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In many alloys, the positions of the different species
of atoms are not random; that is, the probability that
a pair of sites is occupied by specific atoms is not
equal to the random probability obtained by multi-
plying their respective atomic fractions. If such
“ordering” only occurs over regions approximately
several times the interatomic distances, the order is
usually termed short range or local (see Local Order
in Crystalline Alloys). If the ordering persists over
distances which are large compared to the inter-
atomic distance, the ordering is denoted long-range
order (LRO). In this article, the concepts of domains
and variants are introduced on the basis of symmetry
change and various ordered structures are presented,
together with a discussion of their stability. Finally,
a brief discussion of how the symmetry of ordered
phases affects deformation is presented. This article
replaces the article of the same title in the Main
Encyclopedia.

1. Symmetry

A crystal consists of a large number of atoms
arranged periodically in space. Its symmetry may be
divided into two types: symmetry about a point and
translational symmetry. When the atoms of a binary
alloy “order” (that is, arrange themselves on specific
sites), some symmetry is lost.

For some types of ordering, the point-group sym-
metry of the disordered phase does not change; only
the translational symmetry changes. Two examples
of this type of ordering shown in Fig. 1 are the

Al1(Fm3m)—> L1,(Pm3m) 1)
and the

A2(Im3m) — B2(Pm3m) [0))
ordering reactions. In both cases, the point-group

L, (CusAu)

B2 (CsCl)

Figure 1
Disordered and ordered crystal structures

263



Long-Range Order in Alloys

symmetry, and hence the crystal class, stays the same.
Also, the same size unit cell can be used to represent
both the disordered and ordered structures. How-
ever, the number of equivalent positions within the
unit cell decreases; that s, the translational symmetry
of the structure decreases. This decrease in transla-
tional symmetry (for cases where the unit-cell size
stays the same) can be quantified by noting the
change in the number of Bravais lattice points of the
crystal resulting from ordering. For the L1, structure,
the translational symmetry is decreased by a factor
of four, while for the B2 -structure, translational
symmetry is decreased by a factor of two.

This loss of translational symmetry manifests itself
in an increase in the density of reciprocal lattice
nodes with nonzero scattered intensity. For these two
ordering reactions, the increase in the number of
diffraction “spots” per unit volume of reciprocal
space is four and two, respectively (see Fig. 2; note
that these numbers are the same as those for the
decrease in translational symmetry). These new
reflections are termed “superlattice” reflections.
Reflections from the disordered crystal (higher sym-
metry) are called fundamental reflections. The super-
lattice reflections are usually of lower intensity than
the fundamental reflections.

The decrease in translational symmetry also mani-
fests itself in real space by the formation of ordered
domains. Consider the transition (2). The A atoms
may be situated either at the corners of the B2 unit
cell (and hence on the Bravais lattice points) or at
the center of the unit cell (4{111] from the Bravais
lattice points). These represent two possible domains
of the ordered phase. The domains are related to
each other by the translational symmetry element
that was lost; that is, #(111). Similarly, it can be
shown that for the case of A1—L1, ordering, four
domains exist, related to one another by #110).
These domains can have a strong influence on prop-
erties of the ordered phase (see Ordered Alloys:
Mechanical Properties).

In a different type of ordering, the rearrangement
of atoms produces a crystal with a new point-group
symmetry. A new crystal class may be formed. A
simple example of this is the Al(Fm3m)—
L1,(P4/mmm) case shown in Fig. 3. Here, the point-
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Figure 2 :
Reciprocal space intensity distribution for the L1,
and B2 real space structures
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Al (Cu)

Llg (CuAu 1)
Figure 3

The L1; (CuAul) structure and its parent structure
(A1)

group symmetry has decreased by a factor of three,
from order 48 for the point group m3m to 16 for the
point group 4/mmm. Also, the translational sym-
metry has decreased by a factor of two. The decrease
in translational symmetry produces two domains for
each of the variants of the ordered structure. The
decrease in point-group symmetry produces three
possible crystallographic variants shown in Fig. 4.
This is demonstrated by noting that the tetragonal
axis may be along any of the three 4-fold axes of the
disordered cubic crystal. For each of these crys-
tallographic variants there exist two domains.
Crystal structures, such as those just noted, that
are formed from other structures by reducing the
number of symmetry elements while maintaining the
approximate relative positions (not necessarily iden-
tity) of atoms, are called derivative crystal structures.
The higher symmetry (disordered) structure is
usually the one that is present at high temperatures.
Phase transformations involving derivative crystal

. structures have the important property that complete

lattice registry (coherency) can be maintained across
the interphase interfaces of the disordered and
ordered phases. This coherency is often accompanied
by a strain, which makes these two-phase alloys
capable of “precipitation hardening.” In addition,
their coherent interface implies a low interphase
surface energy, further implying relative stability of
the phase with respect to coarsening.

Figure 4

The three possible crystallographic variants for the
L1, structure
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2. Statistical Treatment of Equilibrium Phases

The most likely arrangement of atoms on their crystal
sites can be calculated, in principle, by the use of
statistical thermodynamics. The equilibrium state is
the most likely state, and this can be determined by
finding an expression for the partition function Z of
the system, defined as

E;

Z 2 w; exp(ﬁ) (3)
where w; is the number of configurations with the
same energy E;, and k and T are Boltzmann’s con-
stant and temperature, respectively. The sum is over
all energy levels. This value is related to the free
energy of the system by the equation

F=—kTInZ (4)

Naturally, it is very difficult to find the value of Z
for systems which contain a large number of atoms.
Various approximations are usually made, such as
the neglect of vibrational energy and the use of
pairwise interactions exclusively. To date, only the
one- and two-dimensional cases have been solved
exactly. High- and low-temperature expansions have
been utilized to find analytical expressions for Z and
Monte Carlo techniques have been used to solve
numerically for Z. The cluster variation method
(CVM) introduced by Kikuchi (1951) can be used to
calculate phase equilibria. By this method, clusters
of atoms of different composition are placed on
the lattice and the most probable arrangement ‘is
determined. This technique is essentially an exten-
sion of the method of Bethe in his extension of the
zeroth order approximation to the partition function.

3. Ground-State Diagrams

Richards and Cahn (1971) have derived ground state
(T =0K) diagrams for body-centered cubic (bcc)
and face-centered cubic (fcc) derivative structures,
taking into account first- and second-neighbor inter-
actions. We will only consider bee derivative struc-
tures in detail. All of the bec derivative structures to
be discussed can be visualized with the aid of Fig. 5.
Here, the bece structure is extended and can be seen to
be composed of four interpenetrating fcc sublattices,
denoted a, B, y and 6. Table 1 lists possible com-
positions of these sublattices, along with the struc-
tures which result when the compositions are as
denoted. These are the possible ground-state struc-
tures of bee derivative structures. The bec ground-
state diagram is shown in Fig. 6. This diagram shows
that an alloy of 50% A and 50%B will have the CsCl
structure if V,/V, < 2/3, where Vs the ith neighbor
interaction action energy, and V, is assumed
negative, that is, favoring ordering. The CsCl struc-
ture has all opposite first neighbors (#(111)) and all
second neighbors that are of the same type ({100))
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Figure 5

Extended bec structure, showing that it is composed
of four interpenetrating fcc lattices

Table 1
Possible combinations of interpenetrating fcc sublattices
along with their resulting structures

Sublattice
a B y &  Structure (prototype) Space group
A A A A A2(W) Im3m
A A B B B2(CsCl) Pm3m
B A A A DO,(BiF,) Fm3m
A B A B B32(NaTl) Fd3m

(see Fig. 1). If V,/V,>2/3, the second-neighbor
interaction becomes dominant; a structure with
opposite second neighbors will be favored. The
B32(NaTl) structure fulfills this requirement. It has

. four opposite near neighbors and four near neighbors

of the same atom. In contrast to the B2(CsCl) struc-
ture, however, it has six second neighbors that are
opposite, that is, all second neighbors are opposite.

B32
F d3m
R
- | F a3m !
Im3m i |
i l | |
3 a2/3p 0o,
v Fm3m
| | (BZ)‘ at.%8B
y 25 0
two - phase
B2
P m3m
Figure 6

Ground-state phase diagram for bcc derivative
structures
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Thus, the NaTl structure is stable relative to the CsCl
structure for V,/V, > 2/3.

For bcc-based alloys with 25%B, the equilibrium
state for V,/V, <0 is two-phase: bcc and CsCl. If all
the B atoms cluster into one region and form the
ordered CsCl phase, all second neighbors of the B
atoms will be A (as favored since V,>0). A single
phase with B atoms randomly distributed could not
guarantee all opposite first neighbors for B or all
similar second neighbors for B. However, if
V,/V, > 0 (favoring opposite second neighbors), the
ground state for the 25%B alloy is DO, since this
structure has all opposite second neighbors for the B
atoms.

A similar diagram has been derived for fcc deriva-
tive structures. Here, L1,(CusAu) is the equilibrium
phase for V,/V, <0 (25%B) and Lig(CuAul) is the
ground state for a 50%B alloy with a similar ratio of
second- to first-neighbor interaction energies. For
V,/V,> 0.5, structures in which second neighbors
are opposite become the ground state ones. Thus the
DO,, structure (Al;Ti) is ground state for 25%B
alloys and L1,(CuPt) for 50%B alloys. These ground
states have also been derived by Monte Carlo
techniques.

4. Diamond Structure Derivatives

With the increase in studies of semiconductor
materials, a new set of superlattice structures has
become important. These are the structures which
are crystallographic derivatives of the diamond
cubic structure Fd3m (see Fig. 7a). The most widely
known derivative structure of diamond cubic is the
zinc blende structure (F43m), also termed sphalerite
(see Fig. 7b). This is the structure of GaAs, InP and
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Figure 7
(a) Diamond cubic structure (A4), (b) zinc blende
(B4), (c) P43m, (d) PA2m
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most other 111-V compounds. For zinc blende, the
atoms at the face-centered cubic Bravais lattice
points are of one type, and the atoms away from
the Bravais lattice points are of another type. This
structure is not centrosymmetric, so that materials
with this structure behave differently in some aspects
from those with the diamond cubic structure.

More superstructures based on the diamond cubic
structure are possible. For example, if a ternary
addition C replaces all of the A atoms on the corner
sites of the fcc Bravais lattice, a structure related
to that of CusAu(L1,) is formed (see Fig. 7c). This
structure has the space group P43m. For complete
substitution, the stoichiometry would be A ;sC,,sB.
Another structure which can form is shown in Fig.
7d. Here the A atoms at sites (000) and (340) are
replaced by C atoms, yielding a structure with tetra-
gonal symmetry (P42m). This structure has the ideal
stoichiometry A, sCysB. More complex ordering is,
of course, possible. Structures based on the fcc .
derivative structures Al;Ti(DOj) and CuPt(L1,)
have been reported. Also, quaternary additions
could substitute on the B sublattice, so that both
sublattices may be “ordered.”

5. Order-Disorder

The order—disorder (O-D) transition has a long his-
tory of experimental and theoretical interest. The
first structural studies on ordered phases were done
in the early 1920s. (Remember that x rays were
discovered in 1896, and it was only in 1912 that their
wavelike character was demonstrated.) In the 1930s,
Ehrenfest proposed a thermodynamic classification
of phase transitions into first-, second- and third-
order transitions and so on. According to this
scheme, the “order” of a transition is the order of
the derivative of the free energy with respect to a
state variable, which first becomes discontinuous at
the transition temperature. It is now more common
to speak of only first-order and higher-order
transitions. It is an established fact that the atomic
ordering transition for some alloys is “first order,”
while for others it is “higher order.” A basic dis-
tinction of these two types of transitions is the way
that the ordering reaction proceeds at the transition
temperature. If, at the transition temperature, the
disordered phase and ordered phase can be distin-
guished and can be held in equilibrium, the reaction
is classified as first order. If it is impossible to dis-
tinguish between the ordered and disordered phase
at the transition temperature, the transition is of
“higher order.” A measure of the order in an alloy
is the long-range order parameter 7, defined as n =
|fre — fugl Where f,, is the fraction of a sites that are
rightly occupied, and f,4 is the fraction of £ sites that
are wrongly occupied. lg‘or stoichiometric alloys this
parameter ranges between zero (complete disorder)
and unity (complete order). Experimentally, two
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Long-range order (1) against temperature (T) curves
for (a) first-order transition, (b) higher-order
transition

types of n against T curves are observed. These are
shown schematically in Fig. 8. Note that 5 approaches
zero continuously for higher-order transitions, while
it has a discontinuity for first-order transitions.
Following Landau and Lifshitz (1978), the free
energy of a system may be expressed in terms of the
expansion in 7 about the critical temperature:

9 9%F |
F=F+ B —_— 2 .
0 -(aD“(af)" * )

where F; is the free energy of the disordered phase
(n = 0) and Fis the free energy of the ordered phase.

If the system is stable at T, 8F/an = 0, so to first
order:

., (9*F
F=Fo+ (35) ©

For a continuous transition to occur at the critical
temperature, F = Fy, or (92F/an?) = 0. This is a gen-
eral criterion: a system changes phase continuously
if the second derivative of its free energy with respect
to the appropriate order parameter is zero.

6. Stability of Ordered Phases

A basic difference between first-order and higher-
order transitions is with regard to the instability of
the various phases that are present. In higher-order
transitions, the disordered phase (on cooling)
becomes unstable with respect to the formation of
the ordered phase at the same temperature at which
the ordered phase (on heating) becomes unstable
with respect to the formation of the disordered phase.
This temperature is called the transition tempera-
ture, and on phase diagrams it is usually “hatched”
to indicate that it is of higher order. Differential
scanning calorimetry (DSC) of an alloy undergoing
such a transition should look similar for both heating
and cooling.

On the other hand, for first-order transitions, the

instability temperatures of the ordered phase (T})
and of the disordered phase (7;) are different. If
one considers the 7 against T curve for a first-order
transition, shown in Fig. 8, one can see that the
ordered phase can be heated above T, to the
temperature 7 before becoming unstable with
respect to disordering. On cooling, the disordered
phase can be brought to T;” before becoming unstable
with respect to ordering. Thus for the case of a
stoichiometric alloy, the following relation holds:

TS <T.<T} ™

where T, is the transition temperature of the first-
order transition.

A schematic phase diagram of a first-order O-D
transformation is shown in Fig. 9, in which xg denotes
the mole fraction. A disordered alloy quenched from
high temperature into the two-phase field is meta-
stable with respect to the formation of the ordered
phase, ifheld at 7> T . This means that the ordered
phase must nucleate if it is to form. If the disordered
phase is quenched below T itis unstable with respect
to homogeneous ordering; the entire phase orders
without a thermodynamic barrier. After homo-
geneous ordering, the single ordered phase will
decompose into two phases, one of which becomes
disordered when its composition passes through the
T{ curve. On heating a two-phase mixture of the

. equilibrium disordered and ordered phases, the

ordered phase should dissolve into the matrix. This
process should be complete :.when the temperature
reaches the phase boundary. If, however, the alloy
is heated too rapidly, the ordered phase may not
have sufficient time to dissolve; rather, it may dis-
order when its temperature reaches T for the com-
position of the ordered phase. Such nonequilibrium
transitions must be kept in mind when interpreting
DSC/DTA (differential thermal analysis) scans.
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Figure 9

Simplified phase diagram for a first-order O-D
transition, showing instability lines
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7. Deformation of Ordered Phases

Slip in an ordered phase is usually more difficult than
slip in its disordered parent structure. This is so
because a moving dislocation, whose Burgers vector
is determined by the disordered repeat distance,
would destroy the atomic order in the ordered
structure. Thus, dislocations in ordered structures
need to have larger Burgers vectors, |b|, to represent
the decrease in translational symmetry which occurs
on ordering. Larger |b| mean the self energy of dis-
locations in ordered structures is larger, and hence
the dislocations are more difficult to form, as well as
more difficult to move, once they are formed.
Twinning is another mechanism of deformation in
crystalline alloys. Twinning of the bee and fec struc-
tures is well documented. Thus, the most prevalent
twinning mode for bcc is denoted as 2.2T and for fec
is written as 2.2. If the mode 2.27 is applied to the
B2 structure, a new structure is formed (Cmmm).
This structure has near-neighbor B-B bonds, and is
thus presumed to be of higher energy. The same is
true for the application of 2.2 mode to the L1,
structure. In fact, for each of the cubic structures B2,
DO;, B32 and L1,, the application of the twinning
mode of the corresponding disordered parent struc-
ture produces a new structure of orthorhombic
symmetry. There is therefore a driving force for it to
“untwin” and return to its original shape. Most shape-
memory alloys (see Shape-Memory-Effect Alloys:
Basic Principles) are composed of phases with struc-
tures that can not be twinned through their dis-

ordered twinning mode. .

See also: Alloy Crystal Structures and Their Stability; Crys-
tal Structure Determination; Interstitial Ordering in
Alloys; Local Order in Crystalline Alloys; Metallic Solid
Solutions: Phase Separation (Suppl. 1)
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