modifies the growth rate of a spherical particle as follows:

dR
dt

¼ D
R

 
C0 � CE

a

CE
b � CE

a

!
ð1� YÞ (172)

where Y is the fraction of the second phase precipitated at time t and given by

Y ¼ CmðtÞ � CE
a

C0 � CE
a

(173)

with Cm(t) being the average concentration throughout the matrix at time t. If (1� Y) is known as
a function of time t the rate equation can be integrated as above (Wert and Zener, 1950).

8.5.3 Cellular Phase Separation: Eutectoid Decomposition and Discontinuous Precipitation

Cellular phase separation refers to phase reactions wherein a single phase decomposes into two phases
via a mechanism involving the concomitant formation of the new phases behind a reaction front. The
formation of the new phases generally produces a characteristic morphology, for example, lamellar
phase mixtures, common in eutectoid (and eutectic) decomposition as well as in precipitation systems.
The phase reactions can be described as

g/aþ Fe3Cðeutectoid decompositionÞ

a0/aeq þ bðdiscontinuous precipitationÞ
noting in the case of discontinuous precipitation the product phase aeq has the same crystal structure as
the parent phase, a0. The two-phase duplex microconstituent resulting from the cellular reaction can
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exhibit various morphologies, for example, lamellar, rod like, depending on the specificities of the
surface energies and nucleation and growth behavior of the two phases comprising the two-phase
mixtures. These resultant structures are examples of self-organization of the phases forming the
microconstituents.

8.5.3.1 Eutectoid Decomposition
Let us now consider a classic metallurgical problem in microstructural evolution involving the diffu-
sional growth of technological significance relating to the efforts in the mid-twentieth century to
establish a sound scientific understanding of practical issues in the heat treatment of steels such as
hardenability (Zackay and Aaronson, 1962). The eutectoid reaction in Fe–C–X alloys involves the
decomposition of austenite into two phases a (ferrite) and Fe3C (cementite) below the eutectoid
reaction isotherm (w723 �C). See the Fe–C binary diagram in Figure 71. Between approximately
723 �C and 550 �C the eutectoid decomposition g/ aþ Fe3C occurs in a manner which produces
a self-organized duplex structure composed of alternating lamellae of the a and Fe3C phases called
pearlite after early descriptions by optical metallographers. See Figure 72. The blades of the phases
apparently conjugate along low-energy a� Fe3C interphase interfaces and the characteristic spacing of
Figure 71 Binary metastable Fe–Fe3C phase diagram. After Shewmon (1963).



Figure 72 Microstructure of pearlite which has grown into an austenite (g) grain. After Shewmon (1963).
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the lamellar microconstituent is found to vary systematically with the transformation temperature. At
temperatures between 550 and 650 �C the interlamellar spacing is much smaller than the spacing
observed when the transformation occurs just below the eutectoid temperature. We also find that the
growth rate of the lamellar colonies increases rapidly with the degree of undercooling below the
equilibrium eutectoid temperature.

Let us try to develop a systematics to understand the salient features of this well-known solid-state
transformation based on a fundamental thermodynamic framework and basic diffusion kinetics. Our
approach will not be the most rigorous but will again emphasize pedagogy and principles governing
the phenomena and which are generally applicable to understanding the microstructural evolution in
conjunction with phase transformations.

The lamellar pearlite colonies emerge at the grain boundaries of the parent austenite phase and grow
behind a reaction front as shown in Figure 72. As the two-phase aggregates grow a partitioning of
carbon occurs between a solute-depleted ferrite (a) phase and a solute-enriched cementite (Fe3C) phase
via diffusional processes. The diffusional redistribution of carbon can occur within the austenite just
ahead of the reaction front, within the austenite–pearlite boundary or even locally within the ferrite.

We will first approach the problem assuming that volume diffusion within the parent austenite in
the near vicinity of the reaction front on a length scale of the order of S controls the edgewise growth.

Before developing the diffusional kinetics governing the cooperative growth of the aþ Fe3C duplex
microconstituent let us briefly address the thermodynamics of the austenite/ pearlite reaction and the
observation that the lamellar aggregates exhibit a constant spacing S during isothermal growth wherein
S becomes smaller as the undercooling DT below the eutectoid temperature increases, that is, the
pearlite becomes finer at lower transformation temperatures. We begin our analysis by noting that
the lamellar aggregates produced by the eutectoid reaction g/ aþ Fe3C store free energy within the
transformation product stemming from the creation of a-Fe3C interfaces in the two-phase duplex
microconstituent. The net free energy change accompanying the formation of pearlite must include
this surface energy expenditure. Thus, the net free energy released per unit volume of austenite trans-
formed, DGV, is written as

DGVðSÞ ¼ DGVðNÞ þ 2sa�Fe3C

S
(174)



Figure 73 Schematic free energy–composition diagrams for the a, g and Fe3C phases showing the influence of capillarity on
the phase equilibrium; at a critical spacing of the pearlite S¼ SC the two-phase microconstituent pearlite is in thermodynamic
equilibrium with the parent austenite phase. S¼N refers to a spacing of the pearlite where capillarity or interface curvature
effects are negligible.
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where DGV(N) is the bulk free energy change per unit volume or for a spacing so large that the

interfacial free energy associated with the a� Fe3C interfaces is negligible and the second term
2sa�Fe3C

S
is the interfacial free energy stored per unit volume when forming the lamellae of finite spacing S. Since

the thermodynamic driving force DGV(N) is< 0 below the eutectoid temperature and
2sa�Fe3C

S
> 0,

there is a critical spacing S¼ SC such that DGV (SC)¼ 0, that is, the austenite (g) is in equilibrium with
the pearlite (aþ Fe3C) phase mixture. See Figure 73.

Note: The shape of the ferrite and cementite tips at the advancing interface are dictated by the surface
(free) energies and these curvatures give rise to significant capillarity effects raising the free energy curves
of these phases and changing the local equilibrium concentrations along the interface depending on the
spacing S. The critical spacing is given by

SC ¼ �2sa�Fe3C

DGVðNÞ (175)

This result will be used to formulate an approximate capillarity correction of the form 1� SC
S

as
shown in the following discussion.

Let us now derive a first approximation to an expression for the growth rate or velocity of the
pearlite cells into the austenite assuming that the cooperative growth is controlled by (volume)
diffusion in the near vicinity of the reaction front as mentioned earlier. As a ferrite blade moves into
the austenite with a velocity V, a lateral flux of carbon must accompany this advance given by
VðCa

g � Cg
aÞI where Ca

g is the concentration of carbon in the austenite (g) in local equilibrium with the
ferrite (a) and Cg

a is the concentration of carbon at the ferrite tip in local equilibrium with g. (The
subscript I refers to local equilibrium at the interface.) The carbon in the austenite diffuses down



Figure 74 Portion of the Fe–C phase diagram showing shift of phase boundaries resulting from capillarity or interface
curvature effects which modify the effective concentration gradient relevant to the diffusional austentite / pearlite reaction.
DC0 refers to local equilibria in the absence of capillarity effects whereas DC is the “corrected” concentration gradient.
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a gradient in the austenite which goes as DC
S where DC ¼ ðCa

g � CFe3C
g Þ ¼ ðCa

gðNÞ � CFe3C
g ðNÞÞ�1 � SC

S

�
often written as

DC ¼ DC0

�
1 � SC

S

�
where DC0 ¼

�
Ca
gðNÞ � CFe3C

g ðNÞ


so DC0 refers to bulk phases and the DC0

�
1� SC

S

�
is the capillarity correction for interface curvature of

the ferrite and cementite lamellae. See Figures 73 and 74. Equating these fluxes one arrives at an
expression for the growth velocity as follows:

V ¼
Dg

C

�
Ca
g � CFe3C

g


�
Ca
g � Cg

a


I
hS

¼
Dg

CDC0

�
1� SC

S

�
�
Ca
g � Cg

a


I
hS

(176)

whereDg
C is the diffusivity of carbon in g and h is a geometric parameter of order unity. However, we do

not have a solution in closed form because as shown earlier the system can utilize any spacing S< SC at
a given undercooling DT below the eutectoid reaction isotherm. What spacing does the system select?
Some variational principle must be invoked. Let us suppose we assume that S is the spacing that

maximizes the growth rate V(S). Setting
dVðSÞ
dt

¼ 0, we find that V¼ VMAX when S¼ 2SC; the growth

rate then becomes

V ¼ Vmax ¼
Dg

CDC0�
Ca
g � Cg

a


I
4hSC

(177)
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and since DC0wDT and SCw DT�1 the growth rate might be expected to vary as VwDg
C (DT)2. This

predicted dependence of V on DT or temperature appears to describe the growth rate of pearlite in
a variety of steels. Also, the observed pearlite spacing apparently obeys the relation SCw DT�1 as
predicted earlier. Eutectoids with a pearlitic-like or lamellar morphology occur in alloy systems with
substitutional solute elements but the growth velocities generally vary as D(DT)3 because the solute
redistribution does not occur by volume diffusion in the parent phase but is controlled by boundary
diffusion within the interface between the growing cells and the parent phase. This results from the fact
that in the case of boundary diffusion control the effective cross-section area through which the

diffusion flux passes is reduced by a factor of the order of
d

S
giving a growth velocity Vw

DBDC0d

S2c
where

DB is a boundary diffusivity and d is the thickness of the boundary region.

8.5.3.2 Discontinuous Precipitation
Discontinuous precipitation is essentially a mode of precipitation similar to the austenite–pearlite reaction
described earlier in that it is a form of cellular phase separation involving heterogeneous nucleation of
a phase along the grain boundaries of an alloy and the formation of colonies of a two-phase mixture
exhibiting a characteristic morphology which grow through a cooperative codeposition of phases
behind a migrating high-angle grain boundary. See Figure 75. However, the phase reactions involved
are somewhat different most generally we could have
Type 1:
 a0/ aeqþ b
Type 2:
 a0 þ b0 / aeqþ b
Type 3:
 a0 þ d0 / aeqþ b
where in the first case a0 is an initial supersaturated solid solution and aeq is a solute-depleted
a phase (same crystal structure) which is in equilibrium with the b precipitate. In the second
case, a0 þ b0 is a metastable (often coherent) two-phase mixture which initially has formed
throughout the matrix by a uniform continuous precipitation from supersaturated solid solution
and then subsequently consumed by the more stable two-phase mixture aeqþ b through the growth
of the cellular colonies. Here the coherent metastable b0 phase has the same structure as the
equilibrium b phase and thus this reaction can be considered essentially a coarsening reaction
driven by a reduction of surface free energy and strain energy. The third case involves continuous
precipitation of a coherent metastable d0 phase which has a different crystal structure than the
equilibrium b phase.

Figure 76 shows proposed mechanisms for the genesis of the self-assembled colonies each of which
have been observed to operate in various systems. Cellular or discontinuous precipitation is ubiquitous
in precipitation systems often leading to a degradation of engineering properties.

Once assembled the cells grow by boundary diffusion control and the growth rate generally varies as
DBd

S2
where DB is a grain boundary diffusivity, S is the spacing of the lamellar morphology and d is an

effective boundary thickness. The thermodynamic driving force for the cellular reaction is the chemical
free energy often augmented by coherency strain energy (a0 þ b0 / aeqþ b) but always reduced by the
interfacial free energy stored in the interphase interfaces incorporated in the cellular morphology. In
thermomechanically processed alloys the stored energy of cold work in the matrix or phase mixture
being consumed by the colonies can provide additional driving force for themigrating grain boundaries
similar to recrystallization of a cold-worked alloy. It is interesting to note that cellular or discontinuous



Figure 75 (a) Schematic showing various grain boundary discontinuous reactions. After (Williams and Butler, 1981).
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Figure 76 Schematics showing possible mechanisms involved in the genesis of cellular/discontinuous precipitation. After
Williams and Butler (1981), Fournelle and Clarke (1972) and Turnbull and Tu (1970).
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precipitation in age hardening alloys was often referred to as a “recrystallization reaction” because the
microstructural changes involved the sweeping of the structure by migrating high-angle grain bound-
aries as occurs in recrystallization. It is important tomention that the lamellar products of discontinuous
or cellular precipitation show a characteristic spacing at a given degree of supersaturation or driving force
determined by similar thermodynamic and kinetic factors discussed in eutectoid decomposition and the
edgewise growth of pearlite (Gust, 1979; Williams and Butler, 1981; Manna et al., 2001).
8.5.4 Growth of Widmanstatten Morphologies

A classic precipitate growth morphology is that of Widmanstatten platelets which were first discovered
by Count Alyois von Widmanstatten in his early nineteenth century studies of meteorites (Barrett and
Massalski, 1966). See Figure 77. The Widmanstatten patterns in meteorites were coarse enough to be
viewed by the naked eye and derived from precipitation of a (bcc) platelets within a g (fcc) matrix in
essentially Fe–Ni alloys under conditions of extraordinarily slow cooling rates (w1 �C per 106 years)
during their journey through space. The a platelets form parallel to the {111} planes of the g matrix
matching the {111} habit planes of the matrix and the {110} planes of the a precipitates across the
broad faces of the Widmanstatten plates. Similar microstructures have been revealed on the micro-
scopic scale in numerous alloy systems wherein matching of planes and directions of the matrix and
precipitate phases across the habit plane occurs. In the case of the Cu–Si alloy shown in Figure 78 the
precipitation occurs along the {111} planes of an fcc matrix which are parallel to the (0001) of the
basal planes of the hexagonal platelet precipitates with the close-packed directions in the conjugate
phases parallel across the interface plane as well. The phases remain fully coherent across the broad
faces until the very late stages of aging when the misfit strains eventually lead to a loss of coherency.



Figure 77 Widmanstatten precipitates in an Fe–Ni meteorite showing platelets of a(bcc) forming along the {111} planes of
the g(fcc) phase. After Finniston (1971).
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This striking plate-like morphology appears to be primarily the result of a growth anisotropy directly
related the structure of the interphase interfaces bounding the precipitate phase. However, there still
persists some controversy as to the degree to which thermodynamic factors are folded into the formation
and propagation of these low-energy interfaces. The broad faces of the Widmanstatten plates are virtually
always coherent or semicoherent whereas the sides are generally disordered or incoherent. This difference
in interfacial structure markedly influences the effective mobility of the interfaces during diffusional
growth. The broad faces are structurally inhibited and almost certainly grow normal to themselves (plate
thickening) via a ledge mechanism (see Figure 41) where atoms are added to the disordered risers of the
ledges leading to lateral motion of the ledges within the interphase boundary. The sides are relatively
Figure 78 Widmanstatten platelets of a hexagonal phase precipitated along the {111} matrix (fcc) planes in a Cu–Si alloy.
After Barrett and Massalski (1966).
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much more mobile compared with the coherent/semicoherent faces of the platelets and in principle can
grow (lengthen) at a rate controlled by volume diffusion whereas the thickening will depend on the
supply and migration of the ledges within the interface (Aaronson et al., 2010).
8.5.5 Coarsening (Ostwald Ripening) of a Two-Phase Mixture in a Binary Alloy

8.5.5.1 Particle Coarsening in a Matrix
We now address a very important aspect of microstructural behavior from both a scientific and tech-
nological point of view. Consider the formation of a fine dispersion of second-phase particles (b)
distributed uniformly within a matrix (a) resulting from nucleation and growth within an initially
supersaturated solid solution during heat treatment. In the latter stages of this precipitation process the
supersaturation of thematrix is substantially reduced because the growth of the precipitates drains solute
from the surrounding phase wherein thematrix composition approachesCb

aðNÞ, the composition of the
parent matrix in thermodynamic equilibrium with the b precipitates. The precipitates generally have
nucleated at different times and grown to produce a range of particle sizes about some mean radius r.
Because of this size distribution even after the supersaturation has virtually vanished andnonewparticles
appear there are local chemical potential and concentration gradients in the system associated with the
particles because of the variation of solid solubility with particle size (Gibbs–Thomson or capillarity
effects). See Figure 79. The concentration of solute in the matrix in local equilibrium in the near vicinity
of a particle differs fromparticle to particle and importantly differs from the concentration in equilibrium
with the mean particle size. The larger particles in the distribution tend to grow and the smaller tend to
shrink with time as solute flows by diffusion in the matrix leading to an increase in the average particle
size. The overall thermodynamic driving force for this microstructural change is the decrease in the total
interfacial (free) energy per unit volume associated with the a–b interphase interfaces mediated by
capillarity effects. This process is called (particle) coarsening or sometimes referred to asOstwald ripening.

The classic approach to describing this diffusion-controlled coarsening of a two-phase mixture was
carried out by Greenwood (1956) and later extended to include particle size distribution effects by
Lifshitz and Slyozov (1961) and Wagner (1961). In the literature the theory is often called the L–S–W
theory of particle coarsening, but should explicitly include Greenwood’s seminal contribution and
thus appropriately be referred to as the G–L–S–W theory (Balluffi et al., 2005). Greenwood’s versions
(1956, 1978) are somewhat simpler treatments of the kinetic analysis and will be substantially fol-
lowed here for heuristic and pedagogical reasons. The approach is essentially what is referred to as
a “mean field” solution to the diffusion problem wherein the growing or shrinking particles do not
“see” the other particles except through a change in the average solute concentration remote from any
Figure 79 Schematic drawing showing concentration gradient between two particles of different sizes, r2> r1, leading to
a flow of solute from the vicinity of r1 to r2.
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individual particle, that is, a particle in question is immersed in a mean or average environment which
is perturbed only locally in the near vicinity of a particle (Gibbs–Thomson effect). This approximation
essentially monitors the behavior of a particle effectively at zero volume fraction.

We start our discussion by assuming the volume fraction of the second-phase particles b is con-
stant, that is Xi¼Np

i¼1

Vi ¼ constant (178)

and

Xi¼Np

i¼1

dVi

dt
¼
Xi¼Np

i¼1

4pr2i
dri
dt

¼ 0 (179)

where NP is the number of particles at time t and Vi and ri are the volume and radius of the ith particle,
respectively.

The concentration of solute in the a matrix in local equilibrium with the ith particle of radius ri is
given by the familiar Gibbs–Thomson expression:

Cb
aðriÞ ¼ Cb

aðNÞ
�
1þ 2sabVb

riRT

�
(180)

assuming dilute or ideal solution behavior for the solute in a. We also are assuming that in this first
approximation that the precipitate phase b is essentially pure B in an A–B binary solid solution; this
simplification will be modified later in the formulation. If the concentration remote from the particle is
taken to be C^ we can use the quasi-steady-state solution to describe the instantaneous rate of growth
(or shrinkage) of the ith particle as follows:

dri
dt

¼ D
ri

0
B@



C^ � Cb

aðriÞ
�h

Ca
bðNÞ � Cb

aðriÞ
i
1
CA (181)

where Ca
bðNÞ � Cb

aðriÞ can be written as Ca
bðNÞ � Cb

aðNÞ by replacing Cb
aðriÞ by Cb

aðNÞ in the difference
compared with Ca

bðNÞ. A bit of algebra shows that C^ ¼ C, the mean concentration in the matrix or the
concentration in equilibrium with the average particle size r. Noting also that in this approxi-

mation ½Ca
bðNÞ � Cb

aðNÞ�z 1
Vb

since ½Ca
bðNÞ >> Cb

aðNÞ when the b phase approaches pure B.

Thus, we can write

dri
dt

¼ 2D
ri

"
Cb
aðNÞ sab

�
Vb
�2

RT

#�
1
r
� 1
ri

	
(182)

for the growth rate of a particle relative to the average particle size and find that
dri
dt > 0 for ri > r and dri

dt < 0 for ri < r, that is, particles with radii greater than the average particle
radius increase in size while particles with radii smaller than the average tend to shrink. The “big”
particles are growing at the expense of the “smaller” ones even leading to the disappearance of some of
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the smaller members of the ensemble. It is useful to focus on the fastest growing particles for some
radius ri¼ rm. Setting d

dri

�
dri
dt


¼ 0 one finds that rm ¼ 2r leading to the expression:

drm
dt

¼ 2D
r2m

Cb
aðNÞsab

�
Vb
�2

RT
(183)

for the growth rate of the fastest growing particle size. Integrating and inserting the relationship rm ¼ 2r
we arrive at a kinetic law for the time evolution of the average particle size during diffusion-controlled
coarsening given by � �
r3ðtÞ � r3ð0Þ ¼ 3
4
DCb

aðNÞ sab Vb 2

RT
t ¼ K1t (184)

where rð0Þ is the average particle size at the onset of the coarsening process. If rðtÞ >> rð0Þ this is often
written as rðtÞzK 0t13. The exact solution emanating from the Lifshitz and Slyozov (1961) theory when
more rigorous attention is given to the nature of the behavior of the size distribution gives a modified

K1 as K1 ¼ 8
9D
�
Cb

aðNÞsabðVbÞ2
RT


.

Coarsening is fundamentally a process rooted in capillarity effects expressed in the Gibbs–Thomson
equation. However, most precipitates are not terminal solid solutions and the variation of solid
solubility with particle size should be corrected for the precipitate composition, as mentioned earlier in
the discussion of particle growth, that is, for intermediate phase precipitates, for example A3B, the
capillarity term that should be used in the treatment is that of Eqn (167) which includes a composition
term which is essentially 4 for Al3Li and 3 for Al2Cu precipitate phases. Another consideration is that of
nonspherical shapes and anisotropy of the interfacial or surface free energy s. As discussed earlier
a generalized Gibbs–Thomson equation can be formulated for the nonspherical equilibrium shapes

wherein a parameter
si

li
is invariant around the particle; si is the surface energy of the ith surface element

on the particle interface and li is the distance of this element from the center of the precipitate projected
along the normal to the surface element. The result is that the chemical potential is constant around the
surface of the particle and thus the solubility is constant about the equilibrium shape.

Let us briefly return to the diffusion-controlled coarsening rate equations 181 and 182 and insert the
general capillarity term mentioned earlier (Eqn (167)). Furthermore, we will forego the approximation
[Ca

bðNÞ �Ca
b(N)]z 1/Vb for the more general case where the dispersed phase is not a terminal solid

solution or pure B but an intermediate composition AaBb. Eqn (183) then becomes

drm
dt

¼
�
2DXb

aðNÞ
r2m

��
sabVb

RT

�0B@ 1� Xb
aðNÞ�

Xa
bðNÞ � Xb

aðNÞ
2
1
CA (185)

wherein we have assumed ½Xa
bðNÞ � Xb

aðriÞ�z ½Xa
bðNÞ � Xb

aðNÞ� as discussed earlier. Also, again we
find rm ¼ 2r and, thus, integrating as before gives

r3ðtÞ � ðrð0ÞÞ3 ¼ K2t

�3DXb
aðNÞ��sabVb

�0B 1� Xb
aðNÞ

1
C
where K2 ¼

4 RT
@ðXa

bðNÞ � Xb
aðNÞÞ2A
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Interjecting the LSW refinements, K2 becomes

K2 ¼
�
8DXb

aðNÞ
9

��
sabVb

RT

�0B@ 1� Xb
aðNÞ�

Xa
bðNÞ � Xb

aðNÞ
2
1
CA

This more rigorous capillarity correction was used by Novotny and Ardell (2001) in their analysis of
coarsening in binary Al–Sc alloys.

As stated earlier, the classic GLSW theory is essentially a mean field theory virtually for zero volume
fraction of second-phase particles. However, as pointed out back in the 1960s and 1970s by Asimow
(1963) and Ardell (1972) the volume fraction of second phase is expected to become important at
volume fractions where the distances between precipitates is of the order of the mean particle size
altering the effective diffusion fields controlling the coarsening process. As a first approximation Ardell
suggested that the basic result r3(t) – r3(0)¼ Kt derived earlier in the GLSW approximation be multi-
plied by a factor K0(fV) which is a function of the volume fraction fV which ranges from 1 (fV¼ 0) to
about 10 (fV¼ 0.25) increasing the coarsening rate significantly. He also pointed out that the steady-
state particle size distribution for bulk diffusion-controlled coarsening was expected to be markedly
different than that predicted by the GLSW theory. However, the experimental results seem quite
complicated and system specific wherein composition changes and changes in coherency strains may
play a role. It is important to point out that in spite of the simplifications of the original treatment
a kinetic law of the form r3(t) – r3 (0)¼ Kt seems to hold for the coarsening or ripening of two-phase
microstructures across a wide variety of systems (Ardell, 1987).

In this discussion we did not delve into grain boundary diffusion-controlled coarsening of precip-
itates or coarsening of precipitates associated with dislocation arrays involving pipe diffusion as a rate-
controlling process (Martin et al., 1997).
8.5.5.2 Discontinuous Coarsening
In the coarsening reactions discussed earlier, particles of a single phase distributed in a solid solution
matrix increase their average size with time. Another type of coarsening occurs in eutectoid and cellular
type microstructures as shown in Figure 80. Here both phases increase their size (and therefore spacing)
discontinuously. Here the word discontinuous is used because the coarsening is not uniform in space
but occurs at an advancing reaction front or interface driven by a reduction in surface energy of the
lamellar two-phase mixture. This parallels the use of the term in Section 8.1.4 for discontinuous
transformations. In the case shown in Figure 80 the two phases are incoherent with each other (they
need not be). Another point of interest is that the diffusion process for this coarsening is along the
boundaries separating the coarsened region from the uncoarsened region, as opposed to the matrix
diffusion in the particle coarsening reactions.
8.5.5.3 The Effect of Strain on Coarsening
So far we have considered only the role of surface energy on the coarsening of precipitates. Another
important thermodynamic energy to consider is the elastic energy due to misfit between the crystal
lattices of the particles and the matrix. Such energy depends on the shape, habit, configuration and
volume of the precipitates (Khachaturyan et al., 1988).

The elastic energy of an isolated particle in a matrix plays a role in determining the shape of the
particle. Indeed shape changes occur as the particle size increases to take into account the elastic



Figure 80 Co–Si alloy displaying discontinuous coarsening of a cellular microstucture. After Livingston and Cahn (1975).
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anisotropies of the matrix and precipitate. For example a precipitate with isotropic surface energy still
may have a cuboidal shape to lower its elastic energy.

Another consideration is the role of the interaction between the stress fields of the precipitates,
commonly called an interaction energy. Ardell and Nicholson (1966) have shown that such interaction
energy can cause precipitates to align along elastically soft directions of the matrix. Khachaturyan and
Airapetya (1974) also showed that a large enough precipitate can decompose into smaller ones and
align themselves along elastically soft directions of the matrix. This was later observed experimentally
by Miyazaki et al. (1982) and Doi et al. (1984) for cuboidal precipitates of g0 in an Ni alloy. See
Figure 81.

In such cases, the increase in surface area (and hence surface energy) is off set by the decrease in total
elastic energy because of the negative elastic interaction term. Such a process produces smaller
precipitates and has been termed “inverse coarsening”.
Figure 81 Elastic effects during coarsening leading to particle splitting. After Doi (1994)
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8.6 Precipitation from Solid Solution

Precipitation from solid solution produces a phase mixture from the decomposition of an initial
supersaturated phase resulting in a matrix phase whose crystal structure is similar to that of the parent
phase, but of different composition and usually different lattice parameter(s), as well as an essentially
dispersed phase (precipitate) that may differ in crystal structure, composition and/or degree of order.
The physical, mechanical and chemical properties of the resultant two-phase alloy can vary markedly
with the size, shape (morphology) and distribution of the precipitate phase within the matrix and this
solid-state reaction provides the basis for one of the most powerful and versatile means available to the
physical metallurgist and materials engineer for tailoring the properties of high-strength alloys through
heat treatment and thermomechanical processing called age hardening or precipitation hardening.
Precipitation effects can influence magnetic and superconducting properties as well as mechanical
strength. Sometimes precipitation can cause unwanted effects in alloy applications and must be
accounted for and controlled.

Precipitation from supersaturated solid solution as a phase transformation is ubiquitous in metallic
and ceramic systems and in Figure 82 we show various phase diagram configurations which can give
rise to precipitation reactions in the solid state. Precipitation phenomena embody a range of funda-
mental processes central to understanding the role of transformation behavior in controlling micro-
structural development during processing and heat treatment, namely nucleation, growth, and coarsening
Figure 82 Equilibrium phase diagram configurations illustrating various conditions for precipitation of a second phase in
a binary alloy. After Soffa (1985).
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and competition among them. Furthermore, this solid-state transformation involves some of the most
challenging fundamental issues at the forefront of thermodynamics and statistical mechanics such as
nonequilibrium, irreversibility, the theory of rate processes, fluctuation behavior and self-organization
in material systems.
8.6.1 Historical Background

During the first decade of the twentieth century A. Wilm in Germany wondered whether the emerging
aluminum alloys could be strengthened employing methods used in other alloys, such as the quench
hardening approach that was so successful with steels, or what is now called substitutional solution
hardening, employed in Cu alloys. Both of these methods of strengthening had been used dating back
to antiquity. The as-quenched aluminum alloys, however, were found to be soft much to Wilm’s
surprise. Furthermore, often the fastest cooling rates appeared to be softer yet. Fortunately following
a set of Saturday morning “failures”, he reexamined the disappointing results on Monday of the next
week and found that the hardness and tensile properties had increased markedly while the specimens
sat for 2 days at room temperature. They had “aged” over the weekend and these somewhat misguided
experiments led to the discovery of age hardening. (Fortuitously, trace elements in the alloy micro-
chemistry, e.g. Mg rendered these alloys “naturally aging”, that is, unknown to Wilm at the time
significant precipitation occurred at room temperature within the supersaturated alloys produced by
quenching.) Wilm then more systematically explored the aging response in alloys containing w4 wt.%
Cu plus about 0.5 wt. % Mg along with traces of Mn, Fe and Si and patented his findings in 1906. His
first archival publication was not contributed until 1911 (Wilm, 1911). This genre of alloy was
christened DURALUMIN and was the primary structural material for the famous Zeppelins that were
flying about between 1910 and 1920. The strengthening from the aging behavior increased the yield
strength of the alloys by a factor of 2 or more compared with the as-quenched condition.

However, full exploitation of this phenomenon and extension to other alloys lay dormant for
a decade until 1919 when Merica et al. (1921) in the United States identified the fundamental basis for
the aging response; they recognized that this was the result of decreasing solid solubility with
temperature resulting in precipitation from supersaturated solid solution of a second phase during the
aging process at ambient (naturally aging) or moderately elevated temperature in a two-phase field.
Quenching from a single-phase field at high temperature produces the supersaturated state, for example
excess Cu dissolved in Al and the aging allows the nonequilibrium state to relax toward equilibrium
(stable or metastable) dictated by the relevant solvus line in the phase diagram. Archer and Jeffries
(1925) put forth a slip interference theory or “keying effect” as the mechanism for the enhanced
mechanical strength wherein they hypothesized that the increased resistance to plastic flow derived
from submicroscopic particles of a second phase which inhibit the elementary slip process of glide
along crystallographic planes.

The association of this strengthening mechanism with decreasing solid solubility with decreasing
temperature and the formation of fine-scale “pre-precipitates” or precipitate phases during aging by
Merica et al., (1921) was the major breakthrough since following this revelation numerous age
hardening alloys were developed not restricted to DURALUMIN-type aluminum alloys including
copper-base and nickel-base alloys. Here we have an excellent example of a modest fundamental
understanding of a phenomenon providing the foundation for the development of a new alloy
technology beyond the specific context of the seminal discovery. Today age hardening or precipitation
hardening is indeed one of the most effective approaches to designing high-strength alloys for
a plethora of applications in modern technology.
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The details of the nanoscale phenomena often involved in the precipitation process were not
elucidated until the advent of sophisticated X-ray diffraction methods in the 1930s (Guinier 1938b;
Preston 1938c) and ultimately through direct observation with the emergence of transmission electron
microscopy in the 1950s and 1960s (Nicholson and Nutting, 1958; Nicholson et al., 1959). It was
found that the precipitation process in the original DURALUMIN-type alloys generally exhibited
a complex multistage decomposition of the supersaturated solid solution before the formation of the
equilibrium phase indicated by the phase diagram, for example CuAl2 (q) in the binary Al–Cu system
involving the appearance of nanoscale copper-rich “zones”. Mehl and Jetter (1940) called these early-
stage zones or precipitates Guinier–Preston (G.P.) zones after the early X-ray investigators in France and
Great Britain (Guinier 1938a, 1938b; Preston 1938a, 1938b, 1938c.). Most importantly, it is now
recognized that effective age hardening in most alloy systems generally derives from the formation of
fine-scale metastable phases (sometimes referred to as “transition precipitates”) before the appearance
of the stable equilibrium precipitate phase; the formation of the equilibrium phase often leads to
a degradation of properties developed with the metastable precipitates. A quantitative approach to
correlating the precipitation microstructures with mechanical properties had to wait for the resolution
of the nature of these ultrafine scale dispersions of second-phase particles and the development of
a mature dislocation theory of plastic flow. Most notable is the theory of the yield strength due to
Orowan (1948). Approaches to a quantitative description of the flow stress of particle hardening up to
1960 are summarized in the review by Kelly and Nicholson (1963) including the early work of Mott
and Nabarro (1940). Books by Martin (1998) and Nembach (1996) provide excellent overviews of
progress in the field. We shall not treat this topic in any depth in this chapter.
8.6.2 Nucleation and Spinodal Decomposition

In this section we focus on the initial stages of formation of a second phase through homogeneous
decomposition within a supersaturated solid solution. Fundamental to understanding the breakdown
of a supersaturated solid solution produced by quenching from a single-phase region into a two-phase
field is the concept of the isothermal free energy–composition diagram and its relation to the phase
diagram as discussed earlier. We will first consider precipitation within a miscibility gap such as
depicted in Figure 12a. The associated free energy–composition curve is generally depicted showing
a characteristic double well with a region of negative curvature in between the local minima delineated

by the so-called chemical spinodal points
v2G
vX2 ¼ 0. The common tangent construction establishes the

compositions of the equilibrium phases Xa1
e and Xa2

e , respectively. Between the two inflection points
(spinodal points) the free energy curve has a negative curvature and supersaturated states lying in this
region are intrinsically unstable with respect to diffusional processes (recall the chord construction and
that the effective diffusion coefficient Dfv2G

vX2, as discussed in an earlier section) and will tend to
spontaneously phase separate. Supersaturated states lying on the curve where the curvature (point S in
Figure 12) is positive are metastable and require a relatively large fluctuation in composition locally to
initiate the precipitation reaction (nucleation). Gibbs recognized the possibility of these different
kinetic paths leading to the breakdown of the supersaturated state and the formation of the two-phase
mixture indicated by the phase diagram through the phase reaction a0/ a1þ a2, where a0 is the initial
supersaturated solution and a1 and a2 are the equilibrium conjugate phases in the two-phase field,
respectively. According to Gibbs, decomposition of the supersaturated state can be triggered by large
localized fluctuations in composition which can grow spontaneously by diffusion down the concen-
tration gradient which develops in the vicinity of these “critical nuclei” or by the continuous growth of



Figure 83 Classical nucleation and growth contrasted with spinodal decomposition as alternative modes of diffusional
transformation leading to the formation of a second phase. After Soffa and Laughlin (1985).
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initially low-amplitude composition fluctuations which are more spatially extended and exhibit rather
diffuse incipient interphase interfaces during the early stages of phase separation gradually evolving
into a distinct two-phase mixture. See Figure 83. Clearly the latter case involves “up-hill diffusion” or an
effective negative diffusion coefficient. The first alternative refers to essentially classical nucleation of
the new phase and the latter describes that which in the modern lexicon is called spinodal decom-
position. The overall rate of these processes depends on the rate of atomic migration and the diffusion
distances involved (undercooling). It is important to point out that the “spinodal line” depicted in
Figure 12a is not a phase boundary but a demarcation indicating a difference in thermodynamic
stability of supersaturated states and essentially a limit of metastability (Figure 84).
Figure 84 Schematic delineating metastable and unstable supersaturated states within a simple miscibility gap.
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It is generally well established that at low to moderate undercoolings or supersaturations CNT as
formulated earlier is an effective operational description of the system behavior and can be applied
semiquantitatively depending on available data. The rate of homogeneous nucleation is expected to vary

as 4pðr
�Þ2

a4 DN0 exp
�
� DG�

kBT


for a spherical nucleus, where a is an atomic dimensionw0.2–0.4 nm and the

other terms as defined previously. The nucleation barrier DG* is composed of the surface energy and
strain energy terms and varies roughly as DG� ¼ As3

ðDTÞ2T where DT is the undercooling below the relevant

solvus and is a measure of the degree of supersaturation (driving force); A is essentially a constant and s

and T have their usual meanings. If one defines the start of the nucleation and growth precipitation
reaction by a parameter s that is the time to observe 1% transformation (generally controlled by the
nucleation rate), then one can generate a locus in a classic TTT (time–temperature–transformation)
diagram for 1% transformation yielding a well-known C-curve in the TTT transformation map. See
Figure 85. The parameter 1s essentially is a measure of the rate of reaction (nucleation rate) and scales as

exp
�
� QD

kBT


exp
�
� As3

ðDTÞ2T

QD is the activation energy for the thermally activated diffusional jumps from

the parent phase to the critical nucleus. This approximate description shows the central role of the nature
of the interphase interface and the associated interfacial free energy s of a precipitate phase in deter-
mining the rate of formation of the phase during isothermal aging. Clearly coherent phases with low s
Figure 85 Typical TimedTemperaturedTransformation (TTT) diagram exhibited by diffusional phase transformations. The
start of transformation is labeled 1% and the finish 99%.
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(w50–200 erg cm�2) are favored over incoherent phases with significantly higher s

(w400–1000 erg cm�2) if the attendant strain energy for coherent nucleation is not prohibitive. This
will be a major consideration when considering more complex phase diagrams and phases (stable or
metastable) which do not have the same crystal structure as we find with the simple miscibility gap.
Importantly, the equation for the initial nucleation rate shows the fundamental basis for the ubiquitous
C-curve kinetics; at small undercoolings the nucleation barrier is high because the “driving force” is low
and at large undercoolings the kinetics are sluggish because of restricted atomic mobility (high value of
the activation energy for diffusional jumps in substitutional solid solutions).

Let us now consider a supersaturated state which lies within the “spinodal region”
�
v2G
vX2 < 0


. As

mentioned earlier, the unstable solution tends to spontaneously unmix or phase separate without the
requirement of a distinct nucleation step but through the amplification of initially extended low-
amplitude fluctuations and this spinodal reaction involving diffusional clustering allows for a contin-
uous evolution of the equilibrium a1þ a2 phase mixture. See Figure 83. The essential features of
the spinodal process can be understood by considering this diffusional unmixing as the inverse of the
homogenization of a nonuniform solid solution exhibiting a sinusoidal (or cosinusoidal) variation
in composition with distance. In metastable solutions these small deviations from the average
concentration, C0, will generally decay according to DC ¼ Cðy; tÞ � C0 ¼ DC0 exp

��t
s

�
, where DC0ðyÞ ¼

A0 sin
py
l
describes the initial composition fluctuation as a function of distance y and wavelength l. The

relaxation time of decay sz
l2

D
where D is an appropriate diffusion coefficient and in a binary system

is related to the curvature of the free energy–composition diagram
v2G
vX2 as mentioned in preceding

discussions. In a metastable solution D is positive and the fluctuation decays exponentially toward the
state of uniform composition (homogenization). However, if the solution is unstable, D is negative,
and “uphill” diffusion occurs, that is diffusive flow of solute up the concentration gradient, and the
amplitude of the concentration fluctuation grows with time, that is, DC ¼ DC0 exp

��t
s

�
becomes DC ¼

DC0 expðRðbÞtÞ where R(b) is an amplification factor and a function of the wave number b ¼ 2p
l
. (This

treatment of the behavior of a simple sinusoidal concentration wave in a heterogeneous solution is
more general than it appears since through Fourier analysis an arbitrary composition heterogeneity can
be considered as a superposition of Fourier components of various amplitudes and wavelengths and
independently subject to a stability analysis.) This simple treatment captures important aspects of
the spinodal process; however, the behavior of concentration fluctuations in an unstable solution
requires that rigorous attention be paid to the energetics of the inhomogeities or concentration waves.
We will find that long wavelength components will tend to grow sluggishly but short wavelength
components are suppressed by a so-called gradient energy or incipient interfacial/surface free energy
associated with the diffuse interfaces which evolve during the continuous unmixing process. We
will address this important issue in the following overview of the modern theory of spinodal
decomposition.

Becker (1937) andDehlinger (1937, 1939) apprehended in the 1930s that the spinodal points on the
free energy–composition curve of a binary system delineated a regime of supersaturated states wherein
the diffusion coefficient in Fick’s laws was negative and anticipated some unique behavior. Later Borelius
(1937) attempted to develop a theory of localized fluctuation behavior contrasting behavior inside and
outside the spinodal region, but never captured the essence of the problem. The core of the modern
theory emerged when Hillert (a former student of Borelius) using a one-dimensional discrete lattice
model based on regular solution energetics analyzed the behavior of composition fluctuations using
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a modified diffusion equation (Hillert, 1956, 1961). In his analysis a term related to composition
differences between adjacent planes arises in describing the chemical potential gradient governing the
diffusion flux across the discrete lattice. This term in the thermodynamics of an inhomogeneous binary
solution is equivalent to the gradient energy referred to above. Hillert’s formulation produced
a nonlinear diffusion equation which he solved numerically showing selective growth of certain
wavelengths of the composition fluctuations or modulations. The result clearly indicated a spontaneous
periodic clustering or phase separation without the occurrence of a classical nucleation event. Initially
low-amplitude extended composition fluctuations on a certain length scale were found to be amplified
through “uphill” diffusion leading to continuous phase separation now universally known as spinodal
decomposition. Here in Hillert’s doctoral thesis at MIT submitted in 1956 a numerical solution to the
diffusion equation reveals the essential behavior of unstable solutions exhibiting Gibbs’ alternative to
classical nucleation (fluctuations of the second kind) as a mode of breakdown of the supersaturated
solution and continuous phase separation resulting in quasi-periodic concentration waves evolving
toward the formation of the equilibrium phase mixture. This model also provided a fundamental basis
for the observations of Bradley (1940) and analyses ofDaniel and Lipson (1943) in the 1940s of periodic
precipitation in the “sideband alloys” such as Cu–Ni–Fe alloys. The X-ray results were in accord with
periodic modulation of the composition along the h100i directions of the decomposing cubic parent
phase with a wavelength of 100 Å, the same order predicted by Hillert. In addition, Hillert showed that
outside the spinodal region a nucleation barrier appears, in addition to discussing G. P. zone formation,
diffuse interfaces as well as continuous ordering. This revolutionary thesis work was belatedly published
in 1961 (Hillert et al., 1961) but its impact preceded the formal publication in an archival journal (see
Cahn, 2006 for this evaluation of the impact of the paper which he says greatly influenced his work).
Cahn and Hilliard at the General Electric research Laboratory were impressed and intrigued by Hillert‘s
work and began towork on this topic and addressed some of the fundamental issues embodied in it. This
team of outstanding thermodynamicists with excellent mathematical facility first focused on the proper
thermodynamic description of the diffuse interfaces as well as the general thermodynamic description of
a compositionally inhomogeneous system. The work was followed by a treatment of the nucleation
problem outside the spinodal but relaxing the ad hoc assumptions of CNT regarding the nature of the
interphase interface separating the nucleus and parent phase and the composition profile of the nucleus
(Cahn andHillard, 1958, 1959). They showed that indeed the work to form the critical nucleus vanishes
at the spinodal as well (Cahn and Hillard, 1958, 1959). This Cahn–Hilliard or nonclassical nucleation
will be discussed in more detail subsequently after discussing Cahn’s theory of the spinodal process.

The Cahn theory of spinodal decomposition1 is based on a stability analysis of concentration waves
(Fourier components) in an inhomogeneous system and a solution of a generalized ormodified diffusion
equation in a three-dimensional continuum wherein the gradient energy is incorporated explicitly using
a Ginzburg-Landau (1950) approximation. Using the Cahn–Hilliard (Cahn and Hillard, 1958, 1959)
result to describe the thermodynamics of a nonuniform solution (a solution exhibiting concentration
fluctuations about the mean concentration) one writes the total free energy of the system as

G ¼
Z 


gðcÞ þ kðVcÞ2�dV (186)

where the first term under the integral is the local free energy density g(c) (the local free energy per unit
volume of a homogeneous region of composition c) and the second term kðVcÞ2 is the excess free
1 van der Waals (1908) first used the term spinodal (Cahn 1968) and Cahn coined the term spinodal decomposition (Cahn, 1961).



Diffusional Phase Transformations in the Solid State 977
energy per unit volume due to the local concentration gradient Vc or gradient energy (k is called the
gradient energy coefficient). Consider a one-dimensional composition wave along the y-axis of a rect-
angular block of uniform cross-sectional area A0 and length L (V¼ A0L) of wavelength l described by

cðyÞ � c0 ¼ A cosðbyÞ (187)

where c0 is the mean concentration, A is the amplitude of the modulation and b ¼ 2p
l

is the wave

number as above. Expanding the free energy density about the average composition gives

gðcÞ ¼ gðc0Þ þ ðc� c0Þ
�
vg
vc

�
c¼c0

þ 1
2
ðc� c0Þ2

�
v2g
vc2

�
c¼c0

þ higher order terms (188)

yielding to second order the following expression for the free energy difference between the inhomo-
geneous solution and an initial homogeneous solution

DG
V

¼ A2

4

�
v2g
vc2

þ 2kb2
�

(189)

which indicates that if the second derivative is positive the fluctuated or inhomogeneous state is a higher
free energy state and will tend to decay back toward the state of uniform composition (k is assumed to

be positive giving rise to an incipient surface energy). However, if the second derivative
v2g
vc2

is negative

(inside the spinodal region) periodic fluctuations with wavelengths greater than lc or
2p
bC

given by

lC ¼

2
664� 8p2k

v2g
vc2

3
775

1
2

(190)

lead to a decrease in free energy and tend to grow spontaneously; the supersaturated state is unstable

with respect to such composition fluctuations. Clearly the effect of the gradient energy is to prohibit
decomposition on too fine a scale in spite of the kinetic advantage the short wavelength fluctuations
have in terms of shorter diffusion distances.

The stability analysis discussed earlier must be amended if the molar volume of the solution varies
with composition and coherency strains develop between adjacent regions of different composition in
the inhomogeneous system. For an isotropic system this misfit strain energy (per unit volume) asso-
ciated with the concentration wave can be approximated by the expression

ES ¼ A2h2E
2ð1� vÞ (191)

where h is the linear expansionper unit composition change,E is Young’smodulus and n is Poisson’s ratio.

For a crystalline solid (cubic) h can be taken to be
d lnðaÞ
dc

where a is the lattice parameter. The excess free

energy of the inhomogeneous solutionwith a quasi-sinusoidal compositionmodulation is thenwritten as

DG
V

¼ A2

4

�
v2g
vc2

þ 2kb2 þ 2h2E
1� v

�
(192)



Figure 86 Schematic showing miscibility gap in the solid state and associated spinodal lines (chemical and coherent). After
Soffa and Laughlin (1985).

978 Diffusional Phase Transformations in the Solid State
which essentially defines a new stability criterion or a new spinodal region delineated by a locus called
the coherent spinodal lying beneath the conventional chemical spinodal. See Figure 86. The strain energy
has the effect of stabilizing the solution with respect to extended fluctuations of all wavelengths. The
limit of stability is now given by �

v2g
vc2

þ 2h2E
1� n

�
¼ 0 (193)

resulting from the influence of coherency strain energy on the energetics of the inhomogeneous
solution which can totally suppress the spinodal process in some systems.

Crystalline solids can be highly anisotropic in terms of their elastic properties including cubic
crystals. This introduces a new and important consideration with respect to the behavior of the
concentration waves which tend to evolve during decomposition of the unstable supersaturated state.
As a result of elastic anisotropy the elastic energy attendant to the formation of concentration waves
differs depending on the crystallographic direction along which the composition modulation occurs
and this will be shown to impact the nature of the resultant microstructures stemming from the spi-
nodal process.

A cubic crystal generally has three independent elastic constants C11, C12 and C44 whereas in the
isotropic case 2 C44� C11þ C12¼ 0, thus in an isotropic material there are only two independent
elastic constants. In the case of a cubic crystal the strain energy term takes the form 2h2Y where

Y ½100� ¼ ðC11 þ 2C12ÞðC11 � C12Þ
C11

and Y ½111� ¼ 6C44ðC11 þ 2C12Þ
4C44 þ C11 þ 2C12

for concentration waves along h100i and h111i directions, respectively. The elasticity parameter Y is
a minimum for modulations along h100iwhen 2C44� C11þ C12> 0 and a minimum for modulations
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along h111i when 2C44� C11þC12< 0. Thus, concentration waves will tend to develop preferentially
along these directions cannibalizing the other Fourier components in the spectrum characterizing the
initial composition inhomogeneity depending on the elastic anisotropy of the system (Cahn, 1961,
1962a, 1968 and Hillard, 1970).

Spinodal decomposition involves the selective amplification of concentration waves during the early
stages of decomposition. We now focus our attention on the essential kinetic features of this process as
a diffusional growth process occurring within the unstable system which represents the inverse of the
homogenization problem involving “uphill diffusion” (flow against the concentration gradient;
however, the diffusive flow is always down the chemical potential gradient). For diffusion in the binary
system in one dimension along a y-axis the fluxes (moles cm�2 s�1) of the components A and B can be
related to the local gradients of chemical potential of these species as follows: the driving

J0A ¼ �CAMA

�
vmA
vy

�
¼ �ð1� XÞrmMA

�
vmA
vy

�
(194a)

� � � �

J0B ¼ �CBMB

vmB
vy

¼ �XrmMB
vmB
vy

(194b)

ere CA and CB are the local concentrations (mol cm�3), (1� X) and X are the corresponding atomic
fractions, rm the molar volume of the solution assumed to be constant;MA andMB are the mobilities of

the diffusing species (diffusion velocities per unit driving force) with
vmA
vy

and
vmB
vy

the gradients in

chemical potential (the driving forces for diffusion). These fluxes J0A and J0B are purely diffusive flows
down the local chemical potential gradients of A and B, respectively, measured with respect to the lattice
frame (a coordinate system fixed on a lattice plane) that moves with the bulk or convective flow as
observed through a local marker movement with respect to a laboratory or Matano frame (Kirkendall
effect). With respect to the Matano frame the fluxes are written as

JA ¼ J0A þ CAVm and JB ¼ J0B þ CBvm (195)

where vm is a local marker velocity and noting that JAþ JB¼ 0 in this frame. Eliminating vm between the
flux equations one can write the flux JB as follows:

JB ¼ �rmM
vðmB � mAÞ

vy
(196)

where (mB� mA) is sometimes referred to as the diffusion potential for the interdiffusion and
M¼ X (1� X)[(1� X) MBþ X MA] is essentially an interdiffusion mobility. We recall from solution

thermodynamics that ðmB � mAÞ ¼
vG
vX

hG0 and G00h
v2G
vX2 wherein the chemical potentials and molar

free energy G will now include the gradient and elastic strain energies as described earlier.
The phenomenological description of the diffusion instability can now be formulated in terms of

a modified Fick’s laws writing the flux (First law) as

JB ¼ �M
�
G00 þ 2h2Y

� vCB

vy
þ 2Mk

v3CB

vy3
(197)
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and the continuity equation (Fick’s Second law) as

vCB

vt
¼ þM

�
G00 þ 2h2y

� v2CB

vy2
� 2Mk

v4CB

vy4
(198)

and for a cosinusoidal composition fluctuation CB� C0¼ A cos (by) this diffusion equation admits an
analytical solution CB(y,t) as similar to that previously obtained with the simple approach. The new
solution for the time evolution of the initially cosinusoidal fluctuation is

Aðb; tÞ ¼ Aðb; 0ÞexpðRðbÞtÞ (199)

where the amplification factor R(b) is a function of the wavelength
�
b ¼ 2p

l

�
and given by

RðbÞ ¼ �Mb2


G00 þ 2h2Y þ 2b2k

�
(200)

as shown in Figure 87. The A(b,0)¼ A0 is the initial amplitude of the fluctuation (Fourier
component) in question. The maximum value of the amplification factor occurs at

bmax ¼
bCffiffiffi
2

p where b2C ¼ �ðG00 þ 2h2YÞ
2k

recalling that only wavelengths greater than lC ¼ 2p
bC

will be

amplified and lead to a decrease in free energy; the supersaturated state is unstable with respect to such
composition fluctuations while the shorter wavelength fluctuations will tend to be damped or decay as
discussed earlier. Fourier components at and in the near vicinity of bmax will be the dominant
concentration waves and essentially determine the scale of the microstructure during the early stages of

decomposition and this length scale varies as
�

k
ðDTÞ
1

2
where DT¼ Ts� T, in which TS is the spinodal

temperature and T is the aging temperature or temperature of the spinodal process.
Figure 87 Variation of the amplification factor R(b) with wave number, b¼2p
l

showing a maximum at b¼ bmax and
crossover at bcritical where short wavelength fluctuations are suppressed.
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The impact of Cahn’s phenomenological or continuum theory based on an analytical solution of
a modified diffusion equation was a major development in the theory of phase transformations
bringing the spinodal concept and spinodal decomposition into the main stream of thinking about
transformation behavior in metallic and nonmetallic systems. A new mode of phase separation distinct
from classical nucleation based on a quantitative theorydalbeit rigorously applicable to the early stages
of decompositiondwas recognized and the phenomenon began to be recognized to be relevant to
a plethora of alloy systems of technological significance such as ferritic stainless steels (Fisher et al.,
1953; Williams and Paxton, 1957; Imai et al., 1966; DeNys and Gielen, 1971; Vintaykin et al., 1966,
1970), Alnicos (Voss, 1969) and other permanent magnet alloys (Rossiter and Houghton, 1984) and
numerous age hardening alloys (Ditchek and Swartz, 1979). Interestingly, Cahn’s theory strongly
impacted glass scientists almost immediately clarifying the structure and properties of phase-separated
glasses, a phenomenon which is ubiquitous in glass technology. A new ingredient of major importance
was introduced into the spinodal theory by Cahn, that being the elastic energy associated with the
concentration waves and the influence of elastic anisotropy. Here we have a fundamental basis for the
occurrence of modulated structures developing along certain crystallographic directions, for example
h100i, in numerous cubic systems as well as unidirectional modulations in decomposing TiO2–SnO2
tetragonal solid solutions (Stubican and Schultz, 1970). Thomas and coworkers (1970 and 1971)
published the first comprehensive transmission electron microscopy (TEM) studies of the classic
Cu–Ni–Fe sideband alloys revealing the emergence of modulated structures along the h100i matrix
directions and the development of crystallographically aligned quasi-periodic two-phase mixtures. See
Figure 88. The mechanism of decomposition was found to be homogeneous throughout the grains and
uniform up to the grain boundaries as shown in Figure 89. The satellite reflections or sidebands and the
emergence of a periodic and aligned microstructure were revealed prominently in the electron
diffraction analysis of the spinodally decomposing alloys as displayed in Figure 90. It is important to
note that Ardell and Nicholson (1966) in the mid-1960s pointed out in their studies of Ni–Al alloys
that periodic microstructures mimicking the latter stages of spinodal decomposition could result from
elastic interaction of coherent precipitates during stress-affected growth and coarsening of an initially
random array of nucleated particles.

The Fe–Cr binary system exhibits a miscibility gap at low temperature giving rise to the formation of
two bcc phases, one Fe rich and the other Cr rich and this miscibility gap including its metastable
extension at elevated temperatures is significant in a number of technological contexts including ferritic
stainless steels and tailored permanent magnet alloys based on the Fe–Cr–Co ternary system as cited
earlier. Because of the similar atomic sizes these Fe–Cr spinodally decomposing alloys exhibit an
isotropic spinodal morphology composed of interconnected veins of Cr-rich and Cr-depleted regions
resulting from the amplification of concentration waves in three dimensions exhibiting no direction-
ality because the elastic or misfit energy is small. The isotopic, sponge-like spinodal morphology is
shown in Figure 91 (Such a microstructure is expected in phase-separated glasses and indeed is found
experimentally. In the glasses the absence of elastic anisotropy produces the isotropic behavior whereas
in the metallic Fe–Cr–X metallic systems it is the small misfit.) This isotropic morphology in phase-
separated Fe–Cr and Fe–Cr–Co was revealed by field-ion microscopy in the 1980s including atom
probe studies of the time evolution of the concentration waves (Brenner et al., 1982, 1984). These early
atom probe results showed the amplitude of the waves progressively increasing toward their equilib-
rium values indicated by the phase diagram. Later in the 1990s Miller et al. (1995) and Hyde et al.
(1995b, 1995c) at Oxford in a series of papers carried out an impressive quantitative analysis of the
system employing new atom probe techniques such as PoSAP and extensive computer simulations.
Figures 92 and 93 show reconstructions of the emerging microstructures stemming from the spinodal



Figure 88 Spinodal microstructure revealed by TEM in an aged CuNiFe alloy showing a periodic, crystallographically aligned
two-phase mixture; the foil normal is approximately [001], and the particles of the second phase are aligned along the [100]
and [010] matrix directions. After Butler and Thomas (1970).
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reaction. Danoix and Auger (2000) have reviewed atom probe studies of the Fe–Cr system directly
applicable to stainless steel technology. It should be noted that the ternary Cu–Ni–Cr system exhibits
a ternary miscibility gap and behavior very similar to the Cu–Ni–Fe system. See Figure 94. Importantly,
atom probe analysis of the phase separation process in the Cu–Ni–Cr alloys revealed a similar
progressive change of extended composition fluctuations toward the equilibrium compositions of the
resultant phases consistent with the concept of spinodal decomposition versus classical nucleation and
growth (Abe and Soffa, 1991). Small-angle X-ray and neutron scattering have also been employed to
effectively monitor the development of composition modulations during spinodal decomposition
showing the selective growth and decay of Fourier components across the b spectrum. The early stages
for which Cahn’s theory is rigorously applicable are found to be difficult to access experimentally and
most results show an early coarsening of the dominant wavelength of the emerging microstructure.

Classical nucleation and spinodal decomposition represent extremes in a decomposition spectrum
within a miscibility gap characterized by a gradual change from metastability to instability. The
Cahn–Hilliard nonclassical nucleation theory (Cahn and Hillliard, 1958) essentially provides the
critical linkage for understanding the progressive change in the nature of the decomposition process as
the supersaturation or undercooling of the parent phase is increased. Let us look briefly at this
generalized nucleation theory. Cahn and Hilliard used their analysis of inhomogeneous systems and
diffuse interfaces (Cahn and Hillliard, 1958) to reexamine the nucleation problem. They allowed the



Figure 89 TEM micrograph of the decomposed CuNiFe alloy showing the phase separation being homogeneous up to the
grain boundaries of the parent phase. After Butler and Thomas (1970).
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composition profile of potential nuclei to vary and considered the interface between the parent and
emerging phases to be generally diffuse rather than sharp as assumed in CNT. See Figure 45. At low
supersaturations the critical nuclei look very much like classical nuclei but as the supersaturation
increases the work to form the critical nucleus decreases continuously to zero at the spinodal. However,
the effective radius or spatial extent of the critical fluctuation rapidly increases at high supersaturations
approaching infinity in the vicinity of the spinodal. Furthermore, the interface becomes progressively
more diffuse and the concentration difference between the center of the nucleus and the supersaturated
solution decreases toward zero as well. What are we to make of this apparent singular behavior or
discontinuity from the “nucleation side” to the “spinodal side?” As pointed out by Cahn (1962b), there
is no discontinuity. As the supersaturation is increased toward the spinodal the critical nucleus or
fluctuation becomes more diffuse and progressively exhibits characteristics very different from the
“classical nucleus”. The amplitude of the critical fluctuations begins to deviate significantly from the
equilibrium composition of the precipitating phase and the interface between the incipient precipitate
and parent phases becomes markedly extended. Furthermore, the “nucleation barrier” rapidly decreases
approaching kBT and a range of finite-amplitude fluctuations against which the system is unstable
becomes part of the spectrum of frequently occurring fluctuations and a well-defined critical nucleus
loses its meaning. A variety of fluctuations of varying spatial extent and amplitude readily leads to
decomposition of the supersaturated state. The system no longer follows an optimum path toward
equilibrium. The transition regime is expected to extend into the “spinodal side” or inside the spinodal
since true spinodal instabilities with their characteristic long wavelengths (large diffusion distances)



(a) (b)

Figure 91 (a). TEM image of an isotropic spinodal morphology developed in an Fe–Cr–Co alloy (Zeltzer). (b) Field ion
micrograph image of an isotropic spinodal morphology in an Fe–Cr–Co alloy. After Soffa et al. and Brenner et al. (1984).

Figure 90 (a) An [001] electron diffraction pattern of a spinodally decomposed Cu–Ti alloy showing satellite configurations,
consistent with periodic strain modulations along the [100] and [010] matrix directions. (b) Schematic of the positions of the
satellites in reciprocal space. (c) Enlarged images of (200) reflections showing details of the satellites. After Hakkarainen
(1971) and Soffa and Laughlin (1982).
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Figure 92 An atomic reconstruction of a spinodally decomposed Fe–Cr alloy aged at 773 K. The lighter spheres represent Fe
atoms and the darker spheres Cr atoms. After Miller et al. (1995).

Diffusional Phase Transformations in the Solid State 985
will be slow to evolve whereas finite-amplitude fluctuations with smaller spatial extent will develop
more rapidly. Thus, the transition from metastability to instability is characterized by a hybrid process
and the reaction path does not necessarily minimize the free energy of formation of the critical fluc-
tuations but maximizes the rate of decomposition. A comprehensive pedagogical review article which
this section closely followed is found in Hilliard (1970).
8.6.3 Spinodal Decomposition and Ordering

Clustering and ordering effects and instabilities during the decomposition of supersaturated solid
solutions were essentially considered mutually exclusive behaviors until the 1960s and 1970s based on
textbook treatments of these phenomena which discussed the energetics and stability of binary alloys in
terms of first nearest-neighbor pairwise interactions within a zeroth approximation quasichemical
theory or the classic Bragg–Williams description of ordering. In particular, spinodal decomposition and
ordering tendencies were thought to be incompatible or unrelated behaviors in precipitation systems.
However, it is now well established that an interplay of clustering and ordering tendencies can occur
synergistically during the precipitation of ordered phases and influence the morphology and resultant
microstructural scale. As early as 1963 Israel and Fine (1963) suggested that such behavior was involved
in the formation of the metastable Ni3Ti phase in the Ni–Ti system. Gentry and Fine (1972) in later
studies of precipitation of Ni3Al in Ni–Al alloys suggested that Cahn–Hilliard nucleation or spinodal
decomposition was involved in the formation of the ordered phase. Corey et al. (1973) in their



Figure 93 Isosurface reconstruction from PoSAP (position sensitive atom probe) analysis showing morphology of Cr-
enriched regions in a spinodally decomposed Fe–Cr alloy aged at 773 K. After Miller et al. (1995).
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contemporaneous work in the early 1970s on nonstoichiometric Ni3Al-base alloys also concluded that
these alloys undergo a two-step decomposition process consisting of an ordering transition followed by
phase separation by spinodal decomposition. These authors also presented an attempt to rationalize
the synergistics of the two-step process in terms of simple free energy–composition diagrams (graphical
thermodynamics) relevant to the phase separation and ordering.

A thermodynamically sound basis for concomitant and synergistic ordering and phase separation
behavior started to emerge in 1976 with the works of Allen and Cahn (1976), Ino (1978) and Kokorin
and Chuistov (1976). Allen and Cahn (1976) addressed the mechanisms of phase transformations in
the Fe–Al system revealed by electron microscopy (TEM) in association with a tricritical point which
can occur when a line of critical points or a locus of higher order transitions ends uniquely on
a miscibility gap. See Figure 95. The line of critical points represents the a (disordered; bcc; A2) / B2
disorder–order transition which is a higher order transition. Using free energy–composition curves
associated with the phase diagram in the vicinity of the tricritical point they introduce explicitly the
concept of spinodal phase separation contingent on prior orderingdthe conditional spinodal
reactiondand contrast a limit of metastability with a spinodal line. The limit of metastability is where
the curvature of the free energy–composition curve changes sign (plus to minus) discontinuously on
passing from a disordered state to an ordered state and is coincident with the extrapolated line of critical
points associated with the A2/ B2 ordering in this case. Within this graphical thermodynamic scheme
a disordered A2 phase which is metastable with respect phase separation can be rendered unstable
upon continuously ordering and spinodally phase separate finally resulting in a disordered a phase and



(a)

(b)

Figure 94 TEMs of Cu-31.6 Ni-1.7 Cr alloy aged at 650 �C for 1 h revealing matrix strain contrast striations along traces of
the {1 0 0} matrix planes under different imaging conditions; the average wavelength of the modulated structure is about 170A.
(a) Foil normal near (0 0 1); g¼ [20 0]; insert shows satellite flanking matrix reflection. (b) Foil normal near (001); g¼ [2 2 0];
interpenetrating modulations revealed indicative of triaxially modulated structure (Chou et al., 1978).
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an ordered nonstoichiometric B2 phase. They also suggested that the continuous ordering of the initial
disordered parent phase is expected to occur much more rapidly than any competing nucleation and
growth mechanism. Ino (1978) using a straightforward quasichemical model but including first and
second nearest-neighbor pairwise interactions of opposite sign was able to predict a similar behavior
associated with the A2/ B2 ordering. The interplay between phase separation and ordering stemmed
from writing the interchange energies as V¼ 1

2



2E1AB � E1AA � E1BB� and U¼ 1

2



2E2AB � E2AA � E2BB� for first

and second nearest-neighbor interactions, respectively, and assuming random mixing on the a and
b sublattices of the B2 structure. This is sometimes referred to as a generalized Bragg–Williams model.
Kubo and Wayman (1980) later also described miscibility gaps intersecting the A2/ B2 transition in
CuZn alloys. Kokorin and Chuistov (1976) addressed the possibility of spinodal decomposition in



Figure 95 Region in the vicinity of a tricritical point showing the emergence of a spinodal line associated with the disordered
solid solution at low temperatures (G00 ¼ 0). Alloys quenched to points P, Q and R exhibit different regions of thermodynamic
stability with respect to clustering and ordering. After Laughlin and Soffa (1988).
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conjunction with the formation of an ordered A3B (L12) phase within a supersaturated binary fcc solid
solution emphasizing the dependence of the free energy of the system on the composition and order
parameter at a given temperature as well as incorporating second nearest-neighbor interactions in
a generalized Bragg–Williams model. The A1(fcc)/ L12 ordering transformation is first order under
equilibrium conditions. Khachaturyan et al. (1988) addressed the problem as well using a generalized
Bragg–Williams model and SCW formalism to elucidate phase equilibria and precipitation of the
A3B(L12 phase) in Al–Li alloys. They described the possibility of spinodal decomposition of homo-
geneously ordered Al–Li solid solutions into a disordered phase and ordered phase mixture as reported
experimentally by Radmilovic et al. (1989) in their TEM studies of the Al–Li system, similar
to the discussion of Datta and Soffa (1973, 1976) in their studies of age hardening Cu–Ti alloys.
Khachaturyan et al. (1988) defined a congruent ordering process whereby a disordered single-phase
state transforms without composition change via nucleation and growth of ordered regions within
a metastable solid solution (heterogeneous ordering).

Soffa and Laughlin (1989) extended this analysis to include a detailed graphical thermodynamic
analysis of the interplay of the clustering and ordering tendencies in conjunction with a thermody-
namically first-order disorder/ order transformation in a precipitation system. Soffa et al. (2010,
2011) subsequently used the generalized Bragg–Williams approach in a computational thermody-
namic analysis to generate free energy–composition diagrams emphasizing the role of second nearest-
neighbor interactions on thermodynamic stability and the synergistics of ordering and spinodal
decomposition. This graphical thermodynamics of Soffa and Laughlin (1989) represents a convolution
of the usual free energy–composition diagram with the Landau graphical representation of ordering



Figure 96 Schematic representation of G–c–h space showing different regions of stability and instability at points R, P0 and P.
A disordered alloy at R is stable with respect to atomic ordering, an alloy at P0 is metastable with respect to ordering and one at
P is unstable with respect to atomic ordering. The hatching along the free energy composition curve denotes thermodynamic
instability with respect to ordering. After Soffa and Laughlin (1989).
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transformations as shown in Figure 96. Ordering instabilities (T�
i ) and spinodal regions (TS) can be

delineated and an interesting array of reaction paths predicted in agreement with experimental
evidence. Figure 97 shows an alloy of composition C0 quenched to temperature T3 which might be
expected to continuously order (below T�

i ) and then spinodally decompose (below TS) producing an
ordered precipitate within a disordered matrix. The continuous phase separation or spinodal reaction is
contingent on the prior ordering and will be discussed subsequently.
8.6.4 Precipitation Sequences: Modes; Coherency and Metastable Phases

Let us now return to the classic Al–Cu age hardening system and examine, in detail, the reaction path
during aging of supersaturated Al–Cu solid solutions giving rise to the strengthening which derives
from the precipitation reaction. Alloys nominally containing 2–4 wt.% Cu (1.0–1.7 at.% Cu) when
solution treated and quenched from the single-phase region (w500 �C) and subsequently aged at
w100 �C undergo a multistage decomposition characterized by the formation of a series of metastable
precipitate phases before the formation of the equilibrium precipitate CuAl2 (q). The reaction sequence
can be summarized as: a0/ a000 þG.P. I zones/ a00 þG.P. II zones (q00)/ a0 þ q0 / aeqþCuAl2 (q)
where a0 is the initial supersaturated FCC solid solution. It is useful to represent the multistage
reaction path in this manner because the sets of phases (a00 þG.P. II zones (q00), etc.) represent



Figure 97 Phase diagram configuration associated with A3B ordering (A1/ L12; first-order transition) showing ordering
instability locus and spinodal regime (shaded) along with T0 the temperature below which an ordered solution is thermo-
dynamically favored (lower free energy) with respect to a disordered phase.
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metastable two-phase equilibria which precede the formation of the stable aeqþCuAl2 (q) equilibrium
phase mixture. The structure and morphology of these different phases are shown in Figure 98. The
basic question to be addressed is: What fundamental principles underlie this multistage approach to
stable equilibrium involving the appearance of a sequence of metastable precipitates? The rate of
approach to equilibrium from the initial supersaturated state is controlled by the activation barriers
along the reaction path generally associated with thermally activated processes involved in the
construction of a new phase or phases which lower the free energy of the constituent assembly such as
nucleation and atomic migration. The metastable transition precipitates during the early stages of
decomposition of the supersaturated state are generally crystallographically similar to the matrix
allowing the formation of low-energy coherent (semicoherent) interphase interfaces during the
nucleation process. As discussed earlier, CNT shows that the nucleation barrier DG* is proportional to

s3M�P

ðDGV þ DGSÞ2
where sM�P is the interfacial free energy of the matrix–precipitate interphase interface,

DGv is the thermodynamic driving force per unit volume (the free energy released per unit volume of
the new phase formed) and DGs is the strain energy per unit volume attendant to the formation of the
new phase (coherency strain energy), as defined earlier. Since the nucleation rate of a phase varies

exponentially as exp
�
� DG�

kBT

�
the nucleation of a coherent transition phase with sM�Pw30 erg=cm2

will occur more easily compared with the equilibrium phase with sM�Pw400� 1000 erg=cm2 despite
having a lower driving force and some associated strain energy expenditure, in general. The different
stages can be depicted in a free energy–composition diagram and common tangent constructions can



Figure 98 Schematic showing the structures of precipitate phases occurring in Al–Cu age hardening alloys including the
morphologies and nature of their interphase interfaces. After Smallman (1963).
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be employed at different temperatures to map out the loci of metastable solvi of precipitate phases. See
Figure 99. Also, C-curves marking the start of precipitation for the different competing phases can be
established with respect to the metastable solvi as discussed earlier and depicted in Figure 100. It
should be mentioned that the thermodynamic validity of these metastable solvi, for example G.P. I
solvus, can be categorically established by a reversion experiment wherein if the metastable two-phase
mixture is rapidly reheated above the G.P. I solvus a temporary softening is often observed resulting
from the re-solution of the G.P. I zones followed by further hardening on continued aging with the
appearance of the q00 phase. In the free energy–composition schemes depicted in Figure 99, G.P. I zones
could form by spinodal decomposition at sufficiently high supersaturations. Indeed, Rioja and
Laughlin (1977) have studied the early stages of G.P. I zone formation in aged Al-4 Wt.% Cu alloys
using electron microscopy and diffraction. The observation of diffuse satellite reflections and the
apparent formation of a modulated microstructure (the development of concentration waves along the
h100i directions of the decomposing matrix) supports the notion of a spinodal mechanism. These
conclusions have been supported by the small-angle X-ray scattering results reported by Kaskyap and
Koppad (2011). The well-known plate-like G.P. I zones along the {100} matrix planes emerge during
the later stages of the spinodal process and coarsening of the modulated structure under the influence of
the strain energy. It is interesting to note that the heat of mixing of Al–Cu alloys in the solid state
appears to be negative over most of the composition range except for perhaps an anomalous behavior



Figure 99 Hypothetical free energy–composition curves for the precipitate phases in Al–Cu alloys. After Fine (1964) and
Hardy and Heal (1954).
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near the Al-rich side of the alloy (Hardy and Heal, 1954; Meijering, 1952). However, even if the heat of
mixing is negative over the entire composition range, an inflected G vs. X curve and a metastable
miscibility gap can result if the heat of mixing curve is sufficiently inflected (Meijering, 1952); thus,
a positive heat of solution or mixing is not a prerequisite for the occurrence of spinodal phase separation
Figure 100 Portion of a schematic Al–Cu phase diagram depicting stable and metastable solvi as well as TTT curves
(precipitation start) for the various precipitation reactions. After Smallman (1963).



Diffusional Phase Transformations in the Solid State 993
in the system. Furthermore, it should be pointed out that the subsequent phases following G.P. I zone
formation are, in fact, atomically ordered phases, namely, G.P. II (q00), q0 and q.

Clearly, there must be some synergistics between the formation of the n-th and (nþ1)-th phases in
the precipitate sequence. The copious formation of a coherent intragranular phase through homoge-
neous nucleation or spinodal decomposition creates a high density of interphase interfaces which can
serve as effective nucleation sites for subsequent phase formation. Also, in some cases the next phase in
a precipitation sequence may form through continuous transformation of the previous phase which
may be the situation in the G.P. I zones/G.P. II zones (ordering) transition. The formation of the
equilibrium precipitates are generally relegated to heterogeneous nucleation at high-angle grain
boundaries after long aging times. It should be pointed out that the formation of a more stable phase in
any precipitation sequence will lead to the dissolution of the less stable phase because of chemical
potential/composition gradients which develop since the concentration in local equilibrium with the
more stable phase is less than that in equilibrium with the less stable phase.

The Ni–Ti system is generally of the same genre as that of the Ni–Al alloys and both are of great
importance in the metallurgy of modern superalloys with Ti along with Al playing a primary role in the
formation of the Ni3 (Al, Ti) g0 phase. The g0 phase exhibits the L12 superstructure in Ni–Al and Ni–Ti
alloys and is essentially the major precipitating phase in numerous high-temperature high-strength
alloys. (The g0 Ni3Al and Ni3Ti phases are isomorphous.) In the Ni–Al binary system the g0 is the
equilibrium phase whereas in the Ni–Ti binary precipitation system the equilibrium phase is an Ni3Ti
(h) hexagonal phase which is preceded by the formation of a coherent g0 Ni3Ti phase during aging. We
will focus our attention on the formation of this metastable g0 in Ni–Ti alloys containing 10–15 atomic
percent Ti because extensive experimental evidence is available indicating a complex interplay between
clustering and ordering effects during the decomposition of supersaturated solid solutions in this
system. There appears to be a synergism between ordering instabilities and spinodal decomposition
during the precipitation of the g0Ni3Ti phase. These experimental studies include magnetic measure-
ments (Israel and Fine, 1963), electron microscopy and diffraction (Saito and Watanabe, 1969; Ardell,
1970; Laughlin, 1976; Kompatscher et al., 2003), atom probe field ionmicroscopy (Sinclair et al., 1974;
Grune, 1988) and small-angle neutron scattering (Kostorz et al., 1999; Kompascher et al., 2000). The
results clearly point to a complex interplay between continuous ordering and phase separation/spi-
nodal decomposition. The following analysis is based heavily on the thermodynamic analyses of Soffa
and Laughlin (1989) and Khachaturyan et al. (1988).

In Figure 101 a schematic phase diagram showing a metastable g0 solvus along with loci of ther-
modynamic instability with respect to ordering (T�

i ) and phase separation (TS) is depicted. Also
delineated is a region of congruent ordering between T0 and T�

i wherein a supersaturated fcc disordered
solid solution can lower its free energy by ordering via a nucleation and growth process at constant
composition and subsequently spinodally decompose. The TS is a conditional spinodal mapping out
a region between T0 and TS where a nonstoichiometric ordered state becomes unstable with respect to
phase separation subsequent to ordering of an initially metastable disordered solid solution. For
example, if an Ni–Ti alloy containingw12–14 atomic percent Ti (Co in Figure 101) is rapidly quenched
to room temperature and then aged at 600 �C, the resulting supersaturated state ao (A) depicted in
Figure 102may become unstable with respect to L12 ordering and is expected to continuously order to
an imperfectly ordered, nonstoichiometric solid solution decreasing the free energy as shown. This
ordered state at B is now phase separation and a spinodal process involving selective amplification of
composition modulations within the ordered solution resulting in the continuous evolution of
a metastable two-phase mixture composed of a0 terminal solid solution and g0(Ni3Ti; L12). During the



Figure 101 Schematic phase diagram showing a metastable g0 phase including a spinodal region (shaded) as well as
a region of ordering instability below T�

i . After Soffa and Laughlin (1989).

Figure 102 Hypothetical free energy–composition diagram that is consistent with the decomposition process in Ni–Ti alloys.
A supersaturated a0 solid solution will first order continuously and then decompose spinodally into the ordered g0 and
disordered a0 two-phase mixture.
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Figure 103 Precipitation reaction whereby the initial supersaturated solid solution a0 begins to decompose spinodally and
the solute-enriched regions become unstable with respect to atomic ordering (continuous ordering) leading to the formation of
a two-phase mixture resulting from consecutive continuous transformations.
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early stages of decomposition the alloy exhibits a so-called modulated structure and “sideband” state as
composition waves develop preferentially along the h100i directions of the cubic matrix (w100A
spacing) resulting in a periodic array of g0 particles aligned along the h100i directions. There is strong
experimental evidence as well as computational thermodynamic analysis that an ordered state precedes
the amplification of the concentration waves within this synergistic process involving ordering and
clustering (Kompascher et al., 2000 and Soffa et al., 2010) consistent with the decomposition path
shown in the free energy–composition scheme of Figure 102. The reaction path involving a conditional
spinodal phase separation similar is to that discussed by Allen and Cahn (1976) and Ino (1978) cited
earlier but in this case a first-order ordering transformation (A1/ L12) is involved rather than
a second-order/higher order (A2/ B2) ordering. However, another decomposition path has been
suggested (Laughlin, 1975) as depicted in the free energy–composition scheme in Figure 103. In this
scenario the initial supersaturated disordered solid solution begins to phase separate spinodally into
solute-enriched and solute-depleted regions with the solute-enriched regions becoming unstable with
respect to ordering and continuously order to form the L12-based ordered phase. In both cases there is
an interplay between ordering and clustering tendencies and continuous transformation involved in the
precipitation of an ordered phase within a supersaturated solid solution. Generally, this behavior
derives from solution energetics involving pairwise interactions beyond first nearest neighbors
(Richards and Cahn, 1971; Ino, 1978; Soffa et al., 2010).

The Al–Li binary system is the basis for the development of a series of light-weight, high-strength
precipitation-hardened alloys and the strengthening precipitate, d0, is a metastable Al3Li (L12) phase
characterized by a small misfit (<0.1%) between the matrix and precipitate. The d0 phase can form
coherently with the matrix with a very low interfacial free energy sM�Pw20 erg=cm2 to produce fine
homogeneous dispersions of quasi-spherical particles throughout thematrix after suitable heat treatment.
(Sometimes so-called precipitate-free zones can develop near grain boundaries resulting from vacancy
depletion or solute depletion near grain boundaries (Kelly and Nicholson, 1963).) The equilibrium
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d phase has the B32 cubic structure and nucleates and grows primarily at the grain boundaries after
prolonged aging. Baumann and Williams (1985) have applied CNT to describe the homogeneous
nucleation of the metastable d0 phase and Wang and Shiflet (1998) have quantitatively described
nucleation and growth of d0 on dislocations. Radmilovic, Fox and Thomas (1989) in their HREM and
X-ray studies of Al–Li alloys containing w8–11 atomic percent Li called attention to an atomic ordering
within the supersaturated state preceding precipitation of the d0 phase and explicitly suggested that the
ordering was followed by spinodal decomposition similar to the conditional spinodal discussed earlier.
Their observation is in agreement with the earlier report by Sato et al. (1988) that the early stages of
decomposition in similar alloys exhibited imperfectly ordered domains that percolated throughout the
microstructure before formation of a fully developed discrete L12 precipitate phase. These experimental
studies were followed by a theoretical treatment by Khachaturyan et al. (1988) that indicated an interplay
of ordering and spinodal phase separation in the precipitation of ordered intermetallic phases consistent
with a generalized graphical thermodynamic description by Soffa and Laughlin (1989) as cited previ-
ously. Poduri and Chen (1997) subsequently reported a computer simulation of ordering and phase
separation in the Al–Li alloys associatedwith d0 formation andwere able to delineate the different regimes
of behavior discussed earlier as well as revealing a regime of nonclassical nucleation involving fluctua-
tions in composition and order parameter.

Copper–titanium alloys containing 1–6 atomic percent Ti can be age hardened to develop physical
and mechanical properties comparable with the widely used high-strength Cu–Be alloy series. In the
1960s and 1970s the Cu–Ti alloys were recognized to be prototypical “sideband alloys” (see Figure 90)
and it was suggested by various investigators that these alloys undergo spinodal decomposition during
age hardening (Hakkarainen, 1971; Cornie et al., 1973; Laughlin andCahn, 1976;Datta and Soffa, 1976;

Soffa and Laughlin, 2004). The strengtheningprecipitate is a tetragonalCu4Ti
�
D1a;Ni4Mo� type=I

4
m

�
phase which forms below approximately 700–800 �C. At aging temperatures in the range 350–500 �C
ultrahigh strengths can be achieved through the formation of fine-scale dispersions of coherent D1a
precipitates aligned along the h100i matrix directions exhibiting a quasi-periodic microstructure. The
precipitates are elongated along the c-axis of the tetragonal phase which is parallel to the cube directions
of thematrix. See Figure 104. The equilibriumphase is aCu4Ti(b) orthogonal (Pnma) phase above about
400–500 �Cwhereas at lower temperatures theD1a(b0) phase is the stable phase. Relevant portions of the
Cu–Ti binary phase diagram are shown in Figure 105. During prolonged aging at low and moderate
temperatures (350–500 �C) a coarse cellular lamellar microconstituent composed of terminal solid
solution and the equilibrium phase forms at the grain boundaries and grows out consuming the fine
dispersion of coherent/semicoherent D1a particles. See Figure 106. At high aging temperaturesw700 �C
the equilibrium orthorhombic phase forms via classic Widmanstatten precipitation with platelets lying
along the {111} matrix planes as shown in Figure 106. Ecob et al. (1980) have suggested that the
Widmanstatten plates in the vicinity of the grain boundaries can catalyze the formation of the cellular
colonies at the higher aging temperatures.

The decomposition of supersaturated Cu–Ti alloys containing 1–6 atomic percent Ti embodies
a very complex synergy of ordering, clustering and precipitation behavior associated with the formation
of the D1a phase. During decomposition there is a subtle interplay between SRO and LRO as well as
phase separation and precipitation of an ordered intermetalic phase. The early stage ordering effects
have been widely studied in Ni4Mo-type systems for stoichiometric and off-stoichiometric composi-
tions including effects of radiation (Bellon andMartin, 1988). The concentration wave approach shown
in Figure 107 has proven very useful for describing the SRO and LRO effects. Interestingly, the dilute



Figure 104 TEM microstructure of age-hardened Cu-4wt % Ti alloy aged at 500 �C for 2000 min. After Soffa and Laughlin
(2004).

Figure 105 Detailed portion of Cu–Ti phase diagram showing the polymorphic transformation temperatures of Cu4Ti phase.
After Soffa and Laughlin (2004) and Brun et al. (1983).
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Figure 106 (a) Cellular microconstituent growing into the coherent/semicoherent fine-scale two-phase mixture (a0 þ b0)
near peak hardness of a Cu-4w/0 Ti alloy aged at 600 �C for 1000 min. (b) Widmanstätten precipitation in a Cu 3 wt.% Ti alloys
held at 730 �C for 600 min. After Soffa and Laughlin (2004).
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Cu–Ti alloys very early in the decomposition process during aging show diffuse diffracted intensity at
reciprocal lattice locations h 11 =

2 0i deriving from the amplification of concentration waves along the
{420} planes having a wave vector 1 =

4 h420i producing modulations of the type AABBAA.... This rapid
amplification of “ordering waves” stems from an ordering instability associated with so-called special
points in the k-space representation of the solution energetics (de Fontaine, 1975; Bellon and Martin,
1980). These early stage atomic rearrangements (SRO) are followed by the emergence of an imperfectly
ordered D1a structure producing diffuse superlattice reflectons (LRO) at the positions 1=5h420i
(Hakkarainen, 1971; Laughlin and Cahn, 1975) which then gives rise to discrete coherent Cu4Ti/D1a
precipitates aligned along the h100i matrix directions. It is important to point out that the free ener-
gy–composition curve which is central to conventional thermodynamic discussions of metastability
and instability in supersaturated solid solutions is subject to change as atomic rearrangements on
various length scales within a nonequilibrium solid solution occur. The free energy curve evolves as the



Figure 107 Concentration wave description of LRO (a) and SRO (b) in an Ni4Mo-type system depicted as modulation in
atomic arrangement of {420} planes. After Banerjee and Sundaraman (1992).
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solution energetics are changed by local ordering (or clustering) and distort giving rise to regions of
negative curvature and changes in thermodynamic stability with respect to ordering and phase sepa-
ration (Liu and Loh, 1971). See Figure 108. Thus, a disordered solid solution which is initially
metastable when passing through the SRO/ LRO states described above can lower the free energy
from P to Q and render the imperfectly ordered state unstable with respect to phase separation and lead
to spinodal decomposition and continuous formation of the nearly stoichiometric D1a phase. This is
a conditional spinodal reaction similar to the reaction paths discussed above and consistent with the
apparent amplification of concentration waves within an imperfectly ordered state and the unambig-
uous appearance of a sideband state. It is concluded here that the decomposition of dilute Cu–Ti alloys
at high supersaturations generally involves a conditional spinodal process resulting from the
SRO/ LRO atomic rearrangements occurring during the earliest stages of aging resulting in the
precipitation of an intermetallic phase (Laughlin and Cahn, 1975; Datta and Soffa, 1973, 1976; Soffa
and Laughlin 1982). However, Borchers (1999) in studies of a Cu-0.9 at.%Ti alloy using electron
microscopy (TEM) and thermodynamic calculations analyzed the nucleation energetics and suggests
that the copious formation of coherent ellipsoidal or oblong D1a particles from the onset of decom-
position in this alloy was most likely the result of nonclassical nucleation or “big bang”/“catastrophic”
nucleation. The analysis using classical nucleation indicates a nucleation barrier DG*of approximately
kBT for an estimated interfacial free energy s w30 erg cm�2 including an Eshelby estimate of the strain
energy. Borchers concludes that the apparent modulated structures emerge through concomitant



Figure 108 Hypothetical free energy–composition diagram for homogeneous disordered and ordered solid solution,
showing a hierarchy of free energy curves. An alloy of composition C0 first orders homogeneously (from P to Q), and then
phase separates into two ordered phases until the solute lean phase disorders. After Soffa and Laughlin (1982).
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growth and coarsening under the influence of elastic interaction from the earliest stages of
decomposition.

Kahlweit (1970) and Kampmann and Kahlweit (1967, 1970) suggested that at high supersaturations
separating a precipitation reaction into distinct stages of nucleation, growth and coarsening may not be
applicable to describing the evolution of the particle density during aging. They analyzed a supersatu-
rated system wherein nucleation, growth and coarsening were concomitant and competitive processes
showing that the density of precipitate particles during decomposition rises to a maximum and then
tends to decrease while the matrix is still markedly supersaturated as a result of competitive coarsening.
Langer and Schwarz (1980) later approached the problem and found a similar behavior. Wendt (1981)
and Wendt and Haasen (1983) also revealed such a trend in his studies of precipitation in an Ni-14
at.% Al alloy. Wagner and Kampmann (1991) proposed a modified Langer–Schwartz model and
a detailed numerical formulation to predict the evolution of the size distribution of precipitate particles
and applied it to a Cu-1.9 wt % alloy.

Spinodal decomposition has been identified in high-strength Cu–Ni–Sn alloys which also results in
the precipitation of an ordered phase (Zhao and Notis, 1998). In these ternary alloys the initial
disordered supersaturated state appears to undergo spinodal decomposition into two disordered
phases with the solute-rich phase then lowering its free energy by ordering to form the ordered
precipitate phase as discussed earlier.
8.7 Crystallography and Microstructure

8.7.1 Introduction

There are many ways that the symmetry of the parent and/or new phases comes into play in deter-
mining the microstructure of an alloy that has undergone a phase transformation. For example, it is well



Diffusional Phase Transformations in the Solid State 1001
known that if the new phase has an arrangement of atoms on a plane that is the same as or similar to
a plane in the parent phase, it is expected that the planes may be in contact with each other and
determine the orientation relation between the new and parent phases. When an HCP Co alloy phase
forms from an FCC Co alloy phase we find that the (0001)HCP planes are parallel to the {111}FCC
planes. If the environmental fields (stress fields, magnetic fields, etc.) are isotropic, or non existent, we
expect all the {111}FCC planes to have HCP particles of Co with their basal planes parallel to them. If
however a field is applied in a specific direction one or more of the orientations of the new HCP phase
may be missing.

The shape of the new phase is another way that symmetry controls microstructure. For example,
a phase with one long direction and two unequal short directions will give rise to a distinctive
microstructure.

Another effect of symmetry has to do with the relationship between the symmetry groups of the
parent and new phases. When a phase undergoes a disorder to order transition, the phase with the lower
symmetry (the ordered phase) can exist in two or more regions, called variants or domains, that are
related to each other by one of the symmetry operations that was lost in the transition. In atomic
ordering transitions, regions differing by a translation vector are called antiphase domains and regions
differing by a rotation or reflection are called orientational domains.

Disorder to Order Transformations include

l Atomic Order
l Magnetic Order
l Displacive Order
l Ferroelectric Order

Subsequently, we will only discuss atomic ordering. See Dahmen (1987) for a full discussion of the role
of symmetry on phase transformations.
8.7.2 Habit Planes and Orientation Relationships

The number of variants of a phase that exist in the microstructure of a transformed alloy can be
determined by use of the symmetry of the parent phase if the orientation relationship is known. The
example mentioned earlier of a plate-like HCP Co alloy phase precipitating from an FCC Co alloy phase
will first be discussed. It was stated that the close-packed planes were parallel to each other. There are
eight {111} planes in the FCC structure, as the digits 1 or�1 can be placed in any of the three positions
of the Miller indices. These are

ð111Þ; �111�; �111�; �111�; �111�; �111�; �111� and
�
111

�
However, both the HCP and FCC phases contain a center of symmetry and so there are only four

distinguishable orientations of the variants. For example, in this case, the (0001)HCP//(111)FCC cannot
be differentiated from the case of ð0001ÞHCP==ð111ÞFCC:

For the general case of an {hkl} habit plane in a cubic phase with m3m symmetry it can determined
that there are 24 distinct orientation relationships that a plate-like new phase with that of the parent
phase if the new phase has a center of symmetry. The 	h index could be placed in any of the three
positions (six ways), the 	k index could then be placed in any of two positions (four ways) and the 	l
index can only go in the remaining position (two ways). The product of these ways of indexing {hkl}
planes is 48 (the order of the cubic point group). However if the structures of the new phase contains
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a center of symmetry, only 24 of these is distinguishable. This method can also be used for parent
phases of lower symmetry.
8.7.3 Shape of the Precipitate

The orientation relationship does not necessarily completely determine the number of ways that a new
phase may appear in the parent matrix. If the shape of the new phase allows for additional degrees of
freedom more orientations are possible. Consider a lath-shaped particle forming in a cubic matrix,
where one dimension of the particle is much longer than the other two unequal dimensions. See
Figure 109. The long dimension of the precipitate can be along any of the h100i directions of the cubic
phase. However there are two ways for each h100i direction that the precipitate may align itself. See for
example particles 5 and 6 of Figure 109. These particles have their larger flat surfaces perpendicular to
the [010] and [100] directions, respectively.

In this case there are three possible habit planes and two orientations per habit producing six
possible orientations of the particle. If the flat faces of the particles are along {hk0} of the cubic matrix,
there are six possible planes and 2 orientations of the particle per habit yielding 12 possible orienta-
tions of the particles. For habit planes along {hkl} planes there are 24 possible orientations of the
particles. In all these cases it was assumed that both the particle and matrix contained a center of
symmetry. If either the particle or the matrix does not contain a center of symmetry (or if neither does)
the above number of orientations should be multiplied by 2.

An interesting feature of the precipitations of particles with specific orientation relationships with the
matrix can be seen in Figure 110. Here two hexagonal phases have precipitated in an Al alloy 6022. It
can be seen that the overall symmetry of the selected area electron pattern (SAD) retains its 4 mm
symmetry when all the variants of the new phases are present. This is quite general and shows that when
all variants are present the symmetry of the parent phase is retained in the SAD if the diffracting region
is large enough.
Figure 109 Possible arrangement of a lath with its face perpendicular to h100i directions of a cubic matrix. After Hugo and
Muddle (1989).



Figure 110 An [001] electron diffraction pattern from an Al–Mg–Si Cu alloy (6022) which has both Q0 and b0 precipitates.
Both precipitates have their basal planes parallel to h001i of Al matrix. After Miao and Laughlin (2000).
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8.7.4 Atomic Disorder to Order Transitions

All disorder to order phase transitions give rise to regions in the microstructure that are called domains.
The domains exist as a necessary consequence of the loweringof the symmetry during the orderingprocess.
For atomic ordering the usual cases involve a lowing of the translational symmetry, a lowing of the point
symmetry or both translational and point symmetry being lowered. We will look at some examples.
8.7.4.1 Lowering of the Translational Symmetry
A common atomic ordering transformation in binary alloys is the FCC to L12 transformation. See
Figure 111.

This transformation is an isostructural one in that the structure of both phases is cubic. What has
changed during the atomic ordering is the translational symmetry: In the FCC structure, the smallest
translation of the unit cell which leaves the crystal unchanged (i.e. to identical sites) is 1 =

2 h110ia,
whereas in the L12 structure the shortest translation to translation of the unit cell which leaves the
crystal unchanged is h100ia. This decrease in the translational symmetry gives rise to four possible
domains, where the red atoms may be placed on any of the four equivalent sites of the FCC structure.
See Figure 112.

These domains should arise with equal probabilities unless there is an outside influence on the
transformation.

Another example of an isostructural transformation is the BCC to B2 transformation.
Because the ordering arrangements of the four domains displayed in Figure 110 are out of phase

with each other a defect called an antiphase domain boundary (APB) is produced when the domains
impinge on each other. These APBs will influence many of the physical properties of the ordered phase.



Figure 112 The four possible translational domains that may arise from the FCC to L12 disorder to order transformation.

Figure 111 Unit cell of an FCC (Cu prototype, A1, cF4) phase transforming to a L12 (Cu3Au prototype cP4). In the disordered
cell, the probability of occupancy of all sites by a red atom is 25%, in other words the red atoms and blue atoms are assumed
to be randomly arranged on the FCC Bravais lattice.
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Figure 113 FCC structure to L10 structure. Note the L10 structure is no longer cubic (it is tetragonal) and can no longer be
classified as a face centered cell.
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8.7.4.2 Lowering of the Point Group Symmetry
In some disorder to order transitions the point group of the high symmetry disordered phase
decreases on ordering. A well-known example of a disorder to order transformation is FCC to L10. See
Figure 113.

This transformation has lowered the point group symmetry of the unit cell from m3m to 4
mmm. It

can be readily seen that the c-axis of the ordered phase could be parallel to any of the h100i directions of
the parent FCC structure. Since both of the structures contain a center of symmetry, there are three ways
to do this since ½001�L10

==½100�FCC is the same as ½001�L10
==½100�FCC. More generally this can be

determined by the ratio of the orders of the point groups of the two structures: 48 for the cubic structure
and 16 for the tetragonal one.

This transformation has a new aspect to it. Adjacent domains may not have parallel c-axes. See
Figure 114. In this case the domains are called structural domains or variants of the new phase. Some-
times they have been called twin domains, but that is not the best description, since the underlying
disordered structure is not in a twin relationship. Clearly this microstructural feature will affect many of
the physical properties of the ordered phase.

This transformation actually changes both the translational symmetry and the point group
symmetry. The FCC Bravais lattice with four equivalent sites was changed to a simple tetragonal lattice
(with two atoms in it) of one half the volume. This means that there would be not only the structural
domains or variants of the ordered phase but also domains in antiphase with one another. Thus, there
would be a total six domains of L10 arising from the disordered FCC structure. This also can be obtained
by multiplying the ratio of the order of the points groups (which we found above to be 3) by the factor
2, which is the ratio (per unit volume) of the number of equivalent points in the disordered phase to
that of the ordered phase.
8.8 Massive Transformation

The massive transformation is a distinct genre of diffusional solid-state phase transformation involving
a compositionally invariant nucleation and growth process producing a change in crystal structure and/



(a)

(b)

(c)
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Figure 115 Massive transformation b/ a in b-brass. After Hull and Garwood (1956).

=
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or degree of LRO. This partitionless change of phase is propagated by the migration of interphase
interfaces controlled by interphase boundary diffusion processes and these interfaces are generally
incoherent across which no systematic crystallographic orientation relationship is established and
maintained between the parent and product phases. This mode of transformation occurs in pure
metals, ferrous and nonferrous solid solutions and ceramic materials (Massalski, 1970; Fung et al.,
1994; Aaronson et al., 2010). The transformation was first documented in studies of Cu–Zn and Cu–Al
alloys during the 1930s (Phillips, 1930; Greninger, 1939), and later examined, in detail, by Hull and
Garwood (1956) and Massalski (1958) in the 1950s. Figure 115 shows the massive transformation
product in the seminal b-brass alloys. A Symposium on the Mechanism of the Massive Transformaion
was held in St. Louis, MO, at the Fall 2000 TMS/ASM Meeting as the transformation was recognized to
occur in a growing number of technological contexts such as in TiAl-based alloys (Wang et al., 2002;
Wittig, 2002).

Let us look briefly at the thermodynamic aspects of this compositionally invariant transformation in
a binary system. We consider the classic b(bcc)/ am(fcc) massive transformation in a Cu- 38 at.% Zn
solid solution occurring when the high-temperature b phase is quenched to room temperature or below
with the am(fcc) massive product appearing at the grain boundaries of the parent phase. See Figure 115.
A set of schematic free energy–composition curves are shown for the a and b phases in Figure 116
exhibiting the important crossing of the free energy curves at the composition Cu-38 Zn at 700 �C. This
Figure 114 (a) Two domains of the L10 structure with perpendicular c-axes. These are called variants of the phase and the
boundary is a structure domain boundary. For this case the boundary mirrors the structure of one domain into that of the
other. (b) Optical micrograph showing polytwinned structure in Fe-Pd alloy resulting from stress-affected growth and
coarsening of tetragonal L1o phase. (courtesy of H. Okumura). (c) Schematic of polytwinned microstructure with modulation
of the c-axis across variant related c-domains. After Vlasova et al. (1969).



Figure 116 Free energy–composition diagrams showing the thermodynamics of the massive transformation b/ a in
Cu–Zn (b-brass) delineating the temperature T¼ T0z 700 �C for the composition XZn¼ 0.38. After Porter and Easterling
(1992).
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intersection defines the temperature T0 for this composition because it is clear that at any temperature
below 700 �C this particular alloy can lower its free energy by transforming at constant composition by
DGmassive as the free energy of the solution falls from one curve to another (b/ a) with an attendant
change in crystal structure. This massively transformed state am is metastable with respect to an aþ b

phase mixture that would lower the free energy to a point on the common tangent. A general set of free
energy–composition curves are shown in Figure 117 where regions between Xa

eq and X0 allow for the
Figure 117 General free energy–composition schemes delineating regions of possible massive transformation of b/ a

between compositions Xeq(a) and X0. Note the importance of the crossover point at X¼ X0 in both figures. After Aaronson et al.
(2010).



Figure 118 General phase diagram showing T0 loci and regions of possible massive transformation. After Aaronson et al.
(2010).
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possibility of a compositionally invariant b/ a transformation (massive or martensitic as mentioned
earlier). The T0 concept is of paramount importance in mapping regions of possible compositionally
invariant transformation below this temperature. The T0 loci are depicted in a general hypothetical
binary phase diagram in Figure 118.

The massive transformation product almost invariably nucleates heterogeneously at the grain
boundaries of the high-temperature phase generally establishing an orientation relationship and a low-
energy coherent or semicoherent interphase interface with one of the grains and an incoherent interface
with the adjacent grain. Subsequent growth occurs virtually exclusively into the parent phase by
migration of the disordered/incoherent boundary. However, it is sometimes found that the migrating
interphase boundaries develop facets and serrated morphologies even in the absence of any orientation
relationship with the parent phase and it appears that this results from the nature of the surface
energetics and atomic attachment processes specific to the growing phase and not from constraints
associated with crystallographic matching at the interface (Yanar et al., 2002).

The heterogeneous nucleation of the massive transformation product at grain boundaries has been
treated quantitatively by several investigators over the years using CNT (Yanar et al., 2002; Veerar-
aghavan et al., 2003). The growth kinetics appear to follow a modified Burke–Turnbull description
allowing for continuous atomic attachment or a ledge mechanism at the advancing interface. The
activation energy for growth is typically found to be about 1/4 to 2/3 that for bulk diffusion in the
system consistent with the notion of growth mediated by boundary or interface diffusion. Atomic
attachment at the migrating interface can result in profuse twinning and faulting of the massive
transformation product (Veeraraghavan et al., 1999; Yanar et al., 2002).

Buckley (1975) and Rajkovic and Buckley (1981) have revealed and analyzed a massive mode
involved in the order–disorder transformation (A2/ B2) in Fe–Co and Fe–Co–X alloys. See
Figure 119. At high transformation temperatures the ordering appears to occur via homogeneous or
continuous ordering controlled by volume diffusion but at low temperatures where volume diffusion
becomes sluggish the ordered phase nucleates at the grain boundaries of the parent-disordered bcc
phase and grows behind an advancing incoherent interface utilizing the enhanced diffusivity at the



Figure 119 Massive transformation mode in the disorder/ order transformation in Fe–Co alloy. After Rajkovic and
Buckley (1981).

1010 Diffusional Phase Transformations in the Solid State
phase boundary. As mentioned earlier, the nuclei are coherent with respect to the adjacent grain into
which growth of the ordered phase is negligible. It is important to note that the A2/ B2 is thermo-
dynamically HIGHER ORDER making this a particularly interesting case.
8.9 Closure

Phase transformations in materials (metallic and nonmetallic) provide the metallurgist and materials
scientist/engineer with one of the most effective tools for tailoring the structure and properties of
engineering materials for application in modern technology. Understanding the fundamentals (ther-
modynamics, kinetics, crystallography and mechanistics, etc.) governing the evolution of material
structure during synthesis, heat treatment and thermomechanical processing substantially removes the
production and manufacture of materials from the realm of inefficient and unnecessarily expensive
quasi-empiricismdalbeit sometimes sophisticated empiricismdand allows for intelligent engineering
design of structure–property relations in high-strength aluminum alloys, high-strength low-alloy steels
and high-temperature nickel-base alloys. Ceramic materials are toughened by controlled precipitation
from solid solution of a dispersed phase in an oxide matrix which inhibits crack propagation. It must be
appreciated that the wide variety of structure–property relationships attainable with conventional steels
more often than not involves controlling the distribution of carbides within an Fe-rich matrix or
controlling the ferrite grain size resulting from the proeutectoid reaction in low-carbon steels. In
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quenched and tempered steels the important tempering step really involves precipitation from
a supersaturated bcc or bct phase. If steels were the substance of the industrial revolution of the
nineteenth and early twentieth century wemight say that the Fe–C phase diagram with its eutectoid and
associated phase transformations underpinned this cultural transformation. Extraordinary combina-
tions of properties can now be achieved in age hardenable alloys through our understanding of
metastability and the role of vacancies and trace elements in controlling the formation of phases during
commercial heat treatments. Furthermore, our understanding and control of deleterious effects of fine-
scale precipitation reactions during exposures of alloys to critical temperature ranges such as in the case
ferritic and austenitic stainless steels have greatly enhanced our control over the properties of these
materials in important engineering applications. The remarkable properties of Ni-base precipitation
hardened superalloys (and they are indeed super) in turbine blades stems from a comprehensive
understanding of the nucleation, growth and coarsening of the g0(Ni3Ti, Al) phase during processing
and in-service (as well as single-crystal growth during solidification). Over the past two decades or so
a great deal of attention has focused on the nature of the disorder /order transformation in ferro-
magnetic alloys because of the growing applications of ordered alloys, (for example, FePt) in a plethora
of applications in magnetic thin films including futuristic spintronic materials. Furthermore, with the
emergence of nanotechnology new fundamental challenges have arisen related to our lack of under-
standing of the thermodynamics and kinetics of transformations in small systems compared with bulk
behavior and this realm will be a rich area for study well into the future.

Computational methodologies and computer simulations have had an enormous impact on the
field of phase transformations andmicrostructural evolution in materials from both a scientific point of
view and in the realm of practical application to the design of material structure and properties.
CALPHAD and THERMOCALC and associated databases have been of tremendous value to systema-
tizing phase equilibria in a myriad of alloy systems and Monte Carlo simulations and phase field
approaches have provided insights into a wide range of issues related to transformation behavior. In
this treatise we have not attempted to review this area because of space limitations, not because these
contributions were deemed peripheral to the subject matter.

The field of phase transformations is a uniquely broad field of scientific endeavor and fundamental
issues which have arisen in the analysis of pearlite growth and spinodal decomposition reach to the
cutting edge of some of the most challenging problems in the thermodynamics and statistical
mechanics of matter such as nonequilibrium thermodynamics and statistical mechanics, irreversible
processes, self-assembly or self-organization, dissipative structures, critical phenomena, and so on. The
Nobel Prize winner Prigogine (1980) has called attention to the important difference between BEING
(thermodynamic equilibrium) and BECOMING (transformation) and THERMOSTATICS versus
THERMODYNAMICS in the physical sciences and the domain of phase transitions is a marvelous
example where these two dimensions come together to define the evolution of structure. Another
eminent scientist and Nobel Prize recipient Steven Weinberg in his short book “The First Three
Minutes” describing the “big bang” and the origins of the universe in virtually layman’s terms relates the
unfolding of this event essentially as a cascade of phase transitions.
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