
David Farrow

I wanted to call it PySPC...

...but that name was already taken.

● Similar in spirit to ISPC
○ Data-parallel execution via multi-threading and SIMD

● Python-based
○ Parses Python, compiles shared library

Python is great, but it is slow

● Very popular programming language
○ Friendly syntax, good for rapid prototyping
○ Succinct but powerful: less is more
○ Built-in modules for parsing and inspecting code

● Byte-code based, sequential execution
○ Orders of magnitude slower than sequential C
○ Concurrent, not simultaneous, threading
○ No utilization of SIMD

VecPy: the best of both worlds

Write your function in Python…
(let VecPy do the heavy lifting)

...then execute an optimized* version of it.

*Written in C++, using all available execution contexts and vector extensions

Designed with four goals in mind

Simplicity
Should make the programmer’s life easier.

Flexibility
Should support many architectures and data types.

Utility
Should be useful for real-world applications.

Efficiency
Should completely utilize the hardware.

VecPy is simple to use

VecPy has flexible targets

● Architectures
○ Generic
○ SSE4.2
○ AVX2

● Data Types
○ float
○ uint32

● Language Bindings
○ Python
○ Java
○ C++

VecPy implements a useful feature set

● Operators
○ + - * / // % ** == != > >= < <= & | ^ ~ << >> and or not

● Functions
○ abs, acos, acosh, asin, asinh, atan, atan2, atanh, ceil, copysign,

cos, cosh, erf, erfc, exp, expm1, fabs, floor, fmod, gamma, hypot,
lgamma, log, log10, log1p, log2, max, min, pow, pow, round, sin,
sinh, sqrt, tan, tanh, trunc

● Constants
○ pi, e

● Syntax
○ multi-assignments
○ if-elif-else branches
○ while loops

VecPy generates efficient code

VecPy generates efficient code

VecPy gives sequential speedup

● Mandelbrot performance comparison
○ 1920x1280 image

○ Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz (dual core)
○ Measured minimum render time over 10 frames

Pure-Python

1.0x
41676ms

Pure-Java

85.2x
489ms

VecPy-C++

97.4x
428ms

VecPy gives parallel speedup

Generic SSE4.2 AVX2

1 Thread

1x

1.0x
428ms

4x

1.8x
243ms

8x

2.5x
171ms

2 Threads

2x

1.8x
232ms

8x

3.2x
136ms

16x

4.9x
88ms

4 Threads
(2 HT)

4x

2.4x
178ms

16x

3.9x
110ms

32x

6.0x
71ms

Speedup:
~582x

Try it out! (Requires Python 3.x and g++)

● https://github.com/undefx/vecpy
● Clone, import, vectorize - no setup needed

