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ABSTRACT

Recently, it has been suggested that relatively long-
lived ordered states can develop in reactions involving
two or more order parameters. These states are termed
pseudostable states and correspond to saddle points in
the free energy surface. The Al (FCC) — L1, reaction
involves the independent growth of three concentration
wave amplitudes, corresponding to each of the <100>*
k-space points. It is suggested that L1, pseudostable
states could form during this reaction, under suitable
thermodynamic and kinetic conditions. The range of
structures possible by varying the <100>* amplitudes
are given. A discussion of the microstructures that are
likely to be observed if such a state were to be encoun-
tered is given. A fourth-order Landau expansion is de-
veloped, using these amplitudes as variables. The sta-
bilities of all L1, states within this model are derived
and tabulated. Under the right conditions, this expan-
sion gives saddle points corresponding to L1, states.

1. INTRODUCTION

Alloy properties are generally altered indirectly by
changes in their microstructures, which in turn are al-
tered by changes in their processing conditions. The re-
lationships between processing and microstructures
then comprises fully half of the alloy development
problem. With the advent of the high speed computers,
it has become possible to develop workable models of
microstructural evolution that allow predictions to be
made, g priori, as to the effects of variations of alloy
and processing variables. Microstructural evolution
studies can, for the first time, be studied in a system-
atic way by (1) identifying the regimes of alloy behav-
ior in terms of these variables and (2) performing simu-
lations of microstructural evolution in each of these
regimes in order to determine the effects of each vari-
able. This work attempts to advance the science by
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identifying a particular set of regimes of microstruc-
tural evolution: those in which the atomic order param-
eter has several degrees of freedom so that several dif-
ferent structures may be produced during the evolution
of long range order.

Thermodynamic analyses have been successfully
used in the past to identify regimes of reaction behav-
ior in systems that exhibit simultaneous ordering and
phase separation.[Sof89; Kha88; All76; All82] These
results can, and in some cases, have been used as a
basis for microstructural evolution simulations.[Che91a;
Che91b] The thermodynamic approach was initiated by
Allen and Cahn,[All76; All75] to explore the existence
of simultaneous ordering and phase separation in the
Fe-Al system. The free energy of the solid solution was
expanded into a Landau series[Lan80] in order parame-
ter and predictions made as to the existence of atomic
ordering followed by phase separation of the ordered
product. Experimental studies have demonstrated that
the predictions of Allen and Cahn were correct.[Sof81]
Kubo and Wayman[Kub79] examined simultaneous or-
dering and phase separation in the second order
BCC— B2 reaction, by using the static concentration
wave (SCW) model.[deF71; Kha83] Khachaturyan,
Lindsey, and Morris,[Kha88] applied the SCW model
to the metastable first-order &—6” (A1—L1,) reaction
that occurs in the Al-Li system[Mur88] and predicted a
complex cascade of reactions that could occur because
of the development of thermodynamic instabilities. L.Q.
Chen, et al.,[Che91a; Che91b] performed microstruc-
tural evolution simulations in 2-d crystals with thermo-
dynamic parameters chosen so as to reproduce the
conditions necessary for coupled ordering and phase
separation and observed many of the reaction features
predicted by the thermodynamic analyses.

Thermodynamics as a method of predicting simulta-
neous ordering and phase separation reaction regimes
was systematized by Soffa and Laughlin[Sof81; Lau88]
by developing a heuristic approach by considering free
energy curve geometries that were possible for each
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Figure 1. Ordered structure characterized by a single
component order parameter. Structure generated by
development of the (a) [10]* ordering wave, (b) [01]*
ordering wave. Note that the structures are identical.

system. These predictions were compared with model
computations by Simmons and Laughlin[Sim92a] and
by Simmons,[Sim92b] using the static concentration
wave model. For a more complete review of simulta-
neous ordering and phase separation, the reader is re-
ferred to the work by Laughlin and Soffa.[Lau88]

The essential feature of coupled ordering and phase
separation reactions is that one reaction (ordering) pro-
ceeds orders of magnitude faster than the other (phase
separation). It is possible to use thermodynamics to
make predictions of reaction regimes in which the re-
actions proceed at roughly the same pace, such as the

Figure 2. Ordered structure < Y ) CY Y )

characterized by a two com-
ponent order parameter. (a)
Non-zero [10]* ordering
wave, (b) non-zero [01]* - —:g:%:
ordering wave, (c) non-zero E,. {— -

[10]* and [01]* ordering °2

waves. (a) and (b) show two
variants of the same struc-

ture and (c) shows a com-
pletely different structure.

evolution of two types of atomic ordering. but there will
always be a degree of uncertainty, since it will not be
possible to say whether a reaction sequence will occur,
only that it can. Additional considerations of kinetics
must be made in order to determine this. Nevertheless,
the thermodynamic approach can be applied to identify
the regimes of possible reactions, but whose plausibil-
ity can only be determined by kinetic considerations.

Predictions based on thermodynamics of ordering,
where two competing ordering reactions occurred si-
multaneously were made by Fultz and cowork-
ers[Ful93; Kik92; Ful92] In the evolution of order in
Fe-Al alloys near the 25% Fe composition, both B2 or-
der as well as DO3 order compete.[All75] By varying
the alloy composition and temperature, Fultz observed
long-lived states of B2 order, where the equilibrium
phase diagram indicates that the DO3; Fe;Al phase
should be the equilibrium one.[Ful92] This long-lasting
state was explained as being due to the existence of a
saddle point in the free energy surface, where B2 and
DOj order parameters are regarded as independent
variables. This condition corresponds to a state of low
thermodynamic driving force for order evolution and
had been termed ‘pseudostable states’ by Fultz and
coworkers.

In the example cited above, there are two degrees of
freedom, corresponding to the order parameters of the
B2 and DOj structures. At this point, we wish to point
out the distinction between order parameters with only
one component and those with order parameters con-
taining several components. In the one component or-
der parameter, only one ordering wave characterizes
the type of order, the degree of order being determined
by the amplitude of this ordering wave. An example of
a one component order parameter structure is shown in
Figure 1. The disordered state has 4-fold symmetry,
implying the existence of an ordering wave oriented
90° away from the one shown. However, inspection of
Figure 1 shows that the structure described by either
ordering wave would be identical.

On the other hand, Figure 2 shows a structure where
this is not the case. Although the parent structure has a
4-fold axis, the ordered structure formed by the ordering
waves related to each other by a 90° rotation are dis-
tinct, being variants of each other. Further, the super-
position of these two ordering waves produces a com-
pletely different structure than either of the two vari-
ants. Thus, if the order parameter has several compo-
nents, the state of order of the alloy is described by
several ordering wave amplitudes, each being relatable
to each other by the symmetry of the parent structure,
but that can vary independently of one another.

The L1, structure is characterized by three compo-
nents: the amplitudes of ordering waves characterized
by k = <100>*, <010>*, and <001>*,[Kha73] where



Figure 3. L1, structure. (a) real space representation, (b)
k-space representation.

the asterisk is used to refer to the reciprocal lattice
vectors describing the ordering wave vectors.

This work explores the possible existence of pseu-
dostable states that could appear during the develop-
ment of L1, order. In section 2, we will discuss the
structures that can be formed by the independent varia-
tion of the three components of the <100>* order pa-
rameter. In section 3, we will discuss pseudostable
states and the microstructures that would be expected
to form as a result. Section 4, we will show that L1,
pseudostable states are plausible in this system by de-
veloping a Landau expansion of the free energy that is
consistent with the symmetry of the structures in-
volved[Lan80; I1zy90] and solving for the existence of
stationary states. Section 5 will address some of the
limitations of this treatment and section 6 will give a
summary of the conclusions drawn from this work. We
will limit our investigation to those cases where nucle-
ation barriers are specifically neglected: only barrier-
less transitions will be considered. Our treatment will
be a thermodynamic one which will, therefore, give
necessary but not sufficient conditions for the appear-
ance of pseudostable states. A kinetic model would be
necessary in order to determine whether or not one
would be encountered.

2. XI AND THE K-SPACE REPRESENTATION

In analyzing stability of ordered structures, there are
commonly two representations employed of the struc-
ture. The most straightforward is the real space repre-
sentation, in which the structure is divided into sublat-
tices and the average compositions on each sublattice
are the independent variables. This has the advantage
of simplicity and clarity of expression. When analyzing
stability of ordered structures, particularly against in-
finitesimal variations, the k-space representation is
more frequently employed, since periodic structures
will develop instabilities with respect to amplification
of sinusoidal variations in composition, displacement,

or some other alloy parameter. The next section will
discuss the k-space representation of the A1 — L1, re-
action in more detail. The following section will dis-
cuss the various structures that can form as a result of
the independent variation of the three components of
the <100>* order parameter.

&-Space

Ordered structures may be described in terms of the
site occupancies, for example, the L1, structure shown
in Figure 3(a) may be described by specifying that
n;=ny=1and n3 =n, =0, where the n;’s represent
the occupation probabilities at site i. The crystal struc-
ture is then represented by specifying sites /1,2, 3, and
4, along with the values of site occupancy n, n,, n3,
and n,. This forms the basis of the real space represen-
tation, or the C(r) representation. In the C(r) represen-
tation, r is the independent variable, chosen to refer to
a particular lattice site, and C is the dependent vari-
able, reflecting the (already determined) average com-
position at that site.

The structure may be equivalently described in terms
of the wavelengths and amplitudes of static concentra-
tion waves[Kha83] that would have to be superposed in
order to give the same structure. In Figure 3 (b), the
same structure is described by specifying that
£(000) = 0.5, £(001)=0.5, and £(100) = £(010) = 0,
where £(000) is the amplitude of the constant wave
corresponding to k = [000]*, and &£(100), £(010), and
£(001) are, respectively, the amplitudes of the waves
corresponding to k =[100]*, [010]*, and [001]*. The
crystal structure may then be described by specifying
the values of k: [000], [100]*, [010]*, and [001]*, along
with their amplitudes &£(000), £(100), £(010), and
£(001). This is the k-space representation, which we
may also refer to as the £(K) representation. Here, the
k vector is the independent variable, and the value of &
is a function of that particular k.

The k-space representation was originally proposed
by Landau[Lan37] and subsequently developed by
Khachaturyan,[Kha62] Cook and deFontaine[C0069]
and deFontaine.[deF79] It is more convenient when an-
alyzing the stability of structures with respect to spin-
odal decomposition or ordering. Since it is our purpose
to focus exclusively on barrierless mechanisms, we
will use this representation. Many works have ad-
dressed themselves to the description of ordering reac-
tions with the k-space representation,[Lan80; Kha83;
Kha78] the majority of them have examined the roll of
the k vector describing the structures formed.
However, some additional works have addressed them-
selves to the roll of &£.[Sim92b; 1zy90; Guf73; Guf7l;
Kaj78]

Figures 4 and 5 show, respectively, the effects of
variations in k and & on the structure for a single com-
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Figure 4. The effect of varying k. (a) k = ag, (b) k = 1.05ag,
(c) k=1.10ay

ponent order parameter. Variations in k change the pe-
riodicity which, in the case of Figure 4 is affected by
the introduction of periodic antiphase boundaries. This
affects the type of order, since the ordered structures
are distinguishable from each other on the basis of the
symmetry. Variations in & change only the degree of
order. The distinction between £ and k is similar to that
between AM and FM radio signals, whereas with AM
signals, the information is contained in the amplitude
of the signal and with FM signals, the information is
contained in the frequency. This may be an oversimpli-
fication, since with radio signals, it is the variation of
amplitude and frequency that conveys the information,
and in our case, it is the absolute magnitude of these
that conveys the information. We address here the in-
formation contained in the amplitude of the concentra-
tion waves."

If attention is restricted to the <100>* ordering wave,
the real space and k-space descriptions can be related
to each other by the following relations due to
Khachaturyan:[Kha73]

nm=c+&+6H+8& (la)
m=c+§-5H-8 (1b)
m=c-§ -5+ & (1c)

* Our usage of &-space is similar to Gufan’s usage of &-space, except
that we do not employ any normalization to the wave
amplitudes.

B
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Figure 5. The effect of varying €. (a) §; = 1.0¢, (b) &, =
0.6¢, (c) & = 0.0, (d) &; =-0.5¢, (e) & =-1.0c. cis the
bulk compostion.

n=c-&+&-6 (1d)

where
¢ is the bulk composition of the alloy.

As was eluded to in the introduction, many of the k-
space structures that have been studied so far are pro-
duced by a single concentration wave amplitude. From
Equation (1), it is seen that there are in all three inde-
pendent components of the order parameter for the
<100>* ordering transition. Each of these amplitudes
can vary independently of one another, allowing the
appearance of a number of ordered structures, as illus-
trated in Figure 6. This independence also leads to a
number of paths that may be taken during the ordering
process. The following section discusses the range of
structures that may be realized.

<100>* &-Space Structures

In all, there are eight structures that may be formed
by differing values of §;: Al (FCC), two L1, structures,
L1, three tetragonal L6 structures, and one or-
thorhombic structure. The Al structure corresponds to
the condition where all three amplitudes vanish. The
L1, structure corresponds to the condition where all
three amplitudes are non-zero, and equal. The L1,
structure corresponds to the condition where only one
amplitude is non-zero and the other two are zero. The
L6, structure is obtained when one of the amplitudes is
zero and the other two are non-zero and equal, and the
orthorhombic structure corresponds to the condition that
all three amplitudes are non-zero and unequal. All of
these structures are shown in Figure 7 and are super-
posed on a &-space stereogram in Figure 6. In this fig-
ure, the relative values of &;, &,, and &; form the coor-
dinate axes x, y, and z.

The difference in the two L1, structures is that one
has a higher probability of atoms of type ‘A’ being
found at the corners and those of type ‘B’ at the face
center positions, while the other L1, structure has the
opposite condition.

The L6, structure[Pea58] may be viewed as an or-
dering of the L1 structure, only with the two sites in



Figure 6. &-space coordinates corresponding to each of
the 7 ordered &-space structures.

the (001) plane of the conventional unit cell having a
different occupation probability. Some evidence has
been published that y-TiAl may have this structure un-
der certain conditions[Jac93] With the L6, structure,
there are three different sublattice occupancies: two of
the sublattices have the same occupancy. Depending
upon whether these two have occupancy that is less
than, intermediate, or greater than the occupancies of
the other two, there are three distinguishable L6, struc-
tures.

The orthorhombic structure has all four sublattices
differently occupied and represents the lowest symme-
try structure realizable with <100>* ordering.

Of these, the Al, L1,, and L1, structures have spe-
cial symmetry in terms of &, so that the relative values
of the &;’s are preserved when thermodynamic parame-
ters such as pressure and temperature are var-
ied.[Guf71] This can be seen from Figure 6, where the
symmetries of these points in &-space are 43m, 3mm,
and 2mm, respectively. This symmetry is sufficient to
guarantee that the angular coordinates in &-space are
fixed. The other structures, the L6y and orthorhombic
phase, do not have sufficient symmetry to fix their an-
gular positions in £-space. The symmetries of these
points are m and 1, respectively.

We would like to make one final note on the &-space
structures. From Figure 6, we note that the angular co-
ordinates in &-space determine the type of order, while

Figure 7. The eight structures that can be formed by
differing values of &: (a) L1, B3A, (b) L6, Il, (c) L1, A;B
(d) L6, 111, (e) L6y 11, (f) A1, (g) L1, and (h) the ortho-
rhombic structure with symmetry D%h.

the radial coordinate determines the degree of the or-
dering. In subsequent sections, we will change vari-
ables from (&}, &,, &;) to a ‘polar coordinate system,’
(£, 6, ¢), in which &, represents the radial coordinate
and 6 and ¢ will have the usual meanings in polar co-
ordinates.

3. TRANSFORMATION MICROSTRUCTURES

In what follows, we consider here a particular case of
microstructural evolution that can occur, which is al-
lowed by the multi-component order parameter.
Specifically, we will investigate the possibility of
forming a relatively long-lived non-equilibrium L1,
state during the Al — L1, reaction, before the final
evolution to the L1, state.

Pseudostable States

The existence of pseudostable states was first pro-
posed by Kikuchi, Mohri, and Fultz[Kik92] and later
elaborated upon by Fultz in subsequent publica-
tions.[Ful93; Ful92] A pseudostable state corresponds
to a point in a multi-dimensional order parameter space
where the free energy surface develops a saddle point.
This is used to explain the existence of long-lasting
states that are neither stable nor metastable phases.



The argument is made as follows. To a first order ap-
proximation, the evolution of the order parameters fol-
lows the relation:[Ful93; Ful92]

dn; oF
—=D Yi—— 2)
dt ; Y anj
where

7, is the i’th order parameter,
%;j are a set of kinetic coefficients and
t is time.

At any stationary point, where the gradient of the
free energy vanishes, Equation (2) shows that there is
no evolution of the order parameter. Using the usual as-
sumptions of continuity, we can say that near a saddle
point, there is very little evolution of the order parame-
ter. It is not sufficient to have a saddle point in the free
energy surface, however: the kinetics must favor the
system evolving to that point in the first place. In other
words, one mode of evolution must be faster than the
others and this must lead to the pseudostable point.
Once there, the system arrests for a time until suffi-
cient evolution along one of the other modes is suffi-
cient to provide enough driving force to cause the reac-
tion to proceed more quickly.

The existence of pseudostable states is supported by
both pair approximation cluster variation method com-
putations as well as Monte Carlo simulations of the
evolution of both short range and long range order dur-
ing the development of B2 order.[Ful93] The pseu-
dostable state concept was used as an explanation of
observed transformation behavior in the Fe-Al and Fe-
Co systems.[Ful92]

Microstructural Implications

In what follows, we will investigate the conditions
for the appearance of saddle points in the free energy
surface. The Landau expansion that we develop in the
next section indicates the existence of a multitude of
stationary points allowed by the symmetry of the
<100>* ordering reaction. For reasons of clarity, we
will only examine one of the simpler of the possibili-
ties: that in which the A1 — L1, reaction proceeds via
an L1, pseudostable state.

In this case, if there is sufficient strain energy due to
the L1, transformation, we would expect a tweed struc-
ture, consisting of layers of twin related domains of
L1, to be produced as a means of accommodating this
strain energy.[Kha83] This would be characterized by
{110} striations when imaged in TEM with g = <110>,
along with <110>-oriented relrods. Higher resolution
images, we would expect to show a mixture of twin re-
lated domains.

The tweed microstructure has been observed in sys-

tems exhibiting Al — L1, reaction such as the
CuAu[Aru67; Hir62; Yos72] and the CoPt sys-
tems[NewS51] and is characterized by <110> relrods in
the diffraction pattern that are normal to modulations
parallel to {110} planes in the bright field im-
age.[Tan66]

The reaction sequence that we then expect to see is
(1) the disordered state, which is the quenched state,
followed by (2) the development of a tweed contrast in
TEM, followed by (3) development of the equilibrium
L1, structure.

4. THERMODYNAMIC ANALYSIS

The suggestion was made in the last section that the
Al — L1, reaction could proceed via an intermediate
state of L1, order, if the conditions were right. We will
show in this section that this is reasonable, at least
from consideration of the symmetries of the phases in-
volved. We will perform a Landau expansion[Lan80]
complete to fourth order. We will show that, for suit-
able choices of symmetry-allowed coefficients, saddle
points do appear in the free energy surface correspond-
ing to L1, states of order. The following section dis-
cusses the reasons for making the fourth-order expan-
sion.

The Landau Exclusion Rules
It is well known that when a polynomial expansion of
a large order is used to approximate a free energy sur-
face there can be a number of ‘instabilities’ generated
as a result of the changes in curvatures, just due to the
power expansion. It is therefore desirable to limit the
number of powers in the expansion as much as possi-
ble, in order to reduce this artifact.
According to Landau and Lifshitz,[Lan80] in order for
a phase transition to be second order over a range of
pressures and temperatures, the reaction must obey The
‘Landau symmetry rules.” These rules are as follows:
1. The third-order invariant of the expansion must
vanish identically,
2. the fourth-order invariant must be positive-def-
inite, and
3. the ordered structure must correspond to a
‘Lifshitz special point’ in k-space.
According to Tolédano and Tolédano, no second order
phase transition has ever been observed that violates
the Landau symmetry rules,[Tol87] therefore, we ex-
pect that the first order nature of the A1 — L1, and
Al — L1 reactions would be a consequence of viola-
tions of these exclusion rules.
This is, in fact, the case. The first order nature of the
Al — L1, reaction is first order because of a non-zero
third-order invariant and the Al — L1, reaction is be-



cause of a negative value of the fourth-order invariant.
We will discuss these two points briefly at the end of
the following section. For now, we will simply say that,
in order to account for the experimental observation
that these two reactions are first order, the fourth order
expansion is necessary and has the minimum necessary
number of terms.

The Landau Expansion

Since the <100>* ordering reaction involves the in-
dependent growth or the ordering wave amplitudes, &,
&5, and &3, the free energy is a function of these three
variables. Fixing all other thermodynamic variables at
a particular point and expanding the free energy in a
Taylor’s series about the disordered state gives:

fi&1,62.83) = fo + z fi&i+ 21—'2 fij&i&i +
i iy

3%2 fijx&igick + 4%2 LijkiGi&iGir + ...

Tk RARS 3)

where
f is the free energy of the homogeneous so-
lution,
fo is the free energy at the disordered state,
and
fi is 9f19¢&;, etc.

Equation (3) is general and describes the free energy
of any three-component order parameter. We next sim-
plify this relationship by (1) using the symmetry of &-
space, (2) using the fact that the free energy function
has exact differentials in &;, and (3) retaining terms
only up to fourth-order. The symmetry of &-space may
be shown to be 43m from group theory[Tol81] or from a
straightforward analysis of the types of structures that
may be produced for each value of &;.[Sim92b] For ex-
ample, since the 43m point group has a 2-fold operator
parallel to the &j;-axis, the structure represented by
£;>0, & =&;=0 is the same as that represented by
£, <0, &, =&;=0, each being a distinct domain of
L1y. Thus f(i&;, &,, &3) = f(=&;, &, &,) for all values of
&3, we can equate the expansion in terms of +£; to that
in terms of —&; with the result that the coefficients of
all terms that have odd powers of &; vanish identically.
The application of all symmetry elements of the 43m
point group reduces the number of independent con-
stants in Equation (3) substantially. The fact that f has
exact differentials implies that the order of differentia-
tion is immaterial, which further reduces the number of
constants.

Using these simplifications, we arrive the following
expression:[Sim92b]

f=BE*+CE3+DE +... (4)

where

B=1/2f,,

C = Kyl,l,l3, K being a constant and l; be-

ing the i’th direction cosine[Nye57]
D =Ky + Ky(I;* + 1,4 + 13%), K| and K, be-
in
Sr=NE2+ 82+ 82
In order to analyze the stability, we make two further
modifications. (1) We consider only temperatures at
which an ordering instability occurs, so that the
quadratic term in Equation (4) vanishes. And (2) in or-
der that the order parameters remain bounded, the func-
tion must be positive for all sufficiently large values of
order parameter. For this purpose, we add an isotropic
sixth-order term to the expansion. This is for mathemat-
ical convenience and does not represent the totality of
sixth-order terms that are allowed by symmetry, nor is
it meant to imply that the fifth-order invariant vanishes
identically. There are, in fact, a number of fifth-order
terms allowed by symmetry.[Sim92b]
Making these approximations and substitutions gives

the following simplified free energy relationship for a
particular temperature and composition:[Sim92b]

f-fo=Kolhhl & + Ky &4
+ Ky (I +0% + 1% £+ £8 (5)

The first term on the right of Equation (5) gives the
third-order invariant and the second and third terms
give the fourth-order invariant. Referring to Equations
(1) and Figure 7, we see that the L1, A3B structure is
represented by the [111], [111], [111], and [111]-direc-
tions in &-space. This represents the extreme value in
the third-order invariant: the L1, structure experiences
the effect of the non-zero third-order invariant. We also
make the observation this term is unimportant for the
L1, structure, since two of the direction cosines will
always be zero for any particular variant or domain. In
this case, the first non-zero term is the fourth-order
term. If this were positive, there would be no disconti-
nuity in the equilibrium solution as the temperature is
lowered to where B becomes negative[Ioo80] and the
Al — L1 reaction would be second order. Thus, we
see that the L1, reaction is first order due to the viola-
tion of the Landau exclusion rule requiring that the
third order invariant vanish and the L1 reaction is first
order due to a violation of the exclusion rule requiring
that the fourth order invariant be positive definite.



Stationary Solutions and Pseudostable States

Equation (5) has been solved analytically for equilib-
rium, as well as stability for both L1, and L1,
phases,[Sim92b] by using the quadratic and cubic for-
mulae. In all, there are 8 possibilities for the equilib-
rium solutions, in which specific combinations of roots
are found. There are 4 possibilities for the stability, in-
stability, or pseudostability of L1, solutions and 12
possibilities for the L1, solutions. We will not delve
into the totality of solutions of Equation (5), but will
concentrate on the stability solutions of the L1 struc-
ture in this section, since this is the possibility in
which we are interested. In this section, we give a de-
scription of the steps taken in order to produce the solu-
tions.

For a 1 component order parameter, the conditions
for stable equilibrium are (1) 9f/0€ =0 and (2)
02f/0£2 > 0. For a three component order parameter, the
analogous relationships are:

o o 9 (6)
CISICIS IS
and
A21>0,4,>0,A3>0 7
where

A1, A2, and A3 are second derivatives,
aZf/ax2, where y represents a principal
curvature direction.

Generally, the directions in which these second deriva-
tives are taken will not be the &; directions, but linear
combinations of the &;’s. The solutions to Equation (6)
that satisfy Equation (7) yield a ‘phase diagram’ in or-
der parameter space. This has been calculated for &-
spaces for many potentials by Gufan,[Guf71] including
the 43m potential.

For pseudostable states, we must still satisfy
Equation (6), but relax the condition that all three
principal curvatures given by Equation (7) be positive.
Since the product of the principal curvatures is the de-
terminant of the Hessian matrix,[Str76] this determi-
nant vanishes when one of the principal curvatures
changes sign:

o ¥

082 098108 0&198;
’f 9 I |- (8)
08108 9&? 05083

aZf aZf azf
051083 95083 9Es?

Table 1. Stabilities of the L1, roots of the fourth order
Landau expansion. The symbols under 'Stab' refer to the
signs of the principal curvatures in the <100>-, <110>,
and <110>- &-space directions, respectively.

Stab Range of K-Values

++| Ko > 43 K,V=6 (K +Ky) Ky>-4/3K,V=6 (K +Ky)
++| Ko <43 K,V-6 (K, +Ky) Ky>-4/3 K, V-6 (K +Kyp)
+—| K> 43 K,V-6 (K| +Ky) Ky<-4/3K,V=6 (K| +Ky)
+— | Ko <43 K, V-6 (K, +Kp) Ky<-4/3K,V=6 (K; +Kyp)

The equilibrium solution to Equation (6) can be
evaluated directly and yields:

& = i;—«/—6(K1 + Kz(ll4 + b+ 134)) ®

The stability of these solutions can be evaluated in
the following manner. The individual terms of Equation
(8) may be evaluated directly by differentiation. We
then diagonalize the matrix, using the symmetry of the
43m point group. For the L1, structure, the state of or-
der is represented by points along the <100>-directions
in &-space. The symmetry of points along this direction
is 2mm,[Hah83] where the mirrors are parallel to {110}
planes. Thus, we know that the principal directions in
E-space for the L1, structure are along the <100>-,
<110>-, and the <110>- &-space directions. We can
immediately diagonalize Equation (8) by choosing
these to be the new coordinate axes.

Substituting Equation (5) into Equation (8) and mak-
ing these changes in coordinates, we obtain a
‘diagonal’ representation of the Hessian. From this, we
obtain the values of the principal curvatures:

A =30&* + 12(K + Kp)E,? (10a)

X = 681* + 4K &% + Kok (10b)
and

Ay = 6&1* + 4K &% - K&y (10c)

These represent the principal curvatures in the
<100>-, <110>-, and <110>-directions, respectively.
The surfaces at which each principal curvature given in
Equations (10) vanishes may be found by substituting
in the solutions of Equation (9) into Equations (10) and
equating to zero. This yields the values given in Table
1.[Sim92b]

In Table 1, the stabilities of the equilibrium solutions
of Equation (5) for the L1, structure. The symbols +++,
++—, etc. refer to the signs of the principal curvatures



in the <100>-, <110>-, and <110>-directions in &-
space. The first row gives the relations between Ko, K,
and K, produce an L1 structure that is stable against
all variations. The second row gives these relations that
produce a structure that is stable against variations in
the <100>- and <110>-directions, but is unstable with
respect to variations in the <110>-directions. An L1,
state forming via this saddle point is expected to re-
main for a while, and then start to develop the A;B
type of L1, order. The same holds for the entry in the
third row of this table, except that it would become un-
stable with respect to development of the B;A type of
order. The entry in the last row describes an L1, state
that is unstable with respect to formation of any other
&E-space structure.

Thus, we see that alloys with the Landau coefficients
described in rows 2 and 3 of Table 1 form L1, saddle
points in &-space and that the assertions as to the for-
mation of L1, as a pseudostable state are made more
plausible. This does not constitute a guarantee, how-
ever. In the next section, we will discuss some of the
limitations of our treatment.

5. LIMITATIONS

The conclusions made here, while quite general, are
subject to some limitations, since we have made a
number of approximations. We wish to list several of
the more important limitations in this section.

First, the above analysis is a thermodynamic treat-
ment. We cannot, by inspection, declare any of the
steps of the reactions described herein as being faster
or slower than any other. They will, no doubt, proceed
at different rates, but a kinetic model would be neces-
sary to make these predictions. The best that can be
said of the above is that the existence of stationary
points in the free energy surface is a necessary, but not
sufficient condition for a pseudostable state. The addi-
tional necessary condition is that the kinetics favor the
development of the transient ordered state correspond-
ing to the pseudostable state.

Second, we have used a Landau expansion with a
limited number of terms. On the one hand, this is good
in that it does not produce artificial instabilities due to
‘wiggles’ in the power series. But on the other hand, it
does not allow us to make quantitative comparisons of
the degree of ordering predicted for any of the phases.
We do believe that the qualitative features, such as the
existence of pseudostable states are well within the
level of approximations made.

We have also completely neglected the role of short
range order as well as defects such as antiphase
boundaries (APB’s). It is known that the presence of
APB’s can affect transformations.[Al176; Che91a]

Finally, we have employed a ‘monochromatic ap-
proximation’ in setting up the problem. That is to say,
we have assumed that the growth rate of all concentra-
tion wave amplitudes except those corresponding ex-
actly to the <100>* k-space points are zero. According
to Lifshitz’ analysis,[Lif41] the thermodynamic poten-
tial should be stationary, presumably a maximum, at
these points. Our analysis applies in the situation where
the growth rate is a maximum at the Lifshitz points and
that peak broadening, due to growth of amplitudes
whose k-values are close to, but not exactly equal to,
the <100>* values. A more realistic approach would al-
low for this broadening, which we would expect to cre-
ate a mixture of anti-phase domains of any particular
structure formed, similar to that shown in Figure 4.

6. CONCLUSIONS

Reactions characterized by multi-component order
parameters are qualitatively different from those char-
acterized by single component order parameters. We
have discussed these differences in terms of the possi-
ble structures that can be produced and one specific
transformation scenario. We have developed a fourth
order Landau expansion in order to show that this be-
havior is allowed by the symmetry of the structures in-
volved. The following conclusions can be drawn:

1. The transformation behavior when the order
parameter has multiple components is quali-
tatively different than when it has only a sin-
gle component.

2. A multitude of structures are possible in the
<100>* ordering reaction, each characterized
by different relative values of the concentra-
tion wave amplitudes.

3. A possibility in which the A1—-L1, transfor-
mation could proceed via an L1, pseu-
dostable transition state was suggested and
examined in more detail. The microstructural
implications of such a reaction was discussed.

4. A thermodynamic analysis along the lines of
that developed by Landau and Lifshitz[Lan80]
was made and showed that such a transforma-
tion was allowed, when taking symmetry and
thermodynamic constraints into consideration.
These effects appear when a fourth order ex-
pansion in free energy was made, this being
the minimum order required to account for the
experimentally observed first-order nature of
the L1, and L1 ordering reactions.

5. The values of the coefficients of the Landau
expansion producing each possible stable,
pseudostable, or unstable state for L1, were
evaluated and tabulated.
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