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INTRODUCTION

Magnetism has engaged explorers and scientists for over
two millennia. The ancient Greeks and Turks noted
the attraction between magnetite (lodestone) and iron
(Cullity and Graham, 1978). Explorers used lodestone’s
magnetization to construct compass needles used to
point to the direction of the earth’s magnetic North
Pole. This singularly important device aided in naviga-
tion and the exploration of the planet. Today, the
miniaturization of magnetic sensors has propelled the
magnetic recording industry as well as contributed to
far-reaching applications such as planetary exploration
(Diaz-Michelena, 2009).

Michael Faraday’s (1791-1867) discovery of electro-
magnetic induction provides the principle for understand-
ing the operation of electric generators, transformers, and
a variety of other magnetic devices. The quantum
mechanical description of the origin of atomic magnetic
dipole moments provides the basis for understanding a
variety of disparate phenomena including the magnetic
response of materials.

The intrinsic magnetic properties of materials refer to:

i. the origin, magnitude, and directions of atomic
magnetic dipole moments;

ii. the nature of the interaction between atomic
magnetic dipole moments on neighboring atoms
in the solid;

iii. whether these result in collective magnetic phe-
nomena; and

iv. the resulting temperature dependence of the
magnetization.

For materials exhibiting collective magnetic response,
otherintrinsicmagnetic propertiesinclude the strength of
the coupling of magnetic moments to one another and
to crystallographic directions, magnetoelastic coupling
coefficients, and the temperature(s) at which magnetic
phase transformations occur. The intrinsic magnetic
properties, of species at surfaces and interfaces, are
known to be distinctly different from those of the bulk
in many cases. This article reviews the theory of intrinsic
magnetic properties of dipole moment and magnetization
as well as theory and examples of collective magnetic
response. The National Institute of Standards and Tech-
nology (NIST) keeps an up-to-date compilation of units.
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DEFINITIONS OF FIELD QUANTITIES

Discussion of the magnetic properties of materials
begins by defining macroscopic field quantities.' The
two fundamental quantities are the magnetic induction,
B, and the magnetic field, H, both of which are axial
vector quantities. In many cases the induction and the
field will be collinear (parallel) so that we can treat them
as scalar quantities, B and H.>

In a vacuum, the magnetic induction, B, is related to
the magnetic field, H:

BopH, B-Hf (1)

where the permeability of the vacuum, uo, is
47 x 107" H /m in SI (mksa) units. This quantity is taken
as 1 in cgs units. In cgs units, the induction and field
have the same values. In SI (mksa) units we assign a
permeability to the vacuum, so the two are proportional.
In a magnetic material the magnetic induction can
be enhanced or reduced by the material’s magnetization,
M (defined as net dipole moment per unit volume),
so that
B=yuy(H+M),  B=H-+4nM (2)
where the magnetization, M, is expressed in linear
response theory as

M = ynH (3)

and the constant of proportionality is called the magnetic
susceptibility, y,. The magnetic susceptibility that
relates two vector quantities is a polar second-rank
tensor. For most discussions (wWhenever B and H are
collinear or when interested in the magnetization com-
ponent in the field direction) we treat the susceptibility
as a scalar.

We continue our discussion considering scalar induc-
tion, field, and magnetization. We can further express
B=u.H as

B=io(l+zmH, B=(l+4dng)H  (4)
and we see that the relative permeability, p., can be
expressed as

He :Ho(1+lm)7 de = 1+4myy (5)
i, thus represents an enhancement factor of the flux
density in a magnetic material due to the magnetization
that is an intrinsic material property. If we have y,, < O,
we speak of diamagnetic response, and for y,, > O (and
no collective magnetism) we speak of paramagnetic

! Selected formulas are introduced in SI (mksa) units followed
by cgs units.

2 For many discussions it is sufficient to treat field quantities as
scalars; when this is not the case, vector symbols will be explic-
itly used.
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response. A superconductor is a material that acts as a
-1

perfect diamagnet so that y,, = —1 or y,, = I

MAGNETIC DIPOLE MOMENTS—DEFINITIONS
AND ATOMIC ORIGINS

A magnetic dipole moment has its origin in circulating
charge (Fig. 1). This concept is made more complicated
by the need to treat circulating charges of electrons
within the framework of quantum mechanics.

Concepts relating circulating charge, angular
momentum, and dipole moments are:

i. A dipole moment for a circulating charge is
defined formally as

ﬁ:IACL?XJ:[FXJdV (6)
JV

where T is the position vector of the charged particle
about the origin for the rotation. 7 is the current
density of the orbiting charge. I is the current due
to the circulating charge, A = nr? is the area swept out
by the circulating charge, and Vis the volume. ii . ; is
a unit vector normal to the area, A.

ii. We relate the magnetic dipole moment to the
angular momentum. Let Ti be a general angular
momentum vector. In classical mechanics, the
angular momentum vector, expressed as
[l = 7 x m#&, has magnitude mvr = mwer?, where
o is an angular frequency, and is directed nor-
mal to the current loop (parallel to the dipole
moment). The fundamental relationship between
magnetic dipole moment and the angular
momentum vector is

e e
=g-—TII, =g5—I 7
=g I, u=g5 (7)
where g is called the Lande g-factor. For an orbiting
electron the constant g= 1. The dipole moment
associated with spin angular momentum has g = 2.
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Figure 1. Geometry of a charged particle orbiting at a distancer,
with a linear velocity, v. The particle orbit sweeps out an area, A,
and gives rise to a dipole moment, ji.

iii. In quantum mechanics, every electron has a
dipole moment associated with its spinning
charge density (spin) and its orbit about the
nucleus (orbit). Angular momentum (whether
spin or orbital) is quantized in units of Planck’s

constant divided by 2z, that is, h = 23 = 1.05x
T

1073*J s = 1.05 x 10727 erg s. We define the fun-
damental unit of magnetic dipole moment, the
Bohr magneton, as

e e
- — = —— 8
me =g M W= =g (8)

The Bohr magneton is calculated to have the
following value:

g = 9.27 x 10724 Am? (J/7T),
p=pug =927 x 102 erg/G (9)

iv. An atomic dipole moment is calculated by sum-
ming all of the electron dipole moments for a given
atomic species. Quantum mechanical rules for
this summing called Hund’s rules are discussed
below.

v. For a collection of identical atoms the magneti-
zation, M, is

M = Napatom (10)

where N, is the number of dipole moments per unit

volume and p,, is the atomic dipole moment.

vi. The potential energy of a dipole moment in the
presence of a field is

E, =Ji-B = uBcosl (11)

where 0 is the angle between the dipole moment and
B. This implies that magnetization (or other field
quantity) multiplied by another field has units of
energy per unit volume. It is important to begin to
think of energy densities (energy per unit volume) for
magnetic systems. In quantum mechanical systems,
the component of the dipole moment vector projected
along the field direction is quantized and only partic-
ular values of the angle 0 are allowed.

Closed Shell Diamagnetism: Langevin Theory
of Diamagnetism

The diamagnetic susceptibility of closed shells is dis-
cussed in Box 1.

Diamagnetism is the atomic magnetic response due
to closed shell orbits of core electrons.

This is to be contrasted with the perfect diamagnetism
of a superconductor. Magnetic flux is excluded from the
interior of a superconductor and it is a consequence of

-1

B = 0, which requires that y,, = —1 or y,, = I



MAGNETIC SUSCEPTIBILITY OF A SIMPLE DIAMAGNET

Consider an atom with a closed electronic shell. For
filled shells, electrons orbit the nuclei, but the net
current associated with their motion is zero because
of cancellation of their summed orbital angular
momentum, L (i.e., L = 0). However, even for a closed
shell, in the presence of an applied field a net current
is induced. By Lenz’s law this current results in a
dipole moment that opposes the applied field. The
Larmor frequency, wy, is the characteristic frequency
of this circulating induced current and has a value

H H
wL:e—, wL:e— (123)
m mc

If we wish to construct an atomic dipole moment, we
must consider the moment due to Z electrons that
orbit the nucleus. Assuming that all Z electrons orbit

the nucleus with the same angular frequency, wr,, we
express the current, I, as follows:

_@_ZewL
S dt 2n

(12b)

The induced moment is calculated as the current
multiplied by the area and the orbital atomic mag-
netic dipole moment is then

Zewy, (r?)

Hatom = — 9 T (120)

where the minus sign reflects Lenz’s law and (r?) is
the average value of r2 for the orbit. The average value
of the square of the orbital radius is

(r?) = (%) + () + (2%) (12d)

and for an isotropic environment:

2
0 = ) = (4 = (12¢)

This may be associated with the negative diamagnetic
susceptibility (for N atoms/volume):

N — Nﬂatom - _ NZe2 Y = N:uatom — _ NZ€2
fm H 6m ’ o H 6me
(12f)

which describes well the diamagnetism of core
electrons and of closed shell systems. Typically molar
diamagnetic susceptibilities are on the order of y,,, =
10 %to 107° cm®/mol = 10 % to 10! m?®/mol.

The magnitude, L =|L|, of the orbital angular
momentum vector, E, and its projection, L,, onto an axis
of quantization, z, by the application of a field, B,, is
quantized in units of h. For L, the quantum number ny
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quantizes the projected orbital angular momentum. This
has the further consequence that the orbital angular
momentum vector, L, can precess about the field axis,
z, only at a set of discrete angles, 0:

L,= rnlh>

L,
0= arccosf = arccos? (13)

Open Shell Atomic Dipole Moments—Hund’s Rules

We now examine systems where the electrons responsi-
ble for the dipoles exist in localized states assigned to a
particular atom. In systems (typically ionic) where the
atomic orbitals responsible for the magnetic dipole
moments are localized on specific atoms in a solid,
discrete magnetic states can be calculated using quan-
tum mechanical rules called Hund’s rules (Hund, 1927).
This discussion is applicable in understanding the mag-
netic dipoles in ionic systems such as oxides and salts of
transition metals.

A general angular momentum vector, I1, can have
contributions from orbital angular momentum, L, and
spin angular momentum, S. Both moments are quan-
tized in units of h. The fundamental atomic unit of dipole
moment is the Bohr magneton.

In addition to the orbital moment, there is an addi-
tional contribution to the magnetic moment of an elec-
tron, due to spin. Spin is a purely quantum mechanical
property though we can view it semiclassically consid-
ering an electron as a particle with a rotating surface
current. The classical problem yields a spin moment
similar to that which is derived in the quantum mechan-
ical description (Cullity and Graham, 1978).

Determining atomic dipole moments requires sum-
ming spin and orbital angular momenta over all elec-
trons on an atom. The summed orbital and spin angular
momenta is zero for closed shells. The closed shells then
only contribute to the small diamagnetic moment of the
previous section.® In open shells we need to consider
rules for summing the spin and orbital angular momenta
for all electrons in the open shell. Hund’s rules allow us
to describe the ground-state multiplet including the my
and mg eigenstates and allow us to calculate the com-
ponents of the orbital, L, spin, S, and total angular, J,
momenta. The magnitudes of orbital and spin angular
momenta are constructed by summing angular momen-
tum over a multielectron shell:

L:zn:(ml)ify S:iZ(ms)ih (14)
i=1 i=1

The projection of the total angular momentum vector,
J=L+8, along the applied field direction is also
subject to quantization conditions. Hund’s rules require
that J (J=L+S) is |[L—S| for less than half-filled
shells and |L + S| for greater than half-filled shells. To
determine the occupation of eigenstates of S, L, and

3 For open shells this diamagnetic contribution is small enough
to ignore.



4 MAGNETIC MOMENT AND MAGNETIZATION

J we use Hund’s rules that state that for a closed
electronic shell J = L = S = 0. For an open shell multi-
electron atom:

i. We fill my states (which are (21 + 1)-fold degener-
ate) in such a way as to first maximize total spin.

ii. We fill m; states first in such a way as to first
maximize total spin.

We consider the ions of transition metal series, TM2*,
thatis, ions that have given up 2s electrons to yield a 3d"
outer shell configuration in Figure 2a. The ground-state
J, L, and S quantum numbers for rare earth, RE3*, ions
are shown in Figure 2b.

Defining L, S, and J for a given element specifies the
ground-state multiplet. This multiplet is written more
compactly in the spectroscopic term symbol as

2S+1p,

(15)

where L is the alphabetic symbol for orbital angular
momentum (L=0=S, L=1=P, L=2=0D,
L=3=F, etc.) and 2S+1 and J are the numerical
values of the same. For example, Cr®* with L =3,
S=3, and J =3 would be assigned the term symbol
‘L, /2 We can further relate the permanent local atomic
moment vector with the total angular momentum vector,
J, as

i= th =-g(J.L, S):“Bj (16&)
where 7 is called the gyromagnetic factor and g=
g(J,L,S) is called the Lande g-factor and is given by

3 1[S(S+1)-L(L+1)

9 LS =5+5 JJ+1)

(16b)

Table 1 tabulates the ground-state multiplets for tran-
sition metal and rare earth cation species that are prev-
alentin many oxides and other interesting ionic systems.
The Lande g-factor accounts for precession of angular
momentum and quantum mechanical rules for projec-
tion onto the field axis (Fig. 3) (Russell and Saunders,
1925). For identical ions with angular momentum J we
define an effective magnetic moment in units of ug:

Pert = g(J, L, S)J(J + 1)] /2 (17)

As an example of the calculation of a Hund’s rule
ground state, we consider the Ho® ™ multiplet. Ho® " has
a 4f'° open shell configuration. According to Hund’s
rules we occupy the 7 my states with spin-up electrons
followed by ny = —3,—-2, —1 to account for all 10 outer
shell f electrons (note that the 2 outer shell s and 1 outer
shell d electron of the atom are those that are lost in
ionization). For Ho®", we see that S=Z-3=2 and
L =|-3-2-1| =6 and since the f shell is more than
half-filled, J =L+ S =8. The term symbol for Ho®™"
is therefore °I4. The Lande g-factor can be calculated
to be

{m2+nfa6+n}
8(8+1)

3

2

3 1[6-42
_5+5{7]_1'25

and the effective moment in units of ug is

Peir = 9(J, L, S + 1)) g = 1.25[72] g = 7.5v2

Dipole Moments in Systems with Quenched Orbital Angular
Momentum

In many systems of interest the orbital angular momen-
tumis said to be quenched. The quenched orbital angular
momentum refers to the fact that the orbital angular
moment vector is strongly tied to a crystalline easy
magnetization direction (EMD). For this reason to a good
approximation we can take L = O and J = S. In this case
g=2 and per = 2[S(S+1)]"/2. This is true for many
transition metal systems and also for simple oxides of
the transition metals. The relationship between mag-
netic dipole moment, i, and angular momentum vector
is given by 1 = g5 I1, where IT can refer to orbital, L, or
spin, S, angular momentum and g is the gyromagnetic
factor. In ferrites the d shells of transition metal cations
are of interest, and we have quenched orbital angular
momentum (i.e., L = 0) in the crystal. The spin angular
momentum for a single electron is quantized by the spin
quantum number, mg = j:%, to be mgh = j:%. For spin

E°[ o3 0%
g oL =] oL
§4 nJ gg mJ
1) 19)
g g
&3 56
= E
) )
g2 g4
—_ —_
o el
g1 52
— —
s 0§ H4— a9 40O
0 2 4 6 8 10 0 2 4
# d electrons
(a)

# f electrons

(b)

Figure 2. Ground-stateJ, L, and Squantum
numbers for the (a) transition metal, TM?*,
and (b) rare earth, RE3*, ions.
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Table 1. Ground-State Multiplets of Common TM and RE Ions (Van Vleck, 1932)

Tleff
Ion S L J
Term glJ(J+1)]1? Observed g[S(S+1)]/2
d-Shell electrons
1 Ti®*, v 1 2 3 Dy )y 1.55 1.70 1.73
2 A 1 3 2 SF, 1.63 2.61 2.83
3 vt et 3 3 3 *Fy/s 0.77 3.85 3.87
4 cr?t, Mn®* 2 2 0 5Dy 0 4.82 4.90
5 Mn®*, Mn®* 3 0 s ®Ss/2 5.92 5.82 5.92
6 Fe?* 2 2 4 5D, 6.7 5.36 4.90
7 Co*™* 3 3 2 “Fo/a 6.63 4.90 3.87
8 Ni?+ 1 3 4 F, 5.59 3.12 2.83
9 cu®* 1 2 5 ’Ds )5 3.55 1.83 1.73
10 Cu*, Zn?* 0 0 0 s, 0 0 0
f-Shell electrons
1 ce®* 1 3 5 *Fs)s 2.54 2.51
2 pret 1 5 4 SH, 3.58 3.56
3 Nd®* 2 6 2 g/ 3.62 3.3
4 Pm®* 2 6 4 51, 2.68 —
5 Sm®* 5 5 5 ®Hs 5 0.85 (1.6) 1.74
6 Eu®" 3 3 0 “Fo 0(3.4) 3.4
7 Gd**, Eu®™ 5 0 5 5372 7.94 7.98
8 Tb® " 3 3 6 "Fg 9.72 9.77
9 Dy 5 5 15 ®H,5, 10.63 10.63
10 Ho®™" 2 6 8 5lg 10.60 10.4
11 Er3+ 3 6 15 50 9.59 9.5
12 Tm3* 1 5 6 SHg 7.57 7.61
13 Ybe* 1 3 z ’Fy9 4.53 4.5
14 Lu®*, b3+ 0 0 0 'S, 0 —

only, the gyromagnetic factor is g =2, and the single
electron dipole moment is

e h he e h he
H=E95me = Fam omez zme (18
e h e h

Figure 3. Vector (analogous to planetary orbit) model for the
addition of angular momentum with spin angular momentum
precessing around the orbital moment that precesses about
the total angular momentum vector. z is the field axis (axis of
quantization).

Thus, u = +ug with

g = 9.27 x 10724 Am? (J/T) or 9.27 x 107! erg/G
(18c)

For a multielectron atom, the total spin angular
momentum is

S= (ms);h

i=

—

with the sum over electrons in the outer shell. Hund’s
rules determine the occupation of eigenstates of S.
The first states that for an open shell multielectron atom
we fill the (21+ 1)-fold degenerate (for d electrons | = 2,
(21+ 1) = b) orbital angular momentum states so as to
maximize total spin. To do so, we must fill each of the five
d states with a positive (spin-up) spin before returning
to fill the negative (spin-down) spin. The total spin angu-
lar momentum for 3d transition metal ions is summa-
rized in Table 2. The dipole moments are all integral
numbers of Bohr magnetons allowing for simplification
of the analysis of the magnetization of ferrites that typ-
ically have quenched angular momentum.

Atomic Dipole Moments—Energy Band Theory

In systems with significant atomic overlap of the electron
wave functions for orbitals responsible for magnetic
dipole moments, the energy and angular momentum
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Table 2. Transition Metal Ion Spin and Dipole Moments

(L=0)

d Electrons Cations S u(ug)
1 Ti®+, v 1 1
2 Vit 1 2
3 vt er?t 3 3
4 cr?t, Mn®* 2 4
5 Mn?*, Fe3* 5 5
6 Fe2+ 2 4
7 Co®* 2 3
8 Ni2* 1 2
9 cu®” 1 1
10 Cut, zn®* 0 0

states for these electrons are no longer discrete. Instead
energy levels* form a continuum of states over a range of
energies called an energy band. The distribution func-
tion for these energy levels is called the density of states.
The density of states (per unit volume), g(¢), is formally
defined such that the quantity g(¢)de represents the
number of electronic states (per unit volume) in the
range of energies from ¢ to ¢+ de:

14N,

gle)ds = V de

de (19)

Note that this definition is not specific to the free
electron model.

Figure 4a shows the density of states for free electrons
with its characteristic ¢!/2 energy dependence. Many
other forms (shapes) for g(¢) are possible given different
solutions to Schrodinger’s equation with different poten-
tials. The quantity g(¢)de is viewed as an electronic state
distribution function.

Implicit in the free electron theory is the ignoring of
potential energy and therefore its influence on angular
momentum. With more realistic potentials, we can cal-
culate densities of states whose shape is influenced by
the orbital angular momentum. To first approximation
(and a relatively good approximation for transition
metals), the orbital angular momentum can be consid-
ered to be quenched and we concern ourselves only
with spin angular momentum. The formal definition
is general while an ¢!/2 dependence results from the
assumptions of the free electron model.

In magnetic systems we are often interested in the
influence of an applied or internal (exchange) field on
the distribution of energy states. Figure 4b shows the
density of states for free electrons where the spin degen-
eracy is broken by a Zeeman energy due to an applied or
internal (exchange) field. We divide the density of states,
g(e)de, by two, placing half the electrons in spin-up states
and the other halfin spin-down states. Spin-up electrons
have potential energy lowered by —ugH, where H is an
applied, H,, or internal exchange, Hey, field. Spin-down
electrons have their potential energy increased by ugH.

4 We use ¢ to denote the energy per electron and not the total
energy which would be integrated over all electrons.

We integrate each density of states separately to yield a
different number of electrons per unit volume in spin-up
and spin-down bands, respectively:

N, [ N ("
m:%:L%@%v m:ﬁ:Lm@& (20)

The magnetization, net dipole moment per unit volume,
is then very simply

M = (n—n))ug (21)

To calculate the thermodynamic properties of transition
metals, one can calculate electronic structure and total
energies using state-of-the-art local density functional
theory. The total energy of a crystal can be calculated
self-consistently and a potential function determined
from the variation of the total energy with interatomic
spacing. From the potential curve the equilibrium lattice
spacing, the bulk modulus, cohesive energy, compress-
ibility, etc., can be determined. g(¢) is generated at the
equilibrium separation describing the ground-state
electronic structure. Spin-polarized calculations can
be performed to determine magnetic properties. With
increasing computational power and more sophisticated
algorithms, it is possible to calculate these quantities
accurately. Nevertheless, it is useful to have approxi-
mate analytic models for describing properties such as
this or the Friedel model.

Pauli paramagnetism is a weak magnetism that is
associated with the conduction electrons in a solid.

Pauli paramagnetism does not involve permanent
local dipole moments that gave rise to the Curie law.
Instead it involves a magnetic moment that is caused by
the application of a field. We now describe the electronic
density of states in a field.

The free electron density of states specifically ac-
counts for a spin degeneracy of two. If we instead defined
a spin-up and spin-down density of states with identical
degenerate states as illustrated in Figure 4a, as in the
Zeeman effect, the spin degeneracy is lifted in a field
and for a free electron metal we assume the spin-up
states to be rigidly shifted by an amount, —ugH, where
His the applied field and 5 is the spin dipole moment.
Similarly the spin-down states are rigidly shifted by an
energy equal to +ugH. Now the Fermi energy of elec-
trons in the spin-up and spin-down bands must
remain the same so we remember that

N 5 N EF
=y o n=T -] g @

and n; +n| = nis the electron density. The magnetiza-
tion, M, is M = (my—n ) ug.

We determine the T-dependent magnetic susceptibil-
ity, x(T), by performing a Taylor series expansion of the
density of states in the presence of a perturbing field:
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and

1= Hpg(er) (24)

which is essentially invariant with temperature. So
unlike local moment paramagnetism that obeys the
Curie law, with a strong 1 dependence, free electron
(Pauli) paramagnetism is nearly T independent.

A band theory of ferromagnetism can also be
expressed in free electron theory. Building on the theory
of Pauli paramagnetism, band theory considers
exchange interactions between spin-up and spin-down
electrons whereby electrons with parallel spins have a
lower energy by — Ve than antiparallel spins (i.e., V = 0).
With B = 0, the total energy is unstable with respect to
exchange splitting when

4e
Vex > 3_1\? (25)

This Stoner criterion determines when a system will have
a lower energy with a spontaneous magnetization
(ferromagnetic) than without (paramagnetic). This free
electron ferromagnetism is called itinerant ferromagne-
tism. Topologically close-packed alloys can have elec-
tronic structures with sharp peaks in the density of
states near the Fermi level. These peaks allow the mate-
rials to satisfy the Stoner criterion. This explains itiner-
ant ferromagnetism observed in the Laves phase, ZrZn,.

The Friedel model for transition metal alloys also
describes the d electron density of states in transition
metals (Harrison, 1989). The d states are generally more
localized and atomic-like, especially for the late transi-
tion metals with more filling of the d shells. The Friedel
model assumes that the density of states for d electron
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Figure 4. (a) Free electron density of states and (b) free
electron density of states where the spin degeneracy is
broken by a Zeeman energy due to an applied or internal
(exchange) field.

bands can be approximated by a constant density of
states over abandwidth, W. This is equivalent to smooth-
ing the more complicated density of states and para-
meterizing it in terms of the constant g(¢) and the band-
width, W. This approximation will serve us quite well in
our approximate description of the electronic structure
of transition metals. Friedel’s model considers contribu-
tions to the density of states of transitions metals due to
the constant d electron density of states and the free
electron s states. The d density of states (Fig. 4a) is
centered at ¢q with a bandwidth, Wy, that is:

10 Wy Wa
g(a)dgfw,d7 ¢~ <e<e+ 5
g(e)de =0 otherwise (26)

and we see that integrating g(¢)de over the entire range
from ¢q— " to &q + % accounts for all 10 of the d elec-
trons. The s electron DOS begins at ¢ = 0 and ends at the
Fermi level, ¢ = ¢r, and obeys the functional dependence
gs(e) = Cel/2,

The Fermi level is determined by superimposing the
two densities of states and filling to count the total
number of electrons. Note that the atomic d and s elec-
tron count usually is not conserved (but of course the
total must be). In the solid state we can use Ny and N5 to
designate the integrated number of d and s electrons,
respectively, such that

ep (=Wa/2)+(NaWa/10) 1
Nd = J gd(b)db = J

Wa/2 —Wa/2 Wa

eF

Ns = J gs(e)de (27)
0

A ferromagnetic Friedel model considers spin-up and
spin-down d bands shifted rigidly by an amount +A
with respect to the original nonmagnetic configuration
(Fig. 5b). Since the magnetism observed in transition
metals is predominantly determined by more localized d
electrons, the Friedel model will give more illustrative
results than the free electron model. Consider the ide-
alized density of states shown above in which a transi-
tion metal d band is modeled with a constant density
of states and the s band with a free electron density of
states. The atomic configuration for these atoms is given
by d*2s2 and Ny = n—2.
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Figure 5. (a) Transition metal d and s band densities of
states for the Friedel model and (b) for a spin-polarized
Friedel model (d band only).

For solids, the s electrons are counted by integrating
the DOS and Ng = n—Ns. Arough estimate approximates
that N5 ~ 0.6 so the d count is usually higher. The
average magnetic moment as a function of composition
predicted by the Friedel model gives Slater-Pauling curve
and alloy dipole moment data. Weak solutes, with a
valence difference AZ < 1, are explained by a rigid band
model. A virtual bound state (VBS) model is employed
when the solute perturbing potential is strong, AZ > 2.

In dilute alloys, solute atoms that are only weakly
perturbing (i.e., having a valency difference AZ < 1), a
rigid band model can be employed to explain alloying
effects on magnetic moment. Rigid band theory assumes
that d bands do not change much in alloys but just get
filled or emptied depending on composition (Fig. 5). In
this model, the magnetic moment of the solvent matrix
remains independent of concentration. At the site of a
solute atom the locally mobile minority-spin electrons
are responsible for ensuring that the solute nuclear
charge is exactly screened; thus, a moment reduction
of AZug is to be expected at the solute site. The average
magnetic moment per solvent atom is the concentration-
weighted average of that of the matrix and solute:

1= Hmatrix —AZCpp (28)

where Cis the solute concentration and AZ is the valency
difference between solute and solvent atoms. This is
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the basis for explaining the Slater-Pauling curve (Fig. 6)
(Slater, 1937; Pauling, 1938). Figure 6b shows a
more sophisticated band structure determination of
the Slater-Pauling curve for FeCo alloys. Figure 6b
shows the band theory prediction of the average (spin-
only) dipole moment in FeCo to be in good quantitative
agreement with the  experimentally derived
Slater-Pauling curve.

For transition metal impurities that are strongly per-
turbing, Friedel (1958) has proposed a VBS model to
explain departure from the simple relationship for the
compositional dependence of dipole moment above. In
this case the change in average magnetic moment and
suppression are predicted to be

1= Hmatris—(AZ + 10)Cpg, ~(AZ+10)15 (29)

dp
dc
Figure 7a shows the binary FeCo phase diagram.
Figure 7b and c shows spin-resolved densities of states
for Co and Fe atoms, in an equiatomic FeCo alloy, as a
function of energy (where the Fermi energy, ¢, is taken
as the zero of energy). The number of spin-up and spin-
down electrons in each band is calculated by integrating
these densities of states as are the atom-resolved
magnetic dipole moments. Knowledge of atomic
volumes allows for the direct calculation of the alloy
magnetization.
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(a)
Figure 6.

(b)

(@) Slater-Pauling curve for Fe alloys and (b) spin-only Slater-Pauling curve

for an ordered Fe-Co alloy as determined from LKKR band structure calculations

(MacLaren et al., 1999).
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Figure 7. Binary FeCo phase diagram (a), and spin- and atom-resolved densities of states for
an FeCo equiatomic alloy: (b) spin up and (e) spin down.

There has been considerable growth in the field of
interfacial, surface, and multilayer magnetism
(MacLaren et al.,1990; McHenry et al.,1990). Funda-
mental interest in these materials stems from
predictions of enhanced local moments and phenomena
associated with two-dimensional (2D) magnetism.
Technological interest in these lies in their potential
importance in thin film recording, spin electronics, etc.
For a magnetic monolayer as a result of reduced mag-
netic coordination the magnetic d states become more
localized and atomic-like, often causing the moment to
grow since the exchange interaction greatly exceeds
the bandwidth. This behavior is mimicked in buried
(sandwiched) single layers or in multilayers of a mag-
netic species and a noninteracting host. Transition
metal/noble metal systems are examples of such sys-
tems (McHenry and MacLaren, 1991).

Magnetization and Dipolar Interactions

We now turn to the definition of the magnetization, M.
This is the single most important concept in the chapter!

Magnetization, M, is the net dipole moment per unit
volume.

It is expressed as

2:atoms X U
M = atom

= (30)

where V is the volume of the material.®> Magnetization
is an extrinsic material property that depends on the
constituent atoms in a system, their respective dipole
moments, and how the dipole moments add together.
Because dipole moments are vectors, even if they are
collinear, they can add or subtract depending on
whether they are parallel or antiparallel. This can give
rise to many interesting types of collective magnetism.

A paramagnet is a material where permanent local
atomic dipole moments are aligned randomly.

In the absence of an applied field, H,, the magnetiza-
tion of a paramagnet is precisely zero since the sum of
randomly oriented vectors is zero. This emphasizes the
importance of the word “net” in the definition of magne-
tization. A permanent nonzero magnetization does not
necessarily follow from having permanent dipole
moments. It is only through a coupling mechanism that
acts to align the dipoles in the absence of a field that a
macroscopic magnetization is possible.

Two dipole moments interact through dipolar inter-
actions that are described by an interaction force anal-
ogous to the Coulomb interaction between charges. If
we consider two coplanar (xy plane) magnetic dipole
moments (Fig. 8a), ji; and ji,, separated by a distance

5 Magnetization can also be reported as specific magnetization,
which is net dipole moment per unit weight.
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Figure 8. (a) Geometry of two coplanar dipole
moments used to define dipolar interactions, (b) net
surface dipole moments at the poles of a permanent
magnet with a single domain, and (e) fluxreturn path
for magnetic dipoles in a horseshoe magnet.

r12 where the first dipole moment is inclined at an angle
0, with respect to the position vector r';» and the second
at an angle 05, then the field components of field com-
ponents ji; due to jiy acting at ji; can be written as

—ly 2 cosb 2 cosf
1x — o> 3 2 5 HIX = —HUg 3 2 (Sla)
4rpg Ty o
Uy sinfy sinfy
Hy, =2 Hy, = o ———= 31b
ly 475#0 rigZ ’ 1y Ho r?z ( )

and a similar expression follows for the field components
fy due to ji; acting at [i,. In general, the interaction
potential energy between the two dipoles is given by

1

b = Gy, (1 Fa) = (i PIEa 7)) (SD) (322)
| 3 . L

Up = 5 (i1 - fo)—— (i, - T)(Ha - T))  (cgs) (32Db)
M2 T2

which for collinear dipoles pointing in a direction
perpendicular to 7y reduces to

_ Ehbkz g ks (32¢)
4n,uori32 ' rf’z

which is the familiar Coulomb’s law.®

Like net charge in a conductor, free dipoles collect at
surfaces to form the North and South Poles of a magnet
(Fig. 8b). Magnetic flux lines travel from the N to the S
pole of a permanent magnet. This causes a self-field, the
demagnetization field, Hy, outside of the magnet. Hy can
act to demagnetize a material for which the magnetiza-
tion is not strongly tied to an easy magnetization direc-
tion (EMD). This allows us to distinguish between a soft
magnet and a hard magnet.

Most hard magnets have a large magnetocrystalline
anisotropy that acts to strongly fix the magnetization
vector along particular crystal axes. As aresult, they are
difficult to demagnetize. A soft magnet can be used as
permanent magnet, if its shape is engineered to limit the
size or control the path of the demagnetization field tonot

6 Some authors (Cullity and Graham, 2009, e.g.) use p to denote
dipole moment.

interact with the magnetization vector. Fe is an example
of a soft magnetic material with a large magnetization. To
use Fe as a permanent magnet it is often shaped into a
horseshoe magnet (Fig. 8c) where the return path for flux
lines is spatially far from the material’s magnetization.

Magnetization in Superconductors

The superconducting state is a state of a material in
which it has no resistance to the flow of an electric
current. The discovery of superconductivity by
Onnes (1911) followed his successful liquification of
He in 1908 (Onnes and Clay, 1908). The interplay
between transport and magnetic properties in super-
conductors was further elucidated in the Meissner effect
(Meissner and Ochsenfeld, 1933) (Fig. 9), where the
phenomena of flux expulsion and perfect diamagnetism
of superconductors were demonstrated. London (1950)
gave a quantum mechanical motivation for an electro-
dynamic model of the superconducting wave function.
This work coincided with the Ginzburg-Landau (GL)
theory (Ginzburg and Landau, 1950).

The phenomenological GL theory combined an
expansion of the free energy in terms of powers of the
superconducting electron density (the modulus of the
superconducting electron wave function) with tempera-
ture-dependent coefficients and incorporation of elec-
trodynamic terms in the energy. The original GL theory
described the intermediate state in type I superconduc-
tors arising from geometric (demagnetization) effects.

O

.
i

Perfect conductor

(b)

ZFC IHC

Superconductor

(@)

Figure 9. Flux densities for a superconductor (a), zero-field
cooled (ZFC) or field cooled (FC) to T < T, and for a perfect
conductor (b), which is FC.



The GL theory also allowed for Abrikosov's (1957)
description of the mixed state and type II superconduc-
tivity in hard superconductors.

A fundamental experimental manifestation of
superconductivity is the Meissner effect (exclusion of
flux from a superconducting material). This identifies
the superconducting state as a true thermodynamic
state and distinguishes it from perfect conductivity.
This is illustrated in Figure 9 that compares the mag-
netic flux distribution near a perfect conductor and a
superconductor, for conditions where the materials are
cooled in a field (FC) and for cooling in zero field with
subsequent application of a field (ZFC).

After cooling (ZFC) the superconductor and perfect
conductor have the same response. Both the perfect
conductor and superconductor exclude magnetic flux
lines in the ZFC case because of diamagnetic screening
currents that oppose flux changes in accordance with
Lenz’s law. The first case (FC) distinguishes a super-
conductor from a perfect conductor. The flux profile in a
perfect conductor does not change on cooling below a
hypothetical temperature where perfect conductivity
occurs. However, a superconductor expels magnetic
flux lines on field cooling, distinguishing it from perfect
conductivity. In a clean superconductor this Meissner
effect implies

B=0=H+4mM (33)

and that the magnetic susceptibility, y =¥ =71 for a
superconductor.

Further evidence of the superconducting state as a
distinct thermodynamic state is given by observation of
the return to a normal resistive state for fields exceeding
a thermodynamic critical field, H.(T), for type I super-
conductors. Early descriptions of the T dependence
(Fig. 10) of H. (e.g., Tuyn’s law (Tuyn, 1929),
H.(T) = Ho(1-t?), where t = 1) suggested the supercon-
ducting transition to be second order. Thermodynamic
considerations of the Gibb’s free energy density give

HAT) 12
8=n 87

gs = ¢(T), gn = o(T)+ (34)

Type I

Meissner
state

~NYy

Figure 10. Critical field temperature dependence for (a) type I
superconductor showing the thermodynamic critical field H.(T)
and (b) type II superconductors showing the lower critical field
H.1(T) and upper critical field Heo (T).
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the free energies for the same material in the super-
conducting (type I) and normal metal states, respec-
tively, and where the Meissner effect (B=0) has been
explicitly used in expressing gs. These require that in
zero field:

H2(T
Ag=gn—9s = C8(7r ) (35)

These free energy densities imply a latent heat for the
superconducting transition:

L— TH, (BHC>T (36)

4n \ OT

which is less than 0. Further, the superconducting
transition is second order with a specific heat
difference:

T

Ac=cs—cp = e

(37)

0°H. (9Hc\®
€ aT2 \ T

implying a specific heat jump at the transition temper-

ature T.:
T (ch)z
c=— (38)
4n \ 0T J r_r.

Figure 10a shows the typical temperature dependence
of the thermodynamic critical field for a type I
superconductor.

For a type II superconductor in a zero or constant
field, H,, the superconducting phase transition is sec-
ond order. A type II superconductor has two critical
fields, the lower critical field, H.,(T), and upper critical
Sfield, Heo(T). On heating, a type II superconductor, in a
field, H, < H.; (0OK), a transition is observed both from
the Meissner to the mixed state and from the mixed to
the normal states at temperatures Ty (Hy, = H¢1) and T,
(Ha = Heo). Since @ = wat H, = H,,. it canbe shown that
the entropy changes continuously at approaching T;
from below. The entropy has an infinite temperature
derivative in the mixed state, that is, approaching T;
from above. The second-order transition at H.;(T)
manifests itself in a A-type specific heat anomaly. As the
temperature is further increased to T (i.e., Hy = Heo (T2))
the entropy in the mixed state increases with increasing
T and a specific heat jump is observed at T, consistent
with a second-order phase transition. Only a single
transition is observed at H., if the constant applied field
exceeds H.; (0K).

The equilibrium magnetization (M vs. H) curve, shown
in Figure 11a, for a type I superconductor reflects the
Meissner effect slope, 71 in the superconducting state,
and the diamagnetic moment disappearing above H..
The Meissner effect provides a description of the mag-
netic response of a type I superconductor, for H < H,
only for long cylindrical geometries with H parallel to
the long axis. For cylinders in a transverse field or for
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Figure 11. Equilibrium M(H) curves for (a) type I and (b) type II
superconductors.

noncylindrical geometries demagnetization effects need
to be considered. The internal field and magnetization
can be expressed as

-1
H; = H,—DM M=———H 39
e ’ 4n(1-D) (39)

where Dis the demagnetization factor (§ for a sphere, § for
a cylinder or infinite slab in a transverse field, etc.).

For noncylindrical geometries, demagnetization
effects imply that the internal field can be concentrated
to values that exceed H,. before the applied field H,
exceeds H.. Since the field energy density is not greater
than the critical thermodynamic value, the entire super-
conductor is unstable with respect to breaking down
into alamellar intermediate state with alternating super-
conducting and normal regions (de Gennes, 1966). The
intermediate state becomes possible for fields exceeding
(1-D)H,, for example, a superconducting sphere exists
in the Meissner state for H < %Hc, in the intermediate
state for %Hc < H < H¢, and in the normal state for
H > H..

Observations of the equilibrium magnetization, M(H),
and the H-T phase diagrams of type II superconductors
are different. As shown in Figure 11b, the Meissner state
(perfect diamagnetism) persists only to a lower critical
field, H.;. However, superconductivity persists until a
much larger upper critical field, Hco, is achieved. The
persistence of superconductivity above H,, is explained
in terms of a mixed state in which the superconductor
coexists with quantized units of magnetic flux called
vortices or fluxons. The H-T phase diagram therefore
exhibits a single Meissner phase for H < H.;(T), a mixed
state, H.; < H < H.g in which the superconducting and
normal states coexist, and the single normal state phase
for H > Heao(T).

For applications it is important to pin magnetic flux
lines. This flux pinning determines the critical current
density, J.. J. represents the current density that frees
magnetic flux lines from pinning sites (McHenry and
Sutton, 1994). Studies of high-temperature supercon-
ductors have elucidated the crucial role played by
crystalline anisotropy in determining properties.
Thermally activated dissipation in flux creep has been
identified as an important limitation for J.. The time-
dependent decay of the magnetization has been used to

study the distribution of pinning energies in HTSCs
(Maley et al.,1990).

Large anisotropies in layered superconductors lead to
new physical models of the H-Tphase diagram in HTSCs
(Nelson, 1988). This includes the notions of vortex liquid
and vortex glass phases (Fisher, 1989). Examples of
proposed H-T phase diagrams for HTSC materials are
illustrated in Figure 12. In anisotropic materials, flux
pinning and J. values are different for fields aligned
parallel and perpendicular to a crystal’'s c-axis. The
pinning of vortex pancakes is different than for Abriko-
sov vortices. The concept of intrinsic pinning has been
used to describe low-energy positions for fluxons in
regions between Cu-O planes (for field parallel to the
(001) plane in anisotropic materials). Models based on
weakly coupled pancake vortices have been proposed for
fields parallel to the c-axis for layered oxides. The vortex
melting line of Figure 12a and b is intimately related to
the state of disorder as provided by flux pinning sites.
Figure 12c shows schematics of intrinsic pinning and
Figure 12d shows pinning of pancake vortices in an
anisotropic superconductor.

COUPLING OF MAGNETIC DIPOLE MOMENTS:
MEAN FIELD THEORY

Dipolar interactions are important in defining demag-
netization effects. However, they are much too weak to
explain the existence of a spontaneous magnetization in

H H
HCZ Hc2 H*(T)

Vortex
lattice

c1

Meissner phase A Meissner phase

Hc1(T) Hc1 (T)
(a) (b)

S 111 |

g

Defect pinning of
H Il ab Hllc
(c) (d)

Figure 12. Vortex lattices with a melting transition for an ani-
sotropic material with weak random pinning (a) and a material
with strong random pinning (b). Schematics of intrinsic pinning
(¢) and pinning of pancake vortices (d) in an anisotropic
superconductor.



a material at any appreciable temperature. This is
because thermal energy at relatively low temperature
will destroy the alignment of dipoles. To explain a spon-
taneous magnetization it is necessary to describe the
origin of an internal magnetic field or other strong mag-
netic interaction that acts to align atomic dipoles in the
absence of a field.

A ferromagnetis a material for which an internal field
or equivalent exchange interaction acts to align
atomic dipole moments parallel to one another in the
absence of an applied field (H = 0).

Ferromagnetism is a collective phenomenon since
individual atomic dipole moments interact to promote
parallel alignment with one another. The interaction
giving rise to the collective phenomenon of ferromagne-
tism has been explained by two models:

i. Mean field theory: considers the existence of a
nonlocal internal magnetic field, called the Weiss
field, whichactstoalign magnetic dipolemoments
even in the absence of an applied field, H,.

ii. Heisenberg exchange theory: considers a local
(nearest neighbor) interaction between atomic
moments (spins) mediated by direct or indirect
overlap of the atomic orbitals responsible for the
dipole moments. This acts to align adjacent
moments in the absence of an applied field, H,.

Both of these theories help to explain the Tdependence of
the magnetization.

The Heisenberg theory lends itself to convenient
representations of other collective magnetic phenomena
such as antiferromagnetism, ferrimagnetism, helimag-
netism, etc., illustrated in Figure 13.

An antiferromagnet is a material for which dipoles of
equal magnitude on adjacent nearest neighbor
atomic sites (or planes) are arranged in an antipar-
allel fashion in the absence of an applied field.

Antiferromagnets also have zero magnetization in
the absence of a