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INTRODUCTION

Magnetismhas engaged explorers and scientists for over
two millennia. The ancient Greeks and Turks noted
the attraction between magnetite (lodestone) and iron
(Cullity and Graham, 1978). Explorers used lodestone’s
magnetization to construct compass needles used to
point to the direction of the earth’s magnetic North
Pole. This singularly important device aided in naviga-
tion and the exploration of the planet. Today, the
miniaturization of magnetic sensors has propelled the
magnetic recording industry as well as contributed to
far-reaching applications such as planetary exploration
(Diaz-Michelena, 2009).

Michael Faraday’s (1791–1867) discovery of electro-
magnetic inductionprovides theprinciple forunderstand-
ing theoperationofelectric generators, transformers,and
a variety of other magnetic devices. The quantum
mechanical description of the origin of atomic magnetic
dipole moments provides the basis for understanding a
variety of disparate phenomena including the magnetic
response of materials.

The intrinsicmagnetic properties ofmaterials refer to:

i. the origin, magnitude, and directions of atomic
magnetic dipole moments;

ii. the nature of the interaction between atomic
magnetic dipole moments on neighboring atoms
in the solid;

iii. whether these result in collective magnetic phe-
nomena; and

iv. the resulting temperature dependence of the
magnetization.

For materials exhibiting collective magnetic response,
otherintrinsicmagneticpropertiesincludethestrengthof
the coupling of magnetic moments to one another and
to crystallographic directions, magnetoelastic coupling
coefficients, and the temperature(s) at which magnetic
phase transformations occur. The intrinsic magnetic
properties, of species at surfaces and interfaces, are
known to be distinctly different from those of the bulk
inmany cases. This article reviews the theory of intrinsic
magneticpropertiesofdipolemomentandmagnetization
as well as theory and examples of collective magnetic
response. The National Institute of Standards and Tech-
nology (NIST) keeps an up-to-date compilation of units.
ThesecanbefoundinR.B.GoldfarbandF.R.Fickett,U.S.
DepartmentofCommerce,NationalBureauofStandards,
Boulder, Colorado80303,March1985NBSSpecial Pub-
lication696forsalebytheSuperintendentofDocuments,
U.S.GovernmentPrintingOffice,Washington,DC20402.

DEFINITIONS OF FIELD QUANTITIES

Discussion of the magnetic properties of materials
begins by defining macroscopic field quantities.1 The
two fundamental quantities are the magnetic induction,
~B, and the magnetic field, ~H , both of which are axial
vector quantities. In many cases the induction and the
field will be collinear (parallel) so that we can treat them
as scalar quantities, B and H.2

In a vacuum, the magnetic induction, ~B, is related to
the magnetic field, ~H :

~B ¼ m0 ~H ; ~B ¼ ~H ð1Þ

where the permeability of the vacuum, m0, is
4p� 10�7 H=m in SI (mksa) units. This quantity is taken
as 1 in cgs units. In cgs units, the induction and field
have the same values. In SI (mksa) units we assign a
permeability to the vacuum, so the two are proportional.

In a magnetic material the magnetic induction can
be enhanced or reducedby thematerial’smagnetization,
~M (defined as net dipole moment per unit volume),
so that

~B ¼ m0ð~H þ ~M Þ; ~B ¼ ~H þ4p~M ð2Þ

where the magnetization, ~M , is expressed in linear
response theory as

~M ¼ wm ~H ð3Þ

and the constant of proportionality is called themagnetic
susceptibility, wm. The magnetic susceptibility that
relates two vector quantities is a polar second-rank
tensor. For most discussions (whenever B and H are
collinear or when interested in the magnetization com-
ponent in the field direction) we treat the susceptibility
as a scalar.

Wecontinueourdiscussionconsidering scalar induc-
tion, field, and magnetization. We can further express
B ¼ mrH as

B ¼ m0ð1þ wmÞH ; B ¼ ð1þ4pwmÞH ð4Þ

and we see that the relative permeability, mr, can be
expressed as

mr ¼ m0ð1þ wmÞ; mr ¼ 1þ4pwm ð5Þ

mr thus represents an enhancement factor of the flux
density in a magnetic material due to the magnetization
that is an intrinsic material property. If we have wm < 0,
we speak of diamagnetic response, and for wm > 0 (and
no collective magnetism) we speak of paramagnetic

1 Selected formulas are introduced in SI (mksa) units followed
by cgs units.
2 Formany discussions it is sufficient to treat field quantities as
scalars; when this is not the case, vector symbols will be explic-
itly used.



response. A superconductor is a material that acts as a

perfect diamagnet so that wm ¼ �1 or wm ¼ �1

4p
.

MAGNETIC DIPOLE MOMENTS—DEFINITIONS
AND ATOMIC ORIGINS

A magnetic dipole moment has its origin in circulating
charge (Fig. 1). This concept is made more complicated
by the need to treat circulating charges of electrons
within the framework of quantum mechanics.

Concepts relating circulating charge, angular
momentum, and dipole moments are:

i. A dipole moment for a circulating charge is
defined formally as

~m ¼ IA~u~r�~J ¼
ð
V

~r � ~J dV ð6Þ

where ~r is the position vector of the charged particle
about the origin for the rotation. ~r is the current
density of the orbiting charge. I is the current due
to the circulating charge,A ¼ pr2 is the area swept out
by the circulating charge, andV is the volume. ~u~r�~J is
a unit vector normal to the area, A.

ii. We relate the magnetic dipole moment to the
angular momentum. Let ~P be a general angular
momentum vector. In classical mechanics, the
angular momentum vector, expressed as
~P ¼ ~r �m~v, hasmagnitudemvr ¼ mo0r

2, where
o0 is an angular frequency, and is directed nor-
mal to the current loop (parallel to the dipole
moment). The fundamental relationship between
magnetic dipole moment and the angular
momentum vector is

m ¼ g
e

2m
P; m ¼ g

e

2mc
P ð7Þ

where g is called the Lande g-factor. For an orbiting
electron the constant g ¼ 1. The dipole moment
associated with spin angular momentum has g ¼ 2.

iii. In quantum mechanics, every electron has a
dipole moment associated with its spinning
charge density (spin) and its orbit about the
nucleus (orbit). Angular momentum (whether
spin or orbital) is quantized in units of Planck’s

constant divided by 2p, that is, �h ¼ h

2p
¼ 1:05�

10�34 J s ¼ 1:05� 10�27 erg s.Wedefine the fun-
damental unit of magnetic dipole moment, the
Bohr magneton, as

mB ¼ e

2m
�h; m ¼ mB ¼ e

2mc
�h ð8Þ

The Bohr magneton is calculated to have the
following value:

mB ¼ 9:27� 10�24 Am2 ðJ=TÞ;

m ¼ mB ¼ 9:27� 10�21 erg=G ð9Þ

iv. An atomic dipole moment is calculated by sum-
mingall of the electrondipolemoments for a given
atomic species. Quantum mechanical rules for
this summing called Hund’s rules are discussed
below.

v. For a collection of identical atoms the magneti-
zation, M, is

M ¼ Namatom ð10Þ

where Na is the number of dipole moments per unit
volume and matom is the atomic dipole moment.

vi. The potential energy of a dipole moment in the
presence of a field is

Ep ¼~m � ~B ¼ mB cosy ð11Þ

where y is the angle between the dipole moment and
~B. This implies that magnetization (or other field
quantity) multiplied by another field has units of
energy per unit volume. It is important to begin to
think of energy densities (energy per unit volume) for
magnetic systems. In quantum mechanical systems,
the component of the dipole moment vector projected
along the field direction is quantized and only partic-
ular values of the angle y are allowed.

Closed Shell Diamagnetism: Langevin Theory
of Diamagnetism

The diamagnetic susceptibility of closed shells is dis-
cussed in Box 1.

Diamagnetism is the atomic magnetic response due
to closed shell orbits of core electrons.

This is tobe contrastedwith theperfectdiamagnetism
of a superconductor. Magnetic flux is excluded from the
interior of a superconductor and it is a consequence of

B ¼ 0, which requires that wm ¼ �1 or wm ¼ �1

4p
.

q v

r

μ

Figure 1. Geometryof a chargedparticle orbitingat adistance r,
with a linear velocity, v. The particle orbit sweeps out anarea,A,
and gives rise to a dipole moment, ~m.
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The magnitude, L ¼ j~L j, of the orbital angular
momentum vector, ~L , and its projection, Lz, onto an axis
of quantization, z, by the application of a field, Bz, is
quantized in units of �h. For Lz the quantum number ml

quantizes theprojectedorbital angularmomentum.This
has the further consequence that the orbital angular
momentum vector, ~L , can precess about the field axis,
z, only at a set of discrete angles, y:

Lz ¼ ml�h; ml ¼ �l � � � 0 � � � þ l;

y ¼ arccos
Lz

L
¼ arccos

ml

l
ð13Þ

Open Shell Atomic Dipole Moments—Hund’s Rules

We now examine systems where the electrons responsi-
ble for the dipoles exist in localized states assigned to a
particular atom. In systems (typically ionic) where the
atomic orbitals responsible for the magnetic dipole
moments are localized on specific atoms in a solid,
discrete magnetic states can be calculated using quan-
tummechanical rules calledHund’s rules (Hund, 1927).
This discussion is applicable in understanding themag-
netic dipoles in ionic systems such as oxides and salts of
transition metals.

A general angular momentum vector, ~P, can have
contributions from orbital angular momentum, ~L , and
spin angular momentum, ~S . Both moments are quan-
tized inunits of �h. The fundamental atomic unit of dipole
moment is the Bohr magneton.

In addition to the orbital moment, there is an addi-
tional contribution to the magnetic moment of an elec-
tron, due to spin. Spin is a purely quantum mechanical
property though we can view it semiclassically consid-
ering an electron as a particle with a rotating surface
current. The classical problem yields a spin moment
similar to that which is derived in the quantummechan-
ical description (Cullity and Graham, 1978).

Determining atomic dipole moments requires sum-
ming spin and orbital angular momenta over all elec-
trons on an atom. The summed orbital and spin angular
momenta is zero for closed shells. The closed shells then
only contribute to the small diamagnetic moment of the
previous section.3 In open shells we need to consider
rules for summing thespinandorbital angularmomenta
for all electrons in the open shell. Hund’s rules allow us
to describe the ground-state multiplet including the ml

and ms eigenstates and allow us to calculate the com-
ponents of the orbital, L, spin, S, and total angular, J,
momenta. The magnitudes of orbital and spin angular
momenta are constructed by summing angularmomen-
tum over a multielectron shell:

L ¼
Xn
i¼1

ðmlÞi�h; S ¼
Xn
i¼1

2ðmsÞi�h ð14Þ

The projection of the total angular momentum vector,
~J ¼ ~L þ ~S , along the applied field direction is also
subject to quantization conditions. Hund’s rules require
that J (J ¼ L þS) is jL�Sj for less than half-filled
shells and jL þSj for greater than half-filled shells. To
determine the occupation of eigenstates of S, L, and

MAGNETIC SUSCEPTIBILITY OF A SIMPLE DIAMAGNET

Consider an atom with a closed electronic shell. For
filled shells, electrons orbit the nuclei, but the net
current associated with their motion is zero because
of cancellation of their summed orbital angular
momentum, ~L (i.e., ~L ¼ 0). However, even for a closed
shell, in the presence of an applied field a net current
is induced. By Lenz’s law this current results in a
dipole moment that opposes the applied field. The
Larmor frequency, oL, is the characteristic frequency
of this circulating induced current and has a value

oL ¼ eH

m
; oL ¼ eH

mc
ð12aÞ

If we wish to construct an atomic dipole moment, we
must consider the moment due to Z electrons that
orbit the nucleus. Assuming that all Z electrons orbit
the nucleus with the same angular frequency, oL, we
express the current, I, as follows:

I ¼ dq

dt
¼ ZeoL

2p
ð12bÞ

The induced moment is calculated as the current
multiplied by the area and the orbital atomic mag-
netic dipole moment is then

matom ¼ �ZeoL

2

hr2i
3

ð12cÞ

where the minus sign reflects Lenz’s law and hr2i is
the average value of r2 for the orbit. The average value
of the square of the orbital radius is

hr2i ¼ hx2iþ hy2iþ hz2i ð12dÞ

and for an isotropic environment:

hx2i ¼ hy2i ¼ hz2i ¼ hr2i
3

ð12eÞ

Thismaybeassociatedwith thenegative diamagnetic
susceptibility (for N atoms/volume):

wm ¼ Nmatom
H

¼ �NZe2

6m
; wm ¼ Nmatom

H
¼ �NZe2

6mc

ð12fÞ

which describes well the diamagnetism of core
electrons and of closed shell systems. Typicallymolar
diamagnetic susceptibilities are on the order of wm ¼
10�6 to 10�5 cm3=mol ¼ 10�12 to 10�11 m3=mol.

3 For open shells this diamagnetic contribution is small enough
to ignore.
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J we use Hund’s rules that state that for a closed
electronic shell J ¼ L ¼ S ¼ 0. For an open shell multi-
electron atom:

i. We fill ml states (which are (2l þ1)-fold degener-
ate) in such a way as to first maximize total spin.

ii. We fill ml states first in such a way as to first
maximize total spin.

We consider the ions of transition metal series, TM2þ ,
that is, ions that have given up 2s electrons to yield a 3dn

outer shell configuration in Figure 2a. The ground-state
J, L, and S quantum numbers for rare earth, RE3þ , ions
are shown in Figure 2b.

Defining L, S, and J for a given element specifies the
ground-state multiplet. This multiplet is written more
compactly in the spectroscopic term symbol as

2Sþ1LJ ð15Þ

where L is the alphabetic symbol for orbital angular
momentum (L ¼ 0 ¼ S, L ¼ 1 ¼ P, L ¼ 2 ¼ D,
L ¼ 3 ¼ F , etc.) and 2Sþ1 and J are the numerical
values of the same. For example, Cr3þ with L ¼ 3,
S ¼ 3

2, and J ¼ 3
2 would be assigned the term symbol

4L3=2. We can further relate the permanent local atomic
moment vectorwith the total angularmomentumvector,
~J , as

~m ¼ g�h~J ¼ �gðJ ;L;SÞmB~J ð16aÞ

where g is called the gyromagnetic factor and g ¼
gðJ ;L ;SÞ is called the Lande g-factor and is given by

gðJ ;L;SÞ ¼ 3

2
þ 1

2

SðSþ1Þ�LðL þ1Þ
JðJ þ1Þ

� �
ð16bÞ

Table 1 tabulates the ground-state multiplets for tran-
sition metal and rare earth cation species that are prev-
alent inmanyoxidesandother interesting ionic systems.

TheLande g-factor accounts for precession of angular
momentum and quantum mechanical rules for projec-
tion onto the field axis (Fig. 3) (Russell and Saunders,
1925). For identical ions with angular momentum J we
define an effective magnetic moment in units of mB:

peff ¼ gðJ ;L;SÞ½JðJ þ1Þ�1=2 ð17Þ

As an example of the calculation of a Hund’s rule
ground state, we consider the Ho3þ multiplet. Ho3þ has
a 4f10 open shell configuration. According to Hund’s
rules we occupy the 7 ml states with spin-up electrons
followed by ml ¼ �3;�2;�1 to account for all 10 outer
shell f electrons (note that the 2 outer shell s and 1 outer
shell d electron of the atom are those that are lost in
ionization). For Ho3þ , we see that S ¼ 7

2� 3
2 ¼ 2 and

L ¼ j�3�2�1j ¼ 6 and since the f shell is more than
half-filled, J ¼ L þS ¼ 8. The term symbol for Ho3þ

is therefore 5I8. The Lande g-factor can be calculated
to be

gðJ ;L;SÞ ¼ 3

2
þ 1

2

2ð2þ1Þ�6ð6þ1Þ
8ð8þ1Þ

� �

¼ 3

2
þ 1

2

6�42

72

� �
¼ 1:25

and the effective moment in units of mB is

peff ¼ gðJ ;L;SÞ½JðJ þ1Þ�1=2mB ¼ 1:25½72�1=2mB ¼ 7:5
ffiffiffi
2

p
mB

Dipole Moments in Systems with Quenched Orbital Angular
Momentum

In many systems of interest the orbital angular momen-
tum is said tobequenched.Thequenchedorbital angular
momentum refers to the fact that the orbital angular
moment vector is strongly tied to a crystalline easy
magnetization direction (EMD). For this reason to a good
approximation we can take L ¼ 0 and J ¼ S. In this case
g ¼ 2 and peff ¼ 2½SðSþ1Þ�1=2. This is true for many
transition metal systems and also for simple oxides of
the transition metals. The relationship between mag-
netic dipole moment, m, and angular momentum vector
is given by m ¼ g e

2m P, where P can refer to orbital, ~L , or
spin, ~S , angular momentum and g is the gyromagnetic
factor. In ferrites the d shells of transition metal cations
are of interest, and we have quenched orbital angular
momentum (i.e., ~L ¼ 0) in the crystal. The spin angular
momentum for a single electron is quantized by the spin
quantum number, ms ¼ � 1

2, to be ms�h ¼ � �h
2. For spin
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Figure 2. Ground-state J, L, and S quantum
numbers for the (a) transition metal, TM2þ ,
and (b) rare earth, RE3þ , ions.
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only, the gyromagnetic factor is g ¼ 2, and the single
electron dipole moment is

m ¼ �g
e

2m

�h

2
¼ � �he

2m
; � g

e

2mc

�h

2
¼ �he

2mc
ð18aÞ

m ¼ �g
e

2m

�h

2
or � g

e

2mc

�h

2
ð18bÞ

Thus, m ¼ �mB with

mB ¼ 9:27� 10�24 Am2 ðJ=TÞ or 9:27� 10�21 erg=G

ð18cÞ

For a multielectron atom, the total spin angular
momentum is

S ¼
Xn
i¼1

ðmsÞi�h

with the sum over electrons in the outer shell. Hund’s
rules determine the occupation of eigenstates of S.
The first states that for an open shell multielectron atom
we fill the (2l þ1)-fold degenerate (for d electrons l ¼ 2,
ð2l þ1Þ ¼ 5) orbital angular momentum states so as to
maximize total spin. To do so, wemust fill each of the five
d states with a positive (spin-up) spin before returning
to fill the negative (spin-down) spin. The total spin angu-
lar momentum for 3d transition metal ions is summa-
rized in Table 2. The dipole moments are all integral
numbers of Bohr magnetons allowing for simplification
of the analysis of the magnetization of ferrites that typ-
ically have quenched angular momentum.

Atomic Dipole Moments—Energy Band Theory

In systemswith significant atomic overlap of the electron
wave functions for orbitals responsible for magnetic
dipole moments, the energy and angular momentum

Table 1. Ground-State Multiplets of Common TM and RE Ions (Van Vleck, 1932)

Ion S L J

neff

Term g½JðJ þ1Þ�1=2 Observed g½SðSþ1Þ�1=2

d-Shell electrons
1 Ti3þ , V4þ 1

2 2 3
2

2D3=2 1.55 1.70 1.73
2 V3þ 1 3 2 3F2 1.63 2.61 2.83
3 V2þ , Cr3þ 3

2 3 3
2

4F3=2 0.77 3.85 3.87
4 Cr2þ , Mn3þ 2 2 0 5D0 0 4.82 4.90
5 Mn3þ , Mn3þ 3

2 0 5
2

5S5=2 5.92 5.82 5.92
6 Fe2þ 2 2 4 5D4 6.7 5.36 4.90
7 Co2þ 3

2 3 9
2

4F9=2 6.63 4.90 3.87
8 Ni2þ 1 3 4 3F4 5.59 3.12 2.83
9 Cu2þ 1

2 2 5
2

2D5=2 3.55 1.83 1.73
10 Cuþ , Zn2þ 0 0 0 1S0 0 0 0
f-Shell electrons
1 Ce3þ 1

2 3 5
2

2F5=2 2.54 2.51
2 Pr3þ 1 5 4 3H4 3.58 3.56
3 Nd3þ 3

2 6 9
2

4I9=2 3.62 3.3
4 Pm3þ 2 6 4 5I4 2.68 —
5 Sm3þ 5

2 5 5
2

6H5=2 0.85 (1.6) 1.74
6 Eu3þ 3 3 0 7F0 0 (3.4) 3.4
7 Gd3þ , Eu3þ 5

2 0 5
2

8S7=2 7.94 7.98
8 Tb3þ 3 3 6 7F6 9.72 9.77
9 Dy3þ 5

2 5 15
2

6H15=2 10.63 10.63
10 Ho3þ 2 6 8 5I8 10.60 10.4
11 Er3þ 3

2 6 15
2

4I15=2 9.59 9.5
12 Tm3þ 1 5 6 3H6 7.57 7.61
13 Yb3þ 1

2 3 7
2

2F7=2 4.53 4.5
14 Lu3þ , Yb3þ 0 0 0 1S0 0 —

z J

L

S

μJ

μSμL

μ = μS + μL

Figure 3. Vector (analogous to planetary orbit) model for the
addition of angular momentum with spin angular momentum
precessing around the orbital moment that precesses about
the total angular momentum vector. z is the field axis (axis of
quantization).

MAGNETIC MOMENT AND MAGNETIZATION 5



states for these electrons are no longer discrete. Instead
energy levels4 form a continuum of states over a range of
energies called an energy band. The distribution func-
tion for these energy levels is called the density of states.
The density of states (per unit volume), gðeÞ, is formally
defined such that the quantity gðeÞde represents the
number of electronic states (per unit volume) in the
range of energies from e to eþde:

gðeÞde ¼ 1

V

dNe

de
de ð19Þ

Note that this definition is not specific to the free
electron model.

Figure 4a shows thedensity of states for free electrons
with its characteristic e1=2 energy dependence. Many
other forms (shapes) for gðeÞ are possible given different
solutions toSchrodinger’s equationwithdifferent poten-
tials. The quantity gðeÞde is viewed as an electronic state
distribution function.

Implicit in the free electron theory is the ignoring of
potential energy and therefore its influence on angular
momentum. With more realistic potentials, we can cal-
culate densities of states whose shape is influenced by
the orbital angular momentum. To first approximation
(and a relatively good approximation for transition
metals), the orbital angular momentum can be consid-
ered to be quenched and we concern ourselves only
with spin angular momentum. The formal definition
is general while an e1=2 dependence results from the
assumptions of the free electron model.

In magnetic systems we are often interested in the
influence of an applied or internal (exchange) field on
the distribution of energy states. Figure 4b shows the
density of states for free electrons where the spin degen-
eracy is broken by a Zeeman energy due to an applied or
internal (exchange) field. We divide the density of states,
gðeÞde, by two,placinghalf the electrons inspin-upstates
and theotherhalf inspin-downstates. Spin-upelectrons
have potential energy lowered by �mBH, where H is an
applied, Ha, or internal exchange, Hex, field. Spin-down
electrons have their potential energy increased by mBH.

We integrate each density of states separately to yield a
different number of electrons per unit volume in spin-up
and spin-down bands, respectively:

n" ¼ N"
V

¼
ðeF
0
g"ðeÞde; n# ¼ N#

V
¼

ðeF
0
g#ðeÞde ð20Þ

The magnetization, net dipole moment per unit volume,
is then very simply

M ¼ ðn"�n#ÞmB ð21Þ

To calculate the thermodynamic properties of transition
metals, one can calculate electronic structure and total
energies using state-of-the-art local density functional
theory. The total energy of a crystal can be calculated
self-consistently and a potential function determined
from the variation of the total energy with interatomic
spacing. From the potential curve the equilibrium lattice
spacing, the bulk modulus, cohesive energy, compress-
ibility, etc., can be determined. gðeÞ is generated at the
equilibrium separation describing the ground-state
electronic structure. Spin-polarized calculations can
be performed to determine magnetic properties. With
increasing computational power andmore sophisticated
algorithms, it is possible to calculate these quantities
accurately. Nevertheless, it is useful to have approxi-
mate analytic models for describing properties such as
this or the Friedel model.

Pauli paramagnetism is a weak magnetism that is
associated with the conduction electrons in a solid.

Pauli paramagnetism does not involve permanent
local dipole moments that gave rise to the Curie law.
Instead it involves a magnetic moment that is caused by
the application of a field. We now describe the electronic
density of states in a field.

The free electron density of states specifically ac-
counts for a spin degeneracy of two. If we instead defined
a spin-up and spin-down density of states with identical
degenerate states as illustrated in Figure 4a, as in the
Zeeman effect, the spin degeneracy is lifted in a field
and for a free electron metal we assume the spin-up
states to be rigidly shifted by an amount, �mBH, where
H is the applied field and mB is the spin dipole moment.
Similarly the spin-down states are rigidly shifted by an
energy equal to þ mBH. Now the Fermi energy of elec-
trons in the spin-up and spin-down bands must
remain the same so we remember that

n" ¼ N"
V

¼
ðeF
0
g"ðeÞde; n# ¼ N#

V
¼

ðeF
0
g#ðeÞde

and n" þn# ¼ n is the electron density. The magnetiza-
tion, M, is M ¼ ðn"�n#ÞmB.

We determine the T-dependent magnetic susceptibil-
ity, wðT Þ, by performing a Taylor series expansion of the
density of states in the presence of a perturbing field:

Table 2. Transition Metal Ion Spin and Dipole Moments
(L¼0)

d Electrons Cations S m ðmBÞ
1 Ti3þ , V4þ 1

2 1
2 V3þ 1 2
3 V2þ , Cr3þ 3

2 3
4 Cr2þ , Mn3þ 2 4
5 Mn2þ , Fe3þ 5

2 5
6 Fe2þ 2 4
7 Co2þ 3

2 3
8 Ni2þ 1 2
9 Cu2þ 1

2 1
10 Cuþ , Zn2þ 0 0

4 We use e to denote the energy per electron and not the total
energy which would be integrated over all electrons.
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g"ðe;HÞ ¼ gðeþ mBHÞ ¼ gðeÞþ mBH
@g

@e
ð22Þ

g#ðe;HÞ ¼ gðe�mBHÞ ¼ gðeÞ�mBH
@g

@e
ð23Þ

and therefore

M ¼ ðn"�n#ÞmB ¼ mB
2

ðeF
0
ðgðeÞþ mBH

@g

@e
Þde

�

�
ðeF
0
ðgðeÞ�mBH

@g

@e
Þde� ¼ m2BH

ðeF
0

@g

@e

� �
de ¼ m2BHgðeFÞ

and

w ¼ m2BgðeFÞ ð24Þ

which is essentially invariant with temperature. So
unlike local moment paramagnetism that obeys the
Curie law, with a strong 1

T dependence, free electron
(Pauli) paramagnetism is nearly T independent.

A band theory of ferromagnetism can also be
expressed in free electron theory. Building on the theory
of Pauli paramagnetism, band theory considers
exchange interactions between spin-up and spin-down
electrons whereby electrons with parallel spins have a
lower energy by�Vex than antiparallel spins (i.e.,V ¼ 0).
With B ¼ 0, the total energy is unstable with respect to
exchange splitting when

Vex >
4eF
3N

ð25Þ

This Stoner criterion determines when a systemwill have
a lower energy with a spontaneous magnetization
(ferromagnetic) than without (paramagnetic). This free
electron ferromagnetism is called itinerant ferromagne-
tism. Topologically close-packed alloys can have elec-
tronic structures with sharp peaks in the density of
states near the Fermi level. These peaks allow the mate-
rials to satisfy the Stoner criterion. This explains itiner-
ant ferromagnetism observed in the Laves phase, ZrZn2.

The Friedel model for transition metal alloys also
describes the d electron density of states in transition
metals (Harrison, 1989). The d states are generally more
localized and atomic-like, especially for the late transi-
tion metals with more filling of the d shells. The Friedel
model assumes that the density of states for d electron

bands can be approximated by a constant density of
states overabandwidth,W. This is equivalent to smooth-
ing the more complicated density of states and para-
meterizing it in terms of the constant gðeÞ and the band-
width, W. This approximation will serve us quite well in
our approximate description of the electronic structure
of transitionmetals. Friedel’s model considers contribu-
tions to the density of states of transitions metals due to
the constant d electron density of states and the free
electron s states. The d density of states (Fig. 4a) is
centered at ed with a bandwidth, Wd, that is:

gðeÞde ¼ 10

Wd
; ed�Wd

2
< e < ed þ Wd

2
;

gðeÞde ¼ 0 otherwise ð26Þ

and we see that integrating gðeÞde over the entire range
from ed�Wd

2 to ed þ Wd

2 accounts for all 10 of the d elec-
trons. The s electronDOS begins at e ¼ 0 and ends at the
Fermi level, e ¼ eF, and obeys the functional dependence
gsðeÞ ¼ Ce1=2.

The Fermi level is determined by superimposing the
two densities of states and filling to count the total
number of electrons. Note that the atomic d and s elec-
tron count usually is not conserved (but of course the
total must be). In the solid state we can use Nd and Ns to
designate the integrated number of d and s electrons,
respectively, such that

Nd ¼
ðeF
�Wd=2

gdðeÞde ¼
ðð�Wd=2Þþ ðNdWd=10Þ

�Wd=2

10

Wd
de;

Ns ¼
ðeF
0
gsðeÞde ð27Þ

A ferromagnetic Friedel model considers spin-up and
spin-down d bands shifted rigidly by an amount þD
with respect to the original nonmagnetic configuration
(Fig. 5b). Since the magnetism observed in transition
metals is predominantly determined bymore localized d
electrons, the Friedel model will give more illustrative
results than the free electron model. Consider the ide-
alized density of states shown above in which a transi-
tion metal d band is modeled with a constant density
of states and the s band with a free electron density of
states. The atomic configuration for these atoms is given
by dn�2s2 and Nd ¼ n�2.

Spin down

Spin up

2μBB

g(
ε)

g 
(  

) ε
g 

(  
) ε

εF εF

0

0

ε (eV)

ε

2         4        6        8       10

(a) (b)

Figure 4. (a) Free electron density of states and (b) free
electron density of states where the spin degeneracy is
broken by a Zeeman energy due to an applied or internal
(exchange) field.
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For solids, the s electrons are counted by integrating
theDOSandNd ¼ n�Ns. A rough estimate approximates
that Ns � 0:6 so the d count is usually higher. The
average magnetic moment as a function of composition
predictedby theFriedelmodel givesSlater–Pauling curve
and alloy dipole moment data. Weak solutes, with a
valence difference DZ � 1, are explained by a rigid band
model. A virtual bound state (VBS) model is employed
when the solute perturbing potential is strong, DZ 	 2.

In dilute alloys, solute atoms that are only weakly
perturbing (i.e., having a valency difference DZ � 1), a
rigid band model can be employed to explain alloying
effects onmagneticmoment. Rigid band theory assumes
that d bands do not change much in alloys but just get
filled or emptied depending on composition (Fig. 5). In
this model, the magnetic moment of the solvent matrix
remains independent of concentration. At the site of a
solute atom the locally mobile minority-spin electrons
are responsible for ensuring that the solute nuclear
charge is exactly screened; thus, a moment reduction
of DZmB is to be expected at the solute site. The average
magneticmoment per solvent atom is the concentration-
weighted average of that of the matrix and solute:

m ¼ mmatrix�DZCmB ð28Þ

whereC is the solute concentration andDZ is the valency
difference between solute and solvent atoms. This is

the basis for explaining the Slater–Pauling curve (Fig. 6)
(Slater, 1937; Pauling, 1938). Figure 6b shows a
more sophisticated band structure determination of
the Slater–Pauling curve for FeCo alloys. Figure 6b
shows the band theory prediction of the average (spin-
only) dipole moment in FeCo to be in good quantitative
agreement with the experimentally derived
Slater–Pauling curve.

For transition metal impurities that are strongly per-
turbing, Friedel (1958) has proposed a VBS model to
explain departure from the simple relationship for the
compositional dependence of dipole moment above. In
this case the change in average magnetic moment and
suppression are predicted to be

m ¼ mmatrix�ðDZ þ10ÞCmB;
dm
dC

¼ �ðDZ þ10ÞmB ð29Þ

Figure 7a shows the binary FeCo phase diagram.
Figure 7b and c shows spin-resolved densities of states
for Co and Fe atoms, in an equiatomic FeCo alloy, as a
function of energy (where the Fermi energy, eF, is taken
as the zero of energy). The number of spin-up and spin-
down electrons in each band is calculated by integrating
these densities of states as are the atom-resolved
magnetic dipole moments. Knowledge of atomic
volumes allows for the direct calculation of the alloy
magnetization.

0 εF

g(ε )

g (ε )

10/W

εd – W/2 εd + W/2εd

d band

s band

g (  )ε

εF εF

5/W

5/W

(a) (b)

Figure 5. (a) Transition metal d and s band densities of
states for the Friedel model and (b) for a spin-polarized
Friedel model (d band only).
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Figure 6. (a) Slater–Pauling curve for Fe alloys and (b) spin-only Slater–Pauling curve
for an ordered Fe–Co alloy as determined from LKKR band structure calculations
(MacLaren et al., 1999).
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There has been considerable growth in the field of
interfacial, surface, and multilayer magnetism
(MacLaren et al.,1990; McHenry et al.,1990). Funda-
mental interest in these materials stems from
predictions of enhanced localmoments and phenomena
associated with two-dimensional (2D) magnetism.
Technological interest in these lies in their potential
importance in thin film recording, spin electronics, etc.
For a magnetic monolayer as a result of reduced mag-
netic coordination the magnetic d states become more
localized and atomic-like, often causing the moment to
grow since the exchange interaction greatly exceeds
the bandwidth. This behavior is mimicked in buried
(sandwiched) single layers or in multilayers of a mag-
netic species and a noninteracting host. Transition
metal/noble metal systems are examples of such sys-
tems (McHenry and MacLaren, 1991).

Magnetization and Dipolar Interactions

We now turn to the definition of the magnetization, M.
This is the single most important concept in the chapter!

Magnetization, M, is the net dipole moment per unit
volume.

It is expressed as

M ¼ Satoms � matom
V

ð30Þ

where V is the volume of the material.5 Magnetization
is an extrinsic material property that depends on the
constituent atoms in a system, their respective dipole
moments, and how the dipole moments add together.
Because dipole moments are vectors, even if they are
collinear, they can add or subtract depending on
whether they are parallel or antiparallel. This can give
rise to many interesting types of collective magnetism.

A paramagnet is a material where permanent local
atomic dipole moments are aligned randomly.

In the absence of an applied field, Ha, the magnetiza-
tion of a paramagnet is precisely zero since the sum of
randomly oriented vectors is zero. This emphasizes the
importance of the word “net” in the definition of magne-
tization. A permanent nonzero magnetization does not
necessarily follow from having permanent dipole
moments. It is only through a coupling mechanism that
acts to align the dipoles in the absence of a field that a
macroscopic magnetization is possible.

Two dipole moments interact through dipolar inter-
actions that are described by an interaction force anal-
ogous to the Coulomb interaction between charges. If
we consider two coplanar (xy plane) magnetic dipole
moments (Fig. 8a), ~m1 and ~m2, separated by a distance
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Figure 7. Binary FeCo phase diagram (a), and spin- and atom-resolved densities of states for
an FeCo equiatomic alloy: (b) spin up and (c) spin down.

5 Magnetization can also be reported as specificmagnetization,
which is net dipole moment per unit weight.
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r12 where the first dipole moment is inclined at an angle
y1 with respect to the position vector~r 12 and the second
at an angle y2, then the field components of field com-
ponents ~m1 due to ~m2 acting at ~m1 can be written as

H1x ¼ �m2
4pm0

2 cosy2
r312

; H1x ¼ �m2
2 cosy2

r312
ð31aÞ

H1y ¼ m2
4pm0

siny2
r312

; H1y ¼ m2
siny2
r312

ð31bÞ

anda similar expression follows for thefield components
~m2 due to ~m1 acting at ~m2. In general, the interaction
potential energy between the two dipoles is given by

Up ¼ 1

4pm0r312
ðð~m1 �~m2Þ�

3

r212
ð~m1 �~r Þð~m2 �~r ÞÞ ðSIÞ ð32aÞ

Up ¼ 1

r312
ðð~m1 �~m2Þ�

3

r212
ð~m1 �~r Þð~m2 �~r ÞÞ ðcgsÞ ð32bÞ

which for collinear dipoles pointing in a direction
perpendicular to ~r 12 reduces to

Ep ¼ �m1m2
4pm0r312

; Ep ¼ �m1m2
r312

ð32cÞ

which is the familiar Coulomb’s law.6

Like net charge in a conductor, free dipoles collect at
surfaces to form the North and South Poles of a magnet
(Fig. 8b). Magnetic flux lines travel from the N to the S
pole of a permanentmagnet. This causes a self-field, the
demagnetization field,Hd, outside of themagnet.Hd can
act to demagnetize a material for which the magnetiza-
tion is not strongly tied to an easy magnetization direc-
tion (EMD). This allows us to distinguish between a soft
magnet and a hard magnet.

Most hard magnets have a large magnetocrystalline
anisotropy that acts to strongly fix the magnetization
vector along particular crystal axes. As a result, they are
difficult to demagnetize. A soft magnet can be used as
permanentmagnet, if its shape is engineered to limit the
size or control thepathof thedemagnetizationfield tonot

interact with the magnetization vector. Fe is an example
of a softmagneticmaterialwitha largemagnetization. To
use Fe as a permanent magnet it is often shaped into a
horseshoemagnet (Fig. 8c) where the return path for flux
lines is spatially far from the material’s magnetization.

Magnetization in Superconductors

The superconducting state is a state of a material in
which it has no resistance to the flow of an electric
current. The discovery of superconductivity by
Onnes (1911) followed his successful liquification of
He in 1908 (Onnes and Clay, 1908). The interplay
between transport and magnetic properties in super-
conductors was further elucidated in theMeissner effect
(Meissner and Ochsenfeld, 1933) (Fig. 9), where the
phenomena of flux expulsion and perfect diamagnetism
of superconductors were demonstrated. London (1950)
gave a quantum mechanical motivation for an electro-
dynamic model of the superconducting wave function.
This work coincided with the Ginzburg–Landau (GL)
theory (Ginzburg and Landau, 1950).

The phenomenological GL theory combined an
expansion of the free energy in terms of powers of the
superconducting electron density (the modulus of the
superconducting electron wave function) with tempera-
ture-dependent coefficients and incorporation of elec-
trodynamic terms in the energy. The original GL theory
described the intermediate state in type I superconduc-
tors arising from geometric (demagnetization) effects.

+ + + + +

-  -  -  -  -

N

S

(a) (b) (c)

y

xθ1 θ2

r12

N S

Figure 8. (a) Geometry of two coplanar dipole
moments used to define dipolar interactions, (b) net
surface dipole moments at the poles of a permanent
magnetwithasingledomain,and (c) flux returnpath
for magnetic dipoles in a horseshoe magnet.

ZFC FC FC

Superconductor Perfect conductor

(a) (b)

Figure 9. Flux densities for a superconductor (a), zero-field
cooled (ZFC) or field cooled (FC) to T < Tc, and for a perfect
conductor (b), which is FC.

6 Someauthors (Cullity andGraham,2009, e.g.) usep todenote
dipole moment.
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The GL theory also allowed for Abrikosov’s (1957)
description of the mixed state and type II superconduc-
tivity in hard superconductors.

A fundamental experimental manifestation of
superconductivity is the Meissner effect (exclusion of
flux from a superconducting material). This identifies
the superconducting state as a true thermodynamic
state and distinguishes it from perfect conductivity.
This is illustrated in Figure 9 that compares the mag-
netic flux distribution near a perfect conductor and a
superconductor, for conditions where the materials are
cooled in a field (FC) and for cooling in zero field with
subsequent application of a field (ZFC).

After cooling (ZFC) the superconductor and perfect
conductor have the same response. Both the perfect
conductor and superconductor exclude magnetic flux
lines in the ZFC case because of diamagnetic screening
currents that oppose flux changes in accordance with
Lenz’s law. The first case (FC) distinguishes a super-
conductor from a perfect conductor. The flux profile in a
perfect conductor does not change on cooling below a
hypothetical temperature where perfect conductivity
occurs. However, a superconductor expels magnetic
flux lines on field cooling, distinguishing it from perfect
conductivity. In a clean superconductor this Meissner
effect implies

B ¼ 0 ¼ H þ4pM ð33Þ

and that the magnetic susceptibility, w ¼ M
H ¼ �1

4p for a
superconductor.

Further evidence of the superconducting state as a
distinct thermodynamic state is given by observation of
the return to a normal resistive state for fields exceeding
a thermodynamic critical field, Hc(T), for type I super-
conductors. Early descriptions of the T dependence
(Fig. 10) of Hc (e.g., Tuyn’s law (Tuyn, 1929),
HcðT Þ ¼ H0ð1�t2Þ, where t ¼ T

Tc
) suggested the supercon-

ducting transition to be second order. Thermodynamic
considerations of the Gibb’s free energy density give

gs ¼ jðT Þ; gn ¼ jðT Þþ H2
c ðT Þ
8p

�H2

8p
ð34Þ

the free energies for the same material in the super-
conducting (type I) and normal metal states, respec-
tively, and where the Meissner effect (B¼0) has been
explicitly used in expressing gs. These require that in
zero field:

Dg ¼ gn�gs ¼ H2
c ðT Þ
8p

ð35Þ

These free energy densities imply a latent heat for the
superconducting transition:

L ¼ THc

4p
@Hc

@T

� �
Tc

ð36Þ

which is less than 0. Further, the superconducting
transition is second order with a specific heat
difference:

Dc ¼ cs�cn ¼ T

4p
Hc

@2Hc

@T2

@Hc

@T

� �2
" #

ð37Þ

implying a specific heat jump at the transition temper-
ature Tc:

Dc ¼ T

4p
@Hc

@T

� �2

T¼Tc

ð38Þ

Figure 10a shows the typical temperature dependence
of the thermodynamic critical field for a type I
superconductor.

For a type II superconductor in a zero or constant
field, Ha, the superconducting phase transition is sec-
ond order. A type II superconductor has two critical
fields, the lower critical field, Hc1ðT Þ, and upper critical
field, Hc2ðT Þ. On heating, a type II superconductor, in a
field, Ha < Hc1 (0K), a transition is observed both from
the Meissner to the mixed state and from the mixed to
the normal states at temperatures T1 (Ha ¼ Hc1) and T2

(Ha ¼ Hc2). Since dM
dH ¼ ‘atHa ¼ Hc1, it canbeshown that

the entropy changes continuously at approaching T1

from below. The entropy has an infinite temperature
derivative in the mixed state, that is, approaching T1

from above. The second-order transition at Hc1ðT1Þ
manifests itself in a l-type specific heat anomaly. As the
temperature is further increased toT2 (i.e.,Ha ¼ Hc2ðT2Þ)
the entropy in the mixed state increases with increasing
T and a specific heat jump is observed at T2 consistent
with a second-order phase transition. Only a single
transition is observed atHc2 if the constant applied field
exceeds Hc1 (0K).

The equilibriummagnetization (M vs.H) curve, shown
in Figure 11a, for a type I superconductor reflects the
Meissner effect slope, �1

4p in the superconducting state,
and the diamagnetic moment disappearing above Hc.
The Meissner effect provides a description of the mag-
netic response of a type I superconductor, for H < Hc,
only for long cylindrical geometries with H parallel to
the long axis. For cylinders in a transverse field or for

Meissner
   state

Hc(T)
Hc

H

TTc

Type I

Meissner state

Hc2(T)

Hc1

H

TTc

Vortex 
state

Hc1(T)

H
c2

 (a)  (b)

Type II

Figure 10. Critical field temperature dependence for (a) type I
superconductor showing the thermodynamic critical fieldHc(T)
and (b) type II superconductors showing the lower critical field
Hc1ðT Þ and upper critical field Hc2ðT Þ.
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noncylindrical geometries demagnetization effects need
to be considered. The internal field and magnetization
can be expressed as

Hi ¼ Ha�DM ; M ¼ �1

4pð1�DÞH ð39Þ

whereD is thedemagnetization factor (13 for a sphere,
1
2 for

a cylinder or infinite slab in a transverse field, etc.).
For noncylindrical geometries, demagnetization

effects imply that the internal field can be concentrated
to values that exceed Hc before the applied field Ha

exceeds Hc. Since the field energy density is not greater
than the critical thermodynamic value, the entire super-
conductor is unstable with respect to breaking down
intoa lamellar intermediate statewithalternatingsuper-
conducting and normal regions (de Gennes, 1966). The
intermediate state becomes possible for fields exceeding
ð1�DÞHc, for example, a superconducting sphere exists
in the Meissner state for H < 2

3Hc, in the intermediate
state for 2

3Hc < H < Hc, and in the normal state for
H > Hc.

Observations of the equilibriummagnetization,M(H),
and the H–T phase diagrams of type II superconductors
are different. As shown in Figure 11b, theMeissner state
(perfect diamagnetism) persists only to a lower critical
field, Hc1. However, superconductivity persists until a
much larger upper critical field, Hc2, is achieved. The
persistence of superconductivity above Hc1 is explained
in terms of a mixed state in which the superconductor
coexists with quantized units of magnetic flux called
vortices or fluxons. The H–T phase diagram therefore
exhibits a singleMeissner phase forH < Hc1ðT Þ, amixed
state, Hc1 < H < Hc2 in which the superconducting and
normal states coexist, and the single normal state phase
for H > Hc2ðT Þ.

For applications it is important to pin magnetic flux
lines. This flux pinning determines the critical current
density, Jc. Jc represents the current density that frees
magnetic flux lines from pinning sites (McHenry and
Sutton, 1994). Studies of high-temperature supercon-
ductors have elucidated the crucial role played by
crystalline anisotropy in determining properties.
Thermally activated dissipation in flux creep has been
identified as an important limitation for Jc. The time-
dependent decay of the magnetization has been used to

study the distribution of pinning energies in HTSCs
(Maley et al.,1990).

Large anisotropies in layered superconductors lead to
newphysicalmodels of theH–Tphase diagram inHTSCs
(Nelson, 1988). This includes the notions of vortex liquid
and vortex glass phases (Fisher, 1989). Examples of
proposed H–T phase diagrams for HTSC materials are
illustrated in Figure 12. In anisotropic materials, flux
pinning and Jc values are different for fields aligned
parallel and perpendicular to a crystal’s c-axis. The
pinning of vortex pancakes is different than for Abriko-
sov vortices. The concept of intrinsic pinning has been
used to describe low-energy positions for fluxons in
regions between Cu–O planes (for field parallel to the
(001) plane in anisotropic materials). Models based on
weakly coupledpancake vortices have beenproposed for
fields parallel to the c-axis for layered oxides. The vortex
melting line of Figure 12a and b is intimately related to
the state of disorder as provided by flux pinning sites.
Figure 12c shows schematics of intrinsic pinning and
Figure 12d shows pinning of pancake vortices in an
anisotropic superconductor.

COUPLING OF MAGNETIC DIPOLE MOMENTS:
MEAN FIELD THEORY

Dipolar interactions are important in defining demag-
netization effects. However, they are much too weak to
explain the existence of a spontaneousmagnetization in

–4πM –4πM

ΗΗc

(a)  (b)

ΗΗc1 Ηc2

Figure 11. Equilibrium M(H) curves for (a) type I and (b) type II
superconductors.

Vortex
lattice

Vortex
liquid

(a) (b)

(c) (d)

a

b

H
H

CuO2
planes

Defect pinning of

H II ab H II c

Vortex
liquid

Vortex
glass

Meissner phase Meissner phase

H H
Hc2 H*(T) H*(T)

Hc1

Tc

Hc1

Hc1(T) Hc1(T)

Hc2

Hc2(T)

Hc2(T)

Figure 12. Vortex lattices with a melting transition for an ani-
sotropic material with weak random pinning (a) and a material
with strong randompinning (b). Schematics of intrinsic pinning
(c) and pinning of pancake vortices (d) in an anisotropic
superconductor.
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a material at any appreciable temperature. This is
because thermal energy at relatively low temperature
will destroy the alignment of dipoles. To explain a spon-
taneous magnetization it is necessary to describe the
origin of an internal magnetic field or other strong mag-
netic interaction that acts to align atomic dipoles in the
absence of a field.

A ferromagnet is a material for which an internal field
or equivalent exchange interaction acts to align
atomic dipole moments parallel to one another in the
absence of an applied field (H ¼ 0).

Ferromagnetism is a collective phenomenon since
individual atomic dipole moments interact to promote
parallel alignment with one another. The interaction
giving rise to the collective phenomenon of ferromagne-
tism has been explained by two models:

i. Mean field theory: considers the existence of a
nonlocal internal magnetic field, called theWeiss
field,whichactstoalignmagneticdipolemoments
even in the absence of an applied field, Ha.

ii. Heisenberg exchange theory: considers a local
(nearest neighbor) interaction between atomic
moments (spins) mediated by direct or indirect
overlap of the atomic orbitals responsible for the
dipole moments. This acts to align adjacent
moments in the absence of an applied field, Ha.

Bothof these theorieshelp to explain theTdependenceof
the magnetization.

The Heisenberg theory lends itself to convenient
representations of other collectivemagnetic phenomena
such as antiferromagnetism, ferrimagnetism, helimag-
netism, etc., illustrated in Figure 13.

An antiferromagnet is a material for which dipoles of
equal magnitude on adjacent nearest neighbor
atomic sites (or planes) are arranged in an antipar-
allel fashion in the absence of an applied field.

Antiferromagnets also have zero magnetization in
the absence of an applied field because of the vector
cancellation of adjacent moments. They exhibit temper-
ature-dependent collectivemagnetism, though,because

the arrangement of the dipole moments is precisely
ordered.

A ferrimagnet is a material having two (or more) sub-
lattices, for which the magnetic dipole moments of
unequal magnitude on adjacent nearest neighbor
atomic sites (or planes) are also arranged in an anti-
parallel fashion.

Ferrimagnets have nonzero magnetization in the
absence of an applied field because their adjacent
dipole moments do not cancel.7 All of the collective
magnetsdescribed thus far are collinearmagnets,mean-
ing that their dipole moments are either parallel or
antiparallel. It is possible to have ordered magnets for
which the dipole moments are not randomly arranged,
but are not parallel or antiparallel. The helimagnet of
Figure 13d is a noncollinear ordered magnet. Other
examples of noncollinear ordered magnetic states
include the triangular spin arrangements in some fer-
rites (Yafet and Kittel, 1952).

Classical and Quantum Theories of Paramagnetism

The phenomenon of paramagnetism results from the
existence of permanent magnetic dipole moments on
atoms. We have shown that in the absence of a field, a
permanent atomic dipole moment results from incom-
plete cancellation of the electron’s angular momentum
vector.

In a paramagnetic material in the absence of a field,
the local atomic moments are uncoupled.

For a collection of atoms, in the absence of a field,
these atomic moments will be aligned in random direc-
tions so that h~matomi ¼ 08 and therefore M ¼ 0. We now
wish to consider the influence of an applied magnetic
field on these moments. Consider the induction vector,
~B, in our paramagnetic material arising from an applied
field vector, ~H . Each individual atomic dipole moment
has a potential energy9:

Up ¼ �~m � ~B ¼ �mB cosy ð40aÞ

The distinction between the classical and quantum the-
ories of paramagnetism lies in the fact that a continuum
of values of y and therefore continuous projections of ~M
on the field axis are allowed in the classical theory. In the
quantum theory only discrete y and projected moments,
m, are allowed consistent with the quantization of angu-
lar momentum. Notice that in either case the potential(a) (b)

(c) (d)

Figure 13. Atomic dipole moment configurations in a variety of
magnetic ground states: (a) ferromagnet, (b) antiferromagnet,
(c) ferrimagnet, and (d) noncollinear spins in a helimagnet.

7 Ferrimagnetsarenamedaftera classofmagneticoxidescalled
ferrites.
8 We will use the symbol hai to denote the spatial average of the
quantity a.
9 This is the Zeeman energy and represents the internal poten-
tial energy for electrons in a field.
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energy is minimized when local atomic moments and
induction, ~B, are parallel.

We are now interested in determining the tempera-
ture-dependent magnetic susceptibility for a collection
of local atomic moments in a paramagnetic material.
In the presence of an applied field, at 0K, all
atomic moments in a paramagnetic material will align
themselves with the induction vector, ~B, so as to
lower their potential energy, Up. At finite temperature,
however, thermal fluctuations will cause misalignment,
that is, thermal activation over the potential
energy barrier leading to a T dependence of the
susceptibility, wðT Þ. To determine wðT Þ for a classical
paramagnet, we express the total energy of a
collection of equal atomic magnetic dipole moments in
SI units as

U tot
p ¼

X
atoms;i

�matomðm0HÞcosyi ð40bÞ

where yi is the angle between the ith atomic dipole
moment and ~B. We consider a field along the z-axis and
the set of vectors ni ¼ ~m

m, which are unit vectors in the
direction of the ith atomicmoment, to determine wðT Þ; we
wish todiscover the temperature distribution function of
the angle yi . The probability of any particular potential
energy state being occupied is given by Boltzmann sta-
tistics, in SI units as

p ¼ C exp
Up

kBT

� �
¼ C exp

matomðm0HÞcosy
kBT

� �
ð40cÞ

where p ¼ pðUpÞ ¼ pðyÞ. As shown in Figure 14, the
number of dipoles for a given yi at T ¼ 0K and H ¼ 0
is given by

dn ¼ 2p siny dy ð40dÞ

since all angles are equally probable. At finite T and H:

dn ¼ C exp
matomðm0HÞcosy

kBT

� �
2p siny dy ð40eÞ

and integrating

N ¼
ð2p
0

dn ð40fÞ

gives the number of dipoles, N. We now calculate an
average projected moment (along the axis of ~B) as

h~matomi ¼
Ð 2p
0 m cosy dnÐ 2p

0 dn

¼
Ð 2p
0 C exp matomðm0HÞcosy

kBT

h i
m cosy 2p siny dyÐ 2p

0 C exp matomðm0HÞcosy
kBT

h i
2p siny dy

ð40gÞ

and using the substitution x ¼ matomm0H
kBT

, we have

h~matomi
matom

¼
Ð 2p
0 exp½x cosy�cosy p siny dyÐ 2p

0 exp½x cosy�p siny dy
ð40hÞ

and evaluation of the integrals reveals

h~matomi
matom

¼ cothðxÞ�1

x
¼ LðxÞ ð40iÞ

where L(x) is called the Langevin function (Lange-
vin, 1907). The Langevin function has two interesting
attributes as illustrated in Figure 15:

lim
x !‘

LðxÞ ¼ 1; lim
x !0

dLðxÞ
dx

¼ 1

3

To calculate the magnetization we remember that M is
defined as the total dipole moment per unit volume (we
are interested in the component of ~M parallel to ~B); thus:

M ¼ Nmh~matomi ¼ NmmatomLðxÞ ð41aÞ

where Nm is the number of magnetic dipoles per unit
volume. In the large x limitLðxÞ ¼ 1, andwe infer that the
saturation magnetization, Ms, is given by

Ms ¼ Nmmatom ð41bÞ

and the temperature (and field) dependence of the mag-
netization can be expressed as

M

Ms
¼ LðxÞ ð41cÞ

In the low a limit (low field, high temperature), LðxÞ � x
3,

and

M ¼ Ms
m0matom
3kBT

� �
H

T
ð41dÞ

and

w ¼ M

H
¼ Nmm0ðmatomÞ2

3kBT
¼ C

T
ð41eÞ

H

dA

dφ R dφ

R dθ

θ θ + dθ

R

Figure 14. Distribution ofmoment vector angleswith respect to
the field axis.
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which is the Curie law of paramagnetism. Notice that if
we know Nm (the concentration of magnetic atoms) from
an independent experimental measurement, then an
experimental determination of wðT Þ allows us to solve
for C (as shown in Fig. 16) as the slope of w versus 1

T and
therefore matom. matom is associatedwith the local effective
moment as given by Hund’s rules. In materials with a
phase transition the dipoles may order below a critical
temperature, Tc. For these the paramagnetic response is
observed for T > Tc and the Curie law is replaced by a
Curie–Weiss law:

w ¼ M

H
¼ Nmm0ðmatomÞ2

3kBðT�TcÞ ¼ C

T�Tc
; C ¼ NmðmatomÞ2

3kB
ðcgsÞ

ð41fÞ

This ordering temperature can be associated with an
internal Weiss molecular field, Hint, through the follow-
ing expression:

Tc ¼ lC; Hint ¼ lM ð41gÞ

where l is called the molecular field constant.

To further describe the response of the quantum
paramagnet we again consider an atom left with a per-
manentmagneticdipolemomentofmagnitudematom ¼ m,
due to its unfilled shells. We can now consider its
magnetic behavior in an applied field. The magnetic
induction, ~B, will align the atomic dipole moments.
The potential energy of a dipole oriented at an angle y
with respect to the magnetic induction is

Up ¼ �~m � ~B ¼ gmBð~J � ~BÞ ð42aÞ

where g is the gyromagnetic factor. Now our quantum
mechanical description of angular momentum tells us
that jJz j, the projection of the total angular momentum
on the field axis, must be quantized, that is:

Up ¼ ðgmBÞmJB ð42bÞ

where mJ ¼ J ;J�1; . . .��J and J ¼ j~J j ¼ j~L þ ~S j that
may take on integral or half-integral values. In the case
of spin only, mJ ¼ ms ¼ � 1

2. The quantization of Jz

requires that only certain angles y are possible for the
orientation of ~m with respect to ~B. The ground state
corresponds to ~mjj~B. However, with increasing thermal
energy, it is possible tomisalign~m so as to occupy excited
angular momentum states. If we consider the simple
systemwith spin only, the Zeeman splitting between the
eigenstates is mBB, the lower lying state corresponding to
mJ ¼ ms ¼ � 1

2 with the spinmoment parallel to the field.
The higher energy state corresponds tomJ ¼ ms ¼ 1

2 and
an antiparallel spin moment. For this simple two-level
system we can use Boltzmann statistics to describe the
population of these two states.WithN isolatedatomsper
unit volume in a field, we define

N1 ¼ N" ¼ A exp
mBðm0HÞ
kBT

� �
;

N2 ¼ N# ¼ A exp
�mBðm0HÞ

kBT

� �
ð43aÞ

Recognizing that N ¼ N1 þN2 and the net magnetization
(dipole moment/volume) is M ¼ ðN1�N2Þm, we have

M ¼ N

Aðexpx þ expð�xÞÞ � Aðexpx�expð�xÞÞm

5000
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1000

0
800

bcc Fe

820

1/
χ

T (ºC)
920900880860840

Figure 16. Curie–Weiss law fit to paramagnetic magnetization
data for bcc Fe above its ordering temperature Tc ¼ Y ¼ 794K
(measurements of Sucksmith and Pearce).
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Figure 15. (a) Langevin function and (b) its
low-temperature limiting form.
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¼ Nm
expx�expð�xÞ
expx þ expð�xÞ ¼ Nm tanhx ð43bÞ

where x ¼ mBðm0HÞ
kBT

. Notice that for small values of x,
tanhðxÞ � x andwe can approximateM and determine w:

M ¼ Nm
mBðm0HÞ
kBT

¼ Nm2Bðm0HÞ
kBT

; w¼M

H
¼ Nm0m

2
B

kBT
ð43cÞ

The expression relating w to 1
T is called the paramagnetic

Curie law.
For the case where we have both spin and orbital

angular momenta, we are interested in the J quantum
number and the2J þ1possible values ofmJ , eachgiving
a different projected value (Jz) of J along the field (z) axis.
In this case we no longer have a two-level system but
instead a ð2J þ1Þ-level system. The 2J þ1 projections
are equally spaced in energy. Again considering a
Boltzmann distribution to describe the thermal occupa-
tion of the excited states, we find that~m � ~B ¼ J

Jz
mBB and

m ¼
P

J
J
Jz
mB exp J

Jz

mBðm0HÞ
kBT

h i
P

Jexp
J
Jz

mBðm0HÞ
kBT

h i ; N ¼
X
J

exp
J

Jz

mBðm0HÞ
kBT

� �

ð44aÞ

so that finally

M ¼ Nm ¼ N

P
�JJ

J
Jz
mB exp J

Jz

mBðm0HÞ
kBT

h i
P

Jexp
J
Jz

mBðm0HÞ
kBT

h i ¼ NgJmBBJ ðxÞ

ð44bÞ

where x ¼ gJmBB
kBT

andBJ ðxÞ is called theBrillouin function
and is expressed as

BJ ðxÞ ¼ 2J þ1

2J
coth

ð2J þ1Þx
2J

� �
� 1

2J
coth

x

2J

h i
ð44cÞ

For J ¼ 1
2, BJ ðxÞ ¼ tanhðxÞ as before. The small x expan-

sion for BJ ðxÞ is

BJ ðxÞ ¼ xðJ þ1Þ
3

; x 
 1 ð45aÞ

For small x we then see that

M ¼ Ng2ðm0HÞm2BJðJ þ1Þ
3kBT

¼ Np2
eff ðm0HÞ
3kBT

ð45bÞ

where

peff ¼ g½JðJ þ1Þ�1=2mB ð45cÞ

is called the effective local moment. This expression is a
Curie law with

w ¼ C

T
; C ¼ Np2

eff

3kBT
ð45dÞ

The effective local moment can be contrasted with the
maximum value that occurs when all of the dipoles
are aligned with the magnetic field. This has the
following value:

mH ¼ gJmB ð45eÞ

Experimentally derivedmagnetic susceptibility versus T
data can be plotted as 1

w versus T to determineC (from the
slope) and therefore peff (if the concentration of para-
magnetic ions isknown).Figure17shows thebehavior of
M versus H

T for a paramagnetic material. At low temper-
ature MðxÞ � x

3. MðHÞ is well described by a Brillouin
function with a characteristic H

T scaling bringing curves
from different temperatures into coincidence.

Mean Field Theory—Ferromagnetism

Ferromagnetic response is distinct from paramagnetic
response, in that local atomic moments are coupled in
the absence of an applied field. A ferromagnetic material
possesses a nonzero magnetization over a macroscopic
volume, called a domain, containing many atomic
sites, even for H ¼ 0. Ferromagnetism is a collective
phenomenon since individual atomic moments interact
so as to promote alignment with one another. The inter-
action between individual atomic moments gives rise to
the collective phenomenon of ferromagnetism that
can be explained in terms ofmean field theory orHeisen-
berg exchange theory. We consider themean field theory
here and the Heisenberg exchange theory (Heisen-
berg, 1928) below. The two theories do lead to different
pictures of certain aspects of the collective phenomena
and the ferromagnetic phase transformation. The Hei-
senberg theory also lends itself to quite convenient
representations of other collectivemagnetic phenomena
such as antiferromagnetism, ferrimagnetism, helimag-
netism, etc.

The mean field theory of ferromagnetism was intro-
duced by Weiss (1907). Weiss postulated the existence
of an internal magnetic field (theWeiss field), ~H int, which
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Figure 17. Paramagnetic responseofGd3þ ions inGd2C3nano-
crystals with H

T scaling (Diggs et al., 1994).
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acts to align the atomic moments even in the absence of
an external applied field, Ha. The main assumption of
mean field theory is that the internal field is directly
proportional to the magnetization of the sample:

~H int ¼ l~M ð46aÞ

where the constant of proportionality, l, is called the
Weiss molecular field constant (we can think of it as a
crystal field constant). We write the field quantities as
vectors because it is possible to have situations in which
themagneticdipolesarenoncollinearbutstillordered(i.e.,
a helimagnet where the ordering is wave-like, or a trian-
gular spin structure). In the cases discussed below, fer-
romagnetism, antiferromagnetism, and ferrimagnetism,
the dipoles are collinear, either parallel or antiparallel.

We now wish to consider the effects on ferromagnetic
response of application of an applied field, Ha, and the
randomizing effects of temperature. We can treat this
problem identically to that of a paramagnet but now
considering thesuperpositionof theappliedand internal
magnetic fields. By analogy we conclude that

h~matomi
matom

¼ cothðx 0Þ� 1

x 0 ¼ Lðx 0Þ; M

Ms
¼ Lðx 0Þ ð46bÞ

where

x 0 ¼ m0matom
kBT

Ha þ lM½ � ð46cÞ

for a collection of classical dipole moments. Similarly,
M ¼ Nmh~matomi and

M

Nmmatom
¼ M

Ms
¼ L

m0matom
kBT

Ha þ lM½ �
� �

ð46dÞ

where this simple expression represents a formidable
transcendental equation to solve. Under appropriate
conditions, this leads to solutions for which there is a
nonzero magnetization (spontaneous magnetization)
even in the absence of an applied field.We can show this
graphically consideringMðH ¼ 0Þdefining the variables:

b ¼ m0matom
kBT

lM½ � ð46eÞ

which is dimensionless (andMð0Þ ¼ MsLðbÞ) and define:

Tc ¼ Nmm0ðmatomÞ2l
3kB

ð46fÞ

Notice that Tc has units of temperature. Notice also that

b

Tc
¼ 3

T

Mð0Þ
Ms

� �
ð46gÞ

so that

Mð0Þ
Ms

¼ bT

3Tc
¼ LðbÞ ð46hÞ

The reduced magnetization equations (i.e., Mð0Þ
Ms

¼ bT
3Tc

and Mð0Þ
Ms

¼ LðbÞ) can be solved graphically, for any choice
of T by considering the intersection of the two functions
b
3

T
Tc

� �
and L(b). As is shown in Figure 18, for T 	 Tc

the only solutions for which the two equations are
simultaneously satisfied are when M ¼ 0, that is, no
spontaneous magnetization and paramagnetic
response. For T < Tc we obtain solutionswith a nonzero,
spontaneous, magnetization, the defining feature of a
ferromagnet. For T ¼ 0 to T ¼ Tc we can determine the
spontaneous magnetization graphically as the intersec-
tion of our two functions b

3
T
Tc

� �
and L(b). This allows us

to determine the zero-field magnetization, Mð0Þ, as a
fraction of the spontaneous magnetization as a function
of temperature. As shown in the phase diagram of
Figure 18c, Mð0;T Þ

Ms
decreases monotonically from 1, at

0K, to 0 at T ¼ Tc, where Tc is called the ferromagnetic
Curie temperature. At T ¼ Tc, we have a phase transfor-
mation from ferromagnetic to paramagnetic response
that can be shown to be second order in the absence
of a field. In summary, mean field theory for ferromag-
nets predicts:

i. For T < Tc, collective magnetic response gives
rise to a spontaneous magnetization even in the
absence of a field. This spontaneous magnetiza-
tion is the defining feature of a ferromagnet.

ii. ForT > Tc, themisaligning effects of temperature
serve to completely randomize the direction of the
atomicmoments in theabsence of afield. The loss

m
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 M
/M

s

m
 =

 M
/M

s
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Figure 18. (a) Intersection between the curves b
3

T
Tc

� �
and L(b) for T < Tc gives a nonzero, stable

ferromagnetic state and (b) the locus of M(T) determined by intersections at temperatures
T < Tc; (c) reduced magnetization, m, versus reduced temperature, t ¼ T

Tc
, as derived from (b).
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of the spontaneous magnetization defines the
return to paramagnetic response.

iii. In the absence of a field, the ferromagnetic to
paramagnetic phase transition is second order
(first order in a field).

Table 3 summarizes structures, room-temperature, and
0K saturation magnetizations and Curie temperatures
for elemental ferromagnets (O’Handley, 2000).

As a last ramification of the mean field theory we
consider the behavior of magnetic dipoles in the para-
magnetic stateT>Tcwith the application of a small field,
H. We wish to examine the expression for the paramag-
netic susceptibility, wðT Þ ¼ MðH ;T Þ

H . Here again we can
assume that we are in the small argument regime for
describing the Langevin function so that

MðH ;T Þ
H

¼ Lðx 0Þ ¼ a 0

3
¼ m0matoml

3kBT
ðH þ lMÞ ð47aÞ

and

M ¼
Nmm0ðmatomÞ2

3kB

h i
H

T� Nmm0ðmatomlÞ2
3kB

¼ CH

T�Tc
ð47bÞ

Thus, the susceptibility, wðT Þ, is described by the so-
called Curie–Weiss law:

w ¼ M

H
¼ C

T�Tc
ð47cÞ

where, as before, C is the Curie constant and Tc is the
Curie temperature. Notice that

C ¼ Nmm0ðmatomÞ2
3kB

" #
ð47dÞ

It is possible todetermine theatomicmomentandmolec-
ular field constant from wðT Þ data. Plotting 1

w versus T
allows for determination of a slope ¼ 1

C

	 

, from which

matom can be determined, and an intercept� Tc

C ¼ �l. The
ferromagnetic toparamagnetic phase transition isnot as
sharp at T ¼ Tc in a field, exhibiting a Curie tail that
reflects the ordering influence of field in the high-tem-
perature paramagnetic phase.

Mean Field Theory for Antiferromagnetism and
Ferrimagnetism

Mean field theories for antiferromagnetic and ferrimag-
netic ordering require expanding the internal field in

terms of more than one molecular field constant,
each multiplied by the magnetization due to a different
sublattice. An antiferromagnet has dipole moments
on adjacent atomic sites arranged in an antiparallel
fashion below an ordering temperature, TN, called the
Neel temperature. Cr is an example of an antiferromag-
net. The susceptibility of an antiferromagnet does not
diverge at the ordering temperature but instead has a
weak cusp. The mean field theory for antiferromagnets
considers two sublattices, an A sublattice for which
the spin moment is down. We can express, in mean
field theory, the internal fields on the A and B sites,
respectively:

~H
int

A ¼ �lBA ~MB; ~H
int

B ¼ �lAB ~M A ð48aÞ

where by symmetry lBA ¼ lBA, and ~M A and ~MB are the
magnetizations of the A and B sublattices. The mean
field theory thus considers a field at the B atoms due to
the magnetization of the A atoms and vice versa. Using
the paramagnetic susceptibilities wA and wB, which are
the same and both equal wp, we can express the high-
temperature magnetization for each sublattice as

~M A ¼ wpð~H a þ ~H
int

A Þ ¼ CA

T
ð~H a�lBA ~MBÞ ð48bÞ

~MB ¼ wpð~H a þ ~H
int

B Þ ¼ CB

T
ð~H a�lAB ~M AÞ ð48cÞ

Now for an antiferromagnet themoments on the A and B
sublattices are equal and opposite so that CA ¼ CB ¼ C
and on rearranging we get

T ~M A þClAB ~MB ¼ C~H a ð48dÞ

ClAB ~M A þT ~MB ¼ C~H a ð48eÞ

In the limit as Ha !0 these two equations have
nonzero solutions (spontaneous magnetizations) for
~M A and ~MB if the determinant of the coefficients
vanishes, that is:

T lC
lC T

����
���� ¼ 0 ð48fÞ

and we can solve for the ordering temperature:

TN ¼ lC ð48gÞ

Table 3. Structures, Room-Temperature, and 0 K SaturationMagnetizations and Curie Temperatures for Elemental Ferromagnets
(O’Handley, 1987)

Element Structure Msð290KÞ (emu/cm3) Msð0KÞ (emu/cm3) nBðmBÞ Tc (K)

Fe bcc 1707 1740 2.22 1043
Co hcp, fcc 1440 1446 1.72 1388
Ni fcc 485 510 1.72 627
Gd hcp — 2060 7.63 292
Dy hcp — 2920 10.2 88
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For T > TN the susceptibility is given by

w ¼ 2CT�2lC2

T2�ðlCÞ2 ¼ 2C

T þ lC
¼ 2C

T þTN
ð48hÞ

Figure 19 shows that this susceptibility has a cusp
at the Neel temperature. Table 4 summarizes Neel
temperatures for some simple antiferromagnets
(O’Handley, 2000).

Ferrites

The mean field theory for antiferromagnets is easily
generalized to simple AB ferrimagnetic alloys. Here the
magnitude of the moment on the A and B sublattices
need not be the same and therefore CA 6¼ CB in the limit
as Ha !0; the determinant of the coefficients is

T lCB

lCA T

����
���� ¼ 0 ð49aÞ

and the ferrimagnetic order temperature is determined
to be

TN ¼ ðlCAlCBÞ1=2 ð49bÞ

The magnetic susceptibility for T > TN becomes

w ¼ ðCA þCBÞT�2lCACB

T2�T2
N

ð49cÞ

with curvature in 1
w versus T characteristic of a

ferrimagnet.
The mean field theory for spinel ferrimagnets can be

evenricher. Inthespinelstructure,magneticcationsmay
occupy octahedral A or tetrahedral B sites and are close
enough that A–A, A–B, andB–Bmeanfields are possible.

Since the signs of all of the Weiss interactions are nega-
tive, if the A and B sites couple antiferromagnetically,
then the A–A and B–B pairs align parallel.

The mean field theory of magnetic ordering in spinels
considers the magnetic exchange interactions between
cations. The mean field theory of ferrimagnetism can be
extended to account for A–A, A–B, and B–B interactions
in ferrites. The Neel theory of two-sublattice ferrimag-
netism is used to consider A–A, A–B, and B–B interac-
tions instead of the simple A–B interactions discussed
earlier. In this case themean field theory is expressed as

~H
int

A ¼�lAA ~M A�lBA ~MB; ~H
int

B ¼�lAB ~M A�lBB ~MB ð50Þ

With three mean field parameters, solutions to the
mean field equations give rise to a variety of different
temperature dependences for the magnetization, M(T).
Louis Neel solved the mean field equations to describe
six different T dependences for the magnetization. Pos-
sible ground-state configurations for the dipole
moments can be made even further complicated if one
allows for noncollinear dipole moments (not parallel or
antiparallel). This is considered in theYafet–Kittel theory
that describes triangular spin configurations in ferrites.
Table 5 summarizes room-temperature saturationmag-
netizations and Neel temperatures for selected spinel
ferrites (O’Handley, 1987).

EXCHANGE THEORY

Exchange is an atomic quantum mechanical phenome-
non that describes the origins of the internal fields.
Heisenberg exchange theory considers a local (nearest

T
TN

–TN

T

χ 1/χ

(a) (b)

Figure 19. (a) Tdependence of themagnetic
susceptibility for an antiferromagnetic
material and (b) inverse susceptibility as a
function of T.

Table 4. Neel Temperatures for Some Simple
Antiferromagnets

Material TN ðKÞ
NiO 600
Cr 311
Mn 95
FeO 198

Table 5. Room-Temperature Saturation Magnetizations and
Neel Temperatures for Selected Spinel Ferrites (O’Handley,
2000)

Element
Msð290KÞ
(emu/cm3) nB (mB) TN (K)

(Mn O)Fe2O3 410 5.0 573
(FeO)Fe2O3 480 4.1 858
(CoO)Fe2O3 — 3.2 —
(NiO)Fe2O3 270 2.4 858
(CuO)Fe2O3 135 1.3 728
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neighbor) interaction between atomic moments (spins)
that acts to align adjacentmoments in the absence of an
applied field. Various types of exchange interactions
exist in materials. These can be divided into direct
exchange and mediated (indirect) exchange. Direct
exchange results from the direct overlap of the orbitals
responsible for atomic dipole moments. Indirect
exchange mechanisms include those mediated by over-
lap between the magnetic orbitals and nonmagnetic
orbitals on the same or other species. The superex-
change mechanism involves overlap between magnetic
orbitals and theporbitals on intervening oxygen or other
anions. RKKY interactions are those mediated through
the conduction electrons. Exchange determines the
strength of the coupling between dipoles and therefore
the temperature dependence of the magnetization.
The term random exchange refers to the weakening of
exchange interactions by disorder and its consequent
effects on the temperature dependence of the
magnetization.

Heisenberg Exchange Theory

Heisenberg exchange theory (Heisenberg, 1928) consid-
ers a local (nearest neighbor) interaction between atomic
moments (spins) that acts to align adjacent moments
even in the absence of a field. The Heisenberg model
considers ferromagnetism and the defining spontane-
ous magnetization to result from nearest neighbor
exchange interactions that act to align spins in a parallel
configuration. The Heisenberg model can be further
generalized to account for atomic moments of different
magnitude, that is, in alloys, and for exchange interac-
tions that act to align nearest neighbor moments in an
antiparallel fashion or in a noncollinear relationship.
Let us consider first the Heisenberg ferromagnet. Here
we assume that the atomic moments on nearest neigh-
bor sites are coupled by a nearest neighbor exchange
interaction giving rise to a potential energy:

Up ¼ Jex
~Si � ~Si þ1 ð51aÞ

between identical spins at sites iand i þ 1 in a1D lattice.
For identical spins:

Up ¼ �2JexS
2 cosyi;i þ1 ð51bÞ

which for Jex > 0 favors parallel spins. For a linear
chain of N spins (where N is large) or exploiting periodic,
Born–Von Karmon BC, the total internal energy is

Up ¼ �2JexS
2
XN
i¼1

cosyi;i þ1 ð51cÞ

which for Jex > 0 is minimized for a configuration in
whichall the spinsarealigned inaparallel ferromagnetic
configuration.

Combining mean field theory and the Heisenberg
model, the Curie temperature can be estimated. A
statistical mechanical description of exchange has
been developed within the context of the Ising model.
One of the results of this model allows us to associate
the exchange interaction with the Weiss molecular field
of mean field theory. This results in the following
relationship:

l ¼ ZJex

4Nm0m2B
ð52Þ

Thus, larger exchange interactions result inhigherCurie
temperatures. This allows us to use the results of mean
field theory to express the T dependence of the magne-
tization. For spin-only angular momentum this is

MðT Þ ¼ M0 tanh
m0mB
kBT

H þ ZJexM

4Nm0mB

� �� �
ð53Þ

and similar expressions for the Langevin and Brillouin
functions for classical and total angular momentum
models.

Exchange interactions result from the spatially
dependent energy functional for electrons with parallel
or antiparallel spins (or canted spins in more compli-
cated models). For the hydrogen molecule, for example,
as shown in Figure 20a the configuration with electron
spins aligned parallel is stable at larger interatomic
separations and that aligned antiparallel at smaller
interatomic separations. The choice of spin configura-
tion depends on the relationship between the crossover
radius and the equilibrium separation of the atoms.

The famous Bethe–Slater curve (Bethe and Sommer-
feld, 1984;Slater,1930) (Fig. 20b)predicts thesignof the

(a) (b)

Parallel

Antiparallel

2.0

1.6

1.2

0.8

0.4

0.0
0         1         2         3          4         5          6

r (arbitrary)

U
 (a

rb
itr

ar
y)

Interatomic distance (D/d)

Ex
ch

an
ge

 in
te

gr
al

γ
Mn

α

-Fe

-Fe
Co

Ni
Gd

1.5 1.75 2.0

+

−

0

2.25

Figure 20. (a) Energies for parallel and
antiparallel spins in the hydrogen molecule
as a function of interatomic separation and
(b) the Bethe–Slater curve predicting the
sign of the exchange interaction in 3d
transition metal solids (Bethe and
Sommerfeld, 1984; Slater, 1930).
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exchange interaction in 3d transition metal solids. The
interplay between electron–electron Coulomb interac-
tions and the constraints of the Pauli exclusion principle
determine the sign of the exchange interaction. In tran-
sition metal solids a measure of the overlap between
nearest neighbor d orbitals is given by the ratio of the
atomic to the 3d ionic (or nearest neighbor) radius.
The Bethe–Slater curve provides an empirical descrip-
tionof the exchange integral as a functionof composition
(or more accurately, with interatomic spacing to 3d
orbital ratio). The ratio of the 3d ionic radius to the near
neighbor distance describes the amount of orbital over-
lap (or exchange).

At this point it is useful to repeat the Heisenberg
model predictions for other magnetic ground states. For
example, notice that if Jex < 0, an antiparallel configu-
ration for adjacent spins in a 1D chain is predicted,
consistent with an antiferromagnetic ground state as
shown in Figure 13b. We can deduce a ferrimagnetic
ground state as illustrated in Figure 13c and observed,
for example, for ferrites when we have Jex < 0 and two
magnetic sublattices, for example, a and b, for which
ma 6¼ mb. In 3D systems it is possible to relax the restric-
tions of nearest neighbor exchange and it is also possible
to have noncollinear exchange interactions as shown
in Figure 13d for a helimagnet. In certain ferrite systems
(e.g., Mn2O3) it has been observed that Mn atoms in
the octahedral and tetrahedral sites in fcc interstices
of the oxygen anion sublattice couple in a Yafet–Kittel
triangular spin configuration (Yafet and Kittel, 1952).

Superexchange

In the context of the ferrites and other oxides we may
distinguish between direct and indirect exchange. We
have described ferrimagnetic and Yafet–Kittel triangular
spin configurations between neighboring magnetic cat-
ion sites. This is an example of an indirect exchange
mechanism since it must be transmitted through inter-
vening nearest neighbor oxygen sites. In fact, the
exchange interaction is transmitted through overlap
between magnetic d orbitals on the cation sites and the
porbitals of oxygen (Neel, 1932). This particular porbital
transmitted indirect exchange interaction is given the
name superexchange and illustrated in Figure 21.

The size of superexchange interactions depends on
thedistanceandangles of thed–p–dbonds in the crystal.
These are determined by the crystallography. Figure 22

illustrates the geometry of the superexchange
interactions in the spinel structure. The strongest
superexchange interactions occur for bond angles
approaching 180�.

RKKY Exchange

Another form of indirect exchange has recently been
shown to be important in, for example, rare earth metal
systems and in magnetic/nonmagnetic multilayers.
This exchange is the oscillatory RKKY exchange
(Fig. 23a) (Ruderman and Kittel, 1954; Kasuya, 1984;
Yosida, 1957) that is mediated through the conduction
electron gas often associated with nonmagnetic atoms
but sometimes associated, for example, with sp conduc-
tion electrons of the magnetic atoms in rare earths. This
indirect exchange is transmitted by polarization of the
free electron gas. The free electron sea can be charac-
terized by a wavevector called the Fermi wavevector that
is defined as

kF ¼ 3p2N
V

� �1=3
ð54Þ

where N
V is the number of free electrons per unit volume.

Examples of magnetic systems coupling through
RKKY interactions include the rare earths. In these
the Hund’s rule ground state is determined by 4f elec-
trons that are very localized, that is, close to the nucleus
andshieldedbyconductionelectrons. Therefore, there is
no direct exchange since 4f states do not overlap
from site to site. Instead coupling occurs through free
electrons. 4f dipole moments in rare earth elements
polarize the free electrons around them; these in turn
communicate the information to 4f dipole moments
on adjacent sites. Coupling through the conduction
electrons is influenced by Friedel oscillations in the
conduction electron spin density.

d  p d

– –
–

–

–

Figure 21. Superexchange interaction of magnetic cation d
orbitals mediated by an O p orbital.
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In describing RKKY interactions we consider a polar-
ization plane wave emanating from a magnetic ion at a
position r ¼ 0. The first waves influenced by a polarizing
field are those with wavevector k ¼ kF and therefore the
sign of the exchange interaction oscillates spatially like
cosð~kF �~r Þaswell asdecayingexponentially asa function
of r. To determine the sign of the indirect exchange
interaction between the magnetic ion at r ¼ 0 and at
r ¼ r we calculate cosð~kF �~r Þ. The RKKY exchange is
weaker inmagnitude and oscillates in sign spatially and
can be described as

JRKKY ¼ J0ðrÞcosð~kF �~r Þ ð55Þ

where the prefactor J0ðrÞ decays exponentially with r.
RKKY interactions are important in a variety of thin

film magnetic multilayer devices such as spin valves.
These have interactions between 2D ferromagnetic
layers that are coupled through a conducting layer
(Fig. 23b). By varying the thickness of the conducting
layer, the sign and magnitude of the exchange interac-
tion can be varied.

Random Exchange

Because of large deviations in interatomic spacings in
amorphous alloys as compared with bulk crystalline,
they have distributed exchange interactions that alter
the mean field description of the temperature depen-
dence of the magnetization, M(T) (Chien, 1978;
Kaneyoshi, 1984). A mean field theory for the T depen-

dence of the magnetization in amorphous alloys has
been proposed by Kobe (1969) and Handrich (1969).
In this Handrich–Kobe theory was proposed an expres-
sion for the reduced magnetization mðT Þ ¼ MðT Þ

Mð0KÞ that
consisted of amodified Brillouin function where a single
exchange parameter was replaced by an exchange
parameter reflecting thedistribution of nearest neighbor
positions in the amorphous phase. This is expressed
as follows:

mðT Þ ¼ 1

2
ðBs ð1þ dÞx½ � þBs ð1�dÞx½ �Þ ð56aÞ

where

x ¼ 3S

Sþ1

m

T
; t ¼ T

Tc
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDJ2

exi
hJexi2

s
ð56bÞ

The first expression is the argument of a conventional
(spin-only) Brillouin function. The exchange fluctuation
parameter, d, is defined by the second expression. This
parameterizes the root mean square (rms) fluctuation
in the exchange interaction. The root mean square
exchange fluctuation has been suggested to have a T
dependence of the form (Bhatnagar, 1984) d ¼ d0ð1�t2Þ.
Figure 24a compares mean field results for M(T) in the
classical, spin-only, and total angularmomentumrepre-
sentations. Figure 24b showsmean field results forM(T)
taking into account the disorder-induced fluctuations
in the exchange parameter in hypothetical amorphous
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alloys. This construction then predicts a quite remark-
able change in the mean field theory thermomagnetic
response for amorphous magnets.

The T dependence of the magnetization for
Fe88Zr7B4Cu amorphous alloy has been measured by
Gallagher et al. (1999). A two-parameter exchange
fluctuation mean field theory is shown to give signifi-
cantly better fits than the single-parameter
Handrich–Kobe model to m(T) for these amorphous
alloys. The deviation in atomic nearest neighbor (NN)
distances in this amorphous alloy was estimated from
X-ray scattering data. The Bethe–Slater curve was
used to estimate fluctuations in the exchange interac-
tion. An explanation for the relative invariance ofM(T) in
disordered Co-based alloys as compared with Fe-based
alloys was proposed and good qualitative agreement of
the model and experimental data has been demon-
strated. The modification made to the Handrich–Kobe
(Kobe, 1969; Handrich, 1969) equation allowed for two d
parameters, dþ and d� (Fig. 25). The new equation is as
follows:

mðT Þ ¼ 1

2
ðBs ð1þ dþ Þx½ � þBs ð1�d�Þx½ �Þ ð57Þ

where dþ and d� are not necessarily the same and
therefore can act as a first-order fit to an asymmetric
distribution function. The Gallagher (Gallagher
et al.,1999) model gives a better quantitative fit to the
temperature dependence of the magnetization.

MICROSCOPIC MAGNETIZATION AND DOMAINS

A magnetic domain is macroscopic volumes over which
atomic magnetic moments are aligned. For a ferromag-
net, when Ha ¼ 0, the existence of a spontaneous mag-
netization requires the existence of domains. It is per-
haps surprising that ferromagnetic materials can exist
in a “virgin state” for which the magnetization is zero in
the absence of an applied field. This is understood by
ferromagnetic domain theory. In a typical magnetic

material amacroscopic volume containsmanydomains.
Each domain has a spontaneous magnetization of mag-
nitude, Ms. In the absence of an applied field the mag-
netization vectors are randomly aligned from domain to
domain (just like in a paramagnet atomic dipoles were
random). Taking a vector sum of the magnetization over
many domains yields zero sample magnetization
because of vector cancellation.

We can qualitatively understand this by recognizing
that magnetic flux line leaves the north pole of a magnet
and enters the south pole. This gives rise to a field
outside themagnet, thedemagnetizationfield,Hd,which
would like to misalign the dipole moments in the fer-
romagnet. It requires internal energy to maintain the
alignment of the dipoles.

A configuration for which the demagnetization field is
reducedwill lower the total energy of the system. For two
domains (Fig. 26)we significantly reduce the returnpath
that is necessary to be taken by fringing fields. By apply-
ing successively more domains we can further reduce
the magnetostatic self-energy to nearly zero. In the case
where we have two long domains and two closure
domains the magnetization makes a nearly circuitous
path reducing the demagnetization field to nearly zero.
There is no free lunch, though. Each boundary between
domains requires that we pay an energy associated with
a domain wall. The configuration of domains and walls
ultimately depends on the balancing of these two
energies.

CONCLUSIONS

The basic notions of magnetic dipole moments and
magnetization in solids have been summarized. In par-
ticular, the origin of magnetic dipoles from an atomic, a
band structure, and a shielding current (superconduc-
tors) picture has been described. The coupling of
magnetic dipoles, the field and temperature dependence
of themagnetization, and simplemagnetic phase transi-
tions have been illustrated. This serves to define
certain basic magnetic phenomena that will be elabo-
rated on, illustrated, and extended in subsequent
units. Magnetic phenomena are rich and varied; the
fundamental principles of the origin, coupling, and
vector summation of magnetic dipole moments are at
the heart of a comprehensive understanding ofmagnetic
phenomena.
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