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Abstract

An overview of some structural aspects of magnetic ordering is presented.  Magnetic
symmetry operations, point groups, and Bravais lattices will be utilized to describe the
magnetic symmetry of various magnetic materials.  Throughout the talk, the utilization of
the theory of magnetic symmetry will be emphasized.  The magnetic space groups of Fe,
Co, Ni, α’-FeCo, CoPt, CrPt3, and Cu2MnAl will be examined.

Introduction

One of the most interesting and perhaps most neglected phase transformations in the solid
state is the paramagnetic to ferromagnetic transformation.  One of the reasons for this is
that for many years in the metallurgical community, the transformation was not thought
to be a transformation at all!  Indeed the paramagnetic β phase in Fe was removed from
the iron phase diagrams and replaced with the symbol used for ferromagnetic α-Fe.  This
confusion amongst metallurgists arose from a faulty understanding of symmetry and its
relationship to “structure” and the definition of “phase”.

A common definition of phase is “…a portion of the system whose properties and
composition are homogeneous and which is physically distinct from other parts of the
system”1.  If we accept this definition it alone, demonstrates that that paramagnetic to
ferromagnetic “change” is indeed a phase change, since a paramagnetic phase has
different magnetic properties than a ferromagnetic phase.  In older definitions, a phase
was said to have a distinct “structure” and it is here where the problem arose.  As far as
could be determined by x-ray diffraction, the structure of ferromagnetic Fe was the same
as that of paramagnetic Fe.2  Thus no change of phase was thought to have occurred
when Fe lost its magnetism at the Curie temperature.  A good definition of a phase
includes the fact that each phase has a set of order parameters, (η1, η2, η3, …) which
specify its physical properties.3  Such order parameters include composition, structure,
atomic order parameter, magnetization, etc.  By including “order parameters” in the
definition of a phase it becomes clear that a discontinuous change in order parameter
occurs at a phase change.  If the change is from a zero value to an infinitesimal one, the
transformation is of higher order thermodynamically.  Such is the case for most
paramagnetic to ferromagnetic transformations.
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Even if the word “structure” is included explicitly in the definition, the paramagnetic to
ferromagnetic transition should be classified as a phase transformation.  This is because
there is a change in symmetry during the paramagnetic to ferromagnetic transition.  For
the case of Fe, this transformation causes a change from paramagnetic cubic β-Fe to
ferromagnetic tetragonal α-Fe.  The changes in symmetry during magnetic
transformations are the topic of this paper.

Symmetry Operations

Classical Symmetry Operations

It is well known that the following point symmetry operations are the only possible in a
three dimensional crystal:

N 1, 2, 3, 4, 6

Of these, five are called proper symmetry operations (or symmetry operations of the first
kind), since when operating on an object they do not change its handedness or chiralty.
These are 1, 2, 3, 4, and 6.  The remainder of the operations, known as improper
symmetry operations (or symmetry operations of the second kind), change the handedness
of an object on which they act.  A general point in classical crystallography is represented
by its three-dimensional co-ordinates x, y, z.4

Magnetic Symmetry Operations

When a magnetic moment is present in a crystal an additional type of symmetry operation
may be present, often denoted as ℜ .  This operation can be thought of as changing the
sign of the moment when it operates on an object that has a magnetic moment or spin.
Thus, the operation ℜ  changes the moment on the left to the one on the right of Figure 1.

Figure 1:  The magnetic moment on the left is converted to the one on the right by
the operation of the symmetry element ℜℜℜℜ ....

The antisymmetry operation, ℜ , can also be thought of as time inversion, as the ‘current’
denoted by the arrow in Figure 1, on the left would change to that on the right if time
were reversed.  It can be seen that the symmetry of a magnetic moment is ∞/mm’m’ (in
Curie limiting group notation).
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By using the ℜ  operation on each of the classical symmetry elements, a new set of
magnetic symmetry elements is formed.  These are represented as:

ℜ ⊗  n = n'   and   ℜ ⊗ n  = n '

Here, the symbol ⊗  represents the operation of ℜ  on the given symmetry operation.  For
example, Figure 2 shows the operation of ℜ  applied to a mirror plane, giving rise to the
symmetry operation m’.   Other examples of magnetic symmetry operations are shown in
Figure 3, where the operations 2' and 4' are represented in stereograms.

(a)

(b)
Figure 2:  Axial vector representations of the parallel and perpendicular m’

magnetic symmetry operation



Figure 3:  Stereograms of the 2’ and 4’ point groups of black/white symmetry

These new operations need not be magnetic ones.  They could be thought of as
ferroelectric ones (changing a plus polar vector into a minus polar vector) or changing the
color of an object from white to black etc.  Magnetic symmetry operations are a subgroup
to the black/white symmetry operations.5-9  In this type of crystallography a general point
is represented in four dimensions, namely, x, y, z, s, where s takes a value of +1 or -1.
The last digit could represent white & black, or two spins or plus and minus charge.  The
symmetry operation ℜ  is usually called the anti-identity operation since it changes one
type of site (with s = 1) into the other type (with s = -1).

Figure 4 illustrates the relationships of black/white symmetry.  The various “commas”
are related to each other by the symmetry operations 1, m, 1' and m' as depicted in the
figure.  Here 1 is the identity, m is a mirror plane, 1' is the anti-identity element we called
ℜ  above and m' is an anti-mirror plane.

Figure 4:  Examples of the antisymmetry operator and mirror planes

This can be seen form the following relationships:  (a) operated on by 1 yields (a);  (a)
operated on by m yields (b);  (a) operated on by 1' yields (c);  (a) operated on by m' yields
(d).

Point Groups

Classical Crystallographic Point Groups

The above mentioned classical symmetry operations may be combined in a number of
ways about a point in space.  These combinations give rise to the well known 32
crystallographic point groups, which we term here the classical crystallographic point



groups.  These point groups do not have ℜ  as a symmetry operation and hence can not be
used to fully describe the symmetry of crystals that have magnetic moments associated
with the atoms.  Their representations on stereograms are shown in most books on
crystallography.

The Gray Point Groups

The magnetic point groups are obtained in a similar fashion as the classical
crystallographic point groups, namely by the grouping of all the symmetry elements into
possible combinations.  Before we look at the magnetic groups we must discuss the so-
called "gray point groups."  These are point groups whose set of general co-ordinates is x,
y, z, ±s.  The term "gray" comes about from the black and white symmetry analog: if
every equivalent site has both a white colored object and a black colored object the
overall color will appear to be gray.  In the magnetic case these groups represent the
paramagnetic point symmetry, where each atom has a moment which is either up or down
and therefore has two possible states.  The moments on the atoms are independent of one
another in sign and direction.  The sum of the moments in a paramagnetic crystal is zero.
It is clear that each of the classical point groups can have a gray point group associated
with it.  There are therefore 32 gray point groups.  The order of each of the gray point
groups is twice that of its corresponding classical point group.

Black/White Point Groups

We will start with a classical point group, namely the one designated 2/m.  A
representation of this is shown in Figure 5(a).  It can be seen that it is of order four, as it
has four symmetry operations in its group.  The co-ordinates of each of the generated
points are:  x yz     x y z   xyz     x y z  .  To obtain the four symmetry operations in this
group we ask what operation can take the point at x y z to the four equivalent sites.  This
is shown in Figure 5.

Figure 5(b) shows the gray point group 2/m.  This point group is of order 8 since each site
has a value of s equal to ±1 represented as white and black, respectively.  In addition to
the four symmetry operations listed for the 2/m classical point group, the gray 2/m group
has 1', 2', ′ m  and  1'.  In Figure 6, three possible subgroups of the gray group 2/m are
shown.



Figure 5:  White (Classical) point group and Gray point group representations for
2/m

Figure 6:  Subgroups of the gray point group 2/m.  Only 2’/m' can be ferromagnetic,
and this only if the axis of magnetization is perpendicular to the 2-fold axis.
The other two could be antiferromagnetic.



When all possible combinations are made there turns out to be 58 white/black point
groups.  These added to the 32 gray point groups and the 32 classical point groups make a
total of 122 point groups.4  Of these, only those point groups that are subgroups of the
Curie limiting group ∞/mm’m’ can support ferromagnetism.  There are 31 such point
groups out of the 122.4,7

Bravais Lattices

Classical Bravais Lattices and Black/White Bravais Lattices

In classical crystallography there are 14 distinct Bravais lattices.  Let us consider the
primitive cubic Bravais lattice shown in Figure 7(a).  If an opposite "colored" site is
placed in the center of the cell we obtain one of the black and white symmetry Bravais
lattices.

Figure 7:  Primitive cubic "classical" Bravais Lattice (cP) and primitive cubic
black/white Bravais Lattice. (cP')

This lattice is seen to be primitive since the two points are not equivalent, but opposite in
colors (or ±1).  In order to be a black/white Bravais lattice the number of white sites (+1)
must equal the number of black sites (-1).  Hence, these black and white symmetry
Bravais lattices are used in antiferromagnetic materials.  The Bravais lattice shown in
Figure 7(b) is designated as cP' to distinguish it from the primitive cubic Bravais lattice
cP.  There are 22 additional black/white Bravais lattices.

Space Groups

Classical Space Groups

If the above mentioned 32 classical point groups are combined with those Bravais lattices
that are consistent with their symmetry a total of 73 symmorphic space groups are
obtained.4,7  Each of these space groups can be derived from the translational symmetry of



one of the Bravais lattices and the symmetry operations delineated above.  Other space
groups can be found when new symmetry elements, sometimes called microsymmetry
elements are also included.  These include screw axes (denoted as ni, where n is the order
of the rotation axis and i is related to the pitch of the screw) and glide planes, which are
combinations of mirror symmetry and translations.  In both of these types of
microsymmetry operations, the translations are fractions of the unit cell translations.  The
addition of these symmetry operations increases the number of possible space groups to
230.  The symmetries of these 230 groups are detailed in the International Tables for
Crystallography.

Black/White Space Groups

The addition of the anti-identity element to the point operations and the addition of the 22
black/white Bravais lattices leads to an increase in the number of space groups to 1651.4,7

As with the point groups, all of these can not support ferromagnetism.  Only those space
groups whose point symmetry is a subgroup of ∞/mm'm' can support ferromagnetism.

Types of Magnetism

Different forms of magnetic behavior involve different symmetry considerations.  All
materials exhibit some magnetic behavior.  Classification of the different types of
magnetism is accomplished by considering the response of the material to a magnetic
field, and the magnitude and orientation of magnetic moments (if applicable) in the unit
cell.  By consideration of the symmetry of these systems, the anisotropic magnetic
properties of the single crystals can be described.

A simple approach to finding the symmetry for the ferromagnetic, antiferromagnetic, and
ferrimagnetic structures is possible by considering the intersection of the atomic crystal
structure with the symmetry of the magnetic moments taking into account their
orientations.  In some magnetic structures, such as helimagnetism, the stacking of certain
magnetic planes is also an important parameter.

Magnetic behavior of most materials can be classified by the following groups:
diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, or ferrimagnetism.
Additional types of less common magnetic behavior are characterized by consideration of
the relations of the new behavior to these five groups.10

Differences in magnetic behavior arise from differences in magnetocrystalline anisotropy
and exchange interactions for different materials.  Magnetocrystalline anisotropy is
linked to the symmetry of the crystal and involves the electron spin-orbital interactions
and crystal fields.10 Magnetocrystalline anisotropy generates the directions for the
magnetic moments that have minimum energy.  The exchange interactions are quantum
mechanical phenomena required by the Pauli exclusion principle.  For strong exchange,
the magnetic moments have a strong coupling to one another.  This is called cooperative
phenomena, while small exchange interactions yield non-cooperative phenomena.  These
ideas are more thoroughly described in references 10 and 11.



Diamagnetism

Diamagnetic materials have a slightly negative susceptibility (or permeability slightly
less than one).  The atoms that make up the diamagnetic materials have no permanent
magnetic moment and therefore the materials maintain the same symmetry as the atomic
crystal structure unless a field is applied.  When a field is applied, an induced magnetic
moment in the direction that opposes the magnetic field is produced.  This yields a
magnetic symmetry that is the intersection of the crystal structure with those of the
applied field and the induced moment.  This generally reduces the symmetry.  Without an
applied field for these materials, the symmetry of the structures may always be
considered in the classical space group notation.

Paramagnetism

Paramagnetic materials have a slightly positive susceptibility (or permeability of nearly
unity).  Local magnetic moments are present on the atoms, but are not aligned due to
thermal fluctuations.  An applied magnetic field will align the moments in the direction
of the magnetic field (for a large enough field).  The symmetry of the saturated
paramagnet becomes the intersection of the field and moments along the direction of the
applied field.  However, saturation of paramagnets requires enormous fields and
therefore, the magnetic moments of a paramagnet are only statistically oriented with the
field.  Qualitatively, the paramagnetic material will have symmetry less than that of the
atomic crystal structure due to the statistical alignment of the moments with the field.
The general case for a paramagnet without an applied field is that of gray symmetry,
since the magnetic moments at each site are considered both parallel and antiparallel (can
be either of two spins).

Ferromagnetism

In this article, we consider the ferromagnetic materials to involve only localized
moments.  Ferromagnetism occurs due to the exchange interactions between magnetic
moments in the materials in direct or indirect manners.  The direct exchange involves the
overlap of atomic orbitals and the interactions of the electron spins with one another to
form a positive interaction.  Superexchange, a form of indirect exchange, involves
interactions mediated by intermediate atoms, such as anions in ferrimagnetic spinels.
Spontaneous magnetic moments in these alloys yield lower or equal point group
symmetry from the point of view of classical point group symmetry.  If we consider the
paramagnetic phase from the point of view of gray point group symmetry, on
ferromagnetic ordering it loses at least one half of its symmetry elements since all the
moments of the ferromagnet have the same sense.  Cutting in half the order of the group
allows these transitions to be of second order (higher order thermodynamic transitions)
by the well-known Landau rules.12,13



Antiferromagnetism

Antiferromagnetic structures can be divided into two sublattices.  Both lattices have equal
numbers of formula units.  One sublattice has moments which are opposed to those in the
other sublattice so that the net magnetization is zero.  These sublattices reduce the
symmetry of the structure from that of the classical structure in much the same way as in
ferromagnets.  They also may be characterized by the black/white Bravais lattices.

Ferrimagnetism

Ferrimagnetic materials have sublattices much the same as in the antiferromagnetic state.
However, ferrimagnets have a net magnetization due to the uncompensated atomic
moments in the unit cell.  Examples of these magnetic materials include garnets and
ferrites.

Application

An understanding of the symmetry difference between the paramagnetic and
ferromagnetic phases can be helpful in determining the possible domain orientations for a
given material.  In the application of magnetic symmetry to structures, the assumption of
localized moments is made.  The following figures indicate the direction of the magnetic
moments in the upper right.  The black/white/gray color of the atoms in some of the
structures is not an indication of the symmetry color of the site, but has been used to
indicate different atoms.  Values for the lattice parameters, magnetic moments, Curie
temperatures, and easy axes are well known in some cases, but three references are given
for the less well known data.14-17

Elements

αααα-Iron

The intersection of the magnetic moments along the [001] with the atoms on the bcc
lattice reduces the point symmetry from m3 m  to 4/mm’m’.  This is a simple case where
the symmetry is often thought to be cubic, but is really tetragonal due to the axial
symmetry magnetic moment.  Cubic symmetry does not support ferromagnetism!  This is
because the moments always produce a special direction.



Figure 8:  αααα-Fe crystal structure and magnetic information.

Figure 9:  εεεε-Co structure and magnetic information

εεεε-Cobalt

In hcp cobalt, the magnetic moments are parallel to the [0001] direction at high
temperatures.  The phase transformation from paramagnetic to ferromagnetic states
reduces the symmetry by a factor of two, represented by the intersection 63/mmc ∩
∞/mm’ = 63/mm’c’.  The paramagnetic point group is a gray point group so its order is



48.  The order of the point group of the ferromagnetic phase is 24.  The introduction of
the antisymmetry mirror plane yields the change from c glide to c’ glide among other
changes.

Nickel

A reduction in the symmetry of the Ni crystal structure from fcc occurs due to the
alignment of the magnetic moment along the [111].  This produces a special direction
from the intersection m3 m ∩ ∞ / m  along the [111].  The symmetry is reduced to 3 m' .

Figure 10:  Ni crystal structure and magnetic information

Ordered Intermediate Phases

αααα’-FeCo

The α’-FeCo phase has the CsCl structure (B2) if the magnetic symmetry is ignored.
Reduction of the symmetry is found when the magnetic moments are considered to be
along the [001].  The magnetic space group of α’-FeCo is P4/mm’m’.

The change of symmetry during the transformation from paramagnetic to ferromagnetic
phases has interesting implications for the domain structure.  The case of α’-FeCo is not
typical for this consideration since the first order transformation of ferromagnetic α-
(Fe,Co) to paramagnetic fcc (Fe,Co) phase transformation occurs before a Curie
temperature is reached.  However, the hypothetical case of a paramagnetic B2 alloy
undergoing the ferromagnetic ordering transformation yields 6 magnetic domains.  This
occurs due to the reduction of the gray symmetry point group (m3 m ) with order 96 to the
black/white symmetry point group (4/mm’m’) of order 16.  The moments in these



domains will lie along the <100>, which remain equivalent energetically, as the
magnetocrystalline anisotropy retains the cubic symmetry.

Figure 11:  αααα’-FeCo crystal structure (B2) and magnetic information

CoPt

CoPt has the AuCu (L10) chemical structure.  This structure has a paramagnetic (gray)
symmetry of P4/mmm.  The addition of the magnetic moments yields the lower symmetry
of P4/mm’m’.  Notice that the ferromagnetic space group is the same for CoPt as for α’-
FeCo.  However, the number of domains developed during the phase transformation from
the paramagnetic phase to the ferromagnetic phase is only two in this case.  That is
because the order of the paramagnetic CoPt phase is only 32 whereas it is 96 in the α’-
FeCo case.  This has interesting implications for the domain structures for these
materials.



Figure 12:  CoPt crystal structure (L10) and magnetic information

CrPt3

CrPt3 has the Cu3Au (L12) chemical structure.  The Pt atoms have polarized moments, but
these moments are antiferromagnetically coupled to the Cr atoms, as opposed to the
previous case of CoPt where the polarized moments are ferromagnetically coupled.  The
antiferromagnetic coupling creates a ferrimagnetic arrangement with one Co moment
opposing the three Pt moments.  Since the magnetic moments oppose each other, and the
moment has a mirror plane perpendicular to its axis, the symmetry of the CrPt3 structure
is the same as CoPt.  The number of variants for domains in this case is six (as in the α’-
FeCo case).



Figure 13:  CrPt3 crystal structure (L12) and magnetic information

Cu2MnAl (Heusler Alloy)

The Cu2MnAl or Heusler alloy has the L21 chemical structure.  The magnetic moments in
this case are along the [111] direction, making it unique with respect to the other 3-fold
axes of the paramagnetic structure.  This case is similar to that of Ni.

Figure 14:  Cu2MnAl (Heusler) crystal structure (L21) and magnetic information



Concluding Remarks

We have presented an overview of some of symmetry and structural aspects of magnetic
ordering.  By including the symmetry of the magnetic moments (∞/mm’m’) the magnetic
space groups of several magnetic phases have been presented.  In some cases, magnetic
space groups are detectable by diffraction experiments.  Shen and Laughlin have shown
by convergent beam diffraction that the projected point group symmetry along the [0001]
of PrCo5 is reduced from 6mm to 6 on magnetic ordering.18  This implies that the space
group changed from P6/mmm in the paramagnetic state to P6/mm’m’ in the ferromagnetic
state.

Other implications of magnetic ordering are also evident.  The thermodynamic order of
the paramagnetic to ferromagnetic transition for uniaxial crystals should be second order
(higher order), since from the point of view of the gray point groups the symmetry is
reduced by a factor of two on magnetic ordering.  Also, the number of magnetic domains
present after ordering can be predicted in a straightforward manner by the use of group
theory.  For example in the cubic to tetragonal transition of alpha iron, the order of the
point group changes from 96 (paramagnetic, cubic) to 16 (ferromagnetic, tetragonal).
The ratio of the orders of the groups is 6, showing that six domains will exist for this
transition.  Other phenomena in magnetic materials, such as domain interactions,
magnetocrystalline anisotropy, magnetostriction, etc. can be analyzed better by using the
full symmetry aspects of the magnetic state.
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