

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Assurance Evidence of Continuous Evolving

Real-Time Systems

Lead Authors

Dionisio de Niz

Technical Director, Assuring CPS (ACPS)/SSD/SEI/CMU

Bjorn Andersson

Principal Researcher, FVCPS/ACPS/SEI/CMU

Mark Klein

Principal Technical Advisor, SSD/SEI/CMU

Hyoseung Kim

Associate Professor, ECE/UC Riverside

John Lehoczky

Thomas Lord University Professor, CMU

Doug Schmidt

Cornelius Vanderbilt Professor, Vanderbilt University

George Romanski

Chief Scientific and Technical Advisor, Software, FAA

November 2022

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Contributing Authors

James Anderson
W.R. Kenan Distinguished Professor
University of North Carolina

Sanjoy Baruah
Professor
Washington University in St. Louis

Tuan Bui
Software Airworthiness Lead
Army AvMC, SRD

Christopher Collins
Executive Director, DTE&A
Office of the Undersecretary of Defense (R&E)

Kenneth Costello
Engineering Services Lead
NASA

Floyd Fazi
Systems Engineer Principal
Lockheed Martin Corporation

Ariel Fershtut
Deputy Division Chief
Sentinel Software Division

Kyle Fox
Sentinel Chief Software Engineer (CSE)
US Air Force

Nickolas Guertin
Director
Operational Test and Evaluation (DOT&E)

Jason Kelly
Software Engineer Sr. Staff / Associate LM Fel-
low
Lockheed Martin Corporation

Ragunathan Rajkumar
George Westinghouse Professor ECE
Carnegie Mellon University

John Robert
Deputy Director, Software Solutions Division
Software Engineering Institute, CMU.

John Ross
Embedded Software Developer
Brockwell Technologies, Inc

David Tate
Senior Defense Analyst
Institute for Defense Analysis

Alexander Volynkin
Senior Research Scientist
Software Engineering Institute, CMU

Reginald White
Senior Military Assistant
OSD/DOT&E

Mark Wotell
Software Engineer
Intrepid LLC

Albert Cheng
Professor of Computer Science and ECE
University of Houston

Cherish Franco
Software Engineer
US Air Force

Willie Fitzpatrick
Senior Software Engineer
TriVector Services

John Goodenough
Fellow
Software Engineering Institute, CMU

Richard Kutter
Technical Advisor, Embedded Computing
US Air Force

Tom Longstaff
Chief Technology Officer
Software Engineering Institute, CMU

Kate Nguyen
Engineer
AFSEC

Travis Redfield
Computer Scientist
US Army System Readiness Directorate

Benjamin Robertson
Lead Engineer
Booz Allen Hamilton

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Copyright 2022 Carnegie Mellon University, University of California, Riverside and Vanderbilt Uni-

versity.

This material is based upon work funded in part and supported by the Department of Defense under

Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not

be construed as an official Government position, policy, or decision, unless designated by other docu-

mentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited

distribution. Please see Copyright notice for non-US Government use and distribution.

DM22-1019

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. i

Table of Contents

Executive Summary iii

1 Introduction 1

2 Recertification of Continuously Evolving Systems 2
2.1 Argument Evolvability 2
2.2 Tool Support 3
2.3 Design for Upgrade 3

3 Automation 5
3.1 Automation for Evolvability 5
3.2 Automation for Scalability 6
3.3 Automation for Objectivity 6

4 Argumentation 7
4.1 Multiple Appraisal Dimension 7
4.2 Argumentation for Evidence Appraisers 8
4.3 Argumentation for Evidence Producers 8
4.4 Argumentation for Developers 9
4.5 Making Argumentation Accessible to All Assurance Actors 9
4.6 Integrating Timing Evidence To Assurance Arguments 9

4.6.1 Pitfalls of Timing Argumentation 9

5 Transition to the Use of Assurance Arguments 11
5.1 Incremental Transition 11
5.2 Standards 11
5.3 Levels of Rigor 11
5.4 System and Argument Continuous Evolution 11
5.5 Concurrent Traditional Assurance and Assurance Cases 12
5.6 Arguments for Different Certification Standards 12

6 Timing 13

7 Next Steps 15
7.1 Working Group 15

7.1.1 Use of Multicore Verification Techniques in Assurance Claims 15
7.1.2 Interaction with other working groups and certification bodies 15
7.1.3 Formal Assurance Case Standardization 15
7.1.4 Regular Interactions 16
7.1.5 Information-Sharing Infrastructure 16

7.2 Model Problems 16
7.3 Grand Challenge 16

References/Bibliography 17

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. ii

Acknowledgments

This report is both the conclusion of a hard effort to organize and execute the ASERT workshop

and the beginning of a workgroup effort to tackle the challenges discussed in the workshop and

presented in this report. Hence, we have a long list of colleagues that made this possible and de-

serve many thanks.

We want to start with the people that supported our work in the workshop organization. First, we

want to thank our home organizations, CMU, SEI, UC Riverside, Vanderbilt University, and the

FAA for supporting our work during the workshop and the writing of the report. Secondly, we

want to thank Tom Longstaff the SEI CTO that encourage and supported the SEI organizers to go

after this endeavor as well as the Anita Carleton and John Robert director and deputy director of

the Software Solutions Division of the SEI for their guidance and support. Thirdly, the many peo-

ple that allowed us to connect to the proper audience including, Eileen Wrubel, Brigid Petrie

O’Hearn, Harold Ennulat, and Hasan Yasar. Finally, we want to thank the support people that

helped us host the workshop including Michele Falce, Shay Badolato, Dan Bidwa, and Linda

Canon.

Finally, we want to thank the participants and collaborative authors of this report for an incredibly

rich discussion and insights that create the foundation for what we anticipate can be a truly trans-

formative endeavor.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. iii

Executive Summary

The workshop ASsurance Evidence for Continuously Evolving Real-Time Systems (ASERT)

took place in Arlington, Virginia on August 16-17, 2022. The workshop was motivated by the in-

creasingly essential need to efficiently and effectively certify (or recertify) real-time systems,

which are also often safety critical. The premise of the workshop was that fostering communica-

tion between the producers of real-time research results, the developers of real-time systems, and

certifiers could expose issues that are impediments to developing an improved methodology for

certification. The workshop brought together members of government, industry, and academia to

explore the following two topics:

1. Developing techniques to substantially reduce the ever-increasing time to certification in the

face of the ever-increasing scale and complexity of modern systems, and

2. Developing methodologies to certify systems that adopt new hardware and software para-

digms. Those two topics stimulated discussion along four themes.

These two topics stimulated discussion among four themes.

The three technical themes that emerged from the workshop were recertification, automation, and

argumentation. The fourth theme was transition.

Re-certification. In software-reliant systems, such as defense and aerospace systems, the portion

of innovations due to software is ever-increasing. The resulting continuous upgrades must be ac-

companied by continuous recertification to preserve the assurance required in safety-critical sys-

tems. This certification involves the collection of evidence along with the argumentation that de-

scribes how the evidence is combined to satisfy specific assurance claims. Unfortunately, current

certification processes are poorly suited to continuously evolving systems. Therefore, we face a

double challenge: (1) enabling argumentation of increasingly large systems and (2) minimizing

the argumentation effort for modification of the system. Meeting these challenges implies that fu-

ture certification processes will need to rely heavily on automation.

Automation. Assurance cases drove much of the discussion at the ASERT workshop. One inspi-

ration for emphasizing assurance cases was the observation that general design decisions and

safety design decisions (such as those considered in a safety case—an assurance case focused on

safety) should be performed in parallel. Since increasing scale and rate of change are driving con-

cerns of today’s systems, workshop participants discussed the evolvability and scalability of as-

surance cases, which highlighted the importance of automation.

Automation is crucial to effectively apply assurance cases in evolving systems. Without automa-

tion it is likely that the system and its assurance case will become out of sync with one another re-

sulting in either assurance issues that are found late in design leading to significant rework; unsafe

systems due to undiscovered assurance issues and/or design decisions for which the design ra-

tionale is lost. Since large-scale systems require reasoning in many different and interacting scien-

tific domains, automation is also important to manage the diversity of evidence and arguments in

a large-scale assurance case.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. iv

Diversity in evidence and in reasoning techniques across many scientific domains has led to argu-

mentation complexity. Moreover, overly restrictive assumptions and a disconnect between theo-

retical results and typical verification claims have led to potentially useful theoretical work being

considered too impractical to incorporate into certification processes.

Moreover, the certification community is not unified, so different types of appraisers demand dif-

ferent types of claims. For instance, in the nuclear deterrence realm, at least three types of apprais-

ers must be considered: safety, cybersecurity, and nuclear surety. However, similar verification

techniques can potentially provide the basis for assurance argumentation across multiple claims.

Assurance cases could be a helpful construct to operationalize this process. Unfortunately, assur-

ance cases are neither well known in the certification communities nor fully standardized. Thus,

more communication is needed between researchers, developers, and certifiers if techniques like

assurance cases are to be transitioned successfully into practice.

Transition. Transitioning from current practice to assurance cases must undoubtedly be an incre-

mental process. Recognizing the significant inertia in using traditional assurance methods for cer-

tification, workshop participants believed that a viable approach could be to use traditional meth-

ods side-by-side with formal assurance argumentation techniques in a way that is mutually

supportive. Two other issues of practical importance in the transition of assurance cases into

adopted practices include accommodating multiple levels of rigor and enabling the evolution of

assurance cases in response to systems that evolve.

Workshop participants generally thought that the workshop could serve as the beginning of an ef-

fort to respond to the current and future certification challenges of continuously evolving (real-

time) systems.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 1

1 Introduction

The ASurance Evidence for Continuously Evolving Real-Time Systems (ASERT) held on August

16-17 brought together members of government, industry, and academia to address the issues re-

lated to improving the methodology for the certification of evolving real-time systems that would

both increase the certainty of correct operation for expected conditions of operation and would re-

duce the time to achieve certification. The aim of the workshop was to explore the following foci:

1. Methods to substantially reduce the ever-increasing time to certification in the face of the

ever-increasing scale and complexity of modern systems, and

2. Methodologies to certify systems that adopt new hardware and software paradigms.

The first focus dealt with structured arguments which are known as assurance cases. They are

used to convince an oversight authority that the system is ready for fielding in a specific opera-

tional context Systems must and do evolve. This brings the questions of whether and how we can

reuse an assurance case after a change.

The second focus dealt mainly with multicore processors, which offer the opportunity for physical

concurrency; however, inter-core interference can compromise that benefit. For example, tasks on

separate cores can interfere with each other at lower levels of the architecture, such as caches,

memory busses, and memory banks. More generally, the introductions of new algorithms and/or

new hardware technology requires the development of evidence about the new technology itself,

but also its interactions with the residual (e.g., legacy) technology whose use continues in existing

and planned systems.

The rest of this document presents the findings from the workshop that includes the challenges

raised due to the disconnection of verification techniques from the certification processes of critical

systems in general and of real-time systems (and its timing verification techniques) in particular.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 2

2 Recertification of Continuously Evolving Systems

In software-reliant systems, such as defense and aerospace systems, the portion of innovations due

to software is ever-increasing as reported in the National Agenda for Software Engineering [4]. Of

course, continuous upgrades and evolution over time should be accompanied by certification pro-

cesses to provide the degree of assurance sought in safety critical systems. Unfortunately, current

certification processes are poorly suited to continuously evolving systems. This problem was

identified by workshop participants and has also been echoed in the research literature [3]:

The traditional approach to certification is to prepare monolithic safety cases as bespoke de-

velopments for a specific system in a fixed configuration. … A more promising approach is

to attempt to establish a modular, compositional, approach to constructing safety arguments

that has a correspondence with the structure of the underlying system architecture.

Current certification processes rely heavily on manual labor and comprehensive one-off testing

procedures, thereby consuming significant amounts of time, effort, and cost. This approach might

have been considered acceptable for systems that rarely---if ever---evolve because the certifica-

tion of such systems happens only once at the acquisition stage. Certification is no longer a one-

time event, however, yet the demand for re-certification continues to increase as technology ad-

vances and threats/requirements become more complex. To respond to the challenges of continu-

ous evolution, certification processes, as well as system development practices, need to evolve

with the following considerations:

1. The effort of recertification, particularly for generating and assessing assurance arguments,

should be proportional to the change made.

2. More widespread adoption of automation tools is needed to ensure objectivity and soundness

of assurance arguments.

3. Systems should be designed for upgrades with recertification in mind.

2.1 Argument Evolvability

Systems continue to grow in complexity and as mentioned earlier, they must now enable continu-

ous change. As a result, we face a double challenge: (1) enabling argumentation of increasingly

large systems and (2) minimizing the argumentation effort for modification of the system.

To enable argumentation of increasingly large systems, we need to take an incremental approach

to develop arguments and collect evidence as the system evolves. Incremental approaches are not

new in existing certification processes since safety standards such as DO 00-56 already emphasize

that “safety cases should be started at the earliest possible stage”. However, the importance of in-

cremental argumentation is substantially higher in continuously evolving systems since otherwise,

recertification becomes an intractable problem for both certifiers and developers.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 3

An issue closely related to incremental argumentation is modularization. To minimize the impact

of any changes made in the system, arguments should be modularized with a clear description of

their scope and supporting evidence and materials. This approach necessitates the investigation of

more comprehensive and well-organized ways to check the range of changes that occurred and

identify change propagation and impact on other subsystems and the corresponding arguments. In

this context the meaning of changes includes not only functional changes in the system, but also

non-functional changes such as code refactoring, operational usage, and performance optimiza-

tion. All these types of changes could potentially affect the timing correctness and safety of the

system. Regardless of the type of changes, therefore, we need to identify potentially affected sub-

systems, and carefully refactor respective arguments.

2.2 Tool Support

Rapid changes in continuously evolving systems are driving the need for alternative methods for

assurance cases. In particular, the certification processes need to rely heavily on the automation of

assurance arguments to cope with the ever-increasing scale of these systems and the pace at which

new arguments must be created and processed. Given that the amount of evidence and arguments

the certifiers must address is already huge, automation tools with support for modularization are a

prerequisite to making incremental argumentation development a viable approach. Such tools will

contribute to reducing the burden of argumentation management and recertification processes for

certifiers. There is also an opinion that automation tools will help accelerate development pro-

cesses by pacing up certification.

2.3 Design for Upgrade

Besides certification processes, today’s system development practices could be reevaluated and

enhanced to minimize the impact of recertification while ensuring performance efficiency in con-

tinuously evolving systems. Some ideas discussed at the workshop are that software components

should be modularized not just based on their functionality, but on their criticality and/or trust-

worthiness. In particular, the latter characteristics affect the likelihood of system lifetime and up-

date periods.

The use of space and time partitioning techniques, such as ARINC 653 in Integrated Modular

Avionics (IMA), for performance isolation among software components has been a commendable

effort. However, researchers have identified their inherent performance loss and inflexibility for

adaptation, which may be major obstacles in evolving systems in the future. Multicore processors,

which will be discussed in Section 6, also brings new challenges to the partitioning techniques.

Some presentations at the workshop focused on priority-based, hierarchical, and mixed-criticality

real-time scheduling. These were not presented as a means for argument evolvability, but they can

support evolvability by innovating development processes. For example, a hierarchical real-time

scheduler provides a predictable supply of processing time to each sub-system. This approach can

be seen conceptually similar to the time partitioning of ARINC 653, but it brings about much

more flexibility and efficiency by enabling predictable interleaving of time slots with provable

guarantees.

A hierarchical scheduler is able to guarantee that a module receives a particular amount of CPU

time within a specific interval independently of other guarantees provided to other modules. If this

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 4

amount of CPU time is enough for the module to meet its deadlines even when the module

changes, then the impact of change of one software module on another may be decreased. Chapter

4 in [1] gives a method for detecting that one part of an assurance case has been “damaged” and

assesses how fixing it can create additional damage and identify limits to this additional damage.

Such a real-time scheduler requires the following:

• support from a run-time system to ensure that execution in one sub-system does not influ-

ence timing of execution in another sub-system

• clear semantics, for example, what does it mean to provide a guarantee of supplied pro-

cessing time in a time interval

• offline tools that can provide a proof that all timing requirements of software within a sub-

system are satisfied, as well as offline tools that can dimension the underlying schedule that

provides lower bounds on processing time to each subsystem.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 5

3 Automation

The ASERT workshop discussed assurance cases with respect to the need for evolvability, scala-

bility, and objectivity, and there was a large fraction of the participants who viewed it as the way

forward. A keen observation from a workshop participant was that we need “design and safety in

parallel.” However, to achieve these properties (incremental safety case), we need to automate it

(at least part of it). Automation is needed for specific claims (e.g., worst-case execution time anal-

ysis and schedulability analysis for claims about real-time requirements), but automation is also

needed for managing assurance cases. An example of the latter is Safety Argument Manager

(SAM) that was developed in the 1990s for Goal Structuring Notation (see Chapter 6 in [1]).

The following are relevant context for future research/development along the direction of creating

automation/tools for assurance case:

• We need quantitative metrics on how much formal/analytical methods and tools can expand

our capabilities on assurance cases.

• There are some ongoing efforts: DARPA Automated Rapid Certification Of Software

(ARCOS) program (https://www.darpa.mil/program/automated-rapid-certification-of-

software). It is desirable to create a means of curating evidence to generate assurance cases.

3.1 Automation for Evolvability

The case for evolvability of assurance cases has been made several times. This report mentions it

in Section 2 and it has also been mentioned in [1]. Chapter 3 in [1] notes an old style that includes

designing a system first and then developing an assurance case, followed by checking. Chapter 3

in [1] argues that this old style has the following drawbacks: (1) if a design is deemed to be not

safe enough, then in some cases, it is necessary to go back and redesign the entire system, which

can be very costly, (2) since assurance case is not used to drive the design, a system often ends up

with less robust safety arguments, and (3) sometimes a system is designed to be safe but the de-

sign rationale tends to get lost in the design process. It also argues that we need incremental

safety-cases and a new lifecycle. Chapter 3 in [1] proposes an example of the latter where one

produces three different safety cases: preliminary safety case (in the requirements phase), interim

safety case (after initial design), and operational safety case (before the system is put in service).

Another perspective raised at the workshop was about version control at the evidence argumenta-

tion. A possible direction is to manage evidence in the evidence repository.

It was pointed out during the workshop that not everything can be automated. Echoing this, Sec-

tion 6.3.2.1 in [1] mentions that if an assurance case has been damaged, then an automatic tool

can identify other nodes in the assurance case that may have been damaged, but this assessment is

pessimistic; it may be that some of these nodes actually have not been damaged.

https://www.darpa.mil/program/automated-rapid-certification-of-software
https://www.darpa.mil/program/automated-rapid-certification-of-software

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 6

3.2 Automation for Scalability

Scalability in assurance cases can be a challenge because of (as mentioned in Section 1.2.1 and

Section 1.2.3 in [1]) the increasing volume and diversity of evidence and argumentation to dis-

charge the top-level claim. Even if an assurance case is presented in a hierarchical manner with

clear dependencies between claim and sub-claims/evidence, we still have the challenge of having

a human processing such a large amount of information. Automation is required to design, vali-

date, and execute the arguments at scale. Likewise, an individual step of reasoning that draws a

conclusion from the premise in an assurance case can be highly complex because the underlying

design of the system one wants to certify is also highly complex.

For these---and other---reasons, we need software tools (automation), and they should be scalable.

In particular, we need tools to manage the assurance case (a large network of claims) and to draw

conclusions from premises. Scalability can also be improved through certain designs (see for ex-

ample, hierarchical real-time scheduling earlier in this document).

3.3 Automation for Objectivity

It is sometimes argued that assurance cases are subjective and hence can be unfair to some appli-

cants. If we can automate the processing of assurance cases, however, we move the interpretation

of the argument to a computer, thereby removing the potential ambiguity of human interpretation.

Automation can also help certification authorities in assessing evidence. An approach that could

be quite beneficial to hasten the adoption of automation, but is currently underexplored, is to have

verification procedures that not only produce an output to a question but also produce an explana-

tion for this answer. For example, if the question is “will all real-time deadlines be met at run-

time,” instead of just outputting only the answer: yes/no, the verification procedure will also out-

put an explanation for why it gave the answer yes to this question (analogous for “no”).

Such an explanation can be helpful because a certification authority can inspect it. Ideally, this ca-

pability allows a certification authority to inspect this explanation and gain trust, even if the certi-

fication authority does not understand the underlying theory that the verification tool is based on

and does not necessarily trust that the tool is correctly implemented.

In addition, automation can help to prioritize critical cases (this capability applies to both the ap-

plicant and the certification authority). This is useful because in practice, there is rarely sufficient

time and money to explore all cases.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 7

4 Argumentation

Safety and mission-critical Cyber-Physical Systems (CPS) rely on certification processes to reach

an acceptable level of assurance that the system performs its intended functions in a safe manner.

For CPS that rely on software that interacts with physical processes, safety must appropriately

consider timing, since logically correct answers delivered at the wrong time can cause incorrect

behavior in the physical environment, leading to a safety violation. Unfortunately, the verification

techniques developed over the years by the timing verification research community have not in-

fluenced the certification processes due to a number of factors including the following:

• complexity of the verification argumentation

• restrictive assumptions of the verification techniques

• lack of connection between verified properties and certification claims

• lack of communication between researchers, developers, and certifiers

The reminder of this section summarizes the discussion that occurred during the workshop with

respect to this problem and the ideas and challenges related to it.

4.1 Multiple Appraisal Dimension

Certification authorities must appraise evidence to make sure that sufficient confidence for spe-

cific assurance goals or claims has been reached. Unfortunately, the certification community is

not unified, and different types of assurance goals have their own class of appraisers. For instance,

in the nuclear deterrence realm at least three types of appraisers must be considered: safety, cyber-

security, and nuclear surety.

Different types of appraisers demand different types of claims. However, similar verification tech-

niques can potentially provide evidence for the assurance argumentation of these different types

of claims. To provide this evidence, it is necessary to develop the proper connections between

verification evidence and each of the assurance claims of interest.

Assurance cases is a general framework for the connection of specific evidence for a particular

type of property in a particular part of the system to system-level claims that has been developed

over the years. Assurance cases allow the decomposition of assurance claims into subclaims con-

necting them to evidence through argumentation to capture the rationale of assurance confidence

into a cohesive body of evidence. Unfortunately, assurance cases are neither well known in the

certification communities nor are they fully standardized. Moreover, assurance cases today are

mostly processed by hand, which both hinders scalability and weakens the soundness of the argu-

mentation.

An assurance case is a powerful artifact that may be the key to reach the scalability and agility de-

manded by critical continuously evolving CPS. To take full advantage of assurance cases, how-

ever, it is necessary to connect them to the claims for the different types of appraisers, such as ap-

praisers in cybersecurity, safety, and nuclear surety that have their own types of claims and

argumentation. There is a large portion of these arguments that are common that can be exploited.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 8

Moreover, the use of assurance cases may not become prevalent until they are included in the ac-

quisition process.

Timing verification evidence can only become usable in certification claims if the proper argu-

ments are created to connect this evidence to the claims. While informal examples are often pre-

sented in scientific papers, a concerted effort to develop appraiser-acceptable arguments connect-

ing verification results to assurance claims must be developed. This can take two forms:

• the development of new arguments that connect old verification techniques to assurance

claims

• the development of new verification techniques specifically connected to new and old assur-

ance claims and arguments

In both cases new assurance claims and argumentation will likely come from the challenges of

scale and continuous evolutions.

The verification evidence produced by techniques developed by the research community are not

only disconnected from the claims the appraisers care and understand but also from the abstrac-

tions and practices that the producers of evidence (e.g., Independent Test and Evaluation organi-

zations) and developers use. This critical gap must be addressed. In addition, there is an issue with

tool qualification that can be understood as follows. Consider a tool that is used to support a claim

that takes a model as input (which could be sub-claims) and produces an output (e.g., schedula-

ble/unschedulable). To apply such a tool in a current certification process, one has to go through

tool qualification. If the tool is very complex, then it may be hard to go through tool qualification.

One effort in this direction is the ERSA 2022 workshop on explainability of real-time systems and

their analysis in the IEEE Real-Time Systems Symposium 2022.

4.2 Argumentation for Evidence Appraisers

Evidence appraisers need to process argumentation that includes evidence that addresses concerns

coming from multiple scientific disciplines. As a result, low-level arguments only accessible to

experts in the domain must be lifted to high-level arguments that connect to system-level claims.

This demands a translation of the argumentation of a particular scientific discipline to a common

language (explanation) where part of the soundness argumentation can be hidden, but with tool

support to preserve the trust in the evidence.

4.3 Argumentation for Evidence Producers

The producers of evidence can potentially specialize in different scientific disciplines. However,

putting together the evidence and argumentation from multiple disciplines requires explanations

across disciplines. These explanations must identify and resolve conflicts resulting from interac-

tion between behaviors ignored by abstractions in one discipline (e.g., computations that take zero

time in continuous time models) but described and manipulated by abstractions in another (peri-

odic tasks with worst-case execution time in real-time theory).

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 9

4.4 Argumentation for Developers

Developers receive verification feedback from evidence producers (e.g., testers) and need to un-

derstand such evidence in order to identify and correct bugs. As a result, when complex verifica-

tion methods are used, evidence of bugs must be translated into explanations that can guide the

correction of the bugs.

4.5 Making Argumentation Accessible to All Assurance Actors

The connections of the verification arguments to the different actors in the assurance pipeline (ap-

praisers, producers, developers, researchers) would need to involve new ways to present argu-

ments but also an explicit effort to learn in part argumentation techniques from other actors.

Assurance argumentation is, ultimately, a communication challenge between the actors involved

in assurance. Importantly, the message in this communication must preserve a single interpreta-

tion for all the actors involved. Tools that automate the argumentation using a single interpretation

play a critical role in the preservation of the message.

Clearly, evolving from today's certification practices to a future one that takes full advantage of

verification techniques will require a continuous dialogue between the assurance actors.

4.6 Integrating Timing Evidence To Assurance Arguments

Timing verification, as has been the case of cybersecurity, tends to be an afterthought. Unfortu-

nately, while cybersecurity faults (e.g., vulnerabilities) can be directly connected to design flaws

and the lack of the corresponding argumentation for assurance, timing faults are frequently more

difficult to connect to a system failure. Moreover, design flaws in a new system can lead to modi-

fications where timing uncertainties accumulate and become manifested as either

• timing errors (e.g., missing deadlines, long delays) that are hard to trace back due to un-

known influences (e.g., hidden scheduling) and

• uncontrollable tangled timing interference (e.g. due to the use of a general purpose scheduler

that is not analyzable instead of fixed-priority scheduler that is analyzable).

4.6.1 Pitfalls of Timing Argumentation

Safety standards (e.g., DO-178C and AFMAN 91119) recognize the importance of timing but also

fail to connect it to the system claims and assurance goals. Instead, they present a number of best

practices for which it is not clear whether the implementation of such practices is either necessary

and/or sufficient. Moreover, today’s standards do not properly address continuous evolution.

Timing is ignored in safety claims. However, we know claims about a system that interacts with

the physical world must consider the timing of the physical world. Due to this omission, failures

connected to timing errors tend to show up late in already fielded systems.

The hidden consequences of timing errors and the difficulty to spot them demand assurance argu-

ments that can soundly establish the sufficient conditions to discharge the assurance claims.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 10

Clearly, these arguments can–and must–be adapted to different levels of rigor required by the sys-

tem.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 11

5 Transition to the Use of Assurance Arguments

5.1 Incremental Transition

Transitioning from current certification approaches to an approach based on assurance arguments

will undoubtedly be a gradual and incremental process. This process will likely occur this way be-

cause current approaches are often human-intensive and embedded in the culture and processes of

certification organizations that are constrained to follow certification standards. Recognizing the

significant inertia in using traditional assurance methods for certification, the workshop partici-

pants believe that a viable approach could be to use traditional methods side-by-side with formal

assurance argumentation techniques to mutually support each other.

5.2 Standards

Regarding standards, workshop participants believed an abstraction framework that (1) is speci-

fied at a higher level than DO-178 and (2) enables mapping to other standards like ISO 26262

would be useful in allowing reuse of artifacts available from commercial components, including

batteries, UAVs, and processors. Regarding DO-178C and its relationship to assurance arguments,

it was unclear to what extent following DO-178C would aid in the development of an assurance

argument. Participants thought it would be useful to examine this relationship more closely.

Moreover, it was noted that DO-178C includes “plans (or policies)” that are not directly related to

evidence. While this information might enable appraisers to have greater confidence in a system if

the developer followed the specified plans, doing so does not necessarily provide sufficient evi-

dence for assurance cases.

5.3 Levels of Rigor

Integrating verification technologies that (1) vary in level of rigor to reduce the verification com-

plexity of less rigorous claims and (2) ensure that the soundness of rigorous claims is not compro-

mised is critical to the practical development of acceptable argumentation. This integration will

enhance the scalability, practicality and transitionability of formal assurance arguments.

5.4 System and Argument Continuous Evolution

It will be critical for assurance argumentation to support continuous system evolution from the

start. When a system changes, much of an existing assurance argument should be reusable. More-

over, the argumentation approach must keep evolving as systems evolve to incorporate new tech-

nologies (e.g., AI and ML), claims, and verification technologies. This evolution has implications

for the structure of the assurance arguments and hence for the structure of systems that must pre-

serve modifiability and reusability properties. Such modifiability and reuse of assurance argu-

ments could be enabled by using proven assurance structures such as templates or patterns.

We anticipate that developing an acceptable assurance argumentation will be an incremental pro-

cess. Moreover, the argumentation approach needs to continuously evolve as the systems we

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 12

certify keep incorporating (1) new technologies (e.g., AI and ML) and (2) new claims and verifi-

cation technologies.

5.5 Concurrent Traditional Assurance and Assurance Cases

The large infrastructure currently operating to support assurance with traditional assurance meth-

ods creates an inertia that must be considered. As a result, we believe the best approach is to allow

traditional methods to exist side-by-side with formal assurance argumentation techniques and to

mutually support each other.

5.6 Arguments for Different Certification Standards

Assurance arguments must be able to satisfy multiple certification standards such as DO-178C,

ISO 26262, etc. Some standards can be more adaptable to different forms of certification evi-

dence. In particular, DO-178C allows applicants to define their own verification plan, which

should facilitate the use of different forms of assurance argumentations in the style of assurance

case as part of such a plan.

In addition, it is important to enable the use and reuse of certification argument “modules” for

commercial components such as batteries, processors or even UAVs.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 13

6 Timing

An important part of the discussion at the ASERT workshop was real-time requirements, e.g.,

how to express them, where they matter the most, how to verify them, and how they can fit in an

assurance case. The following is a summary of the discussion in general:

• Several talks were given by academic participants on real-time scheduling theory and the

usefulness of it to certification authorities. Examples of topics covered included multicore

memory interference (analysis [5-7] and mitigation [8-13]), mixed-criticality scheduling [20]

for both single-core [14-19] and multicore [21-25], time-triggered scheduling that simplifies

integration of subsystems [26-29], and priority-based scheduling and its history (“Rate-Mon-

otonic”) [30-32]. Discussions revealed a gap between academia and industry about tech-

niques for timing verification. For example, industry generally likes Time-Division-Multi-

ple-Access (TDMA) scheduling whereas academia focuses primarily on priority-based

scheduling due to its ability to offer better flexibility, resource efficiency, schedulability, and

end-to-end latency [30]. Techniques from academia to reduce timing interference (e.g., cache

coloring [8, 11, 12, 24]) are often not used by industry. A general concern is how to mature

academic output for transition into industry. It was also noted that academia should explore

the use case for TDMA since there is an opportunity to bridge the gap between industry and

academia.

• Timing becomes critical in mode switching [25] which can lead to important inconsistencies

directly related to safety. Specifically, data intended for the old mode can be delivered in the

new mode due to deadline misses. Mode change can also change memory footprint and the

need to perform additional execution to initialize data structures in the new mode; these can

lead to extra cache misses.

• Collection of “evidence” data even at runtime and/or in operation can be helpful for certifi-

cation [36-38]. For example, one can collect data on memory behavior and check if it is the

same as the behavior in the lab (before deployment) and if it is compatible with the model

used in schedulability analysis. Such collection can also help to identify stress on a resource

(e.g., memory bus) to see if it is below saturation point (if the stress is above the saturation

point, then queuing delays start to build up).

• Temperature can influence timing. It is an important question how to account for that in

schedulability analysis, e.g., [33-35]. If schedulability analysis is overly pessimistic, then

processors have to run faster than necessary, which generates more heat and thus requires a

larger and heavier cooling system. The cooling system can therefore be considered the

“weight” of software.

• Critical sections [39-41] influence timing, but they are not always visible to the application

developer, which represents a hidden danger. For example, operating systems often have

critical sections internally to protect its data structures from concurrent updates. If the appli-

cation developers buy a commercial real-time operating system (RTOS), however, they may

not be aware of those critical sections.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 14

• Interaction between different layers (e.g., RTOS and applications) requires rigorous verifica-

tion and testing.

Satisfying real-time requirements was viewed as a big obstacle by participants. The following is a

summary of the discussion on this topic:

• Multicore is challenging and complex; there has not been a specific and standardized way to

get around that.

• We want a deterministic system using hardware that is non-deterministic because multicore

has shared resources.

• Evidence for multicore is extremely hard to get; most developers do not know what it is and

how to get it.

• We need assurance arguments for multicore that are easy to understand and compelling. A

major gap exists in understanding the arguments, especially for multicore interference issues.

• What are the interferences? Spell them out. Can a family or class or processors have similar

patterns of interference? Can’t use processors that do not allow for evidence production.

• Currently guidelines like CAST-32A require developers to identify all interference channels

and analyze them. How does the certifier know if this is sufficient?

• We should start by defining the evidence that we need and then look at how to produce that.

• Perhaps the best approach as the challenge is that the certifiers have a hard time understand-

ing multicore interference.

• List the interferences and characterize them.

• Some multicore issues are also related to single core; example: cache locking bug.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 15

7 Next Steps

The ASERT workshop participants agreed that the problems considered in this report are very im-

portant. In particular, workshop participants felt strongly about the need to solve these problems,

which are key to achieving rapid fielding of new capabilities in DoD. The participants expressed a

commitment to take the next steps to address the challenges discussed in the workshop. We de-

scribe these steps in this section.

7.1 Working Group

A number of ideas were presented headed toward the formation of a working group. While the

specific purpose of the working group was still to be defined, a few areas of work are discussed

below.

7.1.1 Use of Multicore Verification Techniques in Assurance Claims

This topic is of special interest to the FAA as well as to multiple DoD areas including nuclear

surety. One of the key points of interest is the connection of verification techniques to high-level

assurance claims.

The connection of timing verification results to high-level assurance claims is of particular inter-

est, given the level of uncertainty in the practitioner community about the hidden effects in multi-

core systems and their impact on assurance. This connection is frequently ignored by both practi-

tioners and researchers. Practitioners ignore it because timing is typically hidden from the

abstractions they use, and the timing misbehaviors are rare and hard to reproduce. Conversely, re-

searchers ignore it because they tend not to explore how timing faults affect other properties such

as communication integrity, coordination, replication integrity, security, etc.

7.1.2 Interaction with other working groups and certification bodies

This topic includes groups like the working group MIL-STD 882 that work on the safety implica-

tions of complex software and AI/Autonomy, airworthiness certification groups (516 related),

groups working on DevOps, the international system safety society, and the group in ASTM on

safety standard for software in space vehicles.

Similarly, related standards and their standardization bodies such as the DO-254, DO-178C, Air-

worthiness 516 should be considered.

7.1.3 Formal Assurance Case Standardization

One of the most important challenges identified in the workshop was the standardization of assur-

ance cases. Moreover, it was identified that to make it practical, we need to automate the assur-

ance case processing, hence their formalization is paramount as discussed in previous sections.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 16

7.1.4 Regular Interactions

A motion to meet on a monthly basis was suggested. The initial agreement was to use the work-

shop report as our first interaction. The report itself will contain the interaction plan for the work-

ing group.

7.1.5 Information-Sharing Infrastructure

As part of the infrastructure for the working group we will define the information-sharing infra-

structure to be used. We will favor agility and simplicity, taking advantage of the desire to keep

the information public.

7.2 Model Problems

Model problems can be a critical artifact that allows us to refine our ideas and test their effective-

ness. It would be important to involve people from the different roles involved in the certification

pipeline to increase the richness and effectiveness of the model problems.

7.3 Grand Challenge

We believe that one vehicle to increase the energy and pace of results in this area is to formulate a

grand challenge that can drive the definition of model problems, argumentation standardization

and its automation, and development of a funding structure. This grand challenge should clearly

define problems for which the state of the art and practice are lacking, clearly defines the value to

the funding agencies and users and demonstrates how solving this challenge breaks the current

barriers of certification of continuously evolving critical systems.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 17

References/Bibliography

URLs are valid as of the publication date of this report.

[1] Timothy Patrick Kelly, “Arguing Safety – A Systematic Approach to Managing Safety

Cases,” PhD thesis, University of York, 1998.

[2] J. Michael McQuade and Richard M. Murray (co-chairs) Gilman Louie, Milo Medin, Jennifer

Pahlka, Trae' Stephens, "Software Is Never Done: Refactoring the Acquisition Code for Competi-

tive Advantage Defense Innovation Board," May 3, 2019.

[3] I. Bate and T. Kelly, "Architectural Considerations in the Certification of Modular Systems,"

Reliability Engineering and System Safety, 2003.

[4] Anita Carleton,, John Robert, Jeff Boleng, Mark Klein, Forrest Shull, Greg Shannon, Doug

Schmidt, John Foreman, Charlie Holland, and Erin Harper. “National Agenda for Software Engi-

neering Research and Development: Architecting the Systems of the Future.” Carnegie-Mellon

University, Pittsburgh, PA, 2020.

[5] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding memory

interference delay in COTS-based multi-core systems,” RTAS, 2014.

[6] B. Andersson, H. Kim, D. De Niz, M. Klein, R. Rajkumar, and J. Lehoczky, “Schedulability

Analysis of Tasks with Corunner-Dependent Execution Times,” ACM TECS, 2018.

[7] H. Kim, D. de Niz, B. Andersson, M. Klein and J. Lehoczky, "Addressing Multi-core Timing

Interference using Co-Runner Locking," IEEE Real-Time Systems Symposium (RTSS), 2021.

[8] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, "MemGuard: Memory bandwidth res-

ervation system for efficient performance isolation in multi-core platforms," IEEE 19th Real-

Time and Embedded Technology and Applications Symposium (RTAS), 2013.

[9] H. Yun, R. Mancuso, Z. -P. Wu and R. Pellizzoni, "PALLOC: DRAM bank-aware memory

allocator for performance isolation on multicore platforms," IEEE 19th Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2014.

[10] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding and re-

ducing memory interference in COTS-based multi-core systems,” Real-Time Systems 52, 356–

395 (2016).

[11] N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage, M. Klein, R. Rajkumar, “Coordi-

nated bank and cache coloring for temporal protection of memory accesses,” IEEE 16th Interna-

tional Conference on Computational Science and Engineering, 2013.

[12] H. Kim, A. Kandhalu, and R. Rajkumar. “A coordinated approach for practical OS-level

cache management in multi-core real-time systems,” Euromicro Conference on Real-Time Sys-

tems (ECRTS), 2013.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 18

[13] H. Kim, and R. Rajkumar. “Real-time cache management for multi-core virtualization,” In-

ternational Conference on Embedded Software (EMSOFT), 2016.

[14] D. de Niz et al. “Mixed-trust computing for real-time systems,” IEEE 25th International Con-

ference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2019.

[15] D. de Niz, B. Andersson, H. Kim, M. Klein, L.T.X. Phan, and R. Rajkumar, “Mixed-critical-

ity processing pipelines,” Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2017.

[16] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of mixed-criticality real-

time task sets,” IEEE Real-Time Systems Symposium (RTSS), 2009.

[17] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno, “Resource allocation in distributed

mixed-criticality cyber-physical systems,” IEEE International Conference on Distributed Compu-

ting Systems (ICDCS), 2010.

[18] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Mixed-Criticality Task Synchronization in

Zero-Slack Scheduling,” IEEE RTAS, 2011.

[19] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno, “Overload provisioning in mixed-

criticality cyber-physical systems,” ACM Transactions on Embedded Computing Systems

(TECS) 11.4 (2013): 1-24.

[20] Alan Burns and Robert I. Davis. "A survey of research into mixed criticality systems." ACM

Computing Surveys (CSUR) 50.6 (2017): 1-37.

[21] J. Anderson, S. Baruah, and B. Brandenburg, “Multicore operating-system support for mixed

criticality,” Proceedings of the Workshop on Mixed Criticality: Roadmap to Evolving UAV Certi-

fication, 2009.

[22] M. Mollison , J. Erickson, J. Anderson, S. Baruah , and J. Scoredos, “Mixed Criticality Real-

Time Scheduling for Multicore Systems,” IEEE International Conf. on Embedded Software and

Systems, 2010.

[23] J. Herman, C. Kenna , M. Mollison , J. Anderson, and D. Johnson, “RTOS Support for Multi-

core Mixed-Criticality Systems,” IEEE RTAS, 2012.

[24] N. Kim, B. Ward, M. Chisholm, C. Y. Fu, J. Anderson, and F.D. Smith, “Attacking the One-

Out-Of-m Multicore Problem by Combining Hardware Management with Mixed-Criticality Pro-

visioning,” IEEE RTAS, 2016.

[25] M. Chisholm, N. Kim, S. Tang, N. Otterness , J. Anderson, F.D. Smith, and D. Porter, “Sup-

porting Mode Changes while Providing Hardware Isolation in Mixed-Criticality Multicore Sys-

tems,” RTNS, 2017.

[26] Yu Li and Albert M. K. Cheng, “Toward a Practical Regularity-based Model: The Impact of

Evenly Distributed Temporal Resource Partitions,”' ACM Transactions on Embedded Computing

Systems (TECS), Volume 16, Issue 4, Article No. 111, August 2017.

SOFTWARE ENGINEERING INSTITUTE | VANDERBILT UNIVERSITY | FEDERAL AVIATION ADMINISTRATION

 [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 19

[27] G. Dai, P. Paluri, A. Cheng and B. Liu, "Regularity-Based Virtualization Under the ARINC

653 Standard for Embedded Systems," IEEE Transactions on Computers, vol. 71, no. 10, pp.

2592-2605, 2022.

[28] P. K. Paluri, G. Dai, and A. M. K. Cheng, “ARINC 653-Inspired Regularity-Based Resource

Partitioning on Xen,” ACM International Conference on Languages Compilers, Tools and Theory

of Embedded Systems (LCTES), 2021.

[29] Elena Torre and Albert M. K. Cheng, “Fault Tolerance in a Two-State Checkpointing Regu-

larity-Based System,” IEEE Real-Time Systems Symposium (RTSS), 2020.

[30] M. Klein, T. Ralya, N. Pollak, R. Obenza, and M. G. Harbour. A practitioner’s handbook for

real-time analysis: guide to rate monotonic analysis for real-time systems. Springer Science &

Business Media, 1993.

[31] L. Liu and J. W. Layland. "Scheduling algorithms for multiprogramming in a hard-real-time

environment." Journal of the ACM (JACM) 20.1 (1973): 46-61.

[33] S. Hosseinimotlagh and H. Kim. "Thermal-aware servers for real-time tasks on multi-core

GPU-integrated embedded systems." IEEE RTAS, 2019.

[34] S. Hosseinimotlagh, A. Ghahremannezhad, and H. Kim. "On dynamic thermal conditions in

mixed-criticality systems." IEEE RTAS 2020.

[35] Y. Lee, H. S. Chwa, K. G. Shin, S. Wang, “Thermal-aware resource management for embed-

ded real-time systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 37(11), 2857-2868.

[36] F. Jahanian, R. Ragunathan, and S. Raju. "Runtime monitoring of timing constraints in dis-

tributed real-time systems." Real-Time Systems 7, no. 3 (1994): 247-273.

[37] H. Kim, S. Yi, W. Jung, H. Cha, “A decentralized approach for monitoring timing constraints

of event flows,” IEEE Real-Time Systems Symposium (RTSS), 2010.

[38] T. Amert, Z. Tong, S. Voronov, J. Bakita, F.D. Smith, and J.H. Anderson, “Timewall: Ena-

bling time partitioning for real-time multicore+ accelerator platforms,” IEEE Real-Time Systems

Symposium (RTSS), 2021.

[39] L. Sha, R. Ragunathan Rajkumar, and J. P. Lehoczky. "Priority inheritance protocols: An ap-

proach to real-time synchronization." IEEE Transactions on computers 39.9 (1990): 1175-1185.

[40] R. Rajkumar, L. Sha, and J. P. Lehoczky. "Real-Time Synchronization Protocols for Multi-

processors." RTSS. 1988.

[41] A. Block, H. Leontyev, B. Brandenburg, and J. H. Anderson. "A flexible real-time locking

protocol for multiprocessors." IEEE international conference on embedded and real-time compu-

ting systems and applications (RTCSA), 2007.

