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Shape transitions and orientation alignment of elastically misfitting precipitates in the
presence of an external stress field have been predicted using bifurcation and group theory
and by performing actual energy calculations for elliptical cylinders under plane strain
conditjons. Under the assumption of system isotropy, the applied field acts to break or
perturb the bifurcation. Both first- and second-order size-induced shape transitions are
observed for elastically soft precipitates. Stress-induced shape transitions are shown to be
either first-order or continuous for elastically soft precipitates. Only continuous stress-
induced shape transitions are observed for hard precipitates.

I. INTRODUCTION

The equilibrium shape of an isolated precipitate ina
two-phase alloy is determined by minimizing the sum of
the elastic strain energy and the interfacial energy. The
shape that minimizes the elastic strain energy is not nec-
essarily equivalent to the one that minimizes the interfa-
cial energy. Because the elastic strain energy scales with
the volume of the precipitate, ¥, and the interfacial ener-
gy scales as F2/3, it is not surprising that in a number of
alloy systems precipitate shape transitions are observed
as a function of precipitate size.'

Our understanding of precipitate shape transitions
can be greatly facilitated by using the properties of bifur-
cation thecory. Bifurcation theory is a study of the
branching of solutions of nonlinear equations.>* The
singularity in the behavior of the precipitate shape tran-
sition versus size can be compared to well-known prop-
erties of bifurcation theory. The manner in which the
precipitate shape transition is altered (broken) in an
external field can also be likened to the manner in which
bifurcations are perturbed (broken) by imperfections.
Furthermore, the generic nature of the analysis avoids
the necessity of numerous system-specific energy calcu-
lations that may often obfuscate the physics of the tran-
sition. However, effective use of bifurcation theory is
predicted upon a complete understanding of the symme-
try of the crystals, the external influences, and the pa-
rameters that describe the precipitate shape.

Recently, Johnson and Cahn* used the properties of
bifurcations and symmetry predictions to show how the
self-energy extremizing shapes of a precipitate should
change with precipitate size. Size-induced shape transi-
tions are predicted to occur as a function of precipitate
size when the precipitates are elastically softer than the
matrix under the assumption of system isotropy and in
the absence of an externally imposed field. For a two-
dimensional system under plane strain conditions, these
transitions occur primarily in a continuous fashion anal-
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ogous to a second- or higher-order phase transition (su-
percritical bifurcation). For a three-dimensional sys-
tem, the shape transition is discontinuous (transcritical
bifurcation) and is analogous to a first-order phase tran-
sition. The size-induced shape transition is predicted to
occur at a distinct volume or cross-sectional area, 4,
determined by the system material parameters, and is a
result of the increasing importance of minimizing the
elastic strain energy at larger precipitate sizes.

The equilibrium precipitate shape can change when
subjected to directional external influences such as a
mechanical stress, an electric field, or a magnetic field.
Physically, the external influence (stress) alters the en-
ergy of the system, thereby affecting any size-induced
shape transitions predicted or observed in the absence of
the external influence. Many instances of precipitate
shape changes resulting from an external influence have
been observed experimentally.>~'° Although precipitate
shape changes are known to occur as a result of mini-
mizing the system energy, simple relationships between
material parameters are need that quantitatively de-
scribe the changes.

An analysis of the symmetry of the shape of an indi-
vidual precipitate, assuming some orientation relation-
ship of the precipitate with the matrix, can be deter-
mined from group theory principles. Kalonji and
Cahn'' used the point group intersection of the matrix
and precipitate to find the form or symmetry of the pre-
cipitate that would be expected to extremize the total
energy. This means that group theory can predict ener-
gy extremizing shape symmetries and the orientation in
which those shapes may occur. However, they noted
that group theory alone cannot predict whether the ex-
tremizing solutions are minima, maxima, or saddle
points. The actual energy minimizing shape can only be
determined from energy calculations. Knowledge of the
extremizing orientations offers insight into the specific
energy calculations that need to be made.

A further complication arises in that coherency

© 1986 Materials Research Society 635



Berkenpas, Johnson, and Laughlin: Applied stress on precipitate shape, stability

strains are known to break or lower the symmetry of the
precipitate shape.* This means that the precipitate
shapes of lowest energy are not always those predicted
by symmetry dictated extrema. However, this apparent
loss in symmetry is recovered when the orientations
(variants) of the precipitate are taken into account.''~"?

In this paper we examine the influence of an applied
stress field on the equilibrium precipitate shape. We
treat the applied stress as a perturbation of the un-
stressed case and examine the ways in which the pertur-
bation can break the bifurcations observed in the ab-
sence of an applied field. Last, a discussion of
orientation effects or precipitate alignment with respect
to the external field will be presented.

In order to emphasize the methods of stability char-
acterization, this work will concentrate on a plane strain
situation where the precipitate has the shape of an infi-
nite right cylinder. The intent is to determine those pre-
cipitate shapes that extremize the total system energy as
a function of precipitate volume (cross-sectional area)
when the precipitate and matrix are subjected to a un-
iaxial load applied in the two extremizing orientations
predicted by the group theory.

Il. MODEL

The model consists of a single isotropic precipitate,
with shear modulus z* and Poisson’s ratio v*, embed-
ded coherently in a uniform infinite matrix, with elastic
constants ¢ and v. The precipitate shape is constrained
to be an infinite cylinder (Fig. 1) and the interfacial
energy density o is independent of crystallographic ori-
entation. The precipitate possesses a planar dilatational
misfit with respect to the matrix, the dilatation being
perpendicular to the cylinder axis. A uniform uniaxial
stress may exist perpendicular to the cylinder axis, re-
sulting in the system always being in a state of plane
strain.

FIG. 1. Schematic depiction of the two-phase system. The semiaxes of
the elliptical cross section, @ and b, lie along the x| and x, axes, respec-
tively. The applied stress, compressive or tensile, is applied along the
x, direction. The infinite direction is along x.

lll. SYMMETRY CONSIDERATIONS

The shape of the precipitate cross section that mini-
mizes the system energy in the absence of an external
field may be expected to be one of high symmetry due to
the highly symmetric nature of the system. The cross-
sectional shape of highest symmetry is a circle and is an
energy dictated extremum as predicted by group theory.
A first approximation to a cross-sectional shape of a
lower symmetry is an ellipse. It is important to recog-
nize that other shapes of lower symmetry, such as
squares and rectangles, might possess lower total ener-
gies. However, due to the difficulty in treating the elasti-
city, these lower symmetry forms will not be character-
ized and we will limit our analyses to elliptical cross
sections.

‘When the precipitate cross section is restricted to be
an ellipse, two shape parameters suffice to determine
completely the cross section, e.g., the lengths of the se-
miaxes @ and b. Figure 1 shows the model of the precipi-
tate in the matrix and the coordinate system to be used.
The semiaxes a and b are taken to lie along the x, and x,
axes, respectively. If any scalar property is plotted as a
function of the axes lengths, & and b, an invariance to
exchange and orientation of the axes is present. It is
advantageous to consider a new set of parameters to
maximize the usage of this inherent symmetry. This new
coordinate system can be realized by a rotation of axes
by 45° in the a-b plane. The new parameters are

u=(a—mn2, (1
v=1(a+b)/\2. (2)

The transformation brings a mirror plane into coin-
cidence with the ¥ = 0 axis; therefore any scalar proper-
ty (such as the energy) must be an even function of u.
Since we will eventually be searching for energy extre-
mizing shapes at constant cross-sectional area, it be-
comes convenient to define two new shape parameters.
The first parameter is the dimensionless aspect ratio*:

X=(a—b)/(a+b) (3)

and the second parameter is the area of cross section, 4.
Values of X range from — 1to L.

Johnson and Cahn* show by symmetry that in the
absence of an applied stress X = 0 is always an energy
extremum and that energy extrema other than zero are
symmetric about X = 0. This symmetry requires that
when the total energy is expanded into a power series
about X = 0 at constant area, the energy must assume
the form

1

D (A4,X) = Do(4) + o

D, (A)X?

+%%MHU~A (4)
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where &, is the ith derivative of ® with respect to X at
constant 4. By differentiating (4) with respect to X and
equating to zero, the shapes that extremize the energy
can be obtained as a function of the precipitate cross-
sectional area and other material parameters. If terms
on the order X * and higher in the energy expansion are
momentarily neglected, the equation of state can be ex-
pressed as

aP 1

=) =0=x(d,(H)+—@ AXZ), 5

(aX)A ( 2( )+3! 1(A) 3
the solutions of which are

X=0, X=+(—6d,/P,)"2. (6)

Depending upon the relative signs of ¢, and 9,, there
may exist a critical cross-sectional area, 4, at which the
circle (X =0) changes stability and other solutions
(X #0) are possible.

The form of the energy expansion in (4) is the same
as that derived by Landau in his theory of second-order
phase transitions,'* where @, is assumed positive and X
is analogous to the “order” parameter (not be confused
with the state of coherency of the precipitate-matrix
interface); the “disordered” state corresponds to the
condition X = 0(4 < A4_) and the “ordered” state corre-
spondsto X #0(A4 > A,). The Landau theory states that
at the critical area, 4., the equilibrium state changes
abruptly and the order parameter changes continuous-
ly.

If the assumption of @, > 0 does not hold absolute-
ly, the expansion of ¢(A4,X) must include higher-order
terms. It then becomes possible for first-order shape
transitions to occur when ®, <0, i.e,, the equilibrium
stateand the order parameter change abruptly. This sit-
uation can arise for a very soft precipitate and is dis-
cussed later.

The applied stress breaks the symmetry of the sys-
tem that existed in the absence of the field; X = 0 is no
longer an energy extremum as predicted by group the-
ory and no longer is the total energy of a precipitate
equal for + X and — X. If any general scalar property
such as the total energy were expanded into a Taylor
series about X = 0 at constant area for the applied stress
case, an expansion of the following form results:

P(A4,X) = Py(4) + P, (4)X + (1/72)D,(4)X*?
+ (1/3P,(A) X3

+ (/NP ()X + - (N
Extrema of the energy are determined from solutions to
the following equation of state:

3P
Z2) =0=0,(4) + (DX
(BX)A 1)+ o)

+ (172D, (A)X?
+ (1/3ND (X3 + -+ (8)

Neglecting all terms of X * and higher Eq. (8) and as-
suming that @, > 0, the equation of state, (8), may have
one or three real solutions, none of which are zero. For
the case where only one root, X,, exists, i.e., D(A)

= (S(Dz(b:t - 3‘1’% ) (‘D% —29,9;) — 2(131([)2(1)3‘1)4

+ 992 ®% > 0, it can be shown that X, >0 for ®, <0
and X, <0 for ®, > 0. The transition or sign change of
X, as P, passes through zero is continuous. When
D(A4) <0 three solutions exist. The global minimum for
this case, X,, also changes sign as @, changes sign but
does so discontinuously. Therefore we see that the sign
of ¢, determines the direction in which the energy, and
ultimately the shape, is perturbed by the stress.

The coefficient P, is an implicit function of the ap-
plied stress. Changing the applied stress at constant
cross-sectional area may induce a change in the sign ®,.
Thus the following stress-induced shape transitions at
constant A are also possible:

(1) continuous shape transition if D(4)>0,

(2) first-order shape transition if D(A4) <0.

Figure 2 illustrates schematically the behavior of the
energy when the cross-sectional area is less than the
critical cross-sectional area 4, for various values of ®,.
Solongas 4 <A, only one energy extremum is observed.
As the sign of @, (or equivalently the applied stress)
passes through zero, the equilibrium shape passes con-
tinuously from one distinct shape to another as it passes
through zero with no energy barrier. When 4> 4,,
three extrema in the energy may exist as shown in Fig, 3.

.
AT T
-

FIG. 2. Stress-induced shape transition for 4 < 4,_. The energy ® is
shown schematically as a continuous function of the shape parameter
X for various values of &, at constant cross-sectional area 4. The
shape parameter changes continuously as &, changes sign continu-
ously. The transition from one state to another is continuous.
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LT

FIG. 3. Stress-induced shape transition for 4> A4.. The energy P is
shown schematically as a continuous function of the shape parameter
X for various values of €, at constant cross-sectional area 4. The
shape parameter (state) changes discontinuously as &, changes sign
continuously. The transition is first-order.

As @, passes through zero, the equilibrium shape
changes discontinuously, the transition in this situation
energetically overcoming an energy barrier. Cycling
between positive and negative @, will thus yield a hys-
terisis in the equilibrium shape. The complete phenome-
na of size and stress-induced shape transitions can be
described in a general way by bifurcation theory (cusp
catastrophe®).

IV. APPLICATION TO ELASTICALLY INDUCED
SHAPE CHANGES

We now examine elastically induced shape transi-
tions within the context of the above analysis. The ex-
pressions for the interfacial and elastic strain energy are
expressed in terms of X and 4 to maximize the use of
symmetry in the problem. The interfacial energy per
unit length can be expressed as

E =oP, ¢

where o is the interfacial energy density per unit length
and P is the circumference of the cross section of the
cylinder. The circumference of an ellipse is

PRETEICER () KPR . 4
7(l —X) (1+X)

where E is the complete elliptic integral of the second

kind and X>0. The Taylor expansion of the interfacial
energy per unit length about X = 0 at constant 4 is"

E =20mA (1 +3 X7+ 83X + 10X+ ).
(11

(10)

The elastic strain energy per unit length elliptic cylinder
with elastic constants ( @*, v*), different from the elas-
tic constants of the matrix ( &, v) and subjected to an
applied uniaxial stress, can be derived and expressed as

E,=P;+ (P,X*+P X+ P)/(P,X*+Py),

(12)
where
—462p(1+6x)( 2 6w(1+m)q)
P, = 1 e Tod
0 (1—2v) (I+e)+ 5—1)
_ g5 u (K(l+v)(1—2v)(1+x+2w)
2(1 = 2v) (1—w)?
2w2(1+x5))
-1 /)’
P, = Su(1+v)(4v —k — 1)(1 4 &) (2(1+m)q
2(1 —v)(1 = 2v)
Sowg® )
p._4emul(6— 1) (1 + )’ + bo(l +w)q]
2 (1—2v)
5*€’uq? ((1+v)2(1—2v)(1+x+2xa))
2(1—=2v) (1—w)?
2k0? )
+(5_1) ,
Po=(1465)Qw+x+1),
Po=—(6—-1)(2k0+x+1),
P:262,u(1+w) (1 8q )
3 (1—2v) (5—1)
8uq’ [(1+v)2 o
+2(5—1) 1—v +(5—1)(1—2v) ’
and where
(1 —2v)(v*)
=[(8 — 1) + 26vi,), =,
w=[( )+ 26vif], (1—2v%) ()
5=£, T=Z, k=3—4v,
7 E
q=(1L(1—5), (13)
€b

Here E is Young’s modulus and T is the applied stress
assumed to be directed along the x, (b) axis. Note that
Yo=0andw = (6 — 1) when v = +*.

Following earlier work,* the total energy and pre-
cipitate size can be expressed in dimensionless form.
The dimensionless energy ¢ and dimensionless size A
are defined as

b= (E, +E,)/ 20rA , (14)
A=(4/4)"2, (15)

The critical area A, is the cross-sectional area at which
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the circle becomes unstable in the absence of the applied
stress. It is determined by the intersection of the two
solutions to the equation of state in Eq. (6), i.e., when

N WNrebk +1)(1 —2v) 2w + & + 1)?
¢ Beu(l —8) (¥ — (1 +w)?
(17)

Here A, is physically meaningful only for precipitates

ID? elastically softer than the matrix, § < 1. Elastically hard
( e )X: o =0 (r=0). (16) precipitates do not experience a bifurcation and circular
cylinders are always the stable shape in the absence of an
applied stress. Consequently, unless otherwise indicat-
ed, our analysis will be restricted to elastically soft pre-
Solving for the critical area gives | cipitates.

The dimensionless energy $ can be expanded in a Taylor series about X =0 where v = v* and |g| < 1. The
expansion assumes the following relatively simple form for terms up to X ©;
b — [1_ 3(1+60)[2(6— 1) + (1 +4)] (x— 1, _ 5 )A]
855 — 1)k —1) k+1 (5—-1)
+(3(1 +MRE-D+U+x0]0 +x—4v)q/1
16(6 — 1)(x — 1)(1 —v)
+(3(1 +v)[2(1+6x) — (1 +K)](1+K—4V)q/1)xs
16(1 +8x)(k — 1) (1 —w)

)X+%[1— (1+ )4 1x>

+_33_(1_64(5—1)[2(1+r5fc)—(1+rc)](1+q),1)11,4
64 11(1+68)[2(6=1) + (1 +%)]
3(5—1)(1+‘V)[2(]+5K)-(1+K)]2(1+K—4V)q/1]X5
16(1 +86)3(k — 1)(1 =) [2(6 = 1) + (1 +4)]
2 2
4 107 (1_ 192(8 — D?[2(1 +8x) — (1 +x)1%(1 + ¢) A)Xﬁl (18)
256 107(1 4+ 60226 — 1)+ (1 +x)]2

Note that A = 1 defines the bifurcation point in the absence of an applied stress and that the fourth-order term is not
always positive, thus the inclusion of higher-order terms.
The energy extrema are determined by differentiating & with respect to X at constant 4 and equating to zero:
@:0= [3(1 +RE-1D)4+ 1 4+0)](1+x—
ox 16(6 — 1)k — 1)(1—wv)
n (9(1 + W21+ 66) — (A +x6)](1 +k—4v)g ﬂ)Xz
16(1 4+ 8c){(xk— 1) (1 —v)
+£(1 _ 645 —D2(1+80) — (1 +x)](1 +Q)A)X3
16 11(14+8)[2(6 — 1) + (1 + k)]
(15(5— DA +v)[2(04+8) — (1 4+ &) (1 +x—4v)g
16(1 +6x)*(k — 1) (1 =) [2(6 — 1) + (1 + k)]
321 [1 _192(6 — D20 +8x) — (1 + )11 + ) 1 }XS
128 107(1 +86)2[2(6 — 1) + (1 +x)]?

The extremizing values of X can then be obtained as a function of 4 and ¢. The loci of points for each solution defines a
bifurcation branch that is continuous in 4.

4"”4]+%[1—(1+qu 1X

2 )x

4 (19)

V. DISCUSSION

A. Shape transitions and stability

In the presence of the applied stress and for small
values of A, only one extremizing shape exists, X,. When
P, <0, X, >0, while when ®, >0, X, <0. The sign of

[<l>1 is determined by the parameter ¢ defined by Eq.
(13). For elastically soft precipitates, the sign of ¢ is
fixed by the sign of 7/¢.

The sign of @, determines the order of the size-
induced shape transition in the absence of an applied
stress for an elastically soft precipitate. When ®,> 0,
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the size-induced shape transition is second order and
occurs when ¢, = 0. The size-induced shape transition
is first order when ®, < 0. As will be shown, this condi-
tion can be realized in Eq. (13) for precipitates much
softer than the matrix.

Figures 4 and 5 compare the energy extremizing
solutions for the perturbed and unperturbed bifurca-
tions when @, > 0. In both figures heavy lines denote the
perturbed bifurcation (¢£0) and thin lines denote the
unperturbed bifurcation (g =0). The material con-
stants employed are 6 = 0.8 and v = +* = }. Once the

cylinder reaches a critical cross-sectional area for the
unperturbed situation (4 = 1), the equilibrium state
changes sharply, and the shape continuously, from a
circular to an elliptical cylinder with no particular spa-
tial orientation. No metastable states exist. Under the
influence of an applied stress directed along the b axis of
the precipitate and assuming the misfit and applied
stress are of the same sign (g > 0), the equilibrium shape
is that of an elliptical cylinder whose major axis is per-
pendicular to the stress axis, as shown in Fig. 4. When
the misfit and stress are of opposite sign (g <0), the

1.0
] - B
i — UNPERTURBED
e Maximum
0.5 Minimum
b PERTURBED
: """""" mf::::‘::: FIG. 5. Bi.fu.rcation diagram of ener-
e nm = Relative Minimum| £Y extremizing shapes as a function
i [ e e L L L LR EE LRV ECELEEEEEEEE of the nondimensional size, A, for
> (00 Jrmmmm————— s $,>06=08 and v=v*=|
E Thin lines represent the unperturbed
E bifurcation g = 0. Heavy lines repre-
E sent the perturbed Dbifurcation
J g = — 0.01. The second-order size-
—0.5 induced shape transition for g =10
occurring at 4 = 1 isabsent for g#0.
_1.0 T T T T T T |I T T T T T T I T T T T
0 1M 2 3 4
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FIG. 6. Total energy, ®(4,X)/®(4,0), as a function of size, A, and
shape, X, for &,>0,6 =0.8, v=1* = 4, and ¢ = 0. Energy extrema
are superimposed on the surface and projected onto the 1-Y plane.
Solid lines represent minima, dashed lines maxima.

shape is that of an elliptical cylinder whose major axis is
aligned parallel to the stress axis, as shown in Fig. 5. For
values of A > 2, Figs. 4 and 5 show that the stable and
metastable precipitate shapes for the perturbed case are
very close to that of the unperturbed stable shapes. Thus
1t can be concluded that unloading the system for 4 > 2
results in only a small change in the precipitate shape.
The elastically soft precipitate shape is affected most for
A <2, changing from a circular to an elliptic cross sec-
tion for A< 1.

The relationship between the shape, size, and ener-
gy is displayed in Figs. 6 and 7, where @ is plotted as a
function of A and X for the conditions stated in Fig. 4,
Figure 6 depicts the case when g = 0 and Fig. 7 where
g = 0.01. A trace of the energy extrema is superimposed
onto the energy surface and then projected onto the A-X

1.5
1 -5
(=]
z
>
=4
0.5 5
0
g 2
(=

FIG. 7. Total energy, ®(4,X)/®(1,0) as a function of size, A, and
shape, X, for ©,>0, 5§ =08, v = v* = { and ¢ = 0.01. Energy ex-
trema are superimposed on the surface and projected onto the A-X
plane. Solid lines represent minima, dashed lines maxima, and chain-
dashed lines metastable extrema.

plane to reproduce Figs. 3 and 4, respectively. Although
Fig. 4 shows that the stable and metastable precipitate
shapes for g0 approach the stable shapes for ¢ =0,
Fig. 7 shows that the energy difference between the sta-
ble and metastable precipitate shapes becomes larger as
A increases. Thus the stability of the stable shape be-
comes more pronounced as A increases and also as ¢
increases.

Figures 4-7 illustrate the effect of an applied stress
on the energy extremizing shape for the case where
®,>0. When g = 0, X = 0is a minimum energy condi-
tion when A <1, and an energy maximum whenA > 1. In
addition to the energy maximum when A > 1, there exist
two congruent minima, X #0, which are symmetric
about the A axis. When gs£0 the situation changes. The
energy minimum is defined by the same solution to the
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equation of state for all A, therefore there is no longer a
size-induced shape transition. Two additional extrema
appear at a turning point 4,, one extrema is a relative
minimum the other is an energy minimum. The value of
A at which the turning point occurs depends on the mag-
nitude of the applied stress and the material parameters.

Figure 8 depicts a bifurcation diagram for the case
in which ®, < 0 and g = 0. This occurs when the precip-
itate is much softer than the matrix. The materials con-
stants used in calculating Fig. 8 are § =0.01 and
v =v* = . The circular cylinder is stable for A <A,
with two metastable states present for 4, <A<A,, where
A, is defined as the precipitate size where the two states,
X =0and X = + X, arein equilibrium. Beyond 4, the
circular cylinder becomes metastable with respect to the
elliptical cylinder, the equilibrium size-induced transi-
tion occuring discontinuously. The circular cylinder re-
mains metastable up to the bifurcation point, 2 = 1, be-
coming unstable beyond A =1 The first-order
size-induced shape transition shown in Fig. 8 is from
X =0toX, = 0.906 at A, = 0.803. The turning point in
Fig. 8 is located at X, = 0.838 and 4, = 0.757. A first-
order transition is shown to be possible by the Taylor
expansion although the conditions for the transition are
overestimated. Because the elliptic integral of the sec-
ond kind used to calculate the interfacial energy con-
verges much more slowly than the elastic strain energy,
the Taylor series expanded to sixth order in Eq. (18) is
valid only for X close to zero. Using Eq. (18), the condi-
tion needed for a first-order transition, ®, <0, is real-
ized for 8 <0.132 when v = v* = }. Solving ¢ numeri-
cally using Eq. (14), a first-order transition is observed

approximately an order of magnitude less than § ~0.132
whenv=v*=1.

The effect of an applied stress on the shape of an
elastically hard precipitate also depends on the sign of ¢
and exhibits only one extrema in energy regardless of
the precipitate size. As expected from group theory, the
precipitate cross-sectional shape is no longer circular in
the presence of an applied stress. The cross-sectional
shape is always elliptical and the shape change due to
the applied stress becomes greater as the precipitate size
increases. For g > 0, the major axis of the precipitate
aligns perpendicular to the stress axis. The major axis
aligns parallel to the stress axis when g <0.

The type of possible transitions can also be enumer-
ated. As noted in Figs. 4 and 5, the situation of ¢ =0
shows a second-order size-induced shape transition at
A = 1 for an elastically soft precipitate. There is no size-
induced shape transition in the A-X plane for g#0.
However, there exists both a first-order and continuous
stress-induced shape transition if we were to examine
the X-g plane. The continuous stress-induced transition
occurs for A<1(4<4.), X changing continuously
from one state to another as g goes through zero. A first-
order transition (or hysterisis) in the A-¢ plane exists for
A>1(4>4,) as X changes discontinuously as g passes
through zero. This is exhibited in Fig. 9. The stress-
induced shape transition for an elastically hard precipi-
tate is continuous regardless of the size of the precipi-
tate.

Upon examination of Figs. 4 and 5, the effects of
stress on the precipitate shape relative to the unstressed
case can be discussed. There is a distinct change in the

FIG. 8. Bifurcation diagram of ener-
gy extrema for ®,<0, §=001,
v=v*=}, and ¢ = 0. A first-order
size-induced shape transition occurs
at the critical point (A, = 0.803),
the equilibrium shape making a pro-
nounced discontinuous jump from a
circular (X = Q) to an elliptical cyl-
inder (X, = + 0.906).
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FIG. 9. Energy extrema are shown as a function of the perturbation
parameter, $,, for various values of the cross-sectional area 4. Heavy
lines represent stable solutions and light lines represent metastable or
unstable solutions. For A<4,, X changes continuously with ®,, the
transitionfrom + X to — X representing a continuous stress-induced
shape transition. For 4 > 4_, X changes discontinuously with ¢ as ¢
passes through zero. This transition is first order.

equilibrium precipitate shape for A< 1. The circular cyl-
inder becomes an elliptic cylinder regardless of the mag-
nitude of the stress. When A > 1 there is relatively little
change in precipitate shape, the shape parameter X ap-
proaching the unstressed condition asymptotically. For
an elastically hard precipitate, the shape difference
between the unstressed and stressed cases becomes
greater as the precipitate size increases.

Falk discussed similar stress effects using a Taylor
expansion in describing martensitic phase transforma-
tions.'® He concludes that there is no stress-induced
phase transition from one equilibrium state to another if
a constant external stress is applied to the system (i.e.,
the initial disordered state remains stable), yet shows a
hysteresis in the order parameter in the ordered region
(A <A,_) as the sign of the stress is changed, all other
conditions held constant. Falk also determined that the
change in the order parameter for the stressed condition
is significantly different from the order parameter in the
unstressed condition only for the disordered region
(4 <A4,) and the intermediate vicinity of the critical
point (44, ). For conditions beyond the critical point,
the value of the order parameter in the stressed state
asymptotically approaches that of the unstressed state.

The symmetry predictions of group theory are sup-
ported by the energy results shown in Figs. 4 and 5. For
the unstressed system, group theory predicts that the
circular cross section of an elastically soft or hard pre-
cipitate is an energy extremum and that the extremum

could be stable, unstable, or a saddle. In retrospect, we
see that the circular cross section is stable for A< 1 and
unstable for A > 1 for the case of elastically soft precipi-
tates and stable for all 4 for the case of elastically hard
precipitates. By applying a uniaxial stress to a system,
group theory predicts that the circular cylinder is no
longer an energy extremum but a precipitate with the
symmetry of an elliptical cross section is. This is exactly
the result found. An estimate of the size at which a shape
transition occurs can be simply determined from knowl-
edge of the specific material parameters of a system. As
an example, we choose the shear modulus of the matrix
to be 5X10'° J/m* and Poisson’s ratio for both matrix
and precipitate to be §. The interfacial energy of the co-
herent precipitate in the matrix is assumed to be 3 J/m2
If the precipitate is elastically softer than the matrix,
8 = 0.8, and the misfitis e = 0.001, then the critical area
is A, = 4.9 1077 m’. If the misfit is increased to 0.01
then the critical area is 4, = 4.9 10~ "' m2

B. Precipitate orientation

Changes in the variant morphology, or the orienta-
tions a precipitate can attain, are changes in symmetry.
(Here, variant morphology is defined as the physical
collection or mathematical ensemble of all the possible
spatial orientations a precipitate of a given shape can
possess under equilibrium conditions.) The minimum
symmetry of the equilibrated variant morphology in the
absence or presence of an external influence is deter-
mined by intersecting the point group symmetries of the
precipitate and the matrix with the limiting group sym-
metry of the external field, accounting for the orienta-
tional relationship between them.'"!>17-2! This conven-
tion of symmetry intersection or superposition is called
the Curie principle. The Curie principle is a generaliza-
tion of the Neumann principle.!”2?2 However, because
there can be many representations of variant morpholo-
gies that exhibit a particular symmetry, the equilibrium
variant morphology cannot be determined exactly by
group theory treatments. The actual variant morpholo-
gies must be determined by using the analytical expres-
sions for the elastic strain and interfacial energies. The
usefulness of using group theory to predict variant mor-
phology symmetries rests on its ability to indicate orien-
tation extrema, thus providing a /imited set of energy
calculations that need to be made.

In the absence of an applied stress, the spatial orien-
tation of the ellipse axes are all equivalent and an infinite
number of equally possible orientations exist. This situa-
tion is easily realized from group theory principles. If
the symmetry elements of the precipitate and the matrix
are superimposed in the same frame of reference, the
intersection group contains at least the symmetry ele-
ments of the variant morphology present. For the case
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of an elastically isotropic elliptical cylinder in an elasti-
cally isotropic matrix

G, G, G,
w/om N w/com = w/wm
. )
eom (in two dimensions)

(20)
where G, represents the group of symmetry elements
for the precipitate point group, G,, represents the group
of symmetry elements for the matrix point group, and
G,,, represents the group of symmetry elements for the
variant morphology. Equation (20) also makes use of
the limiting point symmetry groups where co represents
an infinite rotation axis, / implies a rotation axis that is
not necessarily orthogonal to the primary rotation axis,
and, specifically for the two-dimensionally cross sec-
tion, the « implies an infinite rotation axis normal to
the cross section and m implies an arbitrary mirror con-
taining that oo axis. This means that the system must
have an infinite number of possible orientations in the
absence of an applied stress. Whether the cross section
of the precipitate is circular or elliptical is indetermin-
able, but the distribution of possible orientations a pre-
cipitate of a given shape can have includes an infinite
number of possible orientations of the same probability
with respect to a fixed reference frame. Therefore it is
unnecessary to perform an orientation-dependent
energy calculation.

In the presence of an external field, the symmetry of
the variant morphology is broken. By superimposing
the symmetry elements of the applied stress with the
unstressed distribution symmetry, the minimum sym-
metry of the final variant morphology results. The mor-
phology could have more symmetry, but not less than
that resulting from the superposition.'*'” For the case
of a uniaxial stress applied perpendicular to the infinite
axis this can be expressed as

G, G. G
w/wm N w/omN—mm=—mmC G,,
m m ,
1 |U
(in two dimensions) 2mm 2mm
(21)

where G, represents the group of symmetry elements of
the external influence. If we consider the example of
Gp DG, the symbol D means that the symmetry of B
is equal to or greater than the symmetry of A, or equiv-
alently, A is a subgroup of B.

For the condition of equality in (21), the symmetry
requires one of three variant morphologies or orienta-
tion distributions:

(1) a precipitate aligned with the major axis of the
cross section parallel to the stress axis (2mm symme-
try),

(2) a precipitate aligned with the major axis of the
cross section perpendicular to the stress axis (2mm
symmetry),

(3) A precipitate aligned with the major axis of the

cross section at an angle + & to the stress axis, where
8 #0, w/4, or /2 (2mm symmetry).
‘Which one of the variations or combinations of the var-
iations listed above is actually present depends strictly
on system parameters. Because symmetry rules can only
predict conditions qualitatively, exact energy expres-
sions must be developed as a function of shape, orienta-
tion, and system material parameters to differentiate en-
ergy minima from maxima. Cases 1 and 2 are those
examined above by exact energy calculations.

Effects of an influence on a medium can also result
in higher symmetry than the minimum symmetry pre-
dicted by the intersection of the point groups of the in-
fluence and the medium.'*!” Usually, special conditions
give rise to higher symmetry. For example, tungsten isa
cubic material yet it exhibits isotropic elasticity because
of a relationship between the elastic compliance coeffi-
cients (S, — S, = 25,4). The symmetry of the variant
morphology can also result in cross sections with higher
symmetry than 2mm. Possible symmetries would be
4mm, 6mm, ..., Of comm.

The potential usefulness of analyses of this nature
for alloy design can be realized for many situations.
Multi-phase materials might be processed to exhibit
only desired orientations (variants) to control mechani-
cal or physical properties.® In other words, knowledge
of the stability of the orientations (variants) of the pre-
cipitates in an external field could be used to select the
field necessary to produce a desired morphology. An-
other application focuses on alloy selection of a material
tobe used in an external field where a stable morphology
is required. A material could be selected to exhibit a
particular precipitate shape or variant morphology in an
external field based on the proper choice of system mate-
rial parameters. In applications where stress is cycled
between tensile and compressive modes and stable
shapes are required, the order of the transition in orien-
tation due to stress becomes important. First-order
transitions far removed from conditions dictating high-
er-order transitions are advantageous due to kinetic
considerations; a large activation energy may have to be
overcome for the precipitate to change shape.

VI. CONCLUSIONS

This work has examined a generic technique for de-
termining equilibrium precipitate morphologies and
shape transitions in the presence of an applied stress.
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Specific calculations were performed for an isolated el-
liptical cylinder in an infinite matrix under the influence
of a uniaxial stress and the nature of the shape transi-
tions determined as a function of precipitate size, coher-
ency strains, elastic coefficients, and interfacial energy
density for isotropic systems. The analysis was based on
two parts: qualitative predictions based on symmetry
rules and exact solutions based on elasticity calcula-
tions. Aspects of bifurcation theory were used to illus-
trate the problem in a general way and to compare the
transitions with other known transitions. The details of
the energy expressions showed that bifurcations or
shape transitions in the absence of an applied stress oc-
cur only when the precipitate is elastically softer than
the matrix, and do so from only one bifurcation point;
there are no bifurcations off of bifurcations. A uniaxial
stress breaks the unperturbed bifurcation results. There
is no longer a size-induced shape transition from one
bifurcation branch to another, as observed for elastical-
ly soft precipitates.

The order of the size-induced shape transition in the
absence of an applied stress is governed by the sign of the
fourth derivative of the total energy with respect to the
shape parameter, ®,. For an elastically soft precipitate,
the transition is second-order if ®, > 0 and is first-order
ifd, <0.

The sign of the first derivative of the energy with
respect to the shape parameter, ®,, determines the di-
rection the energy or equilibrium shape is perturbed by
an applied stress. When ®, >0, the major axis aligns
with the stress axis (X, <0), and aligns perpendicular
to the stress axis when ¢, <0 (X, > 0). Here ®, is pro-
portional to — 7(1 — &§)/eor —gq.

Stress-induced shape transitions are also observed.
The transition is continuous for A< 1 and first-order for
A > 1 when the precipitate is elastically softer than the
matrix (6 <1), and continuous for all A when the pre-
cipitate is elastically harder than the matrix (5>1).

Group theory can be implemented to qualitatively
predict the orientation the precipitate will take in the

presence of an applied stress. These orientations are not
definite, however.
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