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Influencing Product Competition Through Shelf

Design

Abstract

Shelf design decisions strongly influence product demand. In particular, placing prod-

ucts in desirable locations increases demand. This primary effect on shelf position is clear,

but there is a secondary effect based on the relative positioning of nearby products. Intu-

itively, products located next to each other are more likely to be compared having positive

and negative effects. On the one hand, locations closer to relatively strong products will

be undesirable, as these strong products will draw demand from others—an effect that is

stronger for those in close proximity. On the other hand, because strong products tend to

attract more traffic, locations closer to them elicit high consumer attention by increased

visibility. Modifying the GEV class of models to allow demand to be moderated by com-

petitors’ proximity, these two effects emerge naturally. We found that although the com-

petition effect is usually stronger, it is not always the dominating effect. Shelf displays

can achieve higher profits by exploiting the relative influence on competition from shelf

design to shift demand to higher profitability products. In the paper towel category, we

found profitability differences of up to 7% and displays with 3% higher gross profits over

the best shelf design present in our data.

Keywords: Shelf Design, Competition, Choice model, Spatially Correlated Logit Model



Introduction

Retail shelf display is a defining point of contact between the consumer and retailer, since it is

at this point that the purchase decision is made. During the purchase occasion, consumers face

two main tasks: information acquisition and information integration. Shelf designs affect these

tasks through visual cues such as product display, assortment, shelf attractiveness, or space

allocation. Notice that shelf design could be considered either an attribute of the product or a

factor of the environment that influences consideration. Shelf design can simplify the task of

finding a routinely purchased item by placing the item front and center. Alternatively, it can

make shopping more difficult by disbursing popular items throughout the shelf.

Our hypothesis is that there is a positive (or negative) effect of being close to competitors if

the product has a relatively larger (or smaller) value to consumers. An important element in

this argument about the value of shelf display is its distinction between absolute and relative

positional effects. Absolute effects correspond to shelf positions that provide a gain regardless

of the relative merits of the product. We conjecture that these absolute positional effects are

due to higher visibility or increased traffic locations and are independent of the attributes of

the product. But we posit that relative positional effects derive from being near competing

brands. These competitive effects depend upon the relative attractiveness of other products in

the spatial neighborhood, and could be positive because they draw upon the attractiveness of

the competing products—or perhaps negative because they put a product in a more competitive

environment. The consequence of these visibility and competitive effects is that shelf design

can moderate product competition through spatial effects.

This research proposes a new choice model that captures these price competition effects in-

duced through shelf position, which has not received attention in the marketing literature. Our

proposed choice model has better fit in all our experimental data, and better performance pre-

dicting market shares, when compared to traditional benchmarks. Moreover, we find that ig-

noring this competition effect causes a systematic bias in price sensitivity, overestimating its

effect, and thus affects pricing and promotions strategies. Intuitively, ignoring the relative posi-

tion of products forces the model to incorporate part of this omitted effect in other parameters,
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such as price sensitivity.

Our model permits cross price-elasticities to vary with respect to location and neighborhood,

unlike traditional models. An analysis of these changes identifies display choices that increase

overall shelf profits. From this display analysis, we generate recommendations for retail man-

agers to improve the profitability of displays. Applying these recommendations to the paper

towel category case yields a profit increase of roughly 5% relative to the existing shelf design.

The contribution of this research can be summarized as follows. First, we make a methodolog-

ical contribution whereby we develop a model that captures the effect of product display on

product competition. Analysis of the elasticities from the implied choice probabilities show

potential bias in price sensitivity when shelf-induced competition is ignored. Second, we de-

ploy our model empirically with experimental data from the paper towel market sold in Do-

minick’s Finer Foods stores in the Chicago area and from a virtual store. We show that our

model outperforms traditional benchmarks in terms of fit and predictive power, and confirm

a price sensitivity bias. Third, using counterfactual evaluation of alternative shelf designs we

find profit improving designs. Finally, we provide general recommendations for store managers

based on our findings.

Literature Review

Early research in shelf design focused on reducing operational costs (Pauli and Hoecker (1952),

Cox (1970), and Anderson (1979)). Bultez and Naert (1988) developed a decision tool (S.H.A.R.P.)

to help managers optimize shelf space allocation that was subsequently widely used in the in-

dustry. Dreze et al. (1994) assumed that there are fixed shelf position effects. Corstjens and

Doyle (1981) and Corstjens and Doyle (1983) create an adaptive spatial structure, but do not as-

sume interactions between product attributes and shelf locations. More recently, Hwang et al.

(2005), Rabbani et al. (2018), Bianchi-Aguiar et al. (2018) and Smirnov and Huchzermeier

(2019) have included demand elasticities within the space allocation optimization problem.

Although these demand models involve both neighborhood (cross space effect) and spatial (lo-
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cation effect) components, the cross space elasticity is assumed to be independent of relative

position. Our conclusion is that researchers have considered spatial effects but have not consid-

ered how these spatial effects interact with the attractiveness of the products, which we believe

to be an important aspect of this problem.

When consumers choose a product from a shelf display they gather information from the dis-

play and engage in comparisons before making a purchase decision. Eye-tracking studies (Sce-

kic et al. (2018), Chandon et al. (2009), Wedel and Pieters (2008)) all point to the influence of

arrangement or shelf design on choice. Chen et al. (2021) found that products being displayed

at eye-level or end-caps result in higher sales. Similarly, Bucklin and Sismeiro (2003) reported

that position influences clicks on websites, and Agarwal et al. (2011) found that advertising

click-through rates decrease with position.

This research points to location influencing demand as a consequence of consumer search be-

havior. Furthermore, products located near each other are more likely to be compared. Mc-

Granaghan et al. (2019) found a spillover effect of promotions onto subsequent offers when the

value of the lead offer was high. Sayman et al. (2002) argue that private labels benefit from

being positioned1 near national brands. Their argument is that positioning store labels near

national brands allows these weaker store brands to appeal to customers of the national brands

using comparative advantages like lower price. The national brand draws consumers to it in a

way that the store brand does not. More generally, we conjecture that there is a potential posi-

tional effect of being close to competitors. This effect depends upon the relative advantage of

the product to the proximity of the competing products, where we measure proximity through

shelf distance. We argue that this spatial effect is not just between national brands and private

labels, but affects all products. An alternative justification for spatial competition comes from

the context effect literature (Rooderkerk et al. (2011)). Potentially, neighboring products on the

shelf may alter the attractiveness of the focal product, which yields relative positional effects.

1Their use of position is in a perceptual space and not necessarily shelf location.
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Shelf Experiment Data

Our dataset comes from the Micro-Marketing Project at the University of Chicago conducted

between 1989 and 1994. The project was sponsored by numerous CPG manufacturers, and

Dominick’s Finer Foods (DFF) which provided data and made their stores available to conduct

controlled, field experiments. There are 25 categories–but not all participated in all phases

of the project (there were less than 20 categories in the shelf experiments). There were three

phases of the project: the first focused on shelf experiments, the second on category level price

and promotional experiments, and the third focused on coordinating category level prices to

understand store level effects. This has been a popular dataset for studying price and promo-

tional effects, both because it is in the public domain and the carefully controlled price and

promotion experiments. The reasons that we revisit this dataset is because it has an extensive

set of controlled shelf experiments that have largely been ignored. Only one published study

(Dreze et al. (1994)) used the shelf-experiments data, but their analysis was limited to estimat-

ing space elasticities and not understanding how price interacts with shelf design. Furthermore,

these are high quality field-experiments since the stores were randomly assigned treatments,

the experiments ran for many months, and they were checked in the field by research assistants

to make sure the designs were followed. The experiments are older but we would point out

that supermarket layout, shelf design, and the products analyzed (like paper towels) have not

been altered during this time. Hence, we are able to leverage this unique dataset to more rigor-

ously study shelf design and contribute a new methodological approach to the analysis of shelf

design.

We focus on the paper towel market to illustrate our approach and off several reasons for this

choice. The paper towel category is a prototypical one with distinct quality tiers: premium

national brands, a second tier of national brands, and a lower quality tier of private labels. The

category is mature and frequently purchased (approximately once every two weeks). There

are a relatively small number of products, and brands have few product versions: multi-roll or

single-roll. The products are physically large, and the entire shelf display may occupy a whole

aisle. This large size requires shoppers to walk the length of the aisle to make a selection, which
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makes shelf design effects more pronounced..

Data Description. Our dataset comprises 60 stores covering the greater Chicago area in which

26 products are displayed in every store over 16 weeks from July 11th through October 30th,

1991. The category is composed of three quality tiers: The premium national brands are Bounty

and Brawny, the private label is Dominick’s store brand, and the remaining products are asso-

ciated with other national brands. We provide summary statistics of these products over the

course of the data period below in the appendix (Table 6).

In this category, a premium national brand product is not the top market share holder. Rather,

Dominick’s private label product holds an 11% market share over other products from national

brands such as Hi Dri, with its print paper towels, at 8.2% and Mardi Gras Towels, at roughly

7%. However, if we aggregate by brand, national premium brands do rank number one and two,

respectively. Bounty holds 19.58% followed by Scott at 17.52%, HiDri at 11.86%, Dominick’s

at 11.14%, and Viva at 11.13%. This market is competitive, with an HHI score2 of 1,237.

Additionally, we determine a strong negative correlation (-0.42) between price and market share

as well as profit margin and market share (-0.46).

Experimental Shelf Designs. Unfortunately, the summary statistics in Table 6 do not provide

any insight into the impact of shelf position or shelf competition on sales and market shares.

In order to glean insight into these effects, we leverage an in-store experiment. The shelf

experiment had three main objectives. The first was to determine if it was possible to move

customers up in quality by organizing brands by quality and size versus only by brand to make

it easier to ”trade-up.” The second objective was to hide unflattering price comparisons by

increasing the difficulty of comparing regular, jumbo, and multi-packs. The final purpose was

to determine which shelf was viewed as high visibility in the paper towel category, by placing

premium single rolls in highly visible locations to increase margins over the entire category.

The experimental design was straightforward, comprising three experimental shelf designs and

a control design. The first treatment group organized products by quality and size by placing

premium single rolls on the top shelf (providing high visibility), with multi-counts in the middle

2Herfindahl–Hirschman index Measures the industry concentration. An HHI below 1,500 indicates an uncon-
centrated industry
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and low price brands on the bottom shelf. The second treatment organized shelves by placing

low and mid price single rolls on the top shelf with multi-packs in the middle and premium on

the bottom. The last treatment group made price comparisons very difficulty by vertically mer-

chandising single rolls and multi-packs. The base shelf configuration merchandised all sizes

within brand blocks. We illustrate each of these treatment and control groups with planograms

below in Figure 1.

(a) Shelf treatment 1: Quality Tier 1. Prod-
ucts organized by quality and size with single
rolls on the top shelf, multi-rolls in the mid-
dle, and lower price brands on the bottom.

(b) Shelf treatment 2: Quality Tier 2. Orga-
nizing by quality and size, placing price/mid-
price and single rolls on the top shelf, multi-
rolls in the middle, and premium on the bot-
tom

(c) Shelf treatment 3: Increased difficulty in
shopping. Single jumbo size towels separated
from the multi-rolls, the jumbo size organized
by quality from top to bottom, and the multi-
rolls organized by size from top to bottom

(d) Control shelf design. Products grouped
by brand and premium brands are scattered
through the design.

Figure 1: Shelf Design Planograms

To execute the experiments, 60 stores were randomly assigned to one of these three treatments

or the control. The designs and planograms were developed in conjunction with Procter and

Gamble. Data was collected from July 11-October 30 1991. Additionally, stores were visited

weekly to verify that shelf designs were implemented and to flag any potential problems (e.g.,

missing products or departure from shelf design).
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Exploratory Data Analysis

In our analysis, variation in shelf position is key to determining whether there are absolute

shelf position effects and relative competitive effects due to shelf position. Unfortunately for

many datasets, shelf design is fixed; therefore, it is nearly impossible to separate these two

effects from each other because there is no variation in the data with respect to shelf position.

However, the shelf design experiments make it possible though the variation in shelf design

that were introduced. Before developing a formal model, we explore below the results of the

field experiment on shelf design from Dominick’s Finer Foods.

Data Suggesting Positional Effects. We present a simple analysis by way of ANOVA to

determine whether shelf position impacts sales and how neighboring products impact those

sales. First, an ANOVA test indicates significant3 differences in horizontal and vertical product

location influence on SKU-level movement after controlling for individual store, week, and

product intercepts, which signal evidence for a more established absolute shelf effect. Clearly

the shelf position matters. Items on the middle shelf do best, followed by the top shelf, and then

the lower shelf. This can be inferred when we evaluate the model using higher order terms of

the horizontal location, where the linear term is negative, the second order is positive, and the

third order is negative. For the vertical location, on the other hand, the coefficient associated to

the mid level is positive and significant.

Regarding the relative effect, we find that products tend to have smaller market shares when

immediate neighbors are popular products with high average market shares. Indications of

these effects can be seen on both products from high and low quality tiers, but stronger in

unpopular products. Figure 2a shows the demand of the unpopular product Hi Dri. Demand is

highest in the control design, where the average market share of immediate neighbours is low

(black line). As the average market share of competition increases in the experimental designs,

the demand for Hi Dri decreases. In Figures 2b Hi Dri has a market share of 3.41% and is

surrounded by lower quality products, except for a high quality product to its right (indicated

3The F values associated with horizontal and vertical locations are 160.3 and 51.75, respectively, and the
p-value associated is less than 2e-16 in both cases.
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by the temperature bars overlaid on the product image). Yet, in Design 3 (Figure 2c), where the

shelf position is the same for Hi Dri but the surrounding competing products’ quality increases,

the market share of Hi Dri decreases to 2.27%.

In summary, this exploratory analysis suggests that both absolute and relative effects of the

shelf position can significantly affect the demand.

(a) Hi Dri’s Market Shares in all 4 designs. (b) Design 1 (c) Design 3

Figure 2: Hi Dri’s market shares across shelf designs. In (a) neighborhood strength is shown as average market
shares of immediate neighbors as a solid black line. On (b) and (c) specific neighborhoods of design 1 and 3 are
shown and the corresponding strength is show with temperature bars.

The NCL Model

The next challenge is to specify a model of product choice that encompasses both our notion

of absolute and relative shelf effects. Most choice models are derived from the random utility

maximization (RUM) hypothesis. This is the approach that we propose as well. The multino-

mial logit model (MNL) is by far the most popular choice model. It follows as a consequence

of the distributional assumptions on the random component being type I extreme value that is

independently and identically distributed (iid). The key advantage of the MNL model is its

elegant and closed form solution for expressing choice probabilities, which facilitates estima-

tion and predictions that support managerial decisions. Simplistically we could introduce fixed

effects in a MNL model for shelf design that measure attractiveness of shelf locations, but such

a model could not capture relative shelf design effects.

A well know limitation of the MNL is the independence of irrelevant alternatives (IIA). For
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a discussion see Luce and Suppes (1965) and McFadden (1973). In our context IIA is prob-

lematic since as products are added within a shelf location products they may draw share dif-

ferentially from those that are close but not based upon overall attraction. Many extensions to

the MNL model have been proposed to circumvent IIA, but the one we follow is a relaxation

on the error term to allow more flexible error structures. One approach is the use of a nested

logit (NL) derived by Williams (1977), Daly and S. (1976), Ben-Akiva and Lerman (1977), and

McFadden (1981).

In our problem a nested structure could capture competition within an limited shelf area of

partition, which would address the IIA problem. However, the nested logit structure does not

permit general spatial competition that would better capture our notion of relative competition

from neighboring products. The generalized extreme value model (GEV) derived by McFadden

(1978) and generalized by Salomon and Ben-Akiva (1983) introduces correlation into the error

terms that relaxes the iid assumption. Small (1987) introduced the ordered GEV (OGEV) to

account for ordered-choices like number of cars to own. Later extensions allow alternatives

to belong “fractionally” to multiple nests, such as the paired combinatorial logit (PCL) by

Chu (1989) and extended by Koppelman and Wen (2000), cross nested logit (CNL) by Vovsha

(1997), product differentiation logit (PDL) by Bresnahan et al. (1996), and the multinomial

logit order GEV (MNL-OGEV) by Bhat (1998).

Further flexibility in the correlation structure was suggested by Wen and Koppelman (2001)

with their generalized nested logit (GNL) formulation as well as a similar formulation by Swait

(2001) with a latent choice set generation logit (GenL). The added flexibility of these models

allowed general patterns of cross-substitution to be captured, but at the cost of greater com-

plexity. Along these lines Bhat and Guo (2004) introduced the spatially correlated logit model

(SCL) for transportation choices in which adjacent geographical neighborhoods areas were

considered correlated. Later Sener et al. (2011) extended this idea proposing the generalized

spatially correlated logit (GSCL) to account for unobserved spatial correlation.

Our research follows these formulations to accommodate both absolute and relative effects

of shelf position. Specifically, the correlation structure is a function of the shelf design such
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that closer neighbors having greater correlation. We refer to this model as the Neighborhood-

induced correlation logit model (NCL). While the roots of our model are in the choice literature,

it also is related to the spatial literature (Cressie (2015), Bradlow et al. (2005)). Many spatial

models tend to focus on macro-spatial effects that correspond with geographic entities like zip

codes (Bell and Song (2007)). These spatial effects are similar to our approach. However, the

interpretation of these neighborhoods are quite distinct from ours. This is not to say research

on context effects that consider spatial characteristics has not been considered. Specifically,

Dotson et al. (2018) consider a probit model with a covariance structure that depends upon

the similarity of brands in a preference space. A benefit of our approach is that the spatial

effects with the NCL are more tractable than a multivariate probit. Although the structure

and execution of Dotson et al. (2018) is different than ours it is shares the basic idea that the

covariance can be populated with functions that depend upon similarity of products. However,

our similarity is based upon a physical space and not an attribute space.

Model Specification

We now specify the NCL model that captures the effects of spatial competition within our

choice model. Again, our motivation is that products that reside next to each other may have

greater influence on the consumer choice than those that are farther away. Our NCL model

allows for such possibilities, but it does not impose spatial competition.4 We define the utility

of consumer i from product j in store s during period t as:

ui jst ∶= xxx
⊺
jβββ

c
−β

p
ist p jst + ∑

g=1...G

agIg(λ
d
j )+ξ jst + εi jst = νi jst + εi jst (1)

where νi jst =xxx
⊺
jβββ

c−β
p
is p jst+∑g=1...G agIg(λ

d
j )+ξ jst , xxx j is a vector of attributes associated with

the product like its brand or size, p jst is the retail shelf price, ag represents the value of a fixed

4We omit an outside good since the category we analyze is mature and stable and we do not expect expansion
or contraction in the category. The downside of this assumption is that our model must be interpreted conditional
upon overall demand. Therefore, we cannot capture category expansion associated with product designs meant to
encourage category expansion. This omission of the outside good is not a theoretical limitation, but a pragmatic
one to simplify the analysis.
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shelf positional effect for location g given a shelf partition structure and Ig(λ
d
j ) is an indicator

variable for whether the center of product j’s facing is located within partition g given shelf

design d. ξ jst represents the unobserved product characteristics which vary across stores and

time but are common to all customers and εi jst is the idiosyncratic error term. Notice the utility

depends both upon the product attributes and shelf design (λ ) through the shelf attractiveness

terms (a). Each of these model elements: shelf design, attractiveness, and error distribution are

discussed below.

Shelf Design: The retailer’s shelf planning decision can be thought of as a two-dimensional ar-

rangement of products on a shelf. The challenge of shelf planning is the associated combinato-

rial explosion of potential designs. We define the product set of J products as J ∶= {1,2,⋯,J}.

For example, suppose we have an example with five products, J = 5 products. Each product

is indexed from 1 to 5. Therefore, the set of all products is J = {1,2,3,4,5}. Let L denote

the set of all possible product shelf display locations. These locations provide the potential

coordinates or shelf position that each product may take.5 For example, suppose we have a

shelf with a height of 15 units and a width of 22 units6 The set of all possible locations is

L = [0,15]× [0,22] ⊂ R2.

The arrangement of products on the shelf is determined by a shelf design function Λ ∶ J → L.

This yields a complete set of mappings that determine a shelf design: Λ ∶= {λ1,λ2,⋯,λJ}.

Each λ j refers to the location of product j. Products are often stacked on top of one another

and blocked horizontally in a product facing. For simplicity, we always treat product facings

as a unit or the area occupied by all items for product j. Therefore, λ j designates the centerpoint

of the facing product j on the shelf7.

We denote the set of all potential shelf designs by S. Our given shelf design is one instance

5These locations could either be continuous or discrete. Conceptually, it is probably easiest to think of discrete
locations, but since planograms tend to correspond with physical shelves and products have varying dimensions,
continuous locations are needed.

6Unit could be any standardized measurement such as feet or meters, or perhaps a common product width for
the category. In this example, a unit represents six inches.

7We make a simplifying assumption that the depth of the shelf design does not enter into consumer decision
making, although it could be relevant to the retailer in stocking the shelf. Also, we assume in our model that
products are shelved contiguously or, equivalently, that a product will not be displayed in more than one product
facing.

11



of many potential shelf designs8, Λ ∈ S. For illustration purposes, we plot two shelf designs

in Figure 3. We designate “Design 1” as Λ
(1)

= {λ
(1)
1 ,⋯,λ

(1)
J }, and “Design 2” as Λ

(2)
=

{λ
(2)
1 ,⋯,λ

(2)
J }, where the superscript in parentheses refers to the specific shelf design9.

y

x

Design 1

1 2 3

4 5

y

x

Design 2

1

2

3

4

5

0

15

22 22

15

0

Figure 3: Two possible shelf designs displaying products J = {1,2,3,4,5}. The location of the centerpoint of

each product facing, λ
(1)
j and λ

(2)
j , is denoted by black dot labeled by product j.

Attractiveness: Conceptually, the attractiveness term is a simple fixed effect that captures the

corresponding value associated with the absolute shelf location where product j resides. This

term is independent of shelf designs but it does rely on the partitioning of the shelf (e.g. how

fine a shelf grid).10 One could imagine a partitioning structure in which every product is as-

signed to its own partition. The challenge of such a granular partitioning structure is that it

would take a great deal of variation in shelf design to measure the attractiveness of each parti-

tion. The other extreme is to simply have one partition for the entire shelf, but then this would

negate the value of the partitions. Clearly, falling in between these two extremes is important.

Our suggested heuristic is to define partitions as a grid made up of horizontal and vertical par-

titions. Our suggestion is to set the horizontal partitions to equal the number of shelves. The

vertical partitions could be chosen to equal four to capture left, left center, right center, and

right locations. For our paper towel example presented in Figure 4, it has two shelves with

three vertical regions (left, center, and right) which yields 6 partitions. Alternatively if a finer

measure of partition attractiveness is desired then the vertical partitions could be set to a size

8Neither L nor S are assumed to be finite in general.
9The specific values of the five products for the first shelf are λ

(1)
1 = (4,11), λ

(1)
2 = (10,11), λ

(1)
3 = (17,11),

λ
(1)
4 = (8,4), and λ

(1)
5 = (18,4); and for the second shelf are λ

(2)
1 = (9,4), λ

(2)
2 = (4,11), λ

(2)
3 = (17,4), λ

(2)
4 =

(14,11), and λ
(2)
5 = (3,4)

10An important consideration in partitioning the shelf design is the number and location of the partitions
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of roughly two or three product widths. These partitions are used to represent areas of interest

such as eye-level, shelf header, and top or bottom shelves. This provides a convenient method

for introducing positional effects into a shelf design. According to “Design 1” in Figure 4,

product 1 is assigned to partition 1 and this product 1 has an attractiveness score of a1. Alterna-

tively if we follow “Design 2” then product 1 is assigned to partition 5, and has an attractiveness

score of a5.

y

x

Design 1

1 2 3

4 5

y

x

Design 2

1

2

3

4

5

0

15

22 22

15

0

p6p5p4

p3p2p1

p6p5p4

p3p2p1

Figure 4: The previous shelf designs 1 and 2 are divided into 6 partitions P = {p1,p2,p3,p4,p5,p6}. The partition
is labeled in blue. Each partition has the associated attractiveness scores {a1,a2,a3,a4,a5,a6}.

Error Distribution: We further capture the impact of shelf design and its relative position

effects through the error correlation structure using the GEV model (McFadden (1978)). The

cumulative distribution function associated with the multivariate GEV distribution is:

F(εi1st ,εi2st ,⋯,εiJst) ∶= exp{−G(e−εi1st ,e−εi2st ,⋯,e−εiJst)} . (2)

G(⋅) is referred to as the generator function and it permits correlated error structures. Notice

that the MNL occurs as a special case when G(e−εi1st ,e−εi2st ,⋯,e−εiJst) =∑J
j=1 εi jst . Addition-

ally, the nested logit model also occurs as another special case of the GEV (McFadden (1978)).

In this paper McFadden demonstrated that if G is non-negative, homogeneous of degree one

and y j ≥ 0 ∀ j, then it defines a probabilistic choice model consistent with random utility max-

imization (RUM) theory. Our NCL model uses the generator function:11

G(y1,y2, ...,yJ) =
J−1

∑
j=1

J

∑
j′= j+1

[(α j, j j′y j)1/ρ j j′ + (α j′, j j′y j′)1/ρ j j′]ρ j j′ (3)

11in the empirical application below we set ρi j ∶= ρ for parsimony.
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where y j = exp(νi jst + εi jst), νi jst is the deterministic part of the utility function (1), α j, j j′ are

the allocation parameters and ρ j j′ is the dissimilarity parameter, both of which we discuss

next.

NCL Choice Model:

The maximization of random utility yields the choice probabilities for the NCL model:

PNCL
ist ( j) = ∑

j′≠ j

Pist( j∣ j j′)Pist( j j′) (4)

where

Pist( j∣ j j′) =
(α j, j j′e

νi jst)1/ρ j j′

(α j, j j′eνi jst)1/ρ j j′ + (α j′, j j′e
νi j′st)1/ρ j j′

(5)

represents the probability of choosing the product j from the pair-nest ( j, j′) and

Pist( j j′) =
((α j, j j′e

νi jst)1/ρ j j′ + (α j′, j j′e
νi j′st)1/ρ j j′)

ρ j j′

∑J−1
k=1 ∑J

l=k+1 ((αk,kleνikst)1/ρkl + (αl,kleνilst)1/ρkl)ρkl
(6)

represents the probability of choosing the nest ( j, j′) from every other possible pair-nest.

An important aspect of this model, is that it has an analytical expression to quantify the degree

of competition product j faces in a given design, given by: ∑ j′ Pj∣ j j′ . Analogously, we can

identify the product j visibility in a given design as: ∑ j′ Pj j′ . These quantities move in oppos-

ing directions when product j changes location, and none of these effects dominates in every

situation, thus finding good designs becomes a very difficult task.

The motivation for this structure is to introduce the influence of a product to another based on

their relative position in the shelf. Consider a subset or nest that includes only two products, we

denote the pair-nest ( j, j′) where j, j′ ∈ J . We assume consumers first select a pair-nest and

then a product within the nest where the decision of selecting the nest pair ( j, j′) is influenced

by the spatial location of j and j′ on the display, the spatial proximity between j and j′ on the

display, and their combined utilities. The choice between j and j′ within the nest is modeled as
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a weighted MNL, where the weights will also include their relative proximity and indirectly the

proximity of other products in the neighborhood. It is this feature that allows us to incorporate

the attractiveness of the shelf location, for example the product is at eye-level, as well as the

proximity and quality of competitors.

The dissimilarity parameter ρ j j′: The correlation across nests is captured by the dissimilarity

parameter ρ j j′ which takes values in the interval (0,1]. If ρ j j′ = 1 then the pair-nest of products

j and j′ is completely dissimilar to other nests. On the other hand, as ρ j j′ → 0+ the pair-nest of

products j and j′ becomes more correlated with other pair-nests in the display which results in

increased competition.

Allocation parameters: Following Wen and Koppelman (2001) setup of the PGNL, we define

the allocation parameters α j, j j′ for any products j, j′ ∈ J to be the fraction of a product j in

shelf design Λ to be allocated to the pair-nest comprised by products j and j′. However, in-

stead of estimating these parameters as in Wen and Koppelman (2001), we impose a functional

structure based upon the proximity function to capture the correlation between products.

The allocation parameters are given by:

α j, j j′ ∶=
f j j′

∑k∈J f jk
. (7)

and take larger values for products that are closer to one another. We observe that α j, j j′ ≥ 0

and ∑ j′∈J α j, j j′ = 1. Larger allocation parameters correspond to greater correlation between

the utility of j and j′. In turn this means greater competition between the pair.

Notice that our allocation parameters, α j, j j′ , are dependent upon both the shelf design (Λ) and

the proximity function ( f ).12

Proximity function f : We introduce the proximity function f ∶ J ×J → R≥0 to measure the

closeness between two products. Proximity is a function of the distance between the center-

points of two products. Notice that the proximity function depends upon the shelf design Λ, but

12If we would like to emphasize that we are working with the NCL model with a specific proximity function
f then we denote our model as NCL f . We suppress adding superscripts to simplify our notation, unless it is
important to stress that we are comparing between shelf designs or proximity functions.
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we suppress this in our notation for clarity. Formally, the proximity function needs to satisfy

two properties:

1. fk j ≥ fk j′ if λk is closer to λ j than λ j′ . The proximity function is increasing in the distance

between any two products j and j′. By convention, we set the distance between product

j and itself to zero, f j j ∶= 0.

2. f is symmetric: f j j′ = f j′ j. In other words the distance between j and j′ is the same as

the distance between j′ and j.

We introduce two potential proximity functions used in our analysis: exponential, and inverse.

Each function satisfies our two properties. Let d j j′ be the Euclidean distance13 between loca-

tions j and j′, and γ be a scale parameter that is specific to each form.

Exponential proximity function. In this case proximity follows an exponential function which

decreases with distance: f exp
j j′ ∶= e−γd j j′

Inverse proximity function. We may wish a distance function that decays more quickly than the

exponential proximity function, for which we propose an inverse power of distance: f inv
j j′ ∶=

1
d

γ

j j′

Recall that the distances between locations are assumed known, but γ is to be estimated in these

first two functions.

Demand influenced by proximity to competitors: The desired characteristic of the model is

that when two products are very close, they become strong substitutes of each other, as they

get compared more often. This effect can be achieved by allowing shelf position to induce

correlation in their demands. Specifically, to allow the demand of those two products to be

highly correlated when products are close to each other, and low correlation otherwise. For

simplicity, we assume that the influence of the shelf design is only a function of the separation

between products and be equal for every pair of products (ρi j = ρ), otherwise the number

of parameters would grow proportional to the squared of the number of products. A natural

modeling choice is an extension of the pairwise nested logit model, because it allows for a

full differentiated correlation structure while still retaining a tractable analytical form. This
13We employ Euclidean distance for convenience of interpretation, but other distance functions may be used.
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analytical form not only simplifies the estimation, but it also allows for the performing of

analytical calculations on the choice probabilities to generate recommendations, and enables

the use of optimization tools to find optimal shelf designs.

A disadvantage of this modeling choice is that, from equations 4, 5, and 6, it is hard to visualize

how demand correlation is induced by the proximity of competitors. When the dissimilarity

parameter ρ is equal to one (when no shelf induced correlation exists) the choice probabilities

reduced to MNL (since ∑ j′∈J α j, j j′ = 1). In general when 0 < ρ < 1, the correlation between

two products cannot be written in closed form. However, the correlation can be computed using

numerical integration (details in Appendix A.1).

Table 1 presents the correlation between two identical products (to isolate the effect of proxim-

ity on their demand correlation), when their separation changes as a function of the dissimilarity

parameter ρ and distance parameter γ using the exponential proximity function. In this table,

we can observe that, as the dissimilarity parameter ρ approaches 1, the demand correlation

induced by the proximity between the two products approaches zero, regardless of their sepa-

ration. In contrast, when the parameter gamma increases the correlation between the products

also increases. This effect is stronger when the products are closer in proximity. More impor-

tantly, when γ is closer to zero, the correlational effect decays slowly with separation producing

a flat effect across the shelf. Conversely, when γ is large, the display correlational effect matters

only when the products are very close and it fades quickly away as separation increases.

The parameter ρ and γ together determine the overall degree of correlation induced by the

display among products, but only γ measures the decay of correlation with distance. Thus, dif-

ferences in demand when products are separated by different distances allows the identification

of these parameters separately.

Alternative Models

In addition to the above NCL model, we present several other models for comparison. Below

we present each alternative. In the empirical results section, we will also discuss parameter

estimates and model fit relative to our NCL model.
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Dissimilarity Parameter Distance Parameter in exponential function # of Products between products i and j
ρ γ adjacent 1 2 3 4

0.2 0.1 0.067 0.052 0.039 0.030 0.024
0.2 0.157 0.097 0.053 0.032 0.020
0.3 0.296 0.156 0.059 0.028 0.015
0.4 0.451 0.222 0.057 0.022 0.010
0.5 0.582 0.289 0.048 0.016 0.006

0.4 0.1 0.058 0.045 0.034 0.026 0.021
0.2 0.137 0.084 0.046 0.028 0.018
0.3 0.257 0.136 0.052 0.025 0.013
0.4 0.391 0.193 0.050 0.020 0.009
0.5 0.502 0.252 0.043 0.014 0.005

0.6 0.1 0.044 0.034 0.026 0.02 0.016
0.2 0.103 0.064 0.035 0.021 0.013
0.3 0.192 0.102 0.039 0.019 0.010
0.4 0.290 0.145 0.038 0.015 0.006
0.5 0.370 0.188 0.033 0.011 0.004

0.8 0.1 0.024 0.019 0.014 0.011 0.009
0.2 0.056 0.035 0.019 0.012 0.007
0.3 0.104 0.056 0.022 0.010 0.005
0.4 0.155 0.079 0.021 0.008 0.004
0.5 0.197 0.102 0.019 0.006 0.002

1.0 0.1 0.000 0.000 0.000 0.000 0.000
0.2 0.000 0.000 0.000 0.000 0.000
0.3 0.000 0.000 0.000 0.000 0.000
0.4 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000

Table 1: Correlation between two products i and j as a function of the model parameters and their separation.

Model specifications with and without fixed attractiveness. We refer to the model (Equation

4) as the NCL model when we would like to emphasize that this model includes fixed attrac-

tiveness effects. Alternatively, we consider the model without fixed attractiveness effects which

is defined when the fixed attractiveness effects vanish (ag = 0 for all g) as:

ui jst ∶= xxx
⊺
jβββ

c
−β

p
is p jst +ξ jst + εi jst = νi jst + εi jst . (8)

We denote this model as the NCL† model. For clarity we are introducing the † superscript to

denote a variation on the model that does not have fixed attractiveness effects. Therefore NCL

and NCL† represent an NCL model with and without fixed attractiveness effects, respectively.

Homogeneous NCL Model. The homogeneous model assumes all consumers have the same
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response (or equivalently there is only one consumer per store), and we can drop the i sub-

script. Additionally, we redefine the deterministic portion of utility as ν jst = xxx
⊺
jβββ

c−β
p
s p jst +

+∑g=1...G agIg(λ j)+ ξ jst , and total utility to be u jst = ν jst + ε jst . We define this as the homo-

geneous case of the NCL model, which we designate as the HNCL model.

PHNCL
st ( j) = ∑

j′≠ j

Pst( j∣ j j′)Pst( j j′)

= ∑
j≠ j′

(α j, j j′e
ν jst)1/ρ j j′

(α j, j j′eν jst)1/ρ j j′ + (α j, j j′eν jst)1/ρ j j′

((α j, j j′e
ν jst)1/ρ j j′ + (α j′, j j′e

ν j′st)1/ρ j j′)
ρ j j′

∑J−1
k=1 ∑J

l=k+1 ((αk,kleνkst)1/ρ j j′ + (αl,kleνlst)1/ρ j j′)
ρ j j′

.

Nested Logit Model. The choice probabilities for the nested logit model (NL) are given by

PNL
st ( j) = Pst( j∣{σ j})Pst({σ j}) =

eν jst/ρ j j′

∑k∈{σ j} eνkst/ρ j j′

(∑k∈{σ j} eνkst/ρ j j′)
ρ j j′

∑∣P∣
k=1 (∑l∈{σk} eνlst/ρ j j′)

ρ j j′
,

where {σk} refers to the set of products that have been assigned to partition k. Each product

j belongs to exactly one partition (σ j) with products nested by partition, so the allocation

parameters are given by α j,q = 1 if j ∈ {σ j} and 0 otherwise. As before, we refer to the model

without the fixed attractiveness effects as NL† model.

Comparison with the MNL Model. The position-dependent variant of the MNL model is

similar to Dreze et al. (1994), in that we introduce the location attractiveness into the utility

by including measures of the product’s horizontal and vertical coordinates. For each product

j ∈ J we denote by xxx j a vector representing the attributes of product j. Assuming a linear

form, the implicit utility u jst of product j is defined as in (1) but assumes ε jst distributed iid

with type I Extreme Value. The probability of selecting the product j from the display of a set

of product J follows the logistic form

PMNL
st ( j) = eν jst

∑J
k=1 eνkst

(9)

As before we refer to the MNL with positional effects as the MNL model, and the model

without the fixed shelf position effects as MNL†.
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Since the random term is iid, the correlation between alternatives is then only driven by ob-

served attributes. Conversely, the NCL model incorporates the product display design thus

inducing correlation between neighboring products based on their relative position in the shelf.

This effect has been neglected in traditional choice models in marketing.

When compared to the MNL where only products with desirable attributes will receive atten-

tion from the consumers, the NCL model provides us with some additional insights. When a

product is considered, consumers are also likely to consider a group of products in the close

neighborhood as well. Therefore, a product not only gains attention when placed in an attrac-

tive location and sufficiently far from other desirable products (competition effect), but it also

benefits from other products attractiveness in its neighborhood (visibility effect). Being placed

near attractive products has the advantage of higher attention and the disadvantage of being

compared more often with strong competitors, so the optimal location is the result of balancing

these two effects.

By adjusting the dissimilarity parameter ρ appropriately, the HNCL and HNCL† models can

be shown to reduce to MNL and MNL† models respectively, PHNCL
jst ∣ρ=1 = PMNL

jst , and

PHNCL†

jst ∣ρ=1 = PMNL†

jst . This is unsurprising when ρ = 1, as any pair of products j,k ∈ J be-

comes completely uncorrelated and we have the usual independent error structure of the MNL.

On the other hand, as ρ → 0+, product pair j,k ∈ J becomes more correlated. In this limit

HNCL or HNCL† model will not reduce to MNL or MNL† model as the final result still depends

on the relative locations between products. However, we can still say that NCL and NCL†

model reduce to the MNL† model for choosing a pair-nest from the set of all possible nests.

Suppose that we fix the shelf design Λ then the HNCL or HNCL† with utilities ν jst is equivalent

to the MNL model with utilities ν̃ jst ∶= log(∑k∈J j
α j, jkeν jst), where

J j ∶= {k ∈ J ∣ α j, jkeν jst
> αk, jkeνkst}.
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An Empirical Analysis of Shelf Design for Paper Towels

In this section we conduct an empirical analysis of the paper towel dataset from Dominick’s

Finer Foods. A key advantage of this dataset is the presence of exogenous shelf experiments

which introduces variation in shelf designs. A common problem with sales datasets is that

there may be no natural variation in shelf design. Many retailers employ a uniform shelf de-

sign across all stores or the variation is endogenous. Additionally, there is a natural confound

between the shelf design and the store design. For example, large stores may employ expanded

displays or stores in urban neighborhoods may employ reduced sets. Therefore, the natural

variation present may be insufficient or confounded with other factors. However, in our dataset

we can rely upon artificial variation in shelf design to estimate our model. We estimate the NCL

model as well as alternative benchmark models to compare the fit and predictive accuracy. Fur-

thermore, we conduct a counterfactual analysis to find whether an even more profitable design

can be created than those in our dataset.

Before we begin to discuss how we estimate the heterogeneous model, we must first dis-

cuss how we partition the store shelf and present several assumptions to ensure the model

is tractable. The partitioning of the store shelf is relatively straight forward. The store shelves

have three rows, high, middle and low, so we restrict our vertical partitions to these. Next we

assume that the store shelf is partitioned into 6 equally spaced horizontal area. Thus, partition-

ing the store shelf into 18 distinct areas.14 This partitioning of shelves is illustrated in Figure

5.

Next, we discuss several important modeling assumptions for estimation. The first is that we fix

γ within the proximity function to be constant across all pairs j and j′. This assumption greatly

reduces the complexity of estimation by reducing the number of parameters with respect to

GNL while still preserving the influence of shelf proximity on demand. The next assumption

is with respect to the dissimilarity parameter ρ j, j′ . In our empirical analysis we assume the

dissimilarity is constant across all product pairs (ρ j j′ = ρ ∀ j, j′ ∈ J ). Again this assumption

greatly reduces the complexity of estimation by reducing the number of parameters to estimate

14We discuss the robustness to this partitioning structure in the Robustness Check
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while still preserving the influence of shelf proximity on demand.

Estimation of Heterogeneous Model

Each store in the data were recorded to have different customer demographic. For the purpose

of our study let us consider the differences in consumer’s average income Is across the stores.

Let us recall from (1) that the implicit utility of product j ∈ J for the individual i at the store s

in the time frame t is given by

ui jst ∶= xxx
⊺
jβββ

c
−β

p
is p jst + ∑

g=1...G

agIg(λ
d
j )+ξ jst + εi jst (10)

where p jst is the price of product i, ξ jst represents the unobserved product characteristics for

product j at store s in the time t which is common to all customers, and εi jst is the idiosyncratic

error term. For us, each time frame corresponds to the data collected in each week at each

different store. The price sensitivity β
p
is is dependent on income which varies across stores.

The price coefficient is given by

β
p
ist = β

p
+ΠDis+Lvi, (11)

where Π is the observed heterogeneous price effect due to demographic Dis and L is unobserved

heterogeneous component. The demographic factor is given by

Dis ∶= Is+ωswi (12)

where wi ∼ i.i.d. N (0,1), Is is the average income of customers of the store s, and ωs is

the standard deviation of Is. This specification is feasible given access to the demographic

information of consumers at each store.

Finally, the probability of a randomly chosen individual i choosing a product j at the store s in

the time frame t according to the model, M ∈ {MNL,MNL†
,NCLexp

,NCLinv
,⋯}, is given by

the expected value of PM
ist( j) over the demographic distribution:
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PM
st ( j) ∶= ∫

Dis∈R
∫

vvvi∈RJ+1
PM

ist( j)dF(vvvi)dF(Dis) (13)

where F(Dis) and F(vvvi) denotes the Normal cumulative distribution of Dis and vvvi respectively.

In practice, the integral above can be approximated using numerical integration by the random

draw of R individuals i from the given distributions:

PM
st ( j) ≈ 1

R

R

∑
i=1

PM
ist( j). (14)

To estimate the heterogeneous model, we need to estimate both the homogeneous parameters

θθθ 1 ∶= (β
p
,βββ

c
,ag,γ,ρ) and the new heterogeneous parameters θθθ 2 ∶= (Π,L). This can be done

using the BLP technique following Berry et al. (1995) which we summarize as follows:

1. Let S jst be the observed market share of product j at the store s in the time frame t.

Define the mean homogeneous implicit utility δ jst ∶= δ jst(θθθ 2,γ,ρ) 15 to be the function

given by the solution of the equation:

S jst =
1
R

R

∑
i=1

PM
i jst ({ui jst = δ jst + (−p jst ,xxx

⊺
j )(ΠDis+Lvi)}) . (15)

In other words, we have ξ jst = δ jst − (xxx⊺jβββ
c−β

p p jst +∑g=1...G agIg(λ
d
j )).

2. Choosing the instrumental variables z jlst , l = 1,⋯,L for some L ≥ 1. As instruments, we

use average acquisition costs16 as specified in Peltzman (2000). In our model, we use

L = J and z jlst ∶= c jst111 j=l , where c jst is the cost of product j at the store s in time frame t

and 111i= j denotes the selection function which is 1 if i = j and 0 otherwise.

3. Solve for θθθ 1 and θθθ 2 such that ∑ j,s,t z jlstξ jst = 0 ∀l = 1,⋯,L, where the summation runs

over all products j ∈ J , all stores s = 1,⋯,S and time frames t = 1,⋯,T where S and T

15
δ jst is a function of θθθ 2 but it is also a function of γ and ρ when M is one of the NCL models. We recall that

PNCL
j as given in (4) depends on the dissimilarity parameter ρ and its dependency on the scale parameter γ follows

from our choice of the proximity functions.
16c jst ∶= UnitsPurchased jst ⋅WholeSalePrice jst +(Inventory jst −Sales jst) ⋅ c js,t−1
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are the number of stores and time frames respectively. Equivalently, we find θθθ 1 and θθθ 2

that minimize the following objective function:

Minθ1,θ2(Z
′
ξ(θ1,θ2)Z′ξ(θ1,θ2)Z′ξ(θ1,θ2))′WWW(Z′ξ(θ1,θ2)Z′ξ(θ1,θ2)Z′ξ(θ1,θ2)) (16)

where WWW is the weighting matrix.

Estimation Results

Below we present the empirical estimates for our NCL models as well as several benchmarks.

In order to estimate the NCL model we need to specify a specific form for fi j. We use two

different functions f inv
⋅,⋅ and f exp

⋅,⋅ to estimate two versions of NCL model. We also estimate

those two models with and without the attractiveness score function, NCLinv, NCLinv† and

NCLexp
,NCLexp† respectively.

In addition to the two versions of the NCL model, we fit the MNL model, MNL without location

attractiveness (denoted as MNL†), and consider the NL and NL† models.

RMSE RMSE γ ρ Price
Model In-Sample Out-Sample (per hundred inches) sensitivity

MNL 0.99% 1.57%
— — 3.44
— — (0.02)

MNL† 1.99% 1.59%
— — 3.32
— — (0.01)

NL 0.99% 1.50%
— 0.96 3.43
— (0.00) (0.02)

NL† 1.85% 1.43%
— 0.89 3.32
— (0.01) (0.02)

NCLexp 0.00% 0.44%
0.27 0.25 2.73

(0.22) (0.01) (0.06)

NCLexp† 0.53% 0.00%
0.01 0.25 2.73

(0.01) (0.11) (0.10)

NCLinv 0.07% 0.44%
10.44 0.25 2.74
(5.18) (0.01) (0.02)

NCLinv† 0.53% 0.01%
0.00 0.25 2.73

(0.00) (0.01) (0.02)

Table 2: Estimation with Paper Towel (PTW) Category.

Results. For the sake of completeness, we present the estimation results for the non-heterogeneous

models in Table 2 and in Table 3 for the models with consumer heterogeneity. The fixed shelf

position effect (ag∀g) estimated from each relevant model is quite similar. Rather than listing

all fixed effect point estimates for each corresponding shelf location, we illustrate the result
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from the NCLexp with a heat map in Figure 5 and determine that the center shelf regardless

of row is an extremely attractive location. Additionally, the right and left ends are superior

locations as long as they are in the center row.

Addressing the relative performance across all models requires that we calculate the out of

sample and within sample root means squared errors (RMSE). In practice, that entails holding

out the control design group during estimation. In each calculation we set the structural error

ξ to zero. We observe the NCL model has a better fit in sample and predicts better than the

benchmark models on the out-sample data. The parameter which captures the nest correlation,

ρ , is significantly different from zero suggesting that the model differentiates from the MNL

counterpart. This supports the conclusion that shelf interactions significantly contribute to

improve model fit and predictions.

Additionally, we present estimates of the heterogeneous parameter estimates Π and L, where Π

is the estimate associated with the observed heterogeneity due to income and L is the estimate of

the standard deviation of the unobserved heterogeneity. For each model we determine that there

is significant and sizeable observed and unobserved heterogeneity in consumer preferences

towards price. The only exception is with the NCLinv† model where observed heterogeneity is

found to be insignificant at the 95% confidence level.

RMSE RMSE Price
Model In-Sample Out-Sample γ

∗
ρ sensitivity Π

∗
0 L∗0,0

MNL 1.49% 2.06%
— — 3.22 -7.61 8.83
— — (0.00) (0.004) (0.001)

MNL† 2.28% 2.77%
— — 3.12 -6.19 -10.20
— — (0.00) (0.003) (0.002)

NL 1.40% 1.79%
— 0.96 3.22 -7.22 -2.38
— (0.00) (0.00) (0.002) (0.000)

NL† 2.10% 2.60%
— 0.89 3.15 -4.96 9.03
— (0.00) (0.00) (0.003) (0.001)

NCLexp 0.00% 0.05%
0.26 0.25 2.70 -0.68 -2.78

(0.05) (0.00) (0.00) (0.167) (0.047)

NCLexp† 0.56% 0.46%
0.05 0.24 2.70 -0.63 -3.05

(0.06) (0.00) (0.00) (0.166) (0.043)

NCLinv 0.14% 0.14%
12.55 0.25 2.72 -0.38 -2.94
(0.04) (0.00) (0.00) (0.055) (0.030)

NCLinv† 0.56% 0.46%
1.84 0.24 2.71 -0.14 3.23

(0.02) (0.00) (0.00) (0.043) (0.019)

Table 3: Estimation of heterogeneous model with Paper Towel (PTW) Category. Asterisks (*) indicate the values
in the column are multiplied by 100 to ease the presentation. Product Fixed Effects are included
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Our estimation results in the full specification with exponential function NCLexp (table 2) show

a ρ = 0.25, and γ = 0.27 per hundred inches. The ρ is significantly different from 1, which

suggest a better fit of this model as compared to the traditional MNL, and γ is positive and

significantly different from zero, which suggest a significant decay in the demand correlation

when separation increases. According to table 1, these estimates suggest that when two prod-

ucts are very close, the proximity induced correlation is a little less than 0.3, while it is close to

zero when they are separated by approximately 4 sets of products (90 inches of separation) or

more.

Interestingly, when we consider the model without accounting for the shelf attractiveness NCLexp†,

γ estimate is very small, suggesting that in that specification the proximity is not relevant. The

analysis with the inverse of distance function is analogous.

Finally, there is also a large change in the price coefficient of the NCL models relative to

the MNL, MNL†, NL, and NL†. By not considering the interaction in the shelf design, there

appears to be a bias in the estimated price sensitivity. Incorrect price sensitivity would seriously

hinder pricing and promotion decisions for both retailers and manufacturers.

Figure 5: Attractiveness score heat map on the shelf which is divided into 18 partitions. The higher intensity of
the color red indicates the higher attractiveness score of the corresponding partition.

Robustness Check of Partitions

The shelf fixed effects, reflected in the partition in our model, are not the key feature of the

proposed model. However, choosing a wrong partition may affect the overall performance of

the model. We test the performance of the model using different partition sizes. In our data
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Figure 6: Root Mean Square error of MNL, NL and NCLexp models with the training data and testing data
(Design 3).

it is natural to consider each row as a separate partition, since our shelf have three levels, so

we varied how many horizontal partitions we include, for example, Figure 5 has six horizontal

groups and three vertical, giving a shelf of 3x6 partitions. We examined partitions of 3x1, 3x3,

3x6 and 3x9 and present the error in the training and testing data in Figure 6.

As expected, when increasing the number of partitions, the RMSE goes down, however, when

applying the model to new data, the error initially drops, but then goes up again. This suggests

that the model with too many partitions tends to over fit.

We also test the model with partition of unequal sizes, for example a 3x3 partition with narrow

left and right sides with a large center. This partition performed better than the 3x3 partition

with equal size partition, but not better than the 3x6 partition.17

Identification

We discuss the identification of the parameters by asking the question what variation in the

data permits the estimation of each of the parameters. First, we discuss shelf attractiveness

effects. The identification of these parameters are relatively straightforward. What is required

is variation in the shelf design holding the partitions fixed across stores and time. Together,

these variations along with variation in sales allows for the identification of these parameters.

17After fitting the model, the model was used to predict the market shares of the products, then that vector was
compared with real sales to compute RMSE.
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Second is the identification of ρ . It is important to highlight that as ρ goes to 1 we converge to

a multinomial logit model. With ρ , we require variation in pair nest attractiveness levels. Thus,

what pins down ρ is the correlation between product sales and the pair nest attractiveness

relative to other pair nests that include product j. In our data we observe variation in this pair

attractiveness both when products are located in different locations in the shelf, and when the

products themselves change their attractiveness with promotions or other price variation.

A third parameter of interest is γ , a measure that captures the importance of shelf spacing. Gen-

erally speaking γ is pinned down with co-variation in sales data across products within a pair

nest when their separation varies across the designs, whereas ρ leverages variation across pair

nests. Of note is the importance that variation in shelf design and variation of observed and

unobserved characteristics play in pinning down these important model parameters. Variation

a focal product demand (sales) given variation in product attributes (e.g. price reduction or

a change in product promotion) of products at different distances from the focal product pro-

vides additional data variation to assist in identifying these important model parameters. For

instance, the focal product demand may decrease from a price drop of a product nearby but

yield no change in demand from a similar price drop of a product further from the focal item.

Note that although ρ and γ together account for sales correlation of pair of products, only γ

allows for the decay in correlation when separation increases.

The last parameter of interest is price sensitivity. Given that price is endogenous, we need to

instrument to control for correlation between product price and the unobserved product char-

acteristics. With product cost data available (an unusual opportunity for empirical work), we

leverage this data by using the instrumental variables: z jlst . For the 3× 6 shelf partitions, we

may perform the following regression

p jst = xxx
⊺
jηηη

p
+zzz

⊺
jstηηη

z
+

17

∑
g=1

Ig(λ
d
j )η

a
g + ε̃ jst

to find that the coefficients ηηη
p
,ηηη

z, and ηηη
a are non-zero at the 99.9% significant level with

F-value 4.036×104 or p < 2.2×10−16.
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Understanding Competition Induced by Shelf Design

In this section we discuss properties of the NCL model as they relate to shelf competition.

Dreze et al. (1994) show that there are better positions on a shelf. This research corroborates

our intuition that certain physical locations like being at eye-level or the shelf-shoulder that a

consumer sees first when entering the category are beneficial. However, these are fixed shelf

effects. Our motivation for the NCL model is to allow for the potential that products may

benefit from their position to desirable products in the category.

Our conjecture is not that shelf design provides only a fixed effect but a relative effect that

depends upon the attractiveness of the neighboring products. Sayman et al. (2002) show that

store brands which imitate leading national brands benefit from being perceptually close. One

way that retailers do this is through shelf placement. They present both a theoretical model

and empirical evidence to support this argument. We believe that when consumers search for

a leading national brand that other products might benefit from being nearby. Alternatively,

spatial effects could work in the opposite direction in that being close to a dominating product

both in terms of quality and price could draw buyers away from the nearby products to the

dominating brand.

The NCL model permits a general framework in which to understand how shelf position permits

a variety of spatial effects. The NCL model retains the advantages of the choice models while

at the same time allowing flexibility in absolute and relative shelf position effects due to shelf

design. In this section we consider several properties of the NCL model in greater depth to

illustrate its ability to capture relative shelf effects. Specifically, in the next section we start

to show how the relative attractiveness of a product is influenced by its position. Second, we

continue in the following section to show that relative position can induce competition through

the changes in the price elasticity matrix. In order to clearly illustrate these effects and provide

the intuition in a simple manner, we present a stylized example that employs the relevant and

important model estimates from above. In each case, we simplify the model with use of an

example that allows for only a one dimensional linear shelf.
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(a) Purchase probability using parameter estimates (b) Purchase probability using large γ

Figure 7: Purchase probability of generic product x as a function of its position on a shelf containing two other
products GALA and MARDI GRA. On the left (a), using the estimated parameters (Table 3), on the right (b) using
a larger γ , which is equivalent to re-scaling shelf length.

Illustrating Relative Attractiveness of a Product Shelf Design

To understand the effect of moving a product in a shelf, let us consider a simple single row shelf

but with the spacing of that shelf similar to what we see in the Dominick’s setting. Suppose

there are three products {L,X ,R} with utilities νL,νX ,νR. Using the parameters estimated and

employed in the full model above (e.g. dissimilarity parameter ρ = 0.25). We assume the shelf

is of length 300 inches with two low value products set at locations -25 and +25 inches. In this

setting we analyze the effects of a third product that has either high or low value compared to

the fixed products and vary its location along the shelf.

The benefit of fixing the competing products is that we may isolate the impact of relative shelf

position on the attractiveness of the target product X exclusively as a function of its location.

To understand the impact of varying the position of our target product X relative to these other

two products we focus on the impact of the probability of purchase of product X denoted PNCL
X .

When all the products have low attractiveness, see case (b) of Figure 7a, we can see that if

product X is initially at the edge of the shelf (x ≪ −25 or x ≫ +25) and as it approaches the

nearest product, the choice probability for product X decreases slightly then flattens as it gets

closer to the center between the competing products. This naturally highlights the increased

competition that occurs when products of similar utility move closer to each other. The mini-

mum occurs when product X is sandwiched between the other two products leading to intense

competition between all three products rather than only facing strong competition from one

product when X is on the end of the shelf. Interestingly, the effect is reverse when product
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X is of high utility. As the product moves closer to the center and in between the two other

products, X’s purchase probability increases. In this case, the negative effect of an increase in

competition, is countered by the increase in visibility this product enjoys by being placed in the

center.

In order to see the impact that γ plays in generating these results, we run a comparative static

that increases the value of γ . Note, the increase in γ is similar to shrinking the store shelf by

the same factor and as a result the effects on purchase probability are more pronounced and

nuanced. We present these results in Figure 7b. For option b when all products are of low

utility, being closer to a group makes product X more noticeable to consumers which causes

the initial increase in its demand. Notice that this effect eventually is overshadowed by the

stronger negative competition effect from both products, which drives the demand for product

X down as it gets closer to the center. In fact, it is clear that the demand for product X is

lowest when product X is exactly mid-way between the competing products. The reason is

that product X faces roughly equal competition from both products. For case (a), similar but

inverted and muted effects occur.

When our target product is the dominant brand in the category, we observe that the choice

probability PNCL
X peaks when the target product is in the center between the two competing

products. At this point the dominant product is in a highly visible position relative to the

competitors and effectively draws share away. We can see that as product X moves away from

the grouping of products towards the edge of the display that demand for X begins to decrease.

This drop in demand is most notable at the edges of the display, but there is a drop-off from

being in the center and drawing share aware from both neighbors, and another drop off as it

moves away from the nearest product.

Elasticity of NCL Model

The previous section focused on the effect of position on the choice probability as a function

of the dissimilarity parameter and illustrates how utility is influenced by position. Typically,

marketers also change the utility of products through price. In this section we consider the own-

31



and cross-price elasticities as a function of the dissimilarity parameter. The importance of this

analysis is that it shows that increased price substitution can be induced through shelf position.

Elasticity with respect to product characteristics: The own-characteristic elasticities EM
j,xxx
⊺
j βββ

c

and cross-characteristic elasticities EM
j′,xxx

⊺
j βββ

c of the model M ∈ {MNL,NL,HNCL} are given in

Table 4. The elasticities for MNL and NL models are reported for comparison. Observe that

when the dissimilarity pattern reaches its maximum, ρ = 1, that the HNCL’s elasticities equals

those of the MNL model. Otherwise both the own and cross-characteristic elasticities are higher

due to an extra factor that gets bigger when ρ gets smaller. This increase reflects that nest-pairs

are less similar and product competition outside the nest diminishes with respect to j.

M Own-elasticity Cross-elasticity

MNL (1−PMNL
j )xxx⊺jβββ

c
−PMNL

j xxx
⊺
jβββ

c

NL (( 1
ρ
−1)(1−Pj∣{σ j})+ (1−PNL

j ))xxx
⊺
jβββ

c
−(( 1

ρ
−1)Pj∣{σ j}+PNL

j )xxx
⊺
jβββ

c

HNCL ∑
j′≠ j

Pj∣ j j′Pj j′

PHNCL
j

(( 1
ρ
−1)(1−Pj∣ j j′)+ (1−PHNCL

j ))xxx
⊺
jβββ

c
−
⎛
⎜
⎝
( 1

ρ
−1)

Pj∣ j j′Pj j′Pj′∣ j j′

PHNCL
j′

+PHNCL
j

⎞
⎟
⎠

xxx
⊺
jβββ

c

Table 4: Elasticities associated with product characteristics for the MNL, NL, and NCL models.

The own- and cross-characteristic elasticities for the NCL model can be written in term of the

own- and cross-characteristic elasticities of HNCL model as follows:

ENCL
k,xxx

⊺
j βββ

c =

xxx
⊺
jβββ

c

PNCL
st (k)

∫
Dst∈R

∫
vvvi∈RJ+1

PNCL
ist (k)
xxx
⊺
jβββ

c
EHNCL

k,xxx
⊺
j βββ

c
is
dF(vvvi)dF(Dst)p

where k = j and k = j′ for own- and cross-characteristic elasticities respectively.

Elasticity with respect to changes of the shelf position: Traditional models in marketing are

insensitive to changes in the product arrangements in the shelf. For example, when the effects

are fixed they affect the levels of the probability but elasticities are not modified as the position

changes. In the NCL model, a change in the shelf design can have multiple consequences to

product demand. To simplify these interactions and to lead to a better understanding of the

model’s workings we consider how the choice probability of product j varies when we change

the location of a competing product j′ assuming everything else remains constant, i.e. every
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other distance between products in the shelf remain unchanged. Furthermore, we look at the

effects under the HNCL model to simply our analysis.

EHNCL
Pj, f j j′

=
Pj∣ j j′Pj j′

PHNCL
j

(
1−α j, j j′

ρ
+( 1

ρ
−1)(α j, j j′Pj∣ j j′ +α j′, j j′Pj′∣ j j′ −1)−Pj j′ +α j, j j′P

HNCL
j +α j′, j j′P

HNCL
j′ )

+ ∑
k≠ j, j′

Pj∣ jkPjk

PHNCL
j

(−
α j, j j′

ρ
+( 1

ρ
−1)α j, j j′Pj∣ jk−Pj j′ +α j, j j′P

HNCL
j +α j′, j j′P

HNCL
j′ )

(17)

This elasticity can be decomposed in two effects, when j′ is moving away from j, the competi-

tion between them decreases. For the other case, which is reflected in the first term, as moving

away/closer means α j, j j′ and α j′, j j′ get smaller/bigger. The second effect is that competition

between j and other products in the shelf increase/decrease when j′ moves away/closer, as now

the perceived distance from j to the other products in the shelf is lower/higher.

Example To illustrate the effect of shelf position on elasticities, let us consider a setting similar

to the one presented in the illustrative example in figure 7. In this setting the shelf is represented

as a single row with three products. We fix two product with average value to consumers,

VIVA and DOMINICK’S located at -25 and +25 inches from the center of the single row

shelf. Additionally, we introduce a third product with either a high, medium, or low product

value to customers (DOMINICK’S, CORONET and BRAWNY marked in red, blue and green

respectively) and we call this latter product X . Here we analyze how the own-price-elasticity

of product X varies depending on its location on the shelf as shown in Figure 8. On the left, we

observe that the own price elasticity of X is closer to zero, more inelastic, when it is far from

other products and it is at its lowest, more elastic, when it is closest to both fixed products, in the

center of the shelf, signaling that competition effect dominates on the three cases. Interestingly,

we also observe that the effect on the price elasticities is stronger in the case of the medium

value product. When the product utility of product x is too low or too high compared to the fixed

products, the difference in price elasticity is (a) 0.3% (c) 1.3% respectively, but when the value

is comparable, the change in price elasticity is (b) 32.3%, in our example CORONET would
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really benefit from choosing a location far from VIVA and BOUNTY, while DOMINICK’S

and BRAWNY would not be affected much by changing locations in this linear shelf. We also

included the MNL implied elasticities in dotted lines, which are not affected by the position of

the product in the shelf.

A similar result is observed when we look at the cross-price elasticity on the right, where we

observe the positive effect on the cross-price elasticiy when moving x on the shelf. We can see

from Figure 8 that the effect is no longer symmetric because the cross–price elasticity is with

respect to the price of VIVA (the product on -25). In all three cases of the utility associated

with product X , we see the cross–price elasticity increases as it approaches Viva. For the case

of the high and medium utility product, as product X passes VIVA, the cross–price elasticity

declines. However, for the case of the low utility products X the cross price utility increases

highlighting the importance of shelf position on own and cross–price elasticities. The absolute

effect on DOMINICK’s with higher utility, is small, but for the medium and low utility products

CORONET and BRAWNY the effect is larger and Again the most affected product from this

movement is CORONET, with a utility similar to the fixed products VIVA and BOUNTY. The

ratio between the lowest and highest cross–price elasticities for CORONET is 31.5% and for

BRAWNY is 25.8%, which shows a significant variation.

Figure 8: Linear shelf that contains two fixed products VIVA and BOUNTY. Green, blue and red represent
Own and Cross price–elasticities for products (a) DOMINICK’S, (b) CORONET and (c) BRAWNY, with high,
medium and low utility products respectively. Solid line is computed using NCL model, while dotted line is
computed using MNL model.

In order to glean more insight from our example, we run a comparative statics with respect to

gamma, increasing its value, which is presented in Figure 9. It can be seen from the graph that

the own–elasticity is higher in the most price elastic position compared to the least. Similarly,

the cross–elasticity is higher in the most price elastic position compared to the least. Note when
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the utility of X is high, the increase in the price of VIVA has a stronger positive effect on the

demand of X on the left side of the origin compared to on the right as the competitiveness of

the VIVA located in the close proximity diminishes. On the other hand, if the utility of X is

low, the positive effect on the demand of X is weaker on the left side of the origin compared to

on the right. This observation is consistent with the fact that X with low utility is a competitive

product, hence its demand benefits from the visibility effect by being close to another attractive

product VIVA. Since the increasing price of VIVA affects is negative on the visibility of product

X , the overall demand of X responds less positively on the left of the origin compared to on the

right.

Figure 9: We repeat the same plot as Figure 8 increasing the value of γ . This is equivalent to rescaling the shelf
in Figure 7a horizontally. Solid line are high, medium and low utility products (a,b and c) and the dotted lines are
the corresponding MNL implied elasticities.

We can also compare the own– and cross–price elasticities of X according to the NCL model to

that of the MNL model (shows in dashed line in Figure 8 and Figure 9). The price–elasticities

are higher for NCL model compared to the MNL when X is closer to other products. This can

be understood as the dissimilarity parameter ρ < 1 for the NCL model indicates that products

are quite good substitute of each other. However when we increase the magnitude of γ by

50, we can see that when X is located far away from product L and R, it is less price–elastic

according to the NCL model compared to the MNL model, as X is getting compared less to

other products. Another interesting feature revealed is when X is a medium of high utility

product (as in the (a) and (b) cases in Figure 9), there is a finite position where the elasticities

are minimized. This is the optimal points where X is most visible but does not suffer too high

competition, hence it is less affect by price fluctuations.

Another interesting property of the NCL model is when the change in the shelf happens in
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a remote location, there are ripple effects in the demand of the unchanged products due to

variation in competition levels induced by the shelf. This is depicted in equation (18)

EHNCL
Pk, f j j′

= ( 1
ρ
−1)

α j, j j′Pj∣ jkPjkPk∣ jk

PHNCL
k

+( 1
ρ
−1)

α j′, j j′Pj′∣ j′kPj′kPk∣ j′k

PHNCL
k

−Pj j′+α j, j j′P
HNCL
j +α j′, j j′P

HNCL
j′ .

(18)

The corresponding elasticities for the NCL model can be obtained from the elasticities of

HNCL model as follows:

ENCL
k, f j j′

=
1

PNCL
st (k)

∫
Dst∈R

∫
vvvi∈RJ+1

PNCL
ist (k)EHNCL

k, f j j′
dF(vvvi)dF(Dst).

Where we may set k = j to obtain the heterogeneous counter-part of (17).

Increased Profits through Improved Shelf Design

Our research shows that a key aspect of shelf design is the possibility that location influences

the substitution rate between products. Therefore the decision of where to place each product

on the shelf in order to maximize profits depends upon: (1) the product’s intrinsic value driven

by its design, (2) extrinsic value drivers such as price, (3) the absolute quality of the shelf

location, as well as (4) the relative value of the shelf location based upon the position of all the

other products on the shelf. In previous sections we discuss the relative shelf position effects

on demand, albeit in a stylized manner. In this section we turn our attention to the impact shelf

design has on profit by employing our estimated model and the sales data from Dominick’s

Finer Foods.

We begin by evaluating the four shelf designs that were implemented in the micro-marketing

study. The first design organized products by quality and size by placing premium single rolls

on the top shelf (providing high visibility), multi-counts in the middle, and low price brands on

the bottom shelf. The second design organized shelves by placing low and mid price single rolls

on the top shelf, multi-packs in the middle, and premium on the bottom. The third design made
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price comparisons very difficult by vertically merchandising single rolls and multi-packs. The

last design and the study’s control group merchandised all sizes within brand blocks. Again,

these designs are illustrated in Figure 1.

Below in Figure 10 we present the expected profit per purchase associated with designs 1 to

4. The data give us product margins by week and store. We thus determine the expected profit

margin by multiplying the product margin times the probability of purchase average over weeks

and stores. As illustrated, designs 1 and 2 are determined to be more profitable than Design 3

and the control. The intuition for such a result lies with the designs of 1 and 2, which leverage

the benefit of placement of other nearby high value products. Design 3 is the worst shelf design,

because the relative shelf competition is reduced by making price comparisons very difficult

across quality and size and the visibility effect is reduced from product placement on the shelf.

!

Model NCLexp

Control 0.198009

Design 1 0.198711 (+0.35%)

Design 2 0.199283 (+0.64%)

Design 3 0.195310 (-1.36%)

New Design A 0.204635 (+3.35%)

Best random design 0.204895 (+3.48%)

Worst random design 0.191115 (-3.48%)

Average random design 0.197474 (-0.27%) (a) µ = 0.197474, σ = 0.001861.

Figure 10: The table shows the expected dollar amount of profit ($) per purchase of each design in the PTW
category. The plot (a) shows the expected dollar amount of profit ($) per item of 100,000 randomly generated
shelf designs according to the NCLexp model.

To see why this is the case, let us discuss the general design principle for the shelf with a

uniform attractiveness score ag = 0 ∀g for simplicity. Placing an average product j close to

highly desirable products will reduce its demand due to high competition, even though j may be

noticed more often. In other words, the competition effect dominates the visibility effect for an

average product j. Therefore, to increase the demand for an average product j it is advisable to

surround j with less desirable products. On the other hand, if product j is highly desirable, then
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its demand can increase by placing it closer to other attractive products. The reason is that more

competition from the neighbours will not reduce the demand of j significantly, as consumers

tend to choose j over its competitors, while j will benefit from the stronger visibility effect.

We illustrate these results in more detail below. Suppose that we have a simple 4×4 shelf with

display locations L = {1,2,3,4}2 and we have 4 possible types of products to consider. We

represent them via symbols to ease recognition as follows:

Type ▲: High utility, high profit Type △: High utility, low profit

Type ▼: Low utility, high profit Type ▽: Low utility, low profit

Typically, ▲ and △ represent the first and second tier national brand, respectively, while ▼

represents a premium store brand, and ▽ represents a generic brand. For simplicity, we shall

assume that any two different products that belong to the same type will have the same utility

and profitability.

If the retailer puts only Type▲ and Type▽ on the shelf, then maximizing the expected profit is

the same as maximizing the demand for Type▲ products. Therefore, the retailer should spread

the locations of each Type▲ product across the shelf to ensure the maximum possible distance

between each Type ▲ product and thus minimize the competition among them. To complete

the shelf design the retailer would fill the rest of the shelf with Type ▽ products. This would

give us Design 1 of Figure 11a. Meanwhile, starting from Design 2 of Figure 11a, for any Type

▲ product j located near other Type▲ products and any Type▽ product j∗ located near other

Type ▽ products, switching the location of j and j∗ will improve the demand not only for j

but also for other Type ▲ products in the former neighbourhood of j. Therefore, switching

the location of j and j∗ would increase the overall market share of Type ▲ products, which

increases the overall expected profit of the design. By repeatedly making profitable switches

like this, starting from Design 2 in Figure 11a, we will eventually obtain something similar to

Design 1 in Figure 11a.

On the other hand, if the retailer puts only Type △ and Type ▼ products on the shelf, then

we can maximize the expected profit by maximizing the demand for Type ▼ products. This

can be achieved by dividing the shelf into two zones, one to be filled with Type △ products
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and another to be filled with Type ▼ products, as shown in Design 2 of Figure 11b. By doing

this, most Type ▼ products will be reasonably far from Type △ products, with the exception

of those along the boundary. Suppose a Type ▼ product j is surrounded by Type △ products

and a Type △ product j∗ is surrounded by Type ▼ products; then we can also argue that

switching the location of j and j∗ will improve the demand not only for j but also for other

Type ▼ by lowering their competition level with the Type △ product, hence increasing the

overall expected profit of the design. By repeatedly making this profitable switches, starting

from Design 1 in Figure 11b we will eventually obtain something similar to Design 2 in Figure

11b.

Next, we expand our discussion to an alternative store shelf design leveraging the above knowl-

edge. Figure 12 suggests a negative correlation between profitability and utility in the paper

towel category. This shows that the paper towel category can be roughly considered as a set

of high utility and low profit products with low utility, high profit products. For example, in

Figure 12, product 10 and product 25 have similar utility, but product 25 is more profitable,

while product 1 has a much higher utility and profitability than product 16’s. Using Figure 12

in conjunction with the attractiveness score map of Figure 5, we develop an alternative design

that increases the expected profit, according to NCLexp model. This alternative design puts

high profit low utility products, such as products 14 and 25, in the center of the shelf where the

attractiveness is high. High utility and (relatively) high profit products, such as 1, 26, and 3,

are placed at the ends of the shelf to maximize the distance between each category. The rest of

the shelf is filled with low utility low profit products, such as products 10 and 15, as a buffer

between the center and ends of the shelf.

We refer to our new design for the NCLexp model as New Design A. Figure 10 shows the

expected profit per purchase associated with designs 1 to 3, the control, and our New Design A.

The NCLexp model predicts an improvement of +3.35% using New Design A compared to our

control design. These expected profit increases are on gross profit and quite substantial, given

that there is only a one-time cost of rearranging items on the shelf. In order to put this new

design into perspective, we compare it to 100,000 randomly generated shelf designs based on

39



▲▽ ▽▲

▽▲▽▲

▲▽ ▽▲

▽▲▽▲

▲

▲

▲

▲ ▲

▲

▲

▲ ▽

▽

▽

▽

▽

▽

▽

▽

>

Design 1 Design 2

(a) Design 1 has a 3.44% higher expected profit than Design 2. Although the visibility of the focal product
(∑ j′ Pj j′ ) is lower in Design 1, the focal product’s market share is greater in Design 1, due to lower competition
level.
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(b) Design 2 has a 8.49% higher expected profit. Although the visibility of the focal product (∑ j′ Pj j′ ) is lower in
Design 1, the focal product’s market share is greater in Design 1, due to the lower competition.
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(c) Design 1 has a 2.06% higher expected profit. The competition effect does not affect a highly desirable ★
product strongly; hence, its market share is greater in Design 2, as its visibility (∑ j′ Pj j′ ) is greater in Design 2
being surrounded by desirable products ▲ compared to that in Design 1.

Figure 11: Numerical demonstration of NCL model recommendations.

100,000 random permutations of products from the control design. Figure 10 shows how the

expected profits per purchase of randomly generated designs are distributed. We can see that

the expected dollar amount of profit per purchase of our New Design A is about 3.8σ higher

than in the average random design, according to the NCLexp model. We further note that the

profit per purchase of our New Design A is +7.07% larger than the respective worst random

design, according to NCLexp, which highlights the importance of choosing a better shelf design.

40



Figure 12: Plot of utility vs. profit for the 26 products in the Paper Towel Category.

Application to a Virtual Store

It is interesting to see if the findings can be generalized to the digital world. We conduct a lab

experiment to collect choice data from digital shelves. In this setting our “shelf” is a computer

screen in which the products are organized as either a list or a grid. We create an experiment

in which participants look at different product arrangement and make choices. The number of

products ranges from 9 to 12. We tested the model for 6 different categories, with different

degrees of brand loyalty, according to a pretest study.

We hypothesize that the same effect can take place in the digital world. In a screen display,

products still need to be shown to consumers in a specific order, and in some cases, such as

at Amazon or Walmart, the number of products can be much larger than in a physical store,

making this effect potentially even more prominent.

NCLexp† MNL† NCLinv† NCLad j† NCLinv MNL NCLad j NCLexp

CB list 8.58% 0.00% 8.36% 9.89% 41.04% 48.48% 36.61% 51.22%
CB grid 0.00% 4.38% 3.17% 1.80% 57.37% 68.02% 60.87% 70.30%
SD list 4.10% 0.00% 3.17% 4.37% 42.01% 38.13% 45.94% 41.30%
SD grid 5.94% 0.00% 6.24% 7.01% 80.43% 88.30% 63.32% 76.98%
CH list 0.00% 0.78% 3.59% 0.53% 28.01% 31.04% 27.71% 26.04%
CH grid 2.54% 1.16% 0.00% 3.39% 27.99% 27.44% 27.76% 29.51%
CK list 0.00% 3.80% 0.79% 4.53% 46.15% 49.10% 50.39% 46.18%
CK grid 0.00% 0.00% 0.00% 0.00% 14.94% 1.30% 3.58% 3.85%
CL list 1.71% 0.00% 0.78% 0.00% 34.56% 40.60% 39.40% 42.61%
CL grid 1.11% 0.00% 1.45% 0.97% 71.90% 72.53% 75.22% 72.60%
DT list 0.11% 0.00% 1.72% 0.27% 46.20% 53.56% 36.77% 56.80%
DT grid 0.00% 0.53% 0.87% 2.99% 79.48% 86.90% 89.82% 81.77%

Table 5: RMSE relative to the best model in testing data
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We used the two most common types of product arrangements used in online retailing: a list of

products (either in a column or a row) and a matrix with 9 to 12 products shown simultaneously.

We did not include displays that spanned for multiple screens, so participants did not need

to scroll down, to avoid other considerations in the experiment. This setting challenges the

findings, because the number of products is small, and consumer do not need to walk or scroll

to other pages. We hypothesize that the effect should be even stronger when consumers can

see only a subset of products at a time or the assortment includes more products. The model

predictive performance can be seen in Table 5.

We tested the categories Candy Bar (CB), Soft Drinks (SD), Cheese (CH), Cookies (CK),

Detergent (DT), and an additional experiment with colors, to avoid brand loyalty and other

effects. Here we can observe that the NCL model has a good performance, even in the low

product number and all products in a single screen. This result supports our argument that

relative shelf position affects consumer choices. When products are organized in a list, we can

still find shelf effects, but the effect looks stronger when products are organized in matrix form.

Conclusion and Managerial Implications

In this paper, we introduce the NCL model to capture the influence of shelf position on de-

mand. Specifically, we introduce both absolute and relative shelf position effects. Absolute

effects refer to good shelf locations such as eye-level positions that improve the attractiveness

of any product in that position. Relative effects refer to the competitive effects of products

nearby on the shelf and depend upon the relative attractiveness of the focal product versus the

attractiveness of its neighbors.

We show that this NCL model fits better than traditional choice models. Moreover, it can be

used to predict improvements in sales and profitability from improved shelf design. This model

is parsimonious and offers meaningful parameters. When we fit the model to real purchases,

the parameter ρ is significantly different from 1. This suggests that the effect of the shelf on

demand is strong and that without the NCL’s spatial component of shelf competition, there is
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a significant bias in the price sensitivity. Biased price sensitivity can lead to poor decisions by

retailers and manufacturers about pricing and shelving. In our data, we show that this price

sensitivity parameter has a bias of around 20% for the paper towel category. The parameter γ

measures the importance of distance between products through the allocation parameter α; it

is also significant with the right sign, meaning that the separation plays a role in the product

competition.

Relative effects may be positive or negative depending upon two effects: competition and vis-

ibility. When products are located near each other, intuitively, they are compared more often,

thus intensifying the competition between them, which can have a negative effect on demand.

Yet, being compared more often may increase a product’s visibility, which has a positive effect

on product demand. Depending upon the relative attractiveness of the product, the combination

of these two effects may be positive or negative. In particular, when a product yields high utility

to consumers, the visibility effect dominates the competition effect. This implies that products

with high value for consumers should be placed in prominent locations in shelves, and neigh-

bor other highly attractive products. Analogously, products with low utility will prefer being

placed in a neighborhood with other low utility products. Interestingly, in our data, products

with intermediate value for customers are the most sensitive to changes in location and their

price elasticities can change up 30% from the worse location to the best.

Consequently, spreading out the locations of high utility and highly profitable products through-

out the shelf will likely yield higher expected profit. The expected profit can be enhanced fur-

ther by the visibility effect if it is possible to surround the location of each high utility profitable

product with other products that have above average utility but are not as profitable. Conversely,

the expected profit can also be increased by placing low utility but highly profitable products

with other low utility products. We evaluate these recommendations by creating a new shelf

design and using our fitted model. This analysis shows that an improvement of 3.35% can be

achieved by choosing a different shelf design that considers competition and visibility effects.

This research offers insight into how products compete spatially and how these spatial effects

in turn can moderate or enhance competition. We show that this spatial aspect is relevant
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and important to understand as a separate effect from a location’s attractiveness and product

assortment. The model is applicable beyond a physical context and could be used for web

design or virtual store design. For instance, on a screen display, products still need to be shown

to consumers in a specific order, and in some cases, such as at Amazon or Walmart, the number

of products can be much larger than in a physical store, making the spatial aspect potentially

even more prominent.

We point out limitations of our research. We do not observe the consideration sets nor indi-

vidual level behavior; therefore, we cannot observe competitive and visibility effects directly.

Moreover, our experiments pertain to one retailer, and we cannot guarantee that our empirical

findings will generalize to other cases. The distance functions that we chose are not exhaustive,

and perhaps alternative ways of differentiating vertical and horizontal spacing could be consid-

ered. In our application, the product assortments are the same across stores, but if assortments

vary, then they require different shelf designs. Therefore, product shelf and assortment could be

jointly optimized. Finally, the neighborhood of products represents a challenging question due

to the intrinsic combinatorial aspect of permutation that arises from testing every configuration.

Each of these limitations provides new directions for future investigation.
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T. Bianchi-Aguiar, E. Silva, L. Guimarães, M. A. Carravilla, and J. F. Oliveira. Allocating

products on shelves under merchandising rules: Multi-level product families with display

directions. Omega, 76:47–62, 2018.

E. T. Bradlow, B. Bronnenberg, G. J. Russell, N. Arora, D. R. Bell, S. D. Duvvuri, F. ter Hof-

stede, C. Sismeiro, R. Thomadsen, and S. Yang. Spatial models in marketing. Marketing

Letters, 16:3/4:267–278, 2005.

T. F. Bresnahan, S. Stern, and M. Trajtenberg. Market segmentation and the sources of rents

from innovation: Personal computers in the late 1980’s. Technical report, National Bureau

of Economic Research, 1996.

R. E. Bucklin and C. Sismeiro. A model of web site browsing behavior estimated on clickstream

data. Journal of Marketing Research, 40(3):249–267, 2003.

A. Bultez and P. Naert. Sh. arp: Shelf allocation for retailers’ profit. Marketing Science, 7(3):

211–231, 1988.

P. Chandon, J. W. Hutchinson, E. T. Bradlow, and S. H. Young. Does in-store marketing work?

effects of the number and position of shelf facings on brand attention and evaluation at the

point of purchase. Journal of Marketing, 73(6):1–17, 2009.

M. Chen, R. R. Burke, S. K. Hui, and A. Leykin. Understanding lateral and vertical biases

in consumer attention: an in-store ambulatory eye-tracking study. Journal of Marketing

Research, 58(6):1120–1141, 2021.

C. Chu. A paired combinatorial logit model for travel demand analysis. In Proceedings of the

5th World Conference on Transportation Research, 1989, volume 4, pages 295–309, 1989.

45



M. Corstjens and P. Doyle. A model for optimizing retail space allocations. Management

Science, 27(7), 1981.

M. Corstjens and P. Doyle. A dynamic model for strategically allocating retail space. Journal

of the Operational Research Society, 34(10):943–951, 1983.

K. K. Cox. The effect of shelf space upon sales of branded products. Journal of Marketing

Research, 7(1):55–58, 1970.

N. Cressie. Statistics for spatial data. John Wiley & Sons, 2015.

A. Daly and Z. S. Improved multiple choice models. In Proceedings of the Fourth PTRC

Summer Annual Meeting. University of Warwick, England, 1976.

J. P. Dotson, J. R. Howell, J. D. Brazell, T. Otter, P. J. Lenk, S. MacEachern, and G. M. Allenby.

A probit model with structured covariance for similarity effects and source of volume

calculations. Journal of Marketing Research, 55 (February):35–47, 2018.

X. Dreze, S. J. Hoch, and M. E. Purk. Shelf management and space elasticity. Journal of

Retailing, 70(4):301–326, 1994.

H. Hwang, B. Choi, and M.-J. Lee. A model for shelf space allocation and inventory con-

trol considering location and inventory level effects on demand. International Journal of

Production Economics, 97(2):185–195, 2005.

F. S. Koppelman and C.-H. Wen. The paired combinatorial logit model: properties, estimation

and application. Transportation Research Part B: Methodological, 34(2), 2000.

R. Luce and P. Suppes. Utility, preference and subjective probability. Handbook of Mathemat-

ical Psychology, 3:249–410, 1965.

D. McFadden. Conditional logit analysis of qualitative choice behavior. Institute of Urban and

Regional Development, 1973.

D. McFadden. Modeling the choice of residential location. Transportation Research Record,

1978.

D. McFadden. Econometric models of probabilistic choice. Structural analysis of discrete data

with econometric applications, 198272, 1981.

46



M. McGranaghan, J. Liaukonyte, G. Fisher, and K. C. Wilbur. Lead offer spillovers. Marketing

Science, 38(4):643–668, 2019.

H. Pauli and R. W. Hoecker. Better Utilization of Selling Space in Food Stores: Part I, Rela-

tion of Size of Shelf Display to Sales of Canned Fruits and Vegetables, volume 30. US

Department of Agriculture, Production and Marketing Administration, 1952.

S. Peltzman. Prices rise faster than they fall. Journal of Political Economy, 108(3), 2000.

M. Rabbani, N. Salmanzadeh-Meydani, A. Farshbaf-Geranmayeh, and V. Fadakar-Gabalou.

Profit maximizing through 3d shelf space allocation of 2d display orientation items with

variable heights of the shelves. Opsearch, 55(2):337–360, 2018.

R. P. Rooderkerk, H. J. Van Heerde, and T. H. Bijmolt. Incorporating context effects into a

choice model. Journal of Marketing Research, 48 (August):767–780, 2011.

I. Salomon and M. Ben-Akiva. The use of the life-style concept in travel demand models.

Environment and Planning A, 15(5):623–638, 1983.

S. Sayman, S. J. Hoch, and J. S. Raju. Positioning of store brands. Marketing science, 21(4):

378–397, 2002.

A. Scekic, S. Atalay, C. Liu Yang, and P. Ebbes. Product search in retail environments: In-

fluence of vertical product location on search performance. ACR European Advances,

2018.

I. N. Sener, R. M. Pendyala, and C. R. Bhat. Accommodating spatial correlation across choice

alternatives in discrete choice models: an application to modeling residential location

choice behavior. Journal of Transport Geography, 19(2):294–303, 2011.

K. A. Small. A discrete choice model for ordered alternatives. Econometrica: Journal of the

Econometric Society, pages 409–424, 1987.

D. Smirnov and A. Huchzermeier. Shelf-space management under stockout-based substitution

and merchandising constraints. Available at SSRN 3413256, 2019.

J. Swait. Choice set generation within the generalized extreme value family of discrete choice

models. Transportation Research Part B: Methodological, 35(7):643–666, 2001.

47



P. Vovsha. Application of cross-nested logit model to mode choice in tel aviv, israel, metropoli-

tan area. Transportation Research Record, 1607(1):6–15, 1997.

M. Wedel and R. Pieters. A review of eye-tracking research in marketing. Review of Marketing

Research, 4(2008):123–147, 2008.

C.-H. Wen and F. S. Koppelman. The generalized nested logit model. Transportation Research

Part B, 35(7), 2001.

H. C. Williams. On the formation of travel demand models and economic evaluation measures

of user benefit. Environment and Planning A, 9(3):285–344, 1977.

A Appendix

A.1 Calculation of correlation using NCL

To compute the induced correlation for a pair of products i and j, from the NCL model we

calculate a numerical covariance by numerical integration of their bi-variate density function.

First, using the fact that the error term is distributed Gumble, we can construct the bi-variate

marginal CDF for two products18, shown in equation A.1

H(εi,ε j) = exp{−(1−αi,i j)e−εi − (1−α j,i j)e−ε j −((αi,i je
−εi)

1
ρ + (α j,i je

−ε j)1/ρ)} (A.1)

The marginal probability density function associated with the CDF in equation A.1 can be

written as: f (εi,ε j) = H(εi,ε j)[Bi jCi j+Di j]. Where:

Ai j = (αi,i je
−εi)

1
ρ + (α j,i je

−ε j)1/ρ

Bi j = (1−αi,i j)e−εi +A
ρ−1
i j (αi,i je

−εi)
1
ρ

Ci j = (1−α j,i j)e−ε j +A
ρ−1
i j (α j,i je

−ε j)
1
ρ

Di j = (1−ρ

ρ
)A

ρ−2
i j (α j,i je

−ε j)
1
ρ (αi,i je

−εi)
1
ρ

18To simplify the exposition, the only random component in the utility is the Gumble term, and the rest of the
utility is equal.
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