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Abstract—In an attempt to understand the thermodynamic consequences of the tetragonal distortion
accompanying the L1, ordering, we have conducted a theoretical investigation by treating the problem
of a rigid lattice free energy model. The problem is treated as an elasticity problem and a generalized
formulation is proposed in a form which can be directly utilized to study incoherent two phase equilibria.
By use of the Static Concentration Wave (SCW) mean field model as a rigid lattice free energy model,
the formulation is applied to the case of our interest. We show that the thermodynamic stability of the
L1, phase may be significantly influenced by the tetragonal lattice distortion, depending on the magnitude
of the associated strain energy relative to the competing positive entropic contribution in the free energy
of the stress free L1, phase. In association with this, we suggest that the neglect of tetragonal distortion
(i.e. the use of a rigid lattice free energy model) could be a source of serious errors particularly for alloys
with lower L1, ordering transition temperatures (e.g. CuAu and InMg). A prototype phase diagram of
the <001)¥ . special point structures, calculated with the tetragonal distortion taken into account, has
indeed displayed topological features which are fundamentally different from those of a rigid lattice phase
diagram and, furthermore, has reproduced the main topological features of the AuCu-Au;Cu and the
InMg-In,Mg sides of their respective phase diagrams.

1. INTRODUCTION distortion of the L1, ordered structure is a thermo-
dynamic quantity which can be directly related to the
quadratic of the long range order parameter. A
question immediately posed by such a link between
the atomic configuration and the lattice geometry of
the L1, phase is; what consequences may this lead to,
either in the thermodynamics of the L1, ordering or
in the alloy phase equilibria involving the L1, phase.
For a better understanding of the L1, ordering
transformation, it is essential to explore these ques-
tions. This is the main objective of the present
investigation.

Theoretical understanding of the f.c.c. to Ll
atomic ordering (or more generally, ordering in the
f.c.c. lattice) has been a long standing problem. Most
of the present theoretical perspectives of such trans-
formations were put forward through various evalu-
ation methods of the Ising model and of its extensions
in terms of the range of atomic interaction. Accord-
ing to these models, the configuration-dependent part
of the energy of an alloy is approximated by the sum
+A special point refers to a high-symmetry point in k space, of pairwise lr.lteratomlc njltergctlons, while atoms are

characterized by point group symmetries including assumed to sit on the lattice sites of a non-deformable
intersecting symmetry elements. At special points, the  rigid lattice. An initial effort to evaluate the rigid
Fourier transform of interatomic potential always has lattice Ising model in an application to the {001)*
extrema by symmetry requirements alone. Special point  gpecial point orderingt in the f.c.c. lattice was made
ordering occurs when the wave vector of the concen- by Shockley in his calculation of a phase diagram of
tration wave falls onto a special point at which the g

Fourier transform of interatomic potential becomes the prototype CuAu system by use of the Bragg-
minimum. Williams mean field approximation [2]. It was shown

The crystal structure of the ordered L1, phase is
schematically depicted in Fig. 1 along with that of the
disordered f.c.c. phase. In terms of atomic configur-
ation, the structure is characterized by alternating A
and B atomic layers on successive (002) planes. It
should be emphasized that in association with the
characteristic alternate layering, the structure is ho-
mogeneously distorted from the f.c.c. along its tetra-
gonal axis i.e. along the direction of layering.
Numerous experimental studies have been conducted
to show that the tetragonal lattice distortion of the
L1, phase depends on the state of order of the atomic
configuration. Among many others, an early X-ray
investigation made by Roberts [1], in particular,
presents this point. By correlating the tetragonality
values with long range order parameters measured
from the equiatomic CuAu alloys annealed at various
temperatures, Roberts showed that the tetragonal
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that when the mean field approximation is used, the
f.c.c. to L1, ordering on a rigid lattice is predicted to
be thermodynamically of second order. Thus, regions
of two phase (f.c.c. +L1,) equilibrium were not
present in his calculated phase diagram. Later, based
on more elaborate calculations of the first order
approximation [3], the Cluster Variation Method
[4-7] and the Monte Carlo method [8, 9], the failure
of the mean field approximation was explained to
arise from its neglect of short range correlation
effects.

A different view was put forward by Tachiki and
Teramoto (T-T) [10] and later by Kajitani and Cook
(K-C) [11] in their theoretical analyses of the LI,
ordering transformation in the equiatomic CuAu
system. By recovering the strong first order nature of
the transformation through the incorporation of a
tetragonal lattice distortion into the Bragg-Williams
approximation to the rigid lattice Ising model, they
suggested that the earlier failure of the mean field
approximation should be ascribed to the limitation of
the rigid lattice model itself, rather than to its neglect
of short range order. For the past decade, with the
advance in understanding of the fundamental proper-
ties of the Ising model, the problem of the rigidity of
the model has attracted renewed attention in conjunc-
tion with theoretical calculations of incoherent
order—disorder phase diagrams [12, 13]. In none of
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Fig. 1. Schematic diagram depicting the change in crystal
structure due to ordering of the disordered f.c.c. to the fully
ordered L1, phase in an equiatomic binary alloy. Notice
tetragonal distortion as well as change in atomic configur-
ation in the L1, ordered structure. A continuum (wave)
description of the occupation probabilities p(r) of the solute
atoms is also presented for each crystal structure.
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these works, however, has due regard been given to
the lattice distortion accompanying the f.c.c. to L1,
ordering and little understanding has been acquired
beyond that of T-T and K-C. We believe that the
theoretical perspective proposed in the works of T-T
and K-C is of major importance to the understanding
of the f.c.c. to L1, ordering and that it should be
developed further to explore questions which are
beyond the realm of the thermodynamics of the rigid
lattice.

Herein, we present our theoretical investigation of
the thermodynamics of the L1, ordering and of the
phase equilibria involving L1, phase. It is not easy to
treat the problem of the rigidity of the Ising model.
A complete approach to this problem necessarily
involves the use of realistic interatomic potentials
derived from first principle considerations. This is
beyond the scope of the present work. Instead, we
take an indirect approach following the manner of
T-T and K—C. The approach concerns itself with the
relaxation of non-physical forces associated with
the condition of constant volume and crystal shape
that is imposed on the thermodynamic potentials
(Helmholtz free energy or grand potential) resulting
from the various approximations to the rigid lattice
Ising model. The advantage of this approach is such
that one can treat the problem of lifting the rigidity
purely as an elasticity problem and study its conse-
quences independently without exploring more com-
plicated fundamental questions. For the rigid lattice
free energy, we use the mean field approximation in
the Static Concentration Wave (SCW) method
[14-17]. This is shown to provide an efficient frame-
work which enables us to discuss qualitatively im-
portant thermodynamic characteristics of the L1,
ordering system.

2. GENERAL FORMULATION OF INCOHERENT
TWO PHASE EQUILIBRIUM

Consider a hypothetical two phase system of a
binary alloy, where the atoms are configured on a
rigid lattice to form two separate regions; one is
a disordered phase with the solute concentration ¢,
and the other an ordered phase with the solute
concentration ¢, and the long range order parameter
n (see Fig. 2). By “rigid lattice™, it is supposed that
each phase is forced to remain strain free on the pure
solvent lattice. The configurational free energy of
each phase on the rigid lattice, that is, F,, for a
disordered phase and Fgg, for an ordered phase, is
given by a free energy model due to the rigid lattice
Ising model. The resulting Helmholtz free energy may
not be used to describe a phase in its stress free state
particularly when the stress free crystal lattice is
significantly different from that of the strain free rigid
one. Given the Helmholtz free energy, the configura-
tional free energy of a stress free phase can be
attained through the relaxation of the non-physical
forces which are responsible for the rigidity of the
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Fig. 2. Schematic diagram illustrating renormalization of
rigid lattice free energies into stress free lattice equivalents.

strain free lattice. The process depicted in Fig. 2 may
be formulated as

Fd(cd)lo'd=0=FSigid(cd)L:O+ZE?(Cd) (1)
FO(CO9 '7)|17°=0 = nggid(co’ ’1)|s=0 + Z E?(co» 1']) (2)

where ¢ =0 and ¢ = 0 denote the strain free solvent
rigid lattice and the stress free crystal lattice of the
phase in question, respectively and E; represents the
elastic energy relaxation due to a source i. For the
ordered phase, the origins of elastic energy relaxation
may consist of:

1. homogeneous lattice distortion due to finite
solute concentration;

2. localized microscopic lattice distortion as-
sociated with a spatial distribution of atoms
of different sizes;

3. macroscopic lattice distortion resulting
from the difference between the stress free
crystal lattice of the ordered phase and that
of the disordered phase of the same solute
concentration.

Relaxation of the elastic energy associated with the
sources 1 and 2 may be properly described by the
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microscopic elasticity theory developed by Khachatu-
ryan [14, 20]

N N
E=-3 MK)pe +—[=2, Cieien+ <M E)H]e?
3

1
E=2x YI=M®&)+ <M EDsc®)P @)
k

where ¢, vy, N, Cy, and ¢ are, respectively, average
solute concentration, volume of a solvent atom, total
number of atoms, elastic constants and the stress free
transformation strain accounting for the difference in
the crystal lattice of the pure solvent and that of the
pure solute. The strain e?j is given by equation (5)
when the composition dependence of the lattice con-
stants is assumed to follow the Vegard’s law. M (k),
{M(k)> and dc(k) are specified by equations (6), (7)
and (8), respectively

5?,‘ = 2de 5:‘/ (5)
M) = F,(k)G;(K)F} (k) (6)
1
(M(k)) = N Y FEK)G,(K)FF (k) @)
k
de(k) =3 (c(r)—c)e™ ®)

where c(r), F;(k) and G;;(k) are solute concentration
at lattice site r, ith component of the Fourier trans-
form of the Kanzaki force and the Born—von Karman
tensor of the solvent lattice. Each of the latter two
describes the force acting upon the solvent lattice by
a solute atom and the stiffness of the solvent lattice
against displacements, respectively.

The elastic strain associated with source 3 is macro-
scopic and depends on the degree of long range order
of the ordered phase. When the average atomic
configuration of the ordered phase can be represented
by a single long range order parameter, the stress free
transformation strain may be effectively described in
a Taylor series expansion by equation (9)

_10%,

In the expansion, the coefficient of the first order term
is identically zero due to the strain invariance with
respect to the translation of the disordered lattice and
the contributions from the higher order terms are
neglected. The change in elastic energy associated
with the relaxation of the homogeneous strain §; is
then given by

"’ (€)

Ni
Ey= == Cpuf (10)
where v is the average atomic volume of a stress free
disordered phase with the solute concentration c,.
Due to the relaxation represented by equation (3), the
volume v now depends on the solute concentration
and this needs to be taken into account in equation
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(10). Assuming that the lattice parameters of a
disordered phase vary according to Vegard’s law,
the average atomic volume v may be expressed
by equation (11) for a lattice with cubic symmetry

(1n

where # is the number of atoms in a unit cell of a
disordered phase.

When the relaxations represented by equations (3),
(4) and (10) are considered, the configurational free
energy of each phase renormalized with respect to its
stress free crystal lattice is determined from equations
(1) and (2) to be

Feon(cs) = Figa(cale=o+ ES(cs) + Ed(cs) (12)

Fi(:'lcoh(co’ '1)' = F:?igid(co’ ’7)|5=0

+ES(co. ) + E3(co, ) + ES(cy, n).  (13)

The free energy with a form similar to equation
(13) was suggested initially by Kajitani and Cook
in their study on the nature of CuAul, CuPt and
CuZn type ordering transitions in equiatomic alloys
[11]. Since the treatment was concerned with single
phase ordering transitions, their free energy ex-
pression did not include our first relaxation term.
An incoherent equilibrium between an ordered and
a disordered phase can now be determined by use
of the free energies specified by equations (12) and
(13). When a mean field approximation is used to
estimate the configurational free energies Flaale=o>

Fiyalc-o, the equilibrium conditions are given by the
following:

at a temperature 7,

OF},
~7 incoh =0 (l 4)
6'7 Te=con=nc
6F mcoh aF mcoh

=u (19

ac Te=comn=ne ac Te=cq
Fﬁ]COh!T,L‘=(‘O,Y[=']c- ngcohIT,c=cd= (16)

Co— €4

where 7. and u are equilibrium long range order
parameter and chemical potential respectively. For
incoherent equilibrium between two different ordered
phases, substitution of Fj., in equations (14)—(16)
with the free energy of the second ordered phase of
the form of equation (13) will lead to the relevant
equilibrium conditions.

3. FREE ENERGIES (f,,.,,) OF <001>#,. SPECIAL
POINT ORDERED STRUCTURES

The formulation advanced above is now special-
ized to derive the free energy expressions which will
be used to study incoherent equilibria involving the
L1, and/or L1, ordered phases.
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3.1. Formulation of F,|. _,

From the mean field approximation to the rigid
lattice Ising model, the free energy describing a strain
free configurational state of an AB binary alloy is
given by [17, 19]

ngld Z V(l' r )p (r)P (l' ) + kT Z {p(r)lnp(r)

+ =p@Jn[l —p@]}  (17)

where p(r) is the occupation probability of the
lattice site r by a solute atom and V(r,r) is a pair-
wise interaction energy between two solute atoms
at lattice sites r and r and is defined as
V(E, 1) = Vaps(r, r') + Vig(r, v') — 2V,5(r, ). When
the method of SCW [14,17, 18] is used for the
occupation probability p(r), the following ex-
pressions are attained for the L1, and the L1, phase

Figh== [CZV(O) + VK0

NkT
+ — {(¢c + en)In(c + cn)

+[1 —(c + en)n[l — (¢ + en)]
+(c —cn)in(c — cn)

+[1 = (¢ —emlinfl — (¢ —en)]} (18)

FLL —

rigld —

[c2 V(0) + 3¢V (k%)]

NkT
+ e {(c + 3en)in(c + 3cn)

+[1 —(c + 3en)In[1 — (¢ + 3cn)]
+3(c — em)n(c — cn)

+3[1 = (c —emin[l —(c —en)l}  (19)
where V(K®) =%, V(r)e X" V(0) = Z, V(r) and k% is
the wave vector of the <001)¥ . special point order-
ing wave. In these free energy expressions, the con-
centration dependence of 7 is explicitly separated out
into the form cn.

3.2. Formulation of E, + E,

The sum of the elastic energy relaxation E,
[equation (3)] and E, [equation (4)] can be reduced to
equation (21) using the identity given by equation
(20

1

5 ZIoe®F = Ne(l — o) (20)
K
N
E+E, = —EUOC,-,-,(,ef.’jeg,cz
(21)

5N ; M )oK
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Taking the ensemble average of equation (21) and
using the mean field approximation lead to
CE\+ E)p=

N
0,0 .2
—Evocijklfijéklc

1
5N ;M K)o ®)>el* (22)

where { ) denotes an average over the Gibbs ensem-
ble. Neglecting contributions other than from k = k°
and using the identity of equation (23) yield equation
(24)

[<8c (%)) I* = (Nen)® 23)

N
0,0 .2
_ivocijkleijeklc

KE\+ Ey)p=

_gcznm(k%ai,-(k")w &) (24)

where k° and 7 are defined as in equation (18) and
(19). Since F(k% =0 for the special point ordering
wave K° [21], equation (24) reduces to a simple form
given by

N
KE\+Ey))p= —EvoCi,-ué?je;‘lzcz (25)
3.3. Formulation of E;(n)

By use of the condition €|, - ., -05 = c&B;= €},
equations (9) can be rewritten for the L1, phase as
(26)

= .-270 .22
€;j=Cy €5C°N

where

Ayq — Ag; Cord — Qg
-0 _ -0 __ “ord dis -0 __ “ord dis
€ =€n= > €33 =
Qgis Qgis
and
€7 =0 otherwise.

Qgis, doq and ¢, are the lattice parameters of the
disordered f.c.c. and of the perfectly ordered L1, phase
of the equiatomic composition (¢, = 0.5). Substitution
of equation (26) into equation (10) yields

4
0 70 .4, 4
Cijkleijeklc n

@7

where v is given by equation (11). It can be shown
that equation (27) holds equally for the L1, phase
when ¢, and €, are properly replaced. Although the
relative magnitude varies among different alloy sys-
tems, €7, for the L1, ordering is, in general, negligibly
small as compared with that for the L1, ordering (for
example, it is ~7.5 x 10~ for the CuAu, phase [22]).
For this reason, E;(n) = 0 will be assumed for the L1,
phase.

3.4. Configuration free energies (f) in stress free states

The configurational free energies of the f.c.c. disor-
dered, L1, and L1, ordered phases in their respective
stress free state are now given by equations (28), (29)
and (30), respectively, per a lattice point
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Sree. =3V () +kT[cInc + (1 —¢) x In(1 —¢)]

Mk
Yl + M2 @

Sriy =V (0) + Cz'IZVﬂ(O)]-i-k—zT{(c +en)n(e + cn)
+[1 = (¢ + em)n[1 — (¢ + cn)]

+(c —enin(c — cn) +[1 = (¢ — en)]
xIn[1 — (¢ — cn)]}

-4

~2 et = Cddet 29)
Ir.2 2,2 0 kT
S, =31’V () + 3¢ n*V (K] + T {(c +3cn)
xIn(c + 3cn)+[1 — (¢ + 3en)]
xIn[1 — (¢ + 3¢n)]
+3(c — em)In(c —cn) + 3[1 — (¢ — cn)]
xIn[1 — (¢ —en)l}
D Couenenct. (30)

2

4. RESULTS AND DISCUSSION

As we have seen from equations (28) to (30), by
virtue of the special point symmetry, the relaxation
term {E,+ E,); is only a function of the solute
concentration (quadratic in ¢ assuming elastic con-
stants are concentration-independent) and does not
depend on the long range order of the ordered state.
The new effect of the term is to reduce the 7 (0) value
which describes the resistance of a perturbed solution
to the development of the concentration fluctuations
of a long wavelength. This means that the addition of
the term results in the increase in the decomposition
tendency of an off-stoichiometric solution and, there-
fore, a wider two phase field in the equilibrium phase
diagram. Since the relaxation term has little qualitative
significance, we ignore it in the present study (< E, )
term in equation (28) is ignored likewise). With the
term {E, + E, ) left out, we also neglect the concen-
tration dependence of the atomic volume (v) of a dis-
ordered phase specified by equation (11) for physical
consistency of the model. When the concentration de-
pendence of the atomic volume and that of elastic con-
stants are not taken into account, equation (27) can be
recast into a simple form (per a lattice point) given by

€3]
where e is a constant specified by equation (32) when
the elastic stiffness tensor of the L1, phase is assumed

to have the cubic anisotropy (C,,=C,, =
Cop=Cygand Cpy = Cyjpy = Cyp33= Cp33)

Cp\ -
e = vCH{(l +-C—i-?>(e,,)2

C 1
+2 28 &+ 5(533)2} (32)

etlo= —16ecy*

Cll
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By virtue of the simplification of equation (31), we
can rewrite equations (28), (29) and (30) into a
reduced form of equation (33) by use of the reduced
parameters defined by equations (34a)-(34c)

7 9
o= IVV(g’))I -
= % (34b)
2= m (34c)

where f; denotes a free energy of a phase i, given by
equations (28)—(30) with relaxation term (E, + E, e
being omitted and e is given by equation (32). The
results of calculations are now in order.

4.1. Long range order parameter of the stress free
L1, phase

The temperature dependence of the equilibrium
long range order parameter of the L1, phase can be
determined numerically using equations (14) and
(29). The results are plotted in Fig. 3 for the equi-
atomic alloy composition (¢ = 0.5) for three different
a(=e/|V(k®)) values. Curve A represents the case
where the lattice of the L1, ordered phase is not
relaxed from the strain free condition. The
monotonic decrease of the long range order par-
ameter with increasing temperature shows that the
ordering transition is of the second order. When «
exceeds a certain threshold value (to be discussed
later), the long range order parameter curves (B and
C) bifurcate into two branches above a certain
temperature which defines the critical temperature of
the second order transition for the a = 0 case (curve

1.00 T . . \
0.75 o
AN
\
n 050 r
\\ F
\
\ -
- \I b
025 - |Ae=0 A -
1 | Ba=00s ¥ L
Ca =01 | c=05
i}
0.00 : T } T T
0.1 0.15 0.2 0.25 0.3 0.35 0.4
T

Fig. 3. Temperature (7) dependence of the long range order
parameter () for various « values. When the tetragonal
distortion is suppressed (« = 0), the L1, ordering transition
is predicted to be thermodynamically of second order (A).
As a increases, the ordering transition changes its character
to weakly first order (B) and to strongly first order (C). This
indicates that the problem of a rigid lattice model becomes
increasingly serious as a value of an LI, ordering alloy
becomes larger.
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Fig. 4. (a) Temperature (r) dependence of the long range

order parameter () for ¢ =0.5 and « = 0.1. (b) Associated

free energy diagrams (Af* vs i) for three different character-
istic temperatures.

A). This bifurcation indicates that the transition
now has the first order nature. Three characteristic
temperatures can then be defined [18,23] and they
are depicted for the a =0.1 case in Fig. 4(a). The
nature of each characteristic temperature can be
displayed expressly by means of the associated Af*
vs n plot where 4f* is defined to be
Af* =f¥, —f*.. This is shown in Fig. 4(b). For a
given composition ¢, t; and ;" represent the limit
of metastability of the disordered f.c.c. phase and of
the ordered LI, phase, respectively and 7, is the
temperature at which the free energies of the two
phases become identical. Accordingly, when
o<t <71}, the ordered L1, phase is metastable
with respect to the disordered f.c.c. phase of the
same composition and when ;7 <1 < 1,, the disor-
dered f.c.c. phase is metastable with respect to the
L1, phase.

The relative importance of the tetragonal
lattice distortion in making the L1, ordering tran-
sition first order is strongly dependent on «. In fact,
there exists a threshold value for the onset of the
first order transition and it can be determined by
analyzing the expansion of the change of free energy
Af* [equation (35)] in terms of the long range order
parameter

Af* = Ayn* + Agn* + Agn® + - - - (35)
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where the coefficients 4,, 4, and A, are specified by
equations (36a—)

y __‘rcz 1 1
T2 le(l=0)

21c

‘1 1 )
A4 = T Ii? + m] — 16ac (36b)

A_4!tc6 L1
U6 ST (1=c)

According to the expression, the first order trans-
formation is only possible when the negative strain
energy term accounting for the relaxation of the
tetragonal distortion overrides the positive entropy
term. In the mean field free energy model considered,
the first order L1, ordering transition arises when the
long range order parameter has branching solutions
above 7. Applying these conditions to equation
(36b) gives rise to the threshold value of a specified
by equation (37)

o _CU=of1 1
MERT92 | A =e)

For ¢ =0.5, the equation yields oy, =0.02083.
From this analysis, it may be concluded that treating
the tetragonal distortion in thermodynamic studies of
the L1, ordering transition is increasingly important
when the values of e and |V (k°)| give a ratio which is
above the threshold value.

The direct relationship between e and |V (k%)| which
came with the use of the reduced free energy provides
us an important guide for assessing the relative effect
of the tetragonal distortion on the thermodynamic
nature of a L1, ordering transition among different
alloy systems. Assuming e has a substantial magni-
tude, the effect may be significant for such a system
whose transition temperature for the L1, ordering is
relatively low since |V (k°)| is expected to be smaller
in such a case. Conversely, for an alloy with a high
L1, ordering temperature, a large tetragonality alone
may not bring about the first order nature of the
transition. This is because the relative importance of
the temperature dependent entropic contribution in
competition with the strain energy term may vary
among systems with different ordering transition
temperatures. In this regard, binary alloys such as
CuAu (T, =385°C) and InMg (T, = 330°C) may be
taken as the possible systems where the significant
effect of the tetragonal distortion on the thermodyn-
amics of the ordering is expected.We will give more
detailed considerations on these systems in Section
4.2.

The criterion given above states that the mean
field approximation is inadequate to treat such an
L1, system with an a below the threshold value.
This result, however, should not be taken as a
suggestion that neglect of the tetragonal distortion
may be justified when they are treated in terms of
the higher order approximations. This is because
the same magnitude of the strain energy term has a

(362)

(36¢)

37
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more pronounced effect in the higher order approxi-
mations which produce systematically reduced en-
tropy terms relative to the exaggerated mean field
entropy.

4.2. Two phase (f.c.c. + L1,) equilibrium

The qualitative nature of the phase equilibrium be-
tween the disordered f.c.c. and the L1, ordered phases
has been studied by determining numerically the
phase boundaries for various values of a and
o(=V(0)/|V(K|). Here, we do not allow the L1,
phase to form in order to see the properties of the free
energy given by equation (29) more clearly. The
situation we are treating is not hypothetical but has
reference to the cases of certain L1, ordering alloys
e.g. NiPt alloy [24] where NiPt, L1, phase does not
exist. Summary of the calculations is presented in
Fig. 5(a) and (b).

Curve C in Fig. 5(a) represents a typical phase
boundary predicted by the rigid lattice mean field
model. In agreement with the curve A in Fig. 3, it
separates the L1, phase from the f.c.c. phase by a line
of the second order phase transitions. As shown by
curves A and B in Fig. 5(a), phase diagrams with
fundamentally different characteristics are predicted
when the tetragonal distortion of the lattice is taken

0.35 ! L 1 I

0.30

T 0.25 A

0.20 1

a)

0.15

0.30 1 1 ! i

a = 0.0§

0.25

T 0.20 A

0.10 b)

Fig. 5. Calculated phase diagrams for various a and w
values. No L1, phase is allowed in these phase diagrams. (a)
o =1. (b) « =0.05. From (a), notice that, consistent with
the results shown in Fig. 3, phase diagram characteristics
change drastically as a increases from a =0 (rigid state).
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into account. A significant increase in the stability of
the L1, ordered phase as well as the existence of a
two phase field is noticeable, compared to the rigid
lattice phase diagram. The relative width of the two
phase field is found to be strongly dependent not
only on a but also on w which effectively measures
the decomposition tendency of an undercooled off-
stoichiometric f.c.c. disordered phase. This is shown
in Fig. 5(b). The phase diagram attained with o =1
and o = 0.05 is instructive. It shows that, when the
decomposition tendency is weak (w is large), the two
phase field boundaries merge into a second order
transition line at a tricritical point (z5) where the
coefficient of the harmonic term as well as that of
the fourth order term vanishes, i.e. 4,=A4,=0 in
equation (35). Within the context of the free energy
model used, in the composition range where the
f.c.c. to L1, ordering is of second order, the homo-
geneous ordered phase may phase-separate into the
two phase mixture of (f.c.c. +L1,) by secondary
decomposition. In principle, the phase diagram fea-
ture in question is not physically implausible. Never-
theless, in view of the intrinsic deficiency of the
mean field approximation (i.e. neglect of the corre-
lation effects), we presume that it may be rather an
artifact due to the diminishing influence of the strain
energy term in the solvent rich regions. It should be
noted that the effect of the strain energy term is,
however, still conspicuous in the solute rich regions
(¢ >0.25) where the two phase (f.c.c. +L1,) equi-
librium may be only physically meaningful if the L1,
phase is allowed. For the w values tested (up to
o =4), the existence of a two phase region has been
always predicted for the composition range con-
cerned.

4.3. Phase diagram of the {001)}.. special point
ordered structures

Calculation of the phase diagram involving f.c.c.,
L1, and L1, phases was made using a model binary
system with « =0.05 and w[=V(0)/V (k"] =0.5.
The resulting phase diagram is shown in Fig. 6(b)
together with the corresponding rigid lattice phase
diagram [Fig. 6(a)]. Some topological features are
quite distinct in the phase diagram of Fig. 6(b),
compared to that of Fig. 6(a):

1. the disappearance of the two second order
transitions (f.c.c. to L1, and f.c.c. to L1,) at
the equiatomic composition;

2. the appearance of the (f.c.c.+Ll,) two
phase field;

3. the appearance of an invariant peritectoid
reaction at an intermediate temperature.

These main features are unique to the mean-field
free energy model considered and do not appear
to depend on the particular choice of « and
values.

In our earlier discussion, we proposed that the
effect of a tetragonal lattice distortion would be
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Fig. 6. Calculated phase diagrams of {001)* special point

ordered structures: (a) with no lattice relaxation and (b) with

relaxation of configuration-dependent elastic energy contri-
butions.

more pronounced in alloy systems which have rela-
tively low f.c.c. to L1, ordering transition tempera-
tures. In this regard, it is quite interesting that the
calculated phase diagram displays some essential
features of experimental phase diagrams of certain
binary alloy systems such as CuAu and InMg
alloys [25, 26]: a significant topological analogy be-
tween experimental phase diagrams and the calcu-
lated phase diagram is readily found in the
AuCu-Au;Cu (if the presence of CuAull phase is
neglected) and the InMg-In; Mg side of the respect-
ive phase diagrams.

Due to the simplicity of the model used, however,
care should be taken in evaluating such an agree-
ment. This is because the tetragonal lattice distor-
tion, in principle, can only explain the features
directly related to the increase in the stability of the
L1, phase. The absence of the congruent point at the
stoichiometric L1, phase composition and the ap-
pearance of a peritectoid reaction are, in fact, inher-
ited from the attributes of the mean field model. A
more basic account of this feature may need to
involve considerations of the nature of atomic inter-
actions. With regard to this, some interesting results
are found from previous investigations.
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According to the CVM [7] and the Monte Carlo
calculations [8, 9] of the phase diagrams for the rigid
f.c.c. lattice Ising model with first (V;) and second
(V,) nearest neighbor interaction, when V,/V, is less
than —0.25, a phase diagram is predicted which has
a topology identical to that of the rigid lattice mean
field phase diagram [Fig. 6(a)]. In the case of CuAu
alloys, analyses of the X-ray diffuse scattering data
from disordered CuAu and CuAu; alloys have
yielded V,/V|cuas = —0.4 and V;/V|cyau, = —0.53
[27].1 This suggests that the mean field type feature
shown in Fig. 6(a) should be expected in the Au rich
CuAu region when the rigid lattice Ising model is
applied to calculate the phase diagram, if pairwise
interaction and the composition independence of the
interatomic pair potential are assumed. Although
relevant experimental data are not available, the
nature of atomic interactions is expected to be similar
for the InMg alloys as well.

Based on this understanding, we have recalculated
the phase diagram of Fig. 6(b) for the CuAu alloy.
From the room temperature data of the lattice par-
ameters [22] and of the elastic constants [28], the
value of e [equation (32)] was determined to be
elk =91.4 K where k is the Boltzman constant. The
chemical pairwise interaction energy V (k% of the
equiatomic CuAu alloy is not available in the litera-
ture and use was made of an estimated V(k°)
value [V (k%)/k = —2361 K] of the CuAu, alloy with
the assumption that it does not change with compo-
sition: the estimation was made through
V(% =2, V(r)e~* T by use of the real space inter-
atomic potential values of up to the 8th coordination
shell determined by Bessiere et al. from X-ray diffuse
scattering of the disordered alloy quenched from
T =573 K [29]. The V(0)/V(k°) ratio (=3.375) was
determined by use of the V;/V, (i: ith coordination
shell) values of the equiatomic CuAu alloy due to
Metcalfe and Leake [27]. The resulting phase diagram
is presented in Fig. 7. In association with the assump-
tion used, that is, (k) independent of composition,
the calculated diagram clearly suggests that the tetra-
gonal distortion of the L1, ordered phase may be a
contribution of substantial importance to engender
the feature of interest in the CuAu phase diagram.

Within the framework of the mean field theory,
the anharmonic fourth order term accounting for
the relaxation of the tetragonal distortion may
be regarded effectively as the internal energy correc-
tion due to the four body interaction of strength «
which tries to form a Au or Cu single atomic layer.
That is

AU = —aldp(r,)dp(r;)dp(r;)5p(xs))
~ —a{dp(r,)) (op(r;)) (op(r;)) (op(rs)>

= —an*.

1The values were taken from the data for 800 K (CuAu) and
for 573 K (CuAu,).

2131

650 1 1 PUNPI R |-

600 r

fec
550 - r

CuAul |

Temperature (°K)

500 A

450 A CuAu, -

400 T LA T
0 0.1 0.2 0.3 0.4 0.5

Cﬂl

Fig. 7. The CuAu-CuAu; side of the CuAu phase diagram
calculated by the mean field theory incorporating the tetra-
gonal lattice distortion of the L1, phase.

This is, in fact, in interesting contrast to the predic-
tion from a previous work. After Van Baal’s initial
work [4], Kikuchi and de Fontaine [5] have calculated
the CuAu phase diagram in the CVM tetrahedron
approximation to the first nearest neighbor Ising
model by taking account of the tetrahedron
CuCuCuAu and AuAuAuCu four body interactions.
Many body interactions thus introduced have re-
sulted in the features which show a good agreement
with those of the experimental phase diagram includ-
ing some quantitative aspects. It should be noted,
however, that their calculated phase diagram is a
rigid lattice diagram in view of the rigid coherent state
of the L1, phase. Accordingly, the parameters used to
fit their diagram to the experimental phase diagram
may not be of much physical meaning.

Although our calculated phase diagram success-
fully reproduces the topological features of the Au-
rich side of the CuAu phase diagram, it fails to
reproduce quantitative aspects of the diagram. Ex-
cept for the assumed composition independence of
¥ (k°), this is mainly due to an intrinsic deficiency of
the mean field model, that is, the neglect of corre-
lation effects. Calculation of a reliable phase diagram
and thus a precise assessment of the role of the
tetragonal lattice distortion should be then made by
use of a free energy model which incorporates the
correlation effects as well as the tetragonal lattice
distortion. Within the framework of the SCW model,
correlation effects can be effectively taken into ac-
count by the method developed by Badalyan and
Khachaturyan [30].

5. SUMMARY

A theoretical investigaiton was carried out to un-
derstand the effects of the tetragonal lattice distortion
of the L1, phase on the thermodynamics of the LI,
ordering and on the alloy phase equilibria involving
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the L1, phase. In order to obtain a free energy model
which will serve these purposes, we have treated the
problem of rigidity of the Ising model. The treatment
concerns itself purely with removal of the elastic
energy contributions from a rigid lattice free energy
which prevent the relaxation of the strain free rigid
lattice into the stress free one. A generalized formu-
lation was presented in a form which can be utilized
directly to study incoherent two phase equilibria. By
employing the SCW mean field model as rigid lattice
free energy model, we have applied the formulation
to the case of interest.

We have shown clearly that the thermodynamic
stability of the L1, phase is influenced by the relax-
ation of the tetragonal distortion, through compe-
tition between the associated negative strain energy
and the positive entropic contribution. In associ-
ation with this, a criterion was established. It states
that within the context of the mean field free energy
model, the first order nature of the L1, ordering is
recovered when a(=e/|V (k%)) exceeds a threshold
value (=0.02083). From this criterion, a conclusion
was reached that the problem of a rigid lattice free
energy model and thus of the neglect of the tetra-
gonal distortion, could be more serious for alloy
systems with lower L1, ordering transition tempera-
tures (e.g. CuAu and InMg), given the same magni-
tude of the tetragonal distortion. By taking into
account the tetragonal distortion, we have calculated
a prototype phase diagram of the <001)>* special
point ordered structures. The resulting phase dia-
gram has displayed fundamentally different charac-
teristics, as compared to the one due to a rigid
lattice mean field model. In fact, the topological
features of the calculated phase diagram appear to
resemble those of the CuAu-CuAu; and the
InMg-In;Mg side of the respective experimental
phase diagrams. Such an agreement clearly suggests
an important role of the tetragonal distortion, as
compared with that of many body interaction or
equivalently of the composition-dependent inter-
atomic potential which are proposed to explain the
same features in the existing theoretical work. The
conclusions obtained in this study are qualitative
and, therefore, a precise assessment of the role of
tetragonal distortion should be made by use of a free
energy model which takes into account correlation
effects. It is easily expected that the effects of the
tetragonal distortion would be more pronounced in
such a free energy model since it will produce a
reduced entropy term relative to the exaggerated
mean field entropy.
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