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Abstract
The CALPHAD (calculations of phase diagrams) method is used to examine
the effects of applied magnetic fields on the α/γ phase boundary in the
Fe–Si system in the paramagnetic state. The reported susceptibility data for
pure Fe is first re-evaluated. The contributions to the total Gibbs energy of
the ferrite (α) and austenite (γ ) from the external fields are calculated based
on the Curie–Weiss law and the re-evaluated susceptibility data. The Fe–Si
phase diagram on the Fe-rich side as a function of applied field is calculated
using the Thermo-Calc™ package. With increasing field strength, the γ loop
shrinks monotonically; that is, the α/γ -Fe transition temperature increases
while that for γ /δ-Fe transition decreases, albeit more slowly. Finally, in
conformance with the existing CALPHAD databank, Redlich–Kister
polynomials are proposed to account for the compositional and temperature
dependence of the contribution to the total Gibbs energy from the applied
field in the paramagnetic state in the range over which the Curie–Weiss law
is obeyed.

1. Introduction

Modification of thermo-mechanical processing by magnetic
fields has been growing substantially in the last decade
[1–20]. The goal of such processing is to achieve superior
material properties that cannot be obtained through the more
conventional thermo-mechanical treatments. This is possible
because strong magnetic fields can significantly change the
phase stability, phase boundaries [1, 4, 5–9, 12, 13, 15, 19 , 20]
and also phase transformation kinetics [14, 19, 20], where the
phases involved exhibit different magnetization responses. A
variety of theoretical approaches have been taken to study the
effect of external magnetic fields on phase transformations
[1, 3, 8–10, 12, 13, 15], but a systematic approach that uses
computational phase diagram predictions under the influence
of applied fields has not yet been reported. The present
authors are studying the effect of applied magnetic fields on the
recrystallization and grain growth behaviour in Fe-1Si (in wt%)

3 Author to whom any correspondence should be addressed.

alloy [18], and they believe that magnetization (due to internal
magnetic state and external applied magnetic field) plays an
important role in solute segregation at grain boundaries (GB)
and therefore grain growth kinetics. Since solute segregation
is closely related to bulk thermodynamics, investigation of the
effect of external magnetic fields on the bulk thermodynamics
is evidently appropriate.

It is well known that Si is a very strong bcc (α) stabilizer
since alloying Fe with Si decreases the Gibbs energy of the α

phase (mainly through the enthalpy) much more significantly
than it does that of the γ phase. As a result, a closed γ loop
is observed in the temperature-composition phase diagram,
as shown in figure 1. The region of the two-phase field
between the α and γ phases spans a very narrow composition
range because the Gibbs energy-composition curves of (solid
solution) α and γ phases in the Fe–Si system are similar in that
region (see figure 2). In relation to the Fe-1Si composition, it is
sufficient to focus on the γ loop in order to evaluate the effect
of an applied magnetic field. Pure bcc-Fe is ferromagnetic
with a Curie temperature of ∼770 ◦C which drops rapidly
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Figure 1. Calculated Fe-rich Fe–Si phase diagram without external
magnetic field, using the thermodynamic descriptions from [35].
Dashed line separates the disordered bcc-A2 and ordered bcc-B2
phase. Dotted line shows the calculated ferromagnetic Curie
temperature.

with increasing Si content. Pure fcc-Fe is paramagnetic
in the temperature ranges within which it is stable. Since
the γ loop (�912 ◦C and Si �4 at.%) involves temperatures
that are well above the Curie temperature of α, the current
investigation focuses on the paramagnetic behaviour of both
the α and γ phases under an applied external magnetic field
and its effect on the loop. However, the method adopted
can be applied in principle to other paramagnetic systems
where the Curie–Weiss law is obeyed. Since the magnetic
susceptibility of the α phase is much larger than that of the
γ phase, it is reasonable that the γ loop shrinks progressively
with increasing applied field strength, since the Gibbs energy
of the α phase is lowered more than that of the γ phase by
applied magnetic fields.

Polymorphic transitions in pure Fe and in the Fe–C
system were previously investigated by Guo and Enomoto
[8, 9], Hao and Ohtsuka [12] and Joo et al [13]. These
studies used the Weiss molecular field (WMF) theory together
with the Curie–Weiss law to evaluate the change in Gibbs
energy of the individual phases involved and calculate an
equilibrium phase diagram especially Fe–C and Fe–C-TM
(TM signifies transition metals) with applied magnetic fields.
Not surprisingly, their results appear to be similar since the
same methodologies and the same susceptibility data were
used. A commonly accepted estimate on the effect of magnetic
field is that the phase boundaries change by about 1 ◦C T−1 of
applied field [15]. Hao and Ohtsuka [12] reported a value
0.8 ◦C T−1 for the phase boundary between bcc and fcc of
pure Fe in the paramagnetic state when the applied filed is
low (�10 T). In this report, the paramagnetic susceptibility
data of pure Fe in its bcc and fcc structures [21–27] is first
re-evaluated. The new susceptibility values as a function of
temperature are then used to calculate the Gibbs energy change
due to applied magnetic fields based upon the Curie–Weiss
law. The change in Gibbs energy as a function of temperature,
while holding the field strength constant, is inserted into the

CALPHAD database. Finally, Thermo-Calc
TM

[28] was used

Figure 2. (a) The Gibbs energy-composition plot of solid solution α
(bcc A2) and γ (fcc A1) phases in the Fe–Si system at 1150 ◦C
without external magnetic field, using the thermodynamic
database [35]. Since their Gibbs energies are similar for the same
composition in the Fe-rich side, the 2-phase field of α and β phases
spans a very narrow composition range (see figure 1). (b) The Gibbs
energy difference between in α and γ phases with varying field
strength at 1150 ◦C. As increasing field strength, the α phase
becomes progressively more stable than the γ phase. The arrow
marks the T0 point.

to calculate new Fe–Si equilibrium phase diagrams under the
influence of an applied magnetic field.

2. Thermodynamic models

In the framework of the CALPHAD method, the Gibbs energy
of individual phases without an applied external (magnetic or
electrical) field is described by sublattice models [29, 30] and
is defined relative to the stable element reference (SER), i.e.
the enthalpies of the pure elements in their defined reference
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phase at 298.15 K and 1 atm. For example, the total Gibbs
energy of a solid solution φ phase in the Fe–Si system
without an external field consists of two parts, namely, the
contribution from the non-magnetic state (�Gnon−mag, the sum
of the first 3 terms in equation (1)) and from the internal
magnetic state (�G

mag
int ), the 4th term in equation (1)) where it

cannot be ignored (e.g. ferromagnetic, antiferromagentic and
paramagnetic materials):

G
φ

Fe,Si =
∑

i=Fe,Si

xi
oG

φ

i + RT
∑

i=Fe,Si

xi ln xi + exG
φ

Fe,Si + magG
φ

int.

(1)
where oG

φ

i is the molar Gibbs energy of the pure element i

in the structure of phase φ in the non-magnetic state, taken
from the values tabulated by Dinsdale [31], and xi is the mole
fraction of each component. The excess Gibbs energy exG

φ

Fe,Si
is expressed in Redlich–Kister polynomial form [32]

exG
φ

Fe,Si = xFexSi

k∑
k=0

kL
φ

Fe,Si(xFe − xSi)
k, (2)

where kL
φ

Fe,Si are the binary interaction parameters and are
typically modelled as

kL
φ

Fe,Si = ka + kbT + kcT ln(T ) + · · · . (3)

The internal magnetic contribution to the Gibbs energy
(magG

φ

int) without an applied external field is described in
[33, 34] as

magG
φ

int = RT ln(β + 1)f (τ ), (4)

where β is the Bohr magnetic moment per mole of atoms,
τ = T/TC and TC is defined as the critical temperature for
magnetic ordering (i.e. the Curie or Néel temperature). f (τ)

is a polynomial function given in [34]. For solid solution phase
φ (e.g. the fcc or bcc phase in the Fe–Si system ), both TC and
β are composition dependent:

T
φ

C =
∑

i=Fe,Si

xiTCi + xFexSi

k∑
k=0

kTCFe,Si(xFe − xSi)
k, (5)

βφ =
∑

i=Fe,Si

xiβi + xFexSi

k∑
k=0

kβFe,Si(xFe − xSi)
k, (6)

where TCi and βi are the corresponding parameters of the
pure elements, and TCFe,Si and βFe,Si are the binary magnetic
interaction parameters. The Fe–Si binary system was assessed
thermodynamically by Lacques and Sundman [35], and their
assessed thermodynamic descriptions without an applied
external field were adopted directly in the current study.

When an external magnetic field is applied, there is an
additional contribution to the total Gibbs energy of the φ phase,
�G

mag
ext , and the total Gibbs energy for the φ phase becomes

Gtot = �Gnon−mag + �G
mag
int + �G

mag
ext . (7)

If it is assumed that �Gnon−mag and �G
mag
int are not affected

significantly by the field, then they can be taken directly from
the available thermodynamic databases without modification.
Therefore, the key is to determine �G

mag
ext

�G
mag
ext = −µ0

∫ H

0
M dH. (8)

Here, M is the magnetization, H is the applied field strength
and µ0 is the vacuum permeability (depending on the units
used for M and H µ0 may or may not appear in equation (8)).
When the applied field strength is small, M and H obey a linear
relationship in χ , the magnetic susceptibility

M = χH. (9)

If the material of interest is paramagnetic and obeys the Curie–
Weiss law [36], then χ can be determined as

χ = C/(T − θc), (10)

where, C is the Curie–Weiss constant [36]; θc is a
paramagnetic/asymptotic Curie temperature constant, both
dependent on alloy composition for a solution phase [36]. Pure
Fe [21–27], Fe–Si alloys [21] and many other paramagnetic
materials [36] have been reported to obey the Curie–Weiss
law in their paramagnetic state (also shown in figure 3 in this
report). Therefore, for cases where the magnetic susceptibility
does not vary significantly with applied field strength so
that the Curie–Weiss law is still valid, the contribution to
the Gibbs energy from applied field can be computed by
substituting equation (9) into equation (8) and then performing
the integration

�G
mag
ext = −1

2
µ0χH 2. (11)

3. Results and discussion

Since the bcc-Fe, fcc-Fe and bcc Fe–Si alloys of interest all
obey the Curie–Weiss law [21–27], �G

mag
ext can be calculated

directly from equation (11) provided that the law is still valid
under the applied field. Since a set of reasonable values of the
susceptibility for pure Fe is critical to the value of �G

mag
ext of

Fe and Fe–Si systems and there are more reported values for
pure Fe than evaluated in [21], it is necessary to re-evaluate
these values. Figure 3 plots the inverse value of paramagnetic
susceptibility of α-, γ - and δ-Fe as a function of temperature.
The values for α-Fe appear to be very consistent, but the scatter
in the values for γ -Fe and δ-Fe is apparent (especially for γ -
Fe). The commonly accepted relationship for α-Fe [21, 22]
was originally reviewed in [21] as follows:

χα = 2.2 × 10−2

T − 1093
[cm3 g−1] (12)

However, the values used in equation (12) is not in good
agreement with experimental data for α-Fe (see the dashed
line in figure 3), although it agrees well with the experimental
data for δ-Fe reported by Sucksmith and Pearce [25]. Further,
equation (12) predicts that the susceptibility goes to zero
at T = 820 ◦C whereas the experimental value is 9.52 ×
10−4 [cm3 g−1] [21] at that temperature. Since both α- and
δ-Fe have the same bcc crystal structure and both obey the
Curie–Weiss law, it is reasonable to assume that both should
have the same values of C and θc, since they are essentially
the same phase. Therefore, it is reasonable to enquire whether
the poor agreement of equation (12) with experimental values
of χ for α-Fe is due solely to inaccurate linear regression
treatment, especially considering that there were few reports
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Figure 3. The inverse paramagnetic susceptibility of bcc (α and δ) and fcc (γ ) Fe [21–27]. The dashed line represents the regression line
evaluated by Arajs and Miller [21] and [22] (also shown in equation (12) in this report for convenience). The solid regression lines are for
bcc and fcc Fe re-evaluated in this study.

on the susceptibility of δ-Fe when [21] was written. Since
Arajs and Miller used zone-refined Fe with ultra high purity,
they determined that the α/γ transition occurs at 910 ◦C and
their susceptibility data appear to be self consistent (figure 3).
Therefore, their data set was used to re-evaluate the values of C

and θc for bcc-Fe (α- and δ-Fe) together with the susceptibility
data of Terry [24] and Briane [26]. The values in the vicinity of
the α/γ -Fe phase transition and at T � 820 ◦C were not used,
because the former may not be reliable due to the allotropic
phase transformation and the latter starts to deviate from the
Curie–Weiss law. The re-evaluated susceptibility for bcc-Fe is
given in equation (13) (see the regression line in figure 3):

χα = 2.33 × 10−2

T − 1078
[cm3g−1] (13)

Note that equation (13) is only valid when T > 1084 K,
since for temperatures close to (i.e. T − Tc �∼ 40 K) the
ferromagnetic Curie temperature, 1044.1 K, the paramagnetic
susceptibility deviates from the Curie–Weiss law as shown in
equation (14) [23]:

χα = K (T − 1044.1)−1.33 [cm3 g−1] (14)

The values of C and θc for γ -Fe are not reported in [21, 22].
In this study they were obtained by linear regression on the
susceptibility data of γ -Fe measured by Arajs and Miller [21]:

χγ = 1.33 × 10−1

T + 3451
[cm3 g−1] (15)

Both C and θc for bcc Fe–Si alloys depend on the Si content,
but their compositional dependence is rather weak at low Si

contents (�5.57 at.%) [21]. The Thermo-Calc
TM

package does
not currently allow a user to introduce an extra contribution to
the Gibbs free energy that varies with composition into the
GES module and subsequently compute phase equilibria to
map out a new phase diagram in the POLY3 module; such

a capability would require modification of its core program
codes [37].4 Therefore, the compositional dependence of
the susceptibility was ignored in this study. In fact, the γ

phase in interest has a maximum solubility of <4 at.% Si
without applied field. However, it must be pointed that in
order to compute the other phase boundaries such as α-Fe–
Si/α2/α1/Fe5Si3 etc the compositional dependence must be
taken into account because it is too significant to be ignored.
With this simplification, the change in Gibbs free energy due to
applied field in pure Fe in the paramagnetic state atT � 1084 K
is calculated from equations (16)5 and (17):

�Gα
ext = −1.0293 × 10−11

T − 1078
H 2 [J mol−1] (16)

�G
γ
ext = −5.8735 × 10−11

T + 3451
H 2 [J mol−1]. (17)

The calculated Gibbs energy change due to applied field of
H = 15, 30 and 50 T for α and γ Fe are illustrated figure 4. As
expected, it is always significantly more negative for the bcc-Fe
than for the fcc-Fe; thus the external magnetic energy to the α

phase dominates the phase relations with field. The external
magnetic energy is significant at relatively low temperatures for
the α phase and then levels off steadily with rising temperature.
The temperature effect on paramagnetic fcc-Fe is negligible
since it follows a linear relationship for varying field strength.

The effect of the applied field on the allotropic α/γ -Fe
transition is shown in figure 5(a), and only the Gibbs energy
difference between bcc (α and δ) and fcc (γ )-Fe is plotted
instead of their individual values which are too close to
be distinguished. The location of the invariant α ↔ γ

transition temperature was determined from the zero point of

4 More details about GES and POLY3 modules can be found in the User’s
Guide of Thermo-Calc

TM
. It can be downloaded from www.thermocalc.com.

5 Field strength: 1[T] = 104 [Oe] = 7.958 × 105 [Am−1]. Mass
susceptibility: 1 cm3 g−1 [CGS] = 4π × 10−3 m3 kg−1 [ISO].
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Figure 4. External magnetic energy to (a) bcc-α and (b) fcc-γ
phases of pure Fe with varying field strength.

the energy difference. The calculated invariant temperature of
the allotropic bcc↔fcc transitions versus field strength is listed
in table 1 and also plotted in figure 5(b). The hypothetical field
strength (>50 T) is included in the plots to show the general
trend. The calculated invariant temperatures are all smaller
than previously calculated values for respective field strength
[7–9, 13]. The reasons for the difference are a consequence
of (1) current report used experimentally determined values
of susceptibility of α-Fe; (2) the fact that Enomoto et al [9]
ignored the effect of external field on the γ -Fe; (3) Enomoto
et al [9] and Joo [7,13] used a more simplified thermal energy
description for pure Fe.

The calculated Gibbs energy (including �Gnon−mag,
�G

mag
int and �G

mag
ext ) difference between the bcc and fcc phases

in Fe–Si system is shown in figure 2(b). With increasing
field strength, the bcc phase becomes more stable with respect
to the fcc phase and the T0 point (defined as where their

Figure 5. (a) Change in molar Gibbs energy difference (i.e.
�Gfcc–bcc) between bcc-Fe and fcc-Fe, versus temperature with
varying field strength of H = 0, 30, 50 and 90 T. The temperature of
the polymorphous transitions of α ↔ γ and γ ↔ δ is defined by the
arrows where �G = Gfcc − Gfcc = 0 (note µφ = Gφ for a
single-component system). Note that fcc-Fe eventually becomes
unstable when a hypothetical strength of H = 90 T is applied.
(b) Change in the bcc–fcc transition temperature of Fe due to
applied field.

Gibbs energies are equal) is shifted towards Si-poor side. The
predicted Fe–Si γ loop with varying field strength is shown
in figure 6. As expected, the γ loop shrinks steadily with
increasing field strength, but a low field strength �20 T appears
to have very small effect on the γ loop. It is not surprising
that the effect of the field is more pronounced in the lower
temperature portion of the γ loop, and that the change in
the α/γ phase transition is much more significant than the
γ /δ phase transition of Fe (see figure 6 and also table 1).
The γ phase eventually becomes unstable with respect to
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per cent Si

Figure 6. The resulting γ loop in the Fe–Si system with varying field strength of (a) H = 0, (b) 20, (c) 30, (d) 40, (e) 50, (f) 60, (g) 70,
(h) 80 T, respectively. The γ loop without field is shown as solid curve. As the field strength increases, it shrinks progressively, and its nose
is shifted towards higher temperatures and lower Si contents.

Table 1. The bcc–fcc phase transition temperatures in pure Fe with
varying field strength, calculated using Thermo-CalcT M . The
re-evaluated paramagnetic susceptibility for pure Fe,
χ bcc = (2.33 × 10−2)/(T − 1078) [cm3 g−1], is used.

Strength (T ) temperature (◦C)

T α↔γ T γ↔δ

0 912 1394
5 913 1394

10 918 1394
15 925 1393
20 933 1391
30 956 1387
40 982 1381
50 1013 1373
60 1048 1361
70 1089 1344
80 1141 1317
85 1177 1294

the α phase (as a function of temperature and Si contents)
when a hypothetically high field of H � 85 T is applied,
and then an Fe–Si electrical steel would ‘virtually’ experience
no phase transformations at all during thermo-mechanical
processing assisted by magnetic field. A previous report [8]
predicted that γ -Fe becomes unstable with respect to α-Fe at
any temperatures with a high field �100 T, but this is likely
an overestimation of the effect of the field due to the reasons
aforementioned.

As magnetic thermo-mechanical processing emerges as a
novel tool for inventing new classes of materials of superior
properties, the capability of predicting the changes in alloy
phase diagrams under external magnetic field becomes very
important for the design of alloys and their processing. The
effect of applied magnetic fields on the stability of the γ loop
in Fe–Si system appears not to be significant up to a field
strength of 50 T because the competing phases of both bcc and
fcc solid solution are all paramagnetic. However, the situation
would be very different when the system of interest could
involve a ferromagnetic phase (T � Tc, the ferromagnetic
Curie temperature); again, the phase boundaries can be
shifted significantly [1, 4–7, 12, 13, 16, 19, 20] but additional
evaluation of Gibbs energy changes under applied field would
have to be performed. Also, the phase transformation
kinetics can be affected significantly because of the changes in
driving forces and atomic diffusivities [14, 19]. Therefore,
it is important to develop computational tools to predict
phase stability under external magnetic fields and to be
able to compute phase diagrams. In order to do so, the
first step is to develop a constitutive equation involving
magnetization with applied field that is appropriate for
incorporation into the current CALPHAD methodology for
rapidly optimizing phase thermodynamic parameters with
reasonable accuracy, covering the whole temperature range
(i.e. from room temperature to the liquid phase). An
immediately available equation is Weiss molecular field theory
(WMF) that describes magnetization response with applied
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field through the Brillouin function [see [9, 13, 36] for
details]. A direct comparison between WMF prediction and
experiments is rare because so few experiments have been
performed. Recently, however, Hao and Ohtsuka reported that
the WMF theory underestimates the magnetization of Fe–C
alloys [12]. Therefore a comprehensive examination on WMF
predictions should be made before it is developed to calculate
phase diagrams with applied field.

However, when the system concerned is paramagnetic
(the temperature concerned is well above the critical order-
ing temperature, ferromagnetic Curie temperature for ferro-
magnetic materials, Néel temperature for antiferromagnetic
materials) and the materials obey the Curie–Weiss law, then
the computation of phase equilibria with applied field becomes
more straightforward. The change in the Gibbs energy due to
the field can be directly determined via equation (8). Although
some experimental susceptibility data may be available, its
compositional dependence must be taken into account. This
can be done through an optimization scheme in the CALPHAD
calculation engine (e.g. PARROT module) to quantify a set of
parameters to describe the compositional dependence of the
Curie constant C and the temperature constant θc. Specifically,
the current authors proposed that C and θc can be modelled in
the Redlich–Kister polynomial form [32] for an A–B binary
system:

C=
∑

i=A,B

xi
oCi + xAxB

k∑
i=0

kCA,B(xA − xB)k (18)

θc =
B∑

i=A

xi
oθc(i) + xAxB

k∑
i=0

kθc(A,B)(xA − xB)k. (19)

Here oCi is the Curie–Weiss constant for the pure component
i in the φ phase, and kCA,B is the interaction parameter of
order k (� 0) for the same φ phase of components A and B

for the Curie constant. oθc(i) is the paramagnetic/asymptotic
Curie temperature constant (in K) of the φ phase of pure
component i, and kθc(A,B) is the interaction parameter of
order k (�0) for the same φ phase of components A and
B for the critical temperature. xA and xB are the mole
fractions of components A and B, respectively, in the
φ phase.

4. Conclusions

We have applied the CALPHAD method to investigate the
effect of an external magnetic field on the Fe-rich Fe–Si system
based on the Curie–Weiss law and re-evaluated susceptibility
data [21–27]. A set of CALPHAD-consistent thermodynamic
descriptions for pure Fe with an applied field was developed in
the paramagnetic state. The calculated invariant temperatures
of bcc–fcc allotropic transformations with an applied field are
all smaller than previously calculated values for respective
field strength [7–9, 13]. The present results are more accurate
because current report used (1) better values of susceptibility
of Fe and (2) more robust computational tools. Finally, a
CALPHAD compatible model to reflect the compositional
dependence of the Curie–Weiss law is proposed in order
to combine external magnetic energy into well-developed
CALPHAD methodology [28].

Acknowledgments

MCG and ADR acknowledge financial support from the
Computational Materials Science Network, a program of the
Office of Science, US Department of Energy. MCG thanks
Q Chen for help with figure 2(b). Useful discussions with
Thermo-Calc Software Inc. staff including P Mason, Q Chen

and A Engström on the possibility to link Thermo-Calc
TM

with
external magnetic energy is acknowledged.

References

[1] Shimizu K and Kakeshita T 1989 ISIJ Int. 29 97–116
[2] Molodov D A, Gottstein G, Heringhaus F and

Shvindlerman L S 1998 Acta Mater. 46 5627–32
[3] de Oliveira N A 2003 J. Phys. Chem. Solids 64 1173–7
[4] Kakeshita T, Sato Y, Saburi T, Shimizu K, Matsuoka Y and

Kindo K 1999 Mater. Trans. JIM 40 100–6
[5] Koch C C 2000 Mat. Sci. Eng. A 287 213–18
[6] Choi J K, Ohtsuka H, Xu Y and Choo W Y 2000 Scr. Mater.

43 221–6
[7] Joo H D, Kim S U, Shin N S and Koo Y M 2000 Mater. Lett.

43 225–9
[8] Guo H and Enomoto M 2000 Mater. Trans. JIM 41 911–16
[9] Enomoto M, Guo H, Tazuke Y, Abe Y R and Shimotomai M

2001 Metall. Mater. Trans. A 32 445–53
[10] Sheiko L, Sadovoy A, Troschenkov Y and Kulyk O 2002

J. Phys. D: Appl. Phys. 35 1765–7
[11] Shimotomai M, Maruta K, Mine K and Matsui M 2003 Acta

Mater. 51 2921–32
[12] Hao X and Ohtsuka H 2004 Mater. Trans. JIM 45 2622–5
[13] Joo H D, Choi J K, Kim S U, Shin N S and Koo Y M 2004

Metall. Mater. Trans. A 35 1663–8
[14] Yang J and Goldstein J I 2004 Metall. Mater. Trans. A 35

1681–90
[15] Nicholson D M C et al 2004 J. Appl. Phys. 95 6580–2
[16] Zhang Y, Gey N, He C, Zhao X, Zuo L and Esling C 2004 Acta

Mater. 52 3467–74
[17] Molodov D A and Sheikh-Ali A D 2004 Acta Mater. 52

4377–83
[18] Bennett T A et al 2005 Solid State Phenol. 105 151–6
[19] Jaramillo R A et al 2005 Scr. Mater. 52 461–6
[20] Zhang Y D, Zhao X A, Bozzolo N, He C S, Zuo L A and

Esling C 2005 ISIJ Int. 45 913–17
[21] Arajs S and Miller D S 1960 J. Appl. Phys. 31 986-91
[22] Hellwege K H and Madelung O Landolt-Börstein 1986

Magnetic Properties of Metals vol 19 (Berlin: Springer)
pp 30–1

[23] Arajs S and Colvin R V 1964 J. Appl. Phys. 35 2424
[24] Terry E M 1917 Phys. Rev. 9 394
[25] Sucksmith W and Pearce R R 1938 Proc. R Soc. Lond. A 167

189–204
[26] Briane M 1972 C. R. Acad. Sci. Ser. B 275 673
[27] Nakagawa Y 1956 J. Phys. Soc. Japan 11 855
[28] Sundman B, Jansson B and Andersson J O 1985 CALPHAD 9

153–90
[29] Hillert M and Staffanson L I 1970 Acta Chem. Scand. 24

3618–26
[30] Hillert M 2001 J. Alloys Compounds 320 161–76
[31] Dinsdale A T 1991 CALPHAD 15 317–425
[32] Redlich O and Kister A T 1948 Ind. Eng. Chem. 40 345
[33] Inden G. Proc. Project Meeting CALPHAD V (Düsseldorf,

1976) p III.4.1
[34] Hillert M and Jarl M 1978 CALPHAD 2 227
[35] Lacques L and Sundman B 1990 Metall. Mater. Trans. A 22

2211–23
[36] Jiles D 1991 Introduction to Magnetism and Magnetic

Materials (London: Chapman and Hall)
[37] Chen Q, Mason P and Engström A private communication,

Thermo-Calc Software Inc

2896


	1. Introduction
	2. Thermodynamic models
	3. Results and discussion
	4. Conclusions
	 Acknowledgments
	 References

