Acta metall, Vol. 36, No. 12, pp. 3149-3162, 1988
Printed in Great Britain. All rights reserved

PRECIPITATE SHAPE TRANSITIONS DURING
COARSENING UNDER UNIAXIAL STRESS

W. C. JOHNSON, M. B. BERKENPAS and D. E, LAUGHLIN

Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University,
Pittsburgh, PA 15213-3890, U.S.A.

(Received 27 October 1987, in revised form 16 March 1988)

Abstract—Precipitate shape transitions of elastically misfitting inclusions in the presence of a uniaxial
stress field are examined for cubic materials using simple bifurcation theory. Both size-induced shape
transitions that occur during growth of the precipitate under zero or constant stress and stress-induced
shape transitions resulting from changes in the external stress field at constant precipitate volume and
misfit are identified. Using elastic fields valid for small differences in elastic constants between precipitate
and matrix, a dimensionless stress parameter and precipitate volume are identified from a Landau-type
expansion that indicate the type and nature of permissible shape transitions. These dimensionless
parameters incorporate the interfacial energy density, difference in elastic constants between precipitate
and matrix, precipitate misfit, precipitate volume and external stress field into simple algebraic re-
lationships. They indicate under what combination of material parameters a shape transition might be
expected and whether the transition is continuous or discontinuous. Results of the model are applied using
material parameters from a nickel-based alloy.

Résumé—A I'aide d’une théorie simple de bifurcation, nous étudions les transitions de forme des précipités
pour des inclusions a désaccord €lastique, en présence d’'un champ de contraintes uniaxiales, dans le cas
des matériaux cubiques. Nous identifions les deux types suivants de transitions de forme: transitions par
effet de taille, qui apparaissent pendant la croissance du précipité sous contrainte nulle ou constante;
transitions par effet de contraintes, qui résultent des variations du champ des contraintes externes pour
des volumes de précipités et des désaccords identiques. En utilisant des champs élastiques valables pour
de petites différences de constantes élastiques entre le précipité et la matrice, nous identifions un paramétre
de contrainte sans dimension et un volume de précipité 4 partir d’un développement de type Landau, qui
indique le type et la nature des transitions de forme permises. Ces paramétres sans dimension relient la
densité d’énergie interfaciale, la différence de constantes élastiques entre le précipité et la matrice, le
désaccord du précipité, le volume du précipité et le champ des contraintes externes a I'aide de simples
relations algébriques. Ils indiquent pour quelle combinaison de paramétres d’un matériau donné on peut
s'attendre 4 une transition de forme, et si cette transition est continue ou discontinue. Nous expliquons
les résultats de ce modéle en utilisant les paramétres d’un alliage & base de nickel.

Zusammenfassung—Die Anderungen der Form von elastisch fehlpassenden Einschlilssen unter der
Einwirkung eines einachsigen Spannungsfeldes werden fiir kubische Materialien mittels einer einfachen
Bifurkationstheorie untersucht. Es werden zwei Formiéinderungen aufgezeigt, eine gropeninduzierte, die
wihrend des EinschluBwachstums unter keiner oder konstanter Spannung auftritt, und eine span-
nungsinduzierte, die aus den Anderungen im duBeren Spannungsfeld, EinschluBvolumen und -fehlpassung
konstant, folgt. Mittels elastischer Felder, die fiir kleine Unterschiede in den elastischen Konstanten von
EinschluB und Matrix gelten, werden ein dimensionsloser Spannungsparameter und ein dimensionsloses
EinschluBvolumen aus einer Entwicklung vom Landau-Typ gewonnen; diese Parameter geben Typ und
Natur der erlaubten Forminderungen an. Die dimensionslosen Parameter fassen die
Grenzflichenenergiedichte, den Unterschied der elastischen Konstanten zwischen EinschluB und Matrix,
Fehlpassung des Einschlusses, EinschluBvolumen und duBeres Spannungsfeld in einfache algebraische
Bezichungen. Sie beschreiben, unter welchen Kombinationen der Materialparameter eine Formédnderung
erwartet werden kann und ob diese Forménderung kontinuierlich oder diskontinuierlich ablauft.
Ergebnisse des Modelles werden auf die Parameter einer Legierung auf Nickelbasis angewendet.
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1. INTRODUCTION
Precipitate shape transitions during growth and
coarsening are known to occur in many alloy systems.
For example, in the nickel-based alloys, shape transi-
tions from spheres to cubes, cubes to plates, and even
the splitting of cubes into two or more plates are
documented [1-3]. These shape transitions are often
a result of changes in the relative contributions of the
interfacial and elastic energies to the total system

energy with increasing size of the precipitate. If the
shape that minimizes the interfacial energy is different
from that which minimizes the elastic energy, shape
transitions during growth of the precipitate may be
observed. Shape transitions may be first or second
order in nature and have been examined by a number
of authors [4-7].

Precipitate shape transitions and morphology
changes also result from the application of an exter-
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nal stress field (stress coarsening). These shape tran-
sitions include the sphere to ellipsoid transition in
which the axis of revolution is either aligned in the
direction of, or is perpendicular to, the external stress
field and the corresponding cube to plate transition
[8-12]. These are referred to as stress-induced shape
transitions and are also a consequence of changes in
the relative contributions of the elastic and interfacial
energies to the total system energy. Several system-
specific numerical calculations have been performed
[12, 13] indicating that stress-induced transitions may
be continuous or discontinuous in nature depending
upon the precipitate size, external stress field, precip-
itate misfit, and the difference in elastic constants
between precipitate and matrix. However, these cal-
culations do not provide simple analytic relationships
between the system parameters that allow general
predictions to be made concerning the stability of the
microstructure because of the large number of mate-
rials parameters that must be specified.

In this paper, we use analytical methods to examine
preciptate shape transitions that may be expected to
occur in certain materials with cubic symmetry. We
identify shape transitions that may occur during the
growth or coarsening of a precipitate in the presence
of a constant external stress field as well as those
shape transitions that result from changing the exter-
nal stress at constant precipitate size. The approach
employed is identical to that used previously to
examine precipitate shape transitions in isotropic
media [14]; energy-extremizing precipitate shapes of
high symmetry and the changes in this symmetry due
to external fields are considered. Two dimensionless
parameters are identified that can be associated with
the precipitate volume and external stress field, re-
spectively, and which are used to identify some of the
permissible shape transitions that may be observed in
practice. Using this general model, examples are
presented which use material constants from the
Ni—Ni, Al system.

2. FORMULATION

2.1. Physical assumptions and symmetry principles

We consider a two phase elastic system in which
the precipitate is embedded coherently in an infinite
matrix. The elastic constants of the precipitate and
matrix may be different but are restricted to exhibit
either isotropic or cubic point group symmetries. The
interfacial energy is eventually assumed to be iso-
tropic, i.e. the effect of anisotropic interfacial energy
is neglected. The crystallographic axes of the two
phases are coincident. Transformation strains in the
form of a dilatational misfit may be present due to
differences in the lattice parameters of the two phases.
Externally applied stress fields are limited to being
uniaxial and directed along the {001} direction as
depicted in Fig. 1.

To identify permissible transitions, we first deter-
mine the minimum symmetry of the variant mor-
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phology, both in the absence and presence of an
applied stress field, and the minimum symmetry of
the Wulff constructon for the interfacial energy
(neglecting elastic effects). These symmetries suggest
the possible orientations and shapes which the precip-
itate may exhibit. The elastic energy of the precipitate
can break the symmetry of the precipitate shape
[6, 14], leading to precipitate shapes of lower sym-
metry than predicted from group theory or the Wulff
construction [15]. To identify which material par-
ameters may effect elastically-induced shape tran-
sitions to shapes of lower symmetry, we then expand
the elastic and interfacial energies of the system in
terms of a shape (order) parameter about a shape
which satisfies the Wulff construction symmetry. We
then search for other energy-extremizing shapes
among this set of allowable shapes. This approach
allows analytical relationships between the material
parameters and the applied stress to be obtained
indicating the possible shape evolution and
orientation during growth and coarsening of the
precipitate.

The minimum symmetry of the variant mor-
phology and of the Wulff shape is obtained from the
intersection of the point groups of the precipitate and
matrix and Curie group of the external field [16-19].
For two cubic phases in the absence of an external
stress field, the minimum symmetry is simply

43204452 _ 452 )
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This symmetry is lowered when an external field is
applied along a four-fold axis of the system
igznijznf'.?,iz:im_ 9))
m m m m mmm m
Higher symmetries than indicated by equations (1) or
(2) are always allowed [16]. Since one symmetry can

. be represented by many shapes, there are a number

of precipitate shapes that a coherent (unstressed)
cubic precipitate in a cubic matrix can possess [18].

When elastic stresses are present in the system, the
symmetry of the equilibrium precipitate shape may be
less than that of the Wulff shape or variant mor-
phology [15]. However, we would expect the shapes
of small precipitates to possess the minimum sym-
metry given by Curie’s principle (i.e. that of the Wulff
construction), when the interfacial energy dominants
the elastic energy. As the size of the precipitate
increases, elastic effects become more important and
elastically-induced shape transitions become possible.

In order to obtain information on the relative
importance of the material parameters in determining
precipitate shape, we limit our analysis to ellipsoidal
precipitate shapes. This limitation is imposed for
several reasons. First, the sphere is a highly sym-
metric shape that is often observed experimentally in
the nickel-based alloys [8, 20, 21], especially when the
particles are small. Second, shape transitions from
spheres to ellipsoids are observed in the presence of
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Fig. 1. Schematic diagram of an ellipsoidal precipitate in an

infinite matrix. The semi-axes a,, 2, and 4, are coincident

with x;, x, and x, coordinate directions respectively. The
external stress is applied along the x, direction.

an external stress field [8]. Third, the elastic energy of
ellipsoids can be determined more simply than other
precipitate shapes and, finally, the elastic energy of
inhomogeneous rectangular parallelepipeds in iso-
tropic media (which are also observed experimentally
in these systems) show the same functional behavior
with respect to shape as do ellipsoids [22, 23]. Of
course, spheres and cubes are both permissible shapes
obtained from Curie’s principle.

The elastic and interfacial energies depend on the
dimensions of the ellipsoid as well as the material
parameters. The precipitate shape can be completely
characterized in terms of the lengths of ellipsoid
semiaxes, a,, @, and a;. However, in order to make
appropriate use of the system symmetry, the precip-
itate shape is defined in terms of the following three
parameters [6).

S=Qa,—a—a)a+a+a) 3)
T=(a~a)a+a+a) C))
14 =4?Rala2a3 5)

where V is the volume of the precipitate and § and
T are dimensionless shape parameters. When the
precipitate is spherical, § =7 =0. When it is an
ellipsoid of revolution (spheroid), T =0. S varies
from —1 to 2 and may be thought of as an aspect
ratio: when T =0, § = —1 corresponds to a disk

tInclusion of T # 0 expands the model to include the other
two variants with major or minor axes directed along the
X, OF X, axes.
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while § = 2 corresponds to a needle. In both cases the
axis of revolution coincides with the x, axis.

2.2. Energy extrema

We now search for energy-extremizing precipitate
shapes in the absence and presence of the external
field. We do so by expanding the energy of the system
into a Taylor series about the highly symmetric state,
§=T=0, and then searching for neighboring less
symmetric states that are also energy extrema. This
approach is identical to a Landau expansion where
the shape parameter is the internal variable. In what
follows, it is assumed that T=0 to simplify the
analysis.t

The total energy of the system, E', is

E'(S,V)=E*+E* (6)

where E° and E° are the interfacial and elastic
energies, respectively. It is convenient to scale the
total energy by the interfacial energy of a sphere

giving
E' [d4mn\??
d=—(—
4ng (3V)

where o is the interfacial energy density.
Expanding & in terms of the shape parameter, S,
about S =0 gives

g

=1
o=3 —&,8" (8)
acoh!
where
a"d
b, =(— ; 9
: ( 68”)s-o ®
The energy-extremizing solutions must satisfy
od
—= | =0 1
(3), @)

or, from equation (8)

0=0,+¢,S+10,52+1d,8%+ -+ (11)

The Taylor coefficients, @,, are functions of the
precipitate volume and the material parameters. They
can also be expressed in terms of the corresponding
Taylor coefficients of the interfacial and elastic ener-

gies as
E: [4n\¥?
¢ =E A il
where
VN =]
E*=4no| = —E: 8" 1
na(‘m) ',Eo”!EnS 13
and
* 1
E°=Y —E:S" (14)
n=0n!

The Taylor coefficients for the interfacial energy are
numerical constants when the interfacial energy den-
sity is independent of orientation [6].
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The coefficients for the elastic energy depend upon
the dilatational transformation strain (¢), the applied
stress (a*), and the elastic constants of both the
precipitate (C}) and matrix (C;) phases. For iso-
tropic elasticity, the Taylor coefficients may be ob-
tained in analytical form [6] while for cubic aniso-
tropy they must be computed numerically. Since
numerical computation precludes the ability to ob-
tain analytical relationships between all the material
parameters, the Taylor coefficients are approximated
to first order in the difference in elastic constants
between precipitate and matrix. The Taylor
coefficients for the elastic energy then assume the
form

pe = Ve (Cu+2C0)L,

2
| Ver(Cyy + 2C 1)K,
15
(C,+Cp) 13
L=-F(+ Z(AC“ + ZACu)] + ACIZGn
+(AC,, —AC,)H, (16)
Kn = (Cn ACu - CuACIl)Fn
+(AC, —AC,)I, (17
AC;=(CH— CH(Cy +2C) (18)
a*(Cy, + Cpy)
= 19
TG = Co(Cr+2Cy) 4%
based on the assumption that
|AC,-,-| «l1. (20)

The quantities, F,, G,, H, and I, depend only on the
clastic constants of the matrix, are evaluated for a
sphere (§ = 0), and can be solved using a numerical
quadrature integration scheme. These quantities are
given in the Appendix.

3. RESULTS

3.1. Shape transitions in the absence of applied stress

In the absence of an applied stress field, T =0 and
E; depends only upon L, . It then follows from group
theory or direct computation that L, =0, since
Fi=G,=H,=0. The coefficients for the system
energy then become.

E; [dm\¥?
¢, =1 +41w (3_1/') n
¢, =0 22)
and, forn > 1
L, {4r\*?
P, =E+ dno (?[7) . (23)

Substituting equations (21)423) into equation (11)
gives
(E5L,— L E3A)S

0=S| E5(1 —
[2( T
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+( 452 42 ) +___ (24)
6L,

where we have introduced the dimensionless precip-
itate size, A

—62 V(C“ -+ 2C!2) 411 213
A=——1 "R )
8noEs w) b (@5)

The roots of equation (24) are those precipitate
shapes that extremize the system energy for a given
precipitate size A. For precipitate shape transitions to
occur, there must exist more than one extremizing
shape for a given precipitate volume, and the relative
stability of these shapes must change as the precip-
itate volume changes. The different types of transi-
tions that may occur therefore, depend on the relative
signs and magnitudes of the coefficients of the energy
expansion which, in turn, are functions of the mate-
rials parameters and precipitate volume.

The nature and conditions for an elastically in-
duced shape transition can be identified by searching
for shape transitions in the vicinity of $=0. If
@, > 0, it is necessary to retain only the first few terms
in the energy expansion of equation (8). Dropping
terms of S° and higher in the energy expansion, the
roots of equation (24) in terms of ¢, are

30, 80, P,\12
2@[ 11(1—34,%) . (26)

Higher order terms must be retained to determine
additional roots, find roots when &, < 0, or correct
for roots far from S =0.

The first root of equation (26), S =0, is indepen-
dent of precipitate size. The two additional roots
intersect the first at A =1 corresponding to
®,(A = 1) =0. Such an intersection point is termed a
bifurcation point and entails a change in stability of
the equilibrium solution [24]; a solution that is a
minimum in the energy must become a maximum.
Here, since the sphere is an energy minimizing shape
for small A, the sphere loses stability at A =1 and a
transition from sphere to spheroid occurs as the
precipitatc size increases.

The shape transition from sphere to spheroid oc-
curs continuously when @;(A =1)=0 and discon-
tinuously otherwise. When &;(A4 =1) # 0, stable
equilibrium solutions for shapes other than a sphere
exist for A < 1. The value of A at which the two new
extremizing solutions first appear, A,, is known as a
turning point and is determined by setting the quan-
tity under the radical sign in equation (26) to zero, i.e.
when

§=0,

8¢2¢4 = 3¢§. (27)

The global energy minimum must change discon-
tinuously from a sphere to an oblate or prolate
spheroid [6] at a value of A given by A, < A < 1. The
precise value of A is given by solution to the equation

2 — 4,0, = 0. (28)
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The transition is from § =0 to
S = —(1+./3/3)0,/®,. (29)

The transition is from sphere to oblate spheroid when
&, /P, >0 and to prolate spheroid otherwise. Con-
sequently, if the precipitate is kineticly able to assume
the shape that provides the global energy minimum
and @,/®, # 0, the shape will change discontinuously
during growth from a sphere to a spheroid prior to
obtaining a critical volume, ¥,. For the size-induced
shape transition in the absence of an applied stress,
this jump usually occurs very close to A = 1.

The critical size, V,, at which the sphere loses
stability occurs when A =1 and is given by

s = __ —8noBy (1)213
C N0, +2C,) L\ 4n
V. is positive only when L, <0, since E2> 0.
When the system is elastically isotropic, the Taylor
coefficients can be obtained analytically, The values
for these coefficients are: F,=G,=0 and
H,=12(1 4+ v)%/25(1 — v)®. When the system is iso-
tropic and inhomogeneous, the critical volume for the
shape bifurcation becomes

—2576(1 —vY E} 3 e a1
3eHCh — C)(1 + o) \dn )

V. is physical only when CJ, < C,; the shear modulus
of the precipitate is less than that of the matrix. When
the precipitate is elasically harder than the matrix,
Cii > Cy, the sphere is the only equilibrium shape.
Equation (31) is equivalent to previous results [6] if
the energy is expressed to first order in the difference
in elastic constants. When the system is elastically
isotropic and homogeneous, L, =0, and there is no
bifurcation point. The only equilibrium solution is
the sphere which is stable for all precipitate sizes.

The fine lines in Fig. 2 display the energy-
extremizing precipitate shapes in the absence of an
external stress field as a function of the dimensionless

(30)

VA=

2

Isotropic
L p=0.1

Fig. 2. Bifurcation diagram showing the equilibrium precip-
itate shapes in the presence (heavy lines) and absence (fine
lines) of an external stress field as a function of the
precipitate size, A, for a dimensionless stress parameter of
value p = —0.1. The system is elastically isotropic with the
shear modulus of the precipitate less than that of the matrix,
The solid lines represent energy minima and the broken lines
energy maxima.
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precipitate size, A, for an isotropic matrix with elastic
constants corresponding to those of nickel,
C;=11.7x 10°MPa, C,=947x10°MPa and
C;y=C;+2C,. This is a bifurcation diagram ex-
hibiting only equilibrium solutions. As in all sub-
sequent figures, the solid lines denote energy minima
(linearly stable) and the broken lines energy maxima
(unstable): no distinctions being made between global
and local (metastable) equilibrium states. Fine lines
represent extrema in the absence of external stress
and heavy lines extrema in the presence of an external
stress. The extrema in all figures are calculated ex-
actly, the Landau-type expansion only being used to
indicate the nature of the shape transition and the
critical size of the precipitate. In the isotropic case
@, > 0, except for very soft precipitates, and &, > 0.
For very small precipitate sizes, A « 1, the sphere
(S =0) is the only extremum and it is stable. When
A is slightly less than 1, there are two stable solutions
separated by an unstable solution. One stable solu-
tion is a sphere and the other is an oblate spheroid
(S <0). When A =1, two extremizing solutions in-
tersect and the sphere becomes unstable, ie. an
energy maximum. There are two stable solutions for
A > 1: one is an oblate spheroid (S < 0) and the other
a prolate spheroid (S > 0).

When the precipitate and matrix possess the same
cubic elastic constants, the sign of L, is determined by
the sign of F,. F, <0 when the Zener aspect ratio,
A =2C,/(C,, — C\;) > L. Thus there exists a critical
precipitate volume given by equation (30) where two
solutions intersect and the sphere loses stability.
Differences in the elastic constants between precip-
itate and matrix may change the value of L, and
hence the volume where the sphere loses stability.

When 4 <1, L, >0, and there is no bifurcation
from the solution S =0. Although other solutions
may still exist, the solutions do not intersect. These
solutions are known as isolated solutions. For sys-
tems in which A4 <1, the elastically soft crys-
tallographic directions are {111} and ellipsoids of
revolution may be expected to have their axis of
revolution along this direction [25]. Thus the solu-
tions obtained from this treatment in which the axis
of revolution is constrained to lie along {100}, may
not be that solution observed experimentally. Analyz-
ing this bifurcation requires a much more extensive
treatment incorporating orientational effects and ad-
ditional order parameters. Further analyses presented
here will assume that 4 > 1 unless otherwise stated.

The thin lines of Fig. 3 show the energy-
extremizing precipitate shapes in the absence of an
external stress field as a function of the dimensionless
precipitate size, A, for a Ni(Al) matrix (C;, = 11.24 x
10*MPa, C,, = 6.27 x 10*MPa, C,, = 5.69 x 10* MPa)
and  Ni;Al  precipitate  (C;, = 16.66 x 10%,
Ci2=10.65 x 104, Cyy=9.92 x 10*) [12]. These elas-
tic constants are extrapolated from room temperature
up to 750°C [12]. For this set of elastic constants,
A =229 The transition of the stable precipitate
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Ni- Niy Al
L p=0.05

Fig. 3. Bifurcation diagram depicting the equilibrium shapes
of Ni; Al precipitates in a Ni matrix as a function of the
dimensionless precipitate size, A, at 750°C. Solid lines
represent energy minima and broken lines energy maxima.
The fine lines denote equilibrium shapes in the asbsence of
an applied stress while the heavy lines the equilibrium
shapes in the presence of a dimensionless stress, p = 0.05.

shape from sphere to ellipsoid appears to be almost
a continuous transition. However, since the
coefficient @,(A = 1) # 0, the transition is first order,
albeit a very weak one. In this case, the precipitate
shape that is a global energy minimum jumps discon-
tinuously from a sphere to a prolate spheroid
(S =0.04) at a value of A just slightly less than one,
as given by solution of equation (28).

In constructing Fig. 3, specific elastic constants are
assumed for both the precipitate and matrix phases.
Changing the elastic constants of the precipitate can
alter the shape of the equilibrium solution and change
the nature of the transition. Since the shape transition
is weakly discontinuous, a small change in the precip-
itate elastic constants can give rise to a continuous
transformation when @;(A = 1) = 0. Other combina-
tions of precipitate elastic constants allow the jump
transition to proceed discontinuously, from sphere to
oblate ellipsoid, similar to the behavior displayed by
the isotropic system. In most of the cubic alloy
systems examined, the transition is more weakly first
order than for the isotropic case.

3.2. Shape iransitions under applied stress

In the presence of a uniaxial stress directed along
the cube axis x,, the Taylor coefficients to the system
encrgy become

@, =pA (32)
K.

&, =E5(1 —A)+-2pA (33
K,
EsL K

@, =E——2"4+_"p4 (34)

27(Cyy + 2C (AT, — AT )L ES
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Hy=12(1 +v)25(1 —0)%, I, = =2(1+v)/5(1 - 1)
and the parameter p simplifies to

_SE(l —v)
h 3¢

In the isotropic limit, p is independent of the
difference in elastic constants between precipitate and
matrix.

If terms in the energy expansion of order S* and
higher are once again neglected, the equilibrium
precipitate shapes are given by the roots of the cubic
polynomial

& +b,5 410,87+l 57 =0.

(36)

(37

For equation (37) one or three real roots exist; the
number being determined by the sign of the deter-
minant D(A)

D(A) = (80,0, — 30) (D] - 20, By)

—20,0,0,0,+ 9010, (38)

It is immediately evident that the sphere, S =0, is no
longer a solution as the coefficient @, now assumes a
value different from zero. Since D(A) changes with
precipitate size, the number of equilibrium precipitate
shapes may also change with the precipitate size.
When D(A) <0, there are three real roots to equa-
tion (38) and hence three equilibrium precipitate
shapes. There is only one equilibrium shape when
D(A) > 0. When D(A) =0, there are three real roots;
at least two of the roots are equal and correspond to
a turning point. When A « 1, the precipitate is small
and only one equilibrium shape is obtained. Whether
the shape is an oblate or prolate spheroid at small A
depends upon the sign of &,. If ¢, <0, then S >0
and the equilibrium shape is a prolate spheroid for
small A. Likewise, § < 0 for &, > 0. Thus it is the sign
of @, that determines the direction in which the
energy and, hence, equilibrium precipitate shape is
perturbed by the applied stress field [14].

The sign of @, is determined by the signs of both
pand A in equation (32). The signs of p and A depend
upon the material parameters and the applied stress.
If we continue to limit ourselves to systems in which
the Zener aspect ratio is greater than one, then A > 0
and the sign of @, is equal to the sign of p. Since
I, <0, the sign of p is equal to the sign of
T{AC,, — AC},)/e. In principle, the sign of L, may
change because of the difference in elastic constants
between precipitate and matrix. For a number of
cubic alloy systems examined, this appears to be true
only when the anisotropy ratio is close to one and the
difference in elastic constants between phases is large.

(33)

P

where the various coefficients are given in the
Appendix. For an isotropic system, F,=G,=0,

T e(Cy1 + Co)[F; + AT, (2F; — Hy) + AT\, (4F, — G, + Hy)]

For an isotropic system, A > 0 when C{,— C,, <0
and the sign of @, is again determined by p. The sign
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Ni= Ni3 Al
L p=0.1

Fig. 4. Equilibrium shapes of Ni,Al precipitates in a Ni

matrix in the presence of an applied stress, p = —0.1 (heavy

lines). The bifurcation is broken in the direction opposite to

that of Fig. 3. At large values of A, the global energy

minimum changes from prolate to oblate spheroid for
sufficiently large values of p.

of &, for the general isotropic case is thus the same
as the sign of t(Cy — Ci)/e. Thus, for the isotropic
system, it is the difference in shear moduli between
precipitate and matrix that determines precipitate
shape, while for the anisotropic case it is
AC,, —AC,.

The heavy lines in Fig. 2 show the equilibrium
precipitate shapes in the presence of an external stress
as a function of A for an isotropic system in which
C, < C4. When p # 0, the applied stress breaks the
bifurcation derived in the absence of stress and the
solutions no longer intersect. When p < 0, the prolate
spheroid is the equilibrium shape for small values of
A. At A =A,, determined by setting D(A4)=0 in
equation (38), two new equilibrium solutions appear
for § < 0. For small values of A, the prolate spheroid
is the global energy minimum and remains so past the
appearance of the new equilibrium solutions at A,.
However, for sufficiently large values of A, the pro-
late spheroid may become a local minimum and the
oblate spheroid a global minimum. This means that
if a growing precipitate is able to assume the shape
of lowest energy, a shape transition from prolate to
oblate spheroid may occur at some new critical size.
Whether or not there is a discontinuous change in the
global stability from prolate to oblate spheroid (or
from oblate to prolate), depends upon the magnitude
of the applied stress and the difference in elastic
constants between precipitate and matrix phases.

The heavy lines in Figs 3 and 4 display the
precipitate shapes that extremize the system energy in
the presence of an applied stress for the Ni(Al}-Ni, Al
two-phase system. In Fig. 3, p >0, &, >0 and the
oblate spheroid is the stable equilibrium solution at
small values of A. The oblate spheroid is the global
energy minimum for all values of A although the
prolate spheroid is a metastable shape for A > 4,.
Consequently, no shape transitions would be ex-
pected under constant external stress during the
growth of the precipitate. In Fig. 4, p <0 and the
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prolate spheroid is the shape that is the global energy
minimum for small values of A. At a sufficiently large
value of A, however, the global energy minimum may
switch from the prolate spheroid to the oblate
spheroid. The change in global stability again de-
pends upon the applied stress and the difference in
elastic constants between precipitate and matrix and
requires a detailed energy analysis to determine if it
can occur.

Size-induced shape transitions corresponding to
the bifurcation plots of Figs 24 are displayed sche-
matically in Fig. 5 where the dimensionless energy is
plotted as a function of precipitate shape for various
sizes of the precipitate. Figure 5(a) depicts the case in
the absence of applied stress, p = 0. For small dimen-
sionless precipitate sizes, the sphere is the only stable
solution while for larger sizes two minima exist with
the sphere being an energy maximum. Figure 5(b)
shows the case with p >0. Even at small dimen-
sionless precipitate sizes, the oblate spheroid is the
global energy minimum. When p < 0, as illustrated in
Fig. 5(c), the prolate spheroid is the lowest energy
shape changing discontinuously to an oblate spheroid
at large sizes. Changing the magnitude of p may
stabilize the prolate spheroid with respect to that of
the oblate spheroid. This behavior for the Ni-Al
system is also shown in the numerical calculations of
Miyazaki er al. [12]. A projection of all the loci of
energy extrema in Fig. 5 plotted as a function of A
results in bifurcation diagrams similar to those of
Figs 24.

Thus far we have identified size-induced shape
transitions that occur during the growth of the pre-
cipitate under constant external stress. It is also
possible to induce shape transitions by changing the
sign and/or magnitude of the applied stress [14, 26].
Stress-induced shape transitions are shown sche-
matically in Fig. 6 where the dimensionless energy is
plotted as a function of aspect ratio, S, for various
values of the dimensionless stress parameter, p. Fig-
ure 6(a) displays the case where A < 1. The energy-
minimizing shape can be seen to change continuously
from an oblate to a prolate ellipsoid and back as the
stress is cycled between positive and negative p.
Figure 6(b) showes the energy dependence on shape
at the bifurcation point for different values of exter-
nal stress. For all three values of p, there is only one
minimum; however, when p =0, there is also an
extremum at § =0 which is a saddle point. Since A,
is a function of the applied stress, stress induced
transitions near A =1 are complicated and may be
either discontinuous or continuous in nature. For
A >1, as shown in Fig. 6(c), stress-induced shape
transitions are discontinuous jumping from an oblate
spheroid to prolate spheroid as p decreases from
positive to negative values. The sphere is never a
stable equilibrium shape even when the external field
is absent. The discontinuous jump in shape, as mea-
sured by the change in the equilibrium aspect ratio S,
becomes greater as A increases.
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Fig. 5. A schematic representation of the dimensionless energy as a function of the shape parameter, §,
for various dimensionless precipitate sizes A. (a) When p = 0, the sphere is always an equilibrium shape.
Near A = I, two new energy minima appear and the sphere becomes an energy maximum. In this example,
the oblate spheroid remains the global energy minimum for large A. (b) When p > 0, the oblate spheroid
is an energy minimum for all precipitate sizes although for larger A the prolate spheroid becomes
metastable. (¢) When p <0, the prolate spheroid is a linearly stable equilibrium state for all precipitate
sizes. For A > 1, the oblate spheroid becomes metastable and, for this example, becomes the global energy
shape when A is sufficiently large.

Stress-induced shape transitions can also be suc-
cinctly displayed best on bifurcation diagrams. Fig-
ure 7 is such a diagram in which the equilibrium
precipitate shapes that extremize the system energy
are plotted as a function of the dimensionless stress
parameter for various values of the dimensionless
precipitate size. Once again, the solid lines represent
stable equilibriumn solutions and the broken lines
unstable shapes. The heavy lines are used to represent
the global equilibrium solutions while the fine solid
lines correspond to the metastable precipitate shapes.
For values of A < 1, equilibrium precipitate shapes
change continuously with changes in the external
field. When A > 1, discontinuous changes in the
equilibrium shape are observed with changes in the
external field. For this situation, there exist metasta-
ble precipitate shapes over certain ranges of the
external stress separated by an activation barrier
from the precipitate shape that gives the global
energy minimum. The activation barrier disappears
at that external stress where dp/dS =0.

4. DISCUSSION

From the bifurcation analysis, two dimensionless
parameters, A and p, have been identified that can be

used to indicate the various types of shape transitions
that may occur both in the absence and presence of
an external stress field. A is a measure of the precip-
itate volume while p is a measure of the external stress
field. The nature of the size-induced and stress-
induced transitions can be understood entirely in
terms of these two parameters.

In the absence of an applied stress, size-induced
shape transitions are governed by the bifurcation
parameter, A. The sign of A is determined by the
difference in elastic constants between precipitate and
matrix and the elastic anisotropy of the matrix. 4 is
independent of the sign of €. If the Zener anisotropy
ratio of the matrix is less than one, then A < 0 (since
L,>0); the sphere remains a stable shape for all
precipitate sizes. When 4 > 1, A >0 and there exists
a critical precipitate volume where the sphere loses
stabilty with respect to an ellipsoid. For an isotropic
matrix, 4 =1, the sphere remains stable for all
precipitate sizes when C5 2 Cy. If Cii<Cy, a
spherical precipitate will eventually become unstable.

The sphere loses stability at the bifurcation point
corresponding to A =1. At this point two equi-
librium solutions intersect and a spherical precipitate
becomes unstable with respect to changes in aspect
ratio. The size-induced shape transition (following
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B A=1

cA>1

Fig. 6. Schematic illustration of the dimensionless energy
changes associated with stress-induced shape transitions for
various sized precipitates. (a) A continuous stress-induced
shape transition in p is observed for small precipitate sizes,
A < 1. (b) A weak discontinuous stress-induced shape tran-
sition in p usually occurs for a critical precipitate size, and
(c) a large discontinuous stress-induced shape transition in
p occurs for large precipitate sizes, A » 1.

the global energy minimum) from sphere to spheroid
almost always occurs in the region 0.95 < A <1 and
A =1 is usually a very good approximation to the
size at which the transition should be observed.
Although a bifurcation point does not exist when the
ellipsoidal axes are constrained to be coincident with
the crystallographic axes for systems in which 4 <1,
shape transitions may still occur as the result of the
existence of isolated solutions. These isolated solu-
tions do not appear to exist for isotropic systems.
Shape transitions may also occur when the axis of
revolution is no longer constrained to lie along a cube
axis.

In the early stages of precipitate growth only one
equilibrium shape exists and this shape is an energy
minimum. At larger precipitate sizes (A > 1), three
equilibrium solutions may exist: two minima and one
maximum. These solutions do not intersect for large
A and, consequently, do not change stability, How-
ever, the gobal stability of the solution may change
with increasing size leading to the possibility of a
shape change from a metastable solution to the
global solution. Such a shape change requires sur-
mounting an activation barrier.

The critical precipitate size correspondingto A = 1
is given by equation (30) and indicates how the
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various materials parameters interact to stabilize the
sphere. For example, the critical radius increases
linearly with the interfacial energy density and is
inversely proportional to the square of the misfit.
Also, the greater the elastic anisotropy of a homoge-
neous system, the smaller the critical radius, as
reflected through the parameter L,.

Although the shape transitions have been deter-
mined for ellipsoidal precipitates, the qualitative and
some quantitative aspects of the analysis are also
expected to be applicable to cuboidal precipitates.
The cuboids are permissible precipitate shapes from
the symmetry analysis and the cuboidal shape can be
quantified in terms of the same shape parameters as
the ellipsoid, S, 7, and ¥V [23] where S and T are
defined as in equations (3) and (4), with the semiaxes
of the ellipsoid replaced by half the cuboid edge
lengths. When § = T =0, the precipitate shape is a
cube while T = 0 corresponds to a rectangular paral-
lelepiped with two of the three independent edge
lengths being equal. Since the functional dependence
of the elastic self energy of inhomogeneous cuboids
with respect to aspect ratio, S, is very similar to that
of ellipsoidal precipitates [22, 23], the gualitative ob-
servations for ellipsoids should be valid for cuboids
as well.

As an example of shape transitions in the absence
of stress, we again examine the Ni(Al)-Ni; Al binary
system. The Ni,Al precipitates are usually observed
to be cuboids which remain coherent up to large sizes
as shown in the micrograph of Fig. 8, courtesy of M.
J. Kaufman. The Ni-17at.%Al binary alloy was
solution treated and then slow cooled to 1100°C
where it was held for one hour, followed by a water
quench. Two distinct precipitate shapes are observed,
smaller cubes with edge length of approximately

Minimum

- Maximum

Relative Minimum

\

™
\ A=1
\ A>1

Fig. 7. A bifurcation diagram representing the precipitate
shape that extremizes the system energy as a function of the
dimensionless stress parameter for several dimensionless
precipitate sizes. The heavy lines correspond to global
minima, the fine lines local minima and the broken lines
energy maxima. For small precipitate sizes the shape transi-
tions are continuous and become discontinuous as the size
of the precipitate increases. For the larger precipitates, two
linearly stable precipitate shapes may be observed separated
by a significant activation energy.
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Fig. 8. Centered dark field micrograph using [100] reflections, courtesy of M. Kaufman, of coherent Ni; Al

precipitates in a Ni matrix. The image was taken near the [001] orientation. The larger cuboidal

precipitates grew at the aging temperature of 1100°C while the smaller cube shaped precipitates nucleated
during the quenching process.

8.5 nm and large cuboids with an average edge length
of approximately 300 nm. The larger cuboids grew
during aging while the smaller cubes nucleated during
quenching and indicate the existence of precipitate
shape transitions. Taking for the material parameters
¢ = 18.4 mJ/m?, € = 0.0053 [27] and using the elastic
constants cited earlier, a shape transition from cube
to cuboid would be expected at about a cube diameter
of 125 nm. This critical precipitate size is intermediate
between the smaller cubical precipitates and the
larger cuboidal precipitates of Fig. 8 and is of the
same order as predicted by Khachaturyan [5].

The precipitates of Fig. 8 possess an aspect ratio,
S > 0[28] in agreement with the above analysis which
predicts that the cube should lose stability with
respect to a cuboid possessing aspect ratio § >0
(prolate). However, it should be noted that it is
possible with small changes in the elastic constants of
the precipitate to change the sign of @, and, as a
result, the direction of the expected precipitate shape
transition. The difference in elastic constants between
precipitate and matrix may have an important
influence on the shape evolution of the precipitate
during growth even in the absence of applied stress.

If the presence of an external stress, the bifurcation
is broken. The applied stress perturbes the equi-
librium shape according to the sign of —tAC, /e for

an isotropic system and according to the sign of p or
1(AC,, — AC},)/e for the cubic system with 4 > 1. If
these terms are positive, the oblate spheroid is the
equilibrium shape at small dimensionless precipitate
sizes, otherwise, the prolate spheroid is the equi-
librium shape. The stable equilibrium shape at small
precipitate sizes remains a stable shape for all precip-
itate sizes. However, depending upon the magnitude
of the applied stress and the difference in elastic
constants between precipitate and matrix, there may
occur a shift in the global energy minimum from the
stable equilibrium shape at small dimensionless sizes
to a different shape at large precipitate sizes.

Stress-induced transformations can occur as a re-
sult of changes in either the sign or magnitude of p.
For small A, however, the transition is discontinuous
and may occur with only a change in the magnitude
of the external stress. Such a transition indicates the
disappearance of the metastable solution.

There exists some disagreement between experi-
mental observations of precipitate shape changes
under uniaxial stress that may be partially simplified
in terms of the present development. For example,
Miyazaki et al. [12] observed that Ni; Al precipitates
in a Ni matrix tended to be rod shaped (S > 0) with
axes aligned in the direction of the external tensile
field while Tien and Copley [11] observed plate-
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shaped precipitates (S < 0) with axes parallel to the
tensile field in another Ni-Al-based alloy. It must be
noted that these two examples possess large volume
fractions, unlike the situation modeled herein. Similar
disagreements exist in the AHCu system [9, 10]
concerning the alignment of 8 plates in an external
field.

From the preceeding analysis it is clear that
differences in experimental observation may be due to
several factors. The most obvious source for potential
disagreement centers on those material parameters
that influence the sign of the dimensionless stress
parameter, p, since changing the sign of p leads to
different equilibrium precipitate shapes. For example,
in Ni-Al based systems, the sign and magnitude of
the precipitate misfit is quite sensitive to the alloy
content and to temperature [29]. Small changes in
cither the chemical composition or aging temperature
may result in a change in the sign of the misfit. This
would engender a change in sign of the dimensionless
stress parameter. The same argument holds true for
the difference in elastic constants between precipitate
and matrix where small changes in C,, or C,,, for
either phase, may result in the dimensionless stress
parameter changing sign. Thus, even the identical
alloy system aged under external stress at different
temperatures, may exhibit different equilibrium pre-
cipitate shapes.

A second possibility for potential disagreement
betwen experimental observations under applied
stress stems from the existence of metastable precip-
itate shapes. When the dimensionless precipitate size
is greater than one, there may exist more than one
precipitate shape that renders the encrgy of the
system a minimum. It is possible for the precipitate
to possess a metastable shape due to the specific
mechanical (or thermal) history of the alloy. For
example, if the alloy is first aged isothermally in the
absence of stress, the precipitate may be expected to
assume the shape giving the global energy minimum
owing to the weak nature of the first order shape
transition. If an external stress is then applied, a
change in the equilibrium shape results. From the
bifurcation diagrams of Figs 3 and 4, one of the new
stable equilibrium precipitate shapes will always exist
in the vicinity of the equilibrium shape attained by
the precipitate in the absence of external stress.
However, whether this neighboring equilibrium state
is the global equilibrium state or the metastable state
in the presence of external stress depends upon the
sign of the dimensionless stress parameter, p. The
tendency for the precipitate to evolve towards the
metastable shape upon application of the external
stress is in agreement with a kinetic analysis of the
precipitate growth [30]. Once occupying the metasta-
ble state, it may be difficult to obtain the global
equilibrium state because of a potentially large acti-
vation barrier at large dimensionless sizes of the
precipitate.

The existence of metastable precipitate shapes may
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be a source of disagreement between the observations
of Miyazaki er al. (MNM) and that of Tien and
Copley (TC). All specimens of MNM are first pre-
aged for 24 h at 750°C in the absence of external
stress. The precipitate shapes after preaging are not
cubes, as is usually observed for smaller precipitates,
but rods and plates, i.e. shape transitions have oc-
curred owing either to the lose of stability as dis-
cussed above, or to precipitate interactions (both
MNM and TC have significant volume fractions of
the precipitate). Subsequent application of an exter-
nal tensile stress stabilizes those precipitates aligned
in the direction of the external stress and destabilizes
the other variants. Therefore, rod shaped precipitates
in the direction of the applied tensile stress may be
expected. If the Ni-Al system is subjected to the
external stress for all aging times, however, an oblate
spheroid with axis of revolution parallel to the tensile
axis would be expected from the above analysis since
p >0 (compare Fig. 3). The oblate spheroid may be
either the global energy minimum for all precipitate
sizes or, at least, up to some critical size. The jump
in the global minimum for this case depends upon the
magnitude of the applied tensile field (a sufficiently
large applied stress will shift the global minimum
from the oblate spheroid to the prolate spheroid).
Hence, with the existence of metastable states, the
processing history is also important in determining
the precipitate shape.

The above analysis and discussion was limited to
precipitates whose axis of revolution is constrained to
be parallel to the direction of the applied stress.
However, MNM show that under a compressive
external stress, rod shaped precipitates are observed
with the axis of revolution perpendicular to the stress
axis. Such shapes and orientations are also permis-
sible stable and metastable precipitate shapes from
the symmetry analysis presented here. The existence
of these metastable (or, in some cases, stable) states
can be inferred from the bifurcation analysis. In the
absence of stress, the precipitates align along any of
the three [100] variants with equal frequency, the
energy of all three states being degenerate. These
three variants become apparent if the bifurcation
diagrams are drawn with an additional axis depicting
the aspect ratio, T. Application of the external stress
breaks the symmetry, and the energy of the variant
aligned along the direction of the applied stress is
different from the two other directions. The bifur-
cations that existed along the other two variants in
the absence of stress are also broken and additional
stable equilibrium precipitate shapes become possi-
ble. Our analysis shows that these additional states
may be either metastable or globally stable depending
upon the material parameters and the sign and
magnitude of the applied stress. These predictions are
in complete agreement with the experimental work of
Miyazaki et al. [12]. For the Ni-Al case, the two
variants with axis of revolution perpendicular to the
external stress are the global energy minima.
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Tyapkin has examined the effects of stress on low
volume fraction Ni-Al and Ni-Cr-Al systems [8].
With the very small misfit exhibited in Ni—Cr-Al,
spherical Ni;Al precipitates become oblate with the
axis of revolution in the direction of the uniaxial
stress independent of the sign of the stress. The
variant morphology in the ternary alloy changes from
random to directional alignment. The binary alloy,
which possesses a larger misfit, exhibited shape tran-
sitions from cubes to plates under tensile load and
to rods under compressive loads, the parallelepipeds
directed along the stress axis. The variant mor-
phology changes from a cubical array to a directional
alignment. Both alloys displayed better alignment
along the stress axis than perpendicular to the stress
axis for both loading conditions, and curiously better
alignment under compression than tensile stress. The
symmetries of their observations, both shape and
variant morphology, compare directly to our results.
The shapes observed also compare to the work of
MNM, who examined the binary Ni-Al system.

In the nickel-based alloys, the precipitates are
usually found to be ellipsoidal or cuboidal depending
upon the magnitude of the precipitate misfit. Precip-
itates possessing large misfits are cuboidal while those
with smaller misfits are spherical. The precipitate may
also change shape from sphere to cube during
growth. This transition again reflects changes in the
relative contributions of the elastic and interfacial
energies to the total system energy with increasing
precipitate volume. The sphere to cube transition
may occur in isotropic as well as anisotropic systems.
Although a cube may possess a larger interfacial
energy when the interfacial energy is isotropic, its
elastic energy may be less. Precipitate volumes at
which the sphere to cube transition might occur are
easily calculated [7, 23].

In this treatment, the interfacial energy density has
been assumed to be independent of crystallographic
orientation. This is probably a reasonable assump-
t.on for many cubic materials. In many of the nickel-
based alloys, spheres are observed for small y* precip-
itates, where the interfacial energy is known to
dominate the crystal shape. Interfacial energy is no
longer dominant near shape transitions, thus any
anisotropy plays a smaller role. Also, interfacial
anisotropy does not change the qualitative features of
the bifurcation analysis because the first term in the
Taylor expansion of the interfacial energy is still zero.
However, it may change the physical size of the
precipitate at which the bifurcation occurs.

Size-induced shape transitions in the absence of an
external stress can be modelled as a classical bifur-
cation problem. The space in which the problem is
most efficiently represented is best determined from a
symmetry analysis. In this situation, a convenient
space is § — A space. Thus we examine how the
equilibrium shape changes as A changes and are able
to employ all of the well known results of bifurcation
theory [24]. A landau-type expansion allows the
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bifurcation point and the combination of materials
parameters that determine the nature of the transi-
tion, first-order (transcritical) or second-order (super-
critical) to be determined.

The application of an external stress lowers the
symmetry of the system and, consequently, breaks the
bifurcation observed in the absence of external stress.
A convenient approach to determine how the bifur-
cation is broken and what precipitate shapes would
be expected experimentally, is to employ a per-
turbation analysis [14, 31] assuming that the dimen-
sionless stress parameter is not too large.

Finally, the more formal bifurcation analysis em-
ployed here allows the permissible shape transitions
to be identified without recourse to numerous system-
specific energy calculations. The transitions can be
understood in terms of the two dimensionless param-
eters, A and p, rather than the much larger set of
materials parameters necessary to conduct the energy
calculations (e.g. o, €, V, 7, and six elastic constants).

5. SUMMARY

Two different types of precipitate shape transitions
have been identified, size-induced and stress-induced,
that can occur in materials possessing cubic sym-
metry. The size-induced transition occurs during
growth of the precipitate under constant or zero
external stress and reflects the changing contributions
of the interfacial and elastic energies to the total
system energy with precipitate size. A dimensionless
precipitate size, A, was identified from a bifurcation
analysis that succinctly indicates how the various
materials parameters interact to stabilize certain pre-
cipitate shapes. 7

Stress-induced transitions occur at constant precip-
itate size as a result of changing the sign andjor
magnitude of the external stress and again reflects
changes in the relative contributions of the interfacial
and elastic energies to the total system energy with
changes in the external stress. From a perturbation
analysis, a dimensionless stress parameter was
identified, p, that clearly indicates the direction in
which an external field breaks the shape bifurcations
observed in the absence of an applied stress, and
which indicates the nature of the expected transition.

Size-induced shape transitions in the absence of
external stress may be first-order, involving a jump to
a different precipitate shape or second-order, in-
volving a smooth transition between precipitate
shapes with growth of the precipitate. The jump may
be from sphere (cube) to either oblate or prolate
spheroid (cuboid). The change in precipitate shape
occurs in the vicinity of A =1,

Size-induced transitions in the presence of external
stress result only from changes in the global stability
of a solution. The stable equilibrium precipitate
shape at small sizes remains a linearly stable solution
(shape) for all precipitate sizes although other equi-
librium shapes can appear at larger precipitate sizes.
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Size-induced transitions in the presence of external
stress result only from changes in the global stability
of a solution. The stable equilibrium precipitate
shape at small sizes remain a linearly stable solution
(shape) for all precipitate sizes although other equi-
librium shapes can appear at larger precipitate sizes.

Stress-induced shape transitions are continuous for
precipitates smaller than a critical size (approxi-
mately that size corresponding to the bifurcation
point in the absence of external stress) and discon-
tinuous for larger sizes. The change in shape on
undergoing the transition becomes more pronounced
as the magnitude of the external stress increases.

More than one equilibrium precipitate shape may
be linearly stable for a given precipitate size and
external stress leading to the possibility of the experi-
mentally observed precipitate shape depending upon
the thermal or mechanical history of the sample. The
observed equilibrium precipitate shape need not be
that shape that gives the global energy minimum.

The influence of the external stress on the equi-
librium precipitate shape depends on the factor
AC,, — AC,; and not on the difference in shear moduli
or Young’s modulus between precipitate and matrix
or on some effective modulus for the system.
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APPENDIX

In this Appendix, a simple Taylor expansion in terms of the
aspect ratio S is obtained for the elastic energy of an
ellipsoidal precipitate. When the expansion is taken about
the sphere, S =0, the following form obtains
= 1
Et= Z —E; s" (Al)
n=0 n !

where the Taylor coefficients, E¢, are functions of the
precipitate volume and the applicable materials parameters.
To obtain the Taylor coefficients, we write the elastic energy

of an ellipsoidal precipitate embedded in an infinite matrix
as

E¢=1VACelilel +e5) —iWChlel —el)
x el —VClelel (A2)

where V is the volume of the precipitate, C is the elastic
compliance tensor (a superscript P denoting the precipitate
phase), e is the transformation strain tensor (assumed
constant in ¥ and zero elsewhere), 4 is the strain associated
with the applied stress field (assumed uniform within the
system) and AC = C¥ — C. ¢° is the constrained strain and
is measured with respect to the uniformly stressed matrix
phase.

The Taylor coefficients may be obtained numerically for
a matrix or cubic anisotropy as the constrained strain may
be determined using Eshelby’s equivalency relationship [32].
However, the coefficients must be determined for each
possible combination of elastic constants. Such system
specific calculations do not allow generic relationships be-
tween the materials parameters to be obtained that indicate
the direction of shape evolution. We therefore obtain the
elastic energy to first order in the difference in elastic
constants between precipitate and matrix. This approach
makes the assumption that

AC
(€, +2C)
where the bar over the elastic constants indicates that each
elastic constant has been made dimensionless by the quan-

tity C,, +2C,,. Higher order contributions of AC to the
elastic energy are assumed to be negligible.

[AC ] = «1 (A3)




3162 JOHNSON et al.:

The constrained strain field may be expressed in terms of
an integral equation as [22]

1
() = 5[ [~ Clue} + ACie5 ()]
v

X [Cy n (X — X)) + Gy (X — XAV’ (Ad)

where G is the homogeneous elastic Green’s function for an
infinite matrix and the comma denotes differentiation with
respect to x. It is necessary only to determine the field
internal to a precipitate to calculate the Taylor coefficients
of equation (1). For an ellipsoid, equation (A4) may be
written

25, (x) = Cpuel 8,y + AC, le] — €518, (AS)

where
—(C, +2C
Smr=("f”')J‘ (G (X — %)
v

+ Gy mx—x)]dV. (A6)

If the constrained strain is written to first order in the
difference in the elastic constants then

e, = %<, + et (AT

where
Yet, = .-,1:953,,.,.&: (AB)
teg, = AC,, Somler — e — Sy Cropel (A9)

les,, is the first order correction, due to the different elastic
constants, to the constrained strain while %<, is the con-
strained strain for the elastically homogencous system. The
only shape dependent terms are contained with the tensor
& which can be written as

C,+2C
Sm1=£‘“8—u)j Q(a,,a;, a3)
n a

X [2,2,M o + 2,2, M 3'1dQ (Al0)
Qa, 3, ay) = aqymyayfaizl + adzi+ 32317 (AlD)
M, =22,Cyn (A12)

where the integration is performed over a unit sphere, the
a; are the axes of the ellipsoid and z is a unit vector,

PRECIPITATE SHAPE DURING COARSENING

We now assume cubic anisotropy for both precipitate and
matrix phases, the transformation strain is dilatational and
of the form e} = ed;, the axes of the ellipsoid coincide with
the cube axes of both phases and the applied stress, &4, is
uniaxial and directed along the x, axis. Substituting the
expressions for the constrained strain into Eq. (A-2) for the
elastic energy, allows determination of the Taylor
coefficients as

E5=L3+K3+ V(Cll :2C12){3£2(CII’[+2CLI)2
2en(Cy ~Cp)(Ch +2C, AA
- @0+ Cy) +ACehel > (Al3)
ES=L*+K*(n > 1) (A14)
2
L= Mgﬂ L (A15)
Ver (C,, + 2C,, ¥
po T ) Al
€+ ) (A16)
L,= —F,[1 + 2(AC,, + 2AC,)] + AC,, G,
+(AC, —AC))H, (Al17)
K., = (CnAClz - CleCu )E,
+(AC, —AC), (A18)
F=5,, (A19)
G= (Snnkk)z (A20)
H= S,,,,kkS‘,m (A2l)
I= Swﬁ} (A22)
ai
F'=(6-:’)s=u (A23)
g*(Cy + Cyy) (A24)

F T Ch—C)(Cy +2Cy)

The Taylor coefficients to the elastic energy require
solving several surface integrals which depend only upon the
elastic constants of the matrix phase.



