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Introduction

The literature on the deformation twinning of superlattice structures is rather sparse and usually
concerns specific examples rather than the general theory. Early demonstrations (1-3) that the simple
shears of the normal bcc and fcc deformation twinning modes produce orthorhombic structures when
applied to the ordered cubic B2 and L12 structures respectively have led some authors to conclude
(incorrectly) that these modes cannot give true twins in any superlattice. Moreover, although
geometrically possible twinning modes of higher shear have been identified in the two structures just
mentioned (3), it is sometimes incorrectly implied that such modes do not exist for other superlattices,
e.g. DO,. In this paper, we briefly note some general rules governing the possible twinning modes of
both cubic and non-cubic superlattice structures derived from disordered bcc or fec solid solutions.

Our treatment is based on the Bilby-Crocker (4) and Bevis-Crocker (5,6) formulation of the theory of
deformation twinning, and we make the simplifying assumption that the twinning shear must reproduce
the superlattice structure in a new orientation without any atomic “shuffles”. (In a full treatment, which
will be published elsewhere, shuffle modes have to be considered as possibilities, and there is recent
experimental evidence (7) for the operation of such a mode in the B2 structure.) We are concerned only
with modes which produce twins in both the superlattice structure and the ideally disordered structure,
so that we exclude “order twins” as defined by Hanssom and Barnes (8); these are essentially anti-
phase domain boundaries, and the hypothetical shear which could produce them in the superlattice
corresponds to homogeneous slip in the disordered structure.

Laves (9) distinguished between true twinning and pseudo twinning (or between twinning and
“twinning”); a pseudo twin will have its atomic sites in twin relation to those of its parent crystal but
the occupancy of these sites will be incorrect. Cahn (10) points out that in a strict sense there are not
true twins, but we think, nevertheless, that the distinction between true twinning and pseudo twinning in
ideal, perfectly ordered superlattices may be important in real materials. Pseudo twinning will be
discussed only in relation to the normal deformation twinning modes of the bcc and fcc structures; if
all variants of this mode are pseudo modes in the superlattice structure, we consider what other modes
(necessarily of higher shear) will give true twins. Consider first superlattice structures of stoichiometric
composition A B with only one formula unit per primitive unit cell so that the lattice points of the
fully ordered structure may be defined by the complete set of B atoms. The condition for a given
mode to represent a true twin is then simply that all B atoms are carried into correct twin positions by
the shear. Hence, it is sufficient to ensure that there are no “lattice shuffles”; “structure shuffles” (11)
need not be considered. For any mode variant, the parameters q and q defined in (4) may be derived
analytically or by examination of the positions of the B atoms in a unit cell defined by 74 7, and the
normal to the plane of shear. The mode is then a pseudo twin if both q and q are greater than 2. |If
there is more than one B atom in the smallest unit cell, as in the B32 superlattice structure, for
example, it is necessary to examine whether both B atoms are sheared into correct twin positions, i.e.
to consider whether structure shuffles are required. The condition for the absence of such shuffles is
that the motif unit lies within the l(1 or I(2 planes, and this is specified for the B32 modes considered
here.

Cubic Superlattice Structures

In the ground state diagrams of Richards and Cahn (12) which are based on first and second nearest
neighbour pairwise interactions, there are three cubic superlattices of the bcc structure and one of the
fcc structure. The bcc superlattices may be readily related to each other by using the enlarged 16
atom unit cell shown in Fig. 1. The atom sites are regarded as situated on four interpenetrating fcc
lattices, different occupancy of which gives the B2 and B32 dtructures of composition AB and the DO
structure of composition A3B. The usual twinning mode of the bcc structure has K, and K, planes o?
type {112} and the two corresponding shear directions », and n, are of the type <111>. In a pure



metal or a completely disordered solid solution, the smallest lattice vectors parallel to these directions
are nearest neighbour vectors and cross two lattice planes of type {112} so that g and q are both
equal to 2. However, this vector is doubled in the B2 structure and quadrupled in the other two ordered
structures, so that q,q are respectively 4 and 8 for this mode which can not give rise to a true twin
without shuffles in any of the superlattices. Two other hypothetical twinning modes which have the
same K, plane but different 5., are now of interest. If n, is parallel to <001> and the direction of 7,
is reversed, the so-called "anti-twinning” mode of the bcc structure is obtained; it has a shear twice as
large as the normal mode, and as has previously been demonstrated, could give rise to a true twin in
B2 but not in B32 or DO,. However, examination of Fig. 1 shows that a shear on {112} in the normal
sense but of four times the normal magnitude has n, in a <110> direction and q,q=2 for all the
superlattice structures. Thus this improbably large shear could geometrically produce a true twin in all
three superlattice structures.

Arunchalaman and Sargent (3) pointed out that some of these results may be deduced directly from
the list of twinning modes in cubic lattices given in Table 1 of the second Bevis and Crocker paper (6).
Each entry in this table actually represents four possible modes made up of two mode pairs. The
modes of a pair are conjugate or reciprocal to each other and are related by interchanging the two
undistorted planes K, and K, and their associated shear directions. The second mode pair is obtained
from the first by interchanging the indices of K, and n, and K, and n, and changing the sign of 74
and K,. This transposed mode pair is equivalent to a change from direct to reciprocal lattice, i.e. from
bcc to fcc or vice versa. For greater clarity, we distinguish between a mode pair and its transpose by
adding the superscript T, so that the normal fcc mode is any variant of Bevis and Crocker's mode 2.2,
and the normal bcc mode is any variant of 2.2". The values of m, m; and m. given in Table 1 of (6)
are the reciprocal fractions of lattice points sheared directly into twin positions for simple cubic, bcc
and fcc lattices respectively, and have values, 2, 4 and 1 for mode 2.2 and 2, 1 and 4 for mode 2.27.
It follows that for mode 2.27, only one-half of the B atoms are sheared to correct twin positions in a
B2 structure, since this is simple cubic, and only one-quarter in the B32 or DO, structures which are
both face-centred. The lowest shear mode which could give a true twin in a B2 structure is 1.37 of the
Bevis and Crocker table, but one-half of the lattice points of the superlattices with fcc symmetry are
still incorrectly placed. The mode of even larger shear which could, in principle, twin B32 and 003 is
not listed in Table 1 of (6) since this table is cut off at a smaller shear magnitude, but examination of
the correspondence matrices shows that it is mode 1.9, listed in Table 2 of (6). This mode and its
transpose 1.97 both represent no-shuffle modes in simple cubic, bcc and fcc lattices.

In a similar way, the L1, superlattice structure forms only a pseudo twin in the usual fcc mode 2.2
but forms true twins in modes 1.3, 1.9' and 1.9. Specific variants of the modes we have derived are
listed in full in Table 1, where S represents the plane of shear and g the magnitude of the shear. The
Bilby-Crocker sign convention (4) is used.

TABLE 1
True Twinning Modes (Without Shuffles) in Cubic Superlattice Structures
B-C mode (6) S K, K, 1, 25 g2 True_twin in
1.3 (1100  (171) (001}  [T12] [170) 2 L1,
1.37 (1100 (712) (7100 [T17] [001) 2 B2
1.9 (1700 (1122 (001 [171) ([T10] 8 B2,832,00,4,L1,
197 (1700 (171} (170) (1721 [o001] 8 L1,.82,B32,D0,

Finally, we note that since mode 2.2 is a no-shuffle mode only for a fcc lattice, and 2.27 only for a
bcc lattice, the normal mode of a disordered solid solution of either type can not act as a true
twinning mode for a cubic superlattice unless the lattice retains the same Bravais symmetry. This is
only possible if the lattice parameter of the cubic unit cell is an integral multiple t of that of the
disordered cell, so that the superlattice can form only at stoichiometric compositions A.B, A,cB,
Aga3B...A B... where n=t3-1, Clearly, such superlattices are improbable, although a structure Ca,Ge has
been reported (13) and Khachaturyan {14) discusses a possible Pt,Cu superlattice.



Non-Cubic Superiattice Structures

When the formation of the superiattice results in a non-cubic symmetry, it is immediately obvious
that some variants of the normal mode will still give true twins in the superlattice. Consider, for
example, the CuPt superlattice structure in which alternate parallel planes of a single close-packed set
are entirely occupied by Cu and Pt atoms respectively. Choice of these particular planes as the K,
planes of mode 2.2 will then obviously lead to a true twin. In general, the six equivalent pairs of
variants of the normal twinning modes break up into non-equivalent smaller groups, some of which give
rise to true twinning modes of the superlattice structure whilst others correspond to pseudo modes.
Several non-cubic superlattices are derived from fcc disordered solutions {12) and have various
symmetries down to monoclinic. Detailed consideration of the various superlattices will be given
elsewhere; here, we briefly summarise the results and give one example.

All modes derived from 2.2 are necessarily compound in the usual definition of this term for
deformation twinning, i.e. the indices of the crystallographic planes and directions defining the mode
are all rational. The structures are also all centrosymmetric, so that only two orientation relations need
be considered. In some cases, however, these orientations are distinct, a possibility not envisaged for
compound twins in many elementary discussions, so that there are two types of compound (true} twins
derived from mode 2.2. We distinguish these as “combined” and "I/II" (or "II/I"). Combined means
that the superlattice plane derived from the plane of shear, S , remains a mirror plane of the
superlattice, and there is then only one possible orientation relation. I/I1 means that a type I
orientation is produced in the direction mode without shuffles, whereas a type II relation could only be
obtained by some additional shuffling, and the reverse is true of the conjugate or reciprocal mode.

As an example, consider the orthorhombic PtzMo type superlattice which has space group Immm with
six atoms in the body-centered orthorhombic unit cell. The base vectors of this cell may be defined
by the fcc cubic vectors 1/2[T10], [001] and 1/2[330]: these correspond to those given in (12) except
that the sign of the first vector has been reversed to keep the set right-handed. Table 2 shows the
three different types of modes which result from variants of the 2.2 mode and give rise respectively to
combined, I/II and pseudo twins of the superlattice structure.

TABLE 2
True Twins and Pseudo Twins in PtZMo Superiattice Structure
S (cubic) S (superlattice) K, K, 1, 1, q a Type
(110) (001) (110) (1100 [170] ([110] 2 2 Combined
{(017) (123) (013)  (110)  [931) [7111] 2 6 1/11
{110) {(100) (013)  (013) (0311 [031] 6 6 Pseudo

In the superlattice structure, two of the cubic {111} planes become {110} planes of the orthorhombic
lattice, and the other two become {013} planes. Fig. 2(a) shows that all 1/2¢112> repeat vectors of the
disordered fcec structure in the first type of close-packed plane remain repeat vectors of the
superlattice, but Fig. 2(b) shows that in the second type, such vectors are only one-third of superlattice
repeat vectors. Fig. 3 shows perspective views of the unit cells of the original structure which are
sheared into equivalent cells of the twinned structure for variants which lead to genuine twins. The
twin with a “combined” orientation relation (Fig. 3(a)) has both K, and K, planes of the first type, and
the orthorhombic (001) planes of shear each consist entirely of either A atoms or B atoms in a six-
plane repeating sequence ..BAABAA.. . A type I orientation relation results if the K, plane is of the
type shown in Fig. 2(a) and the K, plane is of the type shown in Fig. 2(b) (see Fig. 3(bﬁ; if these planes
are interchanged, the orientation relation is of type II. Note that four of the six variant pairs give
type I/II twins. The corresponding representation of the pseudo mode is shown in Fig. 4.

If the atom positions remain unchanged on the formation of the superlattice, 92=11'2 for all true and
pseudo modes derived from 2.2 or 2.2'. However, relaxation of the atomic positions on ordering will
lead to new lattice parameters consistent with the symmetry of the structure, and if this symmetry is
non-cubic, the magnitude of g may be slightly changed. Thus in the Pt,Mo structure, the shears for the
three modes of Table 2 ma%/ be written respectively as g = rr"!, g = 1/2(9p~2+r~24p2r~249p~2;2.6) /2
and g = (pzr_2‘81p'2r2-18)” /3 where p=c/a and r=b/a. Without relaxation, the ideal values are p=3 and
r=2"< and all three expressions for g then reduce to 2~ /2,



It may seem illogical to exclude shuffles since many crystals of symmetry lower than cubic are
known to twin by shuffle modes. Clearly, however, interatomic interchange must be excluded in the
present context; if it were permitted, the problem addressed here would disappear since the pseudo
twin could always re-order to form a true twin. Thus a distinction has to be made for superlattice
structures between “interchange” and other shuffles, and we deal with this in another paper.
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Atomic Site Occupancy for B2, B32 and DO3 Cubic Superlattices. The sites occupied
by B atoms are I and II in the B2 structure, I and III in the B32 structure, and I in
the DO, structure.
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Figure 2. Site Occupancy in Close-Packed Planes of Pt,Mo Structure. (a) Superlattice {110}

planes. (b) Superlattice {031} planes. Shaded circles are Mo atoms, open circles Pt
atome
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Figure 3. Perspective View of Pt,Mo Structure for Mode 2.2 Variants Which Lead to Genuine
Twins. (a) Combined Mode. (b) I/II Mode. Symbols as in Fig. 2.

Figure 4. Perspective View of Pseudo-Mode in Pt,Mo. Symbols as in Fig. 2.



