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1 Numerical Simulation

In order to determine how well our estimator performs in small samples, we run several
simulations that vary the number of products, the number of markets, the number of time
periods and whether the data generating process originated from a type 1 extreme value
distribution or a GEV distribution or a finite mixture model.

1.1 Logit Model

We first discuss the data generating process associated with the logit model. The consumer’s
flow utility function follows the specification in §2.1. When consumer i purchases product j
in period t, he receives the following flow utility in period t,

uijt = f(xjt, ξjt)− αpjt + εijt ≡ f(xjt, ξjt)− 0.5pjt + εijt,

and receives f(xjt, ξjt) as flow utility in each period post purchase in period t. In the
simulation we let

f(xjt, ξjt) = x′jtγ + δj + ξjt = x′jt0 + 0.75 + ξjt,

for any product j. So α = 0.5, γ = 0 and δj = 0.75 for any product j. Products in the
simulation are differentiated by the observed price, pjt, and unobserved characteristics, ξjt.
The discount factor β is set to 0.80. We maintain the independence and logit specification
about εijt, i.e. Assumption 3.
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We next describe the data generation process of price and the unobserved product char-
acteristics. We specifically account for correlation between ξjt and pjt. Such a formulation
is motivated by the price endogeneity problem researchers face when employing aggregate
data, where firms can observe ξjt and then set prices optimally. We use a reduced form price
model to characterize this dependence. Specifically,

pjt = cj +MCjt + ωjt and ξjt = φjξj,t−1 + νjt,

where (ωjt, νjt)
′ is iid across products and time periods, and follows a normal distribution,(

ωjt

νjt

)
∼ N

(
0,

(
σ2
p ρσνσp

σ2
ν

))
.

HereMCjt denotes the marginal cost of product j at time t. MCjt is independent of (ωjt̃, νjt̃)′

for any period t and t̃. Specifically, MCjt takes the form

MCjt = ψjMCj,t−1

We will use MCjt as the instrumental variable in both estimation steps 1 and 2 outlined in
§4.1.

In our simulations the maximum number of products is 5, and we assign the following
parameter values. We let (c1, . . . , c5) = (1, 2.5, 3.5, 4.5, 5.5) and (ψ1, . . . , ψ5) = (0.98, 0.92,

0.88, 0.84, 0.80). For the initial state ofMCj0, we let (MC10, . . . ,MC50) = (15, 14.5, 14, 13.5, 13).
Such specification ensures that product marginal cost, MCjt, has a declining trajectory,
which is consistent with durable goods models.

In addition, we let φj = 0.25 for any product j.1 Let σp = 0.5, ρ = 0.25, and σν = 0.1.
Since ξjt is a stationary AR(1) process, it is easy to see that σ2 = Var(ξjt) = 0.12/(1−0.252),
that is σ ≈ 0.1033. Moreover, corr(ξjt, pjt) = ρ by serial independence of both ωjt and νjt.

In Fig. 1, we present prices and the outside option’s market share in order to illustrate
that the data generation process (DGP) is consistent with a durable goods setting. Note the
declining prices and decreasing market share of the outside option in Fig. 1.

Suppose for J products and one market we have simulated panel data (st, pt,MCt, ξt) for
T periods. We first estimate α with an instrumental variable regression. We use the marginal
cost variable above as a price instrument. Given the estimates of α we have estimates of yt

1We also performed simulations when ξjt has no serial correlation, i.e. φj = 0. Results are available upon
request.
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Figure 1: Monte Carlo Prices and Outside Market Share (J = 5)

and wt. We then estimate β using two stage least squares as discussed in §5.1.2, using the
demeaned price instrument as the instrument. Once β is estimated, we can estimate γ by
multiplying the estimate of γ̃ with 1−β̂, if we included other observed product characteristics
to estimate. Yet, since the DGP only consists of a constant term, we estimate the constant
using step 3 in section 5.1.3. The estimation of Var(ξjt) follows the steps in the previous
section. We also estimate E(ξjt | pjt) using step 4 in §5.2.1 to recover ρ and σ.

Each set of simulations we analyze was based on 250 replications. We also analyze sets
with varying number of markets (1 and 10), time periods (150, or 300) and the number of
J .

The first set of simulations in Table 1 and 2 illustrate how well and precise our method-
ology is able to identify the data generating process—including the discount factor. Fur-
thermore, if the discount factor is known (or assumed), the results exhibit less small sample
bias and more precision, particularly for the parameters that include the discount factor in
estimation, γ, σ, ρ, and φ. Specifically, we determine that estimation of ρ is quite challenging
in practice and requires a sizeable amount of data and products to precisely estimate when
the discount factor is estimated. This again is from the fact that

g3jt(θ) = zρ,j,t(pjt)rjt

rjt = (1− β)(yj,t + βwj,t+1)− (1− β)δj − ρ̃j(p̃j,t − βp̃j,t+1)
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Table 1: Monte Carlo Simulation Results: 10 Markets and 150 Periods

DGP: 10 Markets, T = 150

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7323 (0.0083) -0.5003 (0.0075) 0.0963 (0.0063) 0.1405 (0.0637) 0.2609 (0.0686) 0.8153 (0.0116)
J = 3 0.7381 (0.0082) -0.5003 (0.0075) 0.0941 (0.0088) 0.1199 (0.0655) 0.2538 (0.0480) 0.8192 (0.0161)
J = 4 0.7431 (0.0088) -0.5002 (0.0077) 0.0911 (0.0102) 0.1403 (0.0600) 0.2473 (0.0435) 0.8253 (0.0190)
J = 5 0.7463 (0.0109) -0.5001 (0.0074) 0.0913 (0.0121) 0.1736 (0.0582) 0.2422 (0.0436) 0.8257 (0.0222)

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7391 (0.0093) -0.5003 (0.0075) 0.1053 (0.0025) 0.2086 (0.0692) 0.2555 (0.0684) –
J = 3 0.7399 (0.0089) -0.5003 (0.0075) 0.1050 (0.0017) 0.1902 (0.0560) 0.2496 (0.0472) –
J = 4 0.7411 (0.0089) -0.5002 (0.0077) 0.1054 (0.0017) 0.2126 (0.0490) 0.2426 (0.0424) –
J = 5 0.7417 (0.0098) -0.5001 (0.0084) 0.1057 (0.0015) 0.2318 (0.0428) 0.2381 (0.0425) –
Mean and standard deviation for 250 simulations.

Table 2: Monte Carlo Simulation Results: 10 Markets and 300 Periods

DGP: 10 Markets, T = 300

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7494 (0.0058) -0.5003 (0.0074) 0.1065 (0.0062) 0.2171 (0.0408) 0.2360 (0.0313) 0.7972 (0.0116)
J = 3 0.7457 (0.0086) -0.5003 (0.0076) 0.1041 (0.0080) 0.2382 (0.0371) 0.2388 (0.0289) 0.8028 (0.0145)
J = 4 0.7473 (0.0114) -0.5002 (0.0079) 0.1018 (0.0090) 0.2546 (0.0321) 0.2363 (0.0359) 0.8078 (0.0168)
J = 5 0.7483 (0.0134) -0.5001 (0.0087) 0.1015 (0.0096) 0.2664 (0.0333) 0.2345 (0.0440) 0.8087 (0.0176)

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7496 (0.0057) -0.5003 (0.0074) 0.1050 (0.0018) 0.2091 (0.0514) 0.2365 (0.0318) –
J = 3 0.7451 (0.0062) -0.5003 (0.0076) 0.1057 (0.0014) 0.2438 (0.0392) 0.2383 (0.0285) –
J = 4 0.7443 (0.0070) -0.5002 (0.0079) 0.1061 (0.0013) 0.2653 (0.0340) 0.2354 (0.0354) –
J = 5 0.7443 (0.0083) -0.5001 (0.0087) 0.1064 (0.0013) 0.2661 (0.0318) 0.2337 (0.0436) –
Mean and standard deviation for 250 simulations.

is impacted by the discount factor. Thus, any bias associated with the discount factor will
propagates through and into the estimation of the correlation parameter. Lastly, as is the
case in much of the static choice literature where the variance covariance matrix is estimated,
it is known that sizeable amounts of data are required to precisely estimate the parameter.
This is made more clear with our second set of simulations which increases the time duration
to 300 periods from 150. This increase doubles the amount of data and provides improvement
in the estimation of ρ and the discount factor.

Finally, Table 3 and 4 present the analysis where only 1 market is employed and T equals
150 or 300 periods. The results are similar to the set of simulations which employ 10 markets,
but with less precision—most notably for ρ and φ.
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Table 3: Monte Carlo Simulation Results: 1 Market and 150 Periods

DGP: 1 Market, T = 150

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7339 (0.0265) -0.5041 (0.0249) 0.0990 (0.0402) 0.1462 (0.2087) 0.2471 (0.1975) 0.8167 (0.0386)
J = 3 0.7419 (0.0247) -0.5048 (0.0234) 0.0971 (0.0314) 0.1301 (0.2272) 0.2380 (0.1293) 0.8190 (0.0503)
J = 4 0.7447 (0.0264) -0.5040 (0.0233) 0.0922 (0.0607) 0.1374 (0.1906) 0.2273 (0.1181) 0.8260 (0.0607)
J = 5 0.7487 (0.0331) -0.5034 (0.0250) 0.0893 (0.0369) 0.1678 (0.1825) 0.2220 (0.1246) 0.8324 (0.0684)

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7439 (0.0300) -0.5041 (0.0249) 0.1075 (0.0091) 0.2211 (0.2205) 0.2407 (0.1951) –
J = 3 0.7462 (0.0273) -0.5084 (0.0234) 0.1077 (0.0143) 0.2088 (0.1964) 0.2364 (0.1304) –
J = 4 0.7456 (0.0268) -0.5040 (0.0233) 0.1069 (0.0068) 0.2178 (0.1774) 0.2227 (0.1154) –
J = 5 0.7462 (0.0290) -0.5034 (0.0250) 0.1078 (0.0147) 0.2464 (0.1597) 0.2168 (0.1205) –
Mean and standard deviation for 250 simulations.

Table 4: Monte Carlo Simulation Results: 1 Market and 300 Periods

DGP: 1 Market, T = 300

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7510 (0.0197) -0.5041 (0.0248) 0.1083 (0.0293) 0.2265 (0.1653) 0.2256 (0.0966) 0.7994 (0.0344)
J = 3 0.7486 (0.0267) -0.5048 (0.0238) 0.1047 (0.0246) 0.2424 (0.1462) 0.2354 (0.0960) 0.8040 (0.0449)
J = 4 0.7503 (0.0337) -0.5041 (0.0239) 0.1008 (0.0276) 0.2543 (0.1084) 0.2381 (0.1094) 0.8109 (0.0512)
J = 5 0.7515 (0.0416) -0.5035 (0.0259) 0.1011 (0.0317) 0.2697 (0.0984) 0.2412 (0.1322) 0.8111 (0.0578)

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7527 (0.0191) -0.5041 (0.0248) 0.1069 (0.0098) 0.2209 (0.1841) 0.2250 (0.0964) –
J = 3 0.7490 (0.0206) -0.5048 (0.0238) 0.1069 (0.0050) 0.2566 (0.1335) 0.2350 (0.0951) –
J = 4 0.7477 (0.0223) -0.5041 (0.0239) 0.1070 (0.0040) 0.2705 (0.1097) 0.2364 (0.1068) –
J = 5 0.7483 (0.0253) -0.5035 (0.0259) 0.1071 (0.0036) 0.2828 (0.0927) 0.2400 (0.1303) –
Mean and standard deviation for 250 simulations.
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Table 5: Nested Logit Monte Carlo Simulation Results: 10 Markets and 150 Periods

DGP: 10 Markets, T = 150

δ = 0.75 α = −0.5 ζ = 0.8 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 3 0.7339 (0.0352) -0.5018 (0.0274) 0.7920 (0.1021) 0.0954 (0.0215) 0.1358 (0.0967) 0.2326 (0.0567) 0.8176 (0.0319)
J = 4 0.7367 (0.0381) -0.5015 (0.0266) 0.7967 (0.0674) 0.0917 (0.0183) 0.1503 (0.1086) 0.2447 (0.0516) 0.8245 (0.0288)
J = 5 0.7405 (0.0243) -0.5005 (0.0156) 0.8005 (0.0432) 0.0902 (0.0135) 0.1730 (0.0899) 0.2411 (0.0439) 0.8261 (0.0262)

δ = 0.75 α = −0.5 ζ = 0.8 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 3 0.7416 (0.0387) -0.5018 (0.0274) 0.7920 (0.1021) 0.1039 (0.0057) 0.2029 (0.1625) 0.2261 (0.0527) –
J = 4 0.7415 (0.0403) -0.5015 (0.0266) 0.7967 (0.0674) 0.1041 (0.0051) 0.2186 (0.1476) 0.2384 (0.0477) –
J = 5 0.7401 (0.0263) -0.5005 (0.0156) 0.8005 (0.0431) 0.1038 (0.0036) 0.2327 (0.0810) 0.2412 (0.0423) –
Mean and standard deviation for 250 simulations.

Table 6: Nested Logit Monte Carlo Simulation Results: 10 Markets and 300 Periods

DGP: 10 Markets, T = 300

δ = 0.75 α = −0.5 ζ = 0.8 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 3 0.7449 (0.0192) -0.5008 (0.0156) 0.7974 (0.0426) 0.1024 (0.0115) 0.2390 (0.0515) 0.2300 (0.0415) 0.8019 (0.0204)
J = 4 0.7435 (0.0351) -0.5003 (0.0241) 0.7991 (0.0477) 0.1011 (0.0151) 0.2507 (0.0769) 0.2386 (0.0322) 0.8058 (0.0247)
J = 5 0.7460 (0.0284) -0.5003 (0.0197) 0.7998 (0.0442) 0.1002 (0.0112) 0.2609 (0.0773) 0.2420 (0.0298) 0.8071 (0.0223)

δ = 0.75 α = −0.5 ζ = 0.8 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 3 0.7455 (0.0157) -0.5008 (0.0156) 0.7974 (0.0426) 0.1032 (0.0024) 0.2461 (0.0886) 0.2288 (0.0441) –
J = 4 0.7440 (0.0238) -0.5003 (0.0241) 0.7991 (0.0477) 0.1039 (0.0037) 0.2584 (0.0978) 0.2378 (0.0327) –
J = 5 0.7437 (0.0273) -0.5003 (0.0197) 0.7998 (0.0442) 0.1040 (0.0039) 0.2697 (0.0764) 0.2413 (0.0292) –
Mean and standard deviation for 250 simulations.

1.2 Nested Logit Model

Next, we present the result of several Monte Carlo simulations with a nested logit data
generating process. Particularly, we analyze the case where there of 3-5 products with
product one relegated to one nest and all other products to a second nest. The within
nested correlation for product one is normalized to 1 with the second nest taking the value
of 0.80. The remaining data generating processes follows exactly as above in the simply MNL
case.

We present the same variation of simulations as in the Logit case. The tables below
illustrate that our estimator is able to precisely estimate the model primitives associated
with the nested logit model. Finally, the presence of multimarkets aids in the recovery of
model parameters.

1.3 Heterogeneous Logit Model

Lastly, we present the result of several Monte Carlo simulations where the DGP includes
consumer heterogeneity in price, but we estimate a multinomial logit model. Doing so
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Table 7: Nested Logit Monte Carlo Simulation Results: 1 Markets and 150 Periods

DGP: 1 Market, T = 150

δ = 0.75 α = −0.5 ζ = 0.8 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 3 1.0176 (4.7648) -0.5113 (0.0926) 0.7635 (0.3300) 0.3646 (3.4888) 0.2148 (0.3081) 0.2253 (0.1907) 1.0357 (3.7963)
J = 4 0.6528 (0.5058) -0.5057 (0.0838) 0.7943 (0.2161) 0.1424 (0.2823) 0.1982 (0.2974) 0.2718 (0.1648) 0.7696 (0.3559)
J = 5 0.7338 (0.1032) -0.5020 (0.0533) 0.8038 (0.1406) 0.1011 (0.0577) 0.1907 (0.2524) 0.2700 (0.1343) 0.8133 (0.1044)

δ = 0.75 α = −0.5 ζ = 0.8 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 3 0.7561 (0.1276) -0.5113 (0.0926) 0.7635 (0.3300) 0.1113 (0.0247) 0.2533 (0.4121) 0.2134 (0.1427) –
J = 4 0.7469 (0.1241) -0.5057 (0.0838) 0.7943 (0.2161) 0.1117 (0.0219) 0.2374 (0.3609) 0.2576 (0.1211) –
J = 5 0.7420 (0.0852) -0.5020 (0.0533) 0.8038 (0.1406) 0.1089 (0.0150) 0.2416 (0.2417) 0.2694 (0.1220) –
Mean and standard deviation for 250 simulations.

Table 8: Nested Logit Monte Carlo Simulation Results: 1 Markets and 300 Periods

DGP: 1 Market, T = 300

δ = 0.75 α = −0.5 ζ = 0.8 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 3 0.7393 (0.0703) -0.5073 (0.0523) 0.7828 (0.1284) 0.1092 (0.0437) 0.2667 (0.2042) 0.2199 (0.1165) 0.7931 (0.0751)
J = 4 0.7200 (0.1497) -0.5038 (0.0803) 0.7933 (0.1558) 0.1170 (0.0700) 0.2545 (0.2325) 0.2460 (0.1100) 0.7917 (0.1058)
J = 5 0.7410 (0.1155) -0.5023 (0.0666) 0.8030 (0.1465) 0.1129 (0.0495) 0.2542 (0.2112) 0.3188 (0.1143) 0.7976 (0.0827)

δ = 0.75 α = −0.5 ζ = 0.8 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 3 0.7526 (0.0510) -0.5073 (0.0523) 0.7828 (0.1284) 0.1050 (0.0083) 0.2475 (0.2563) 0.2227 (0.1171) –
J = 4 0.7481 (0.0927) -0.5038 (0.0803) 0.7933 (0.1558) 0.1108 (0.0168) 0.2481 (0.2835) 0.2757 (0.1040) –
J = 5 0.7456 (0.0913) -0.5023 (0.0666) 0.8030 (0.1456) 0.1122 (0.0177) 0.2612 (0.2126) 0.3180 (0.1091) –
Mean and standard deviation for 250 simulations.

allows us to determine how model primitives are impacted from this model misspecification.
These sets of Monte Carlo studies differ from the above in that the number of simulations
run is 100 vs 250 and the number of markets is equal to 1. This change is due to the
computational complexity and the time it takes to generate the data. That said, the process
does follow the above multinomial logit data generating process with the exception that
there are three different consumer types rather than one. The three consumers have price
preference parameters equal to α1 = −0.4, α2 = −0.5, α3 = −0.6. The initial weights
for each of these consumers in period 0 takes four different parameterizations in order to
capture varying degrees of consumer heterogeneity, with case (1) the most heterogeneous
and (4) being no heterogeneity.

(1) ω1,0 = 0.33, ω2,0 = 0.34, ω3,0 = 0.33

(2) ω1,0 = 0.20, ω2,0 = 0.60, ω3,0 = 0.20

(3) ω1,0 = 0.10, ω2,0 = 0.80, ω3,0 = 0.10

(4) ω1,0 = 0.00, ω2,0 = 1.00, ω3,0 = 0.00

Below we present four different tables, one for each of the above cases along with varying
the number of product from 2 to 5. Within each table, we present the results for all the
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Table 9: Heterogeneous Monte Carlo Simulation Results Case (1): 1 Market and 300 Periods

DGP: 1 Market, T = 300

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7375 (0.0176) -0.5573 (0.0278) 0.0850 (0.0149) 0.2482 (0.2398) 0.1741 (0.0838 0.8344 (0.0291)
J = 3 0.7402 (0.0200) -0.5604 (0.0255) 0.0794 (0.0205) 0.2890 (0.1878) 0.1425 (0.0907) 0.8459 (0.0389)
J = 4 0.7449 (0.0233) -0.5602 (0.0245) 0.0727 (0.0214) 0.2277 (0.2052) 0.0936 (0.0971) 0.8592 (0.0411)
J = 5 0.7462 (0.0290) -0.5583 (0.0273) 0.0715 (0.0232) 0.2710 (0.1674) 0.0496 (0.1135) 0.8619 (0.0439)

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7423 (0.0213) -0.5573 (0.0278) 0.1028 (0.0050) 0.3534 (0.1845) 0.1681 (0.0822) –
J = 3 0.7342 (0.0211) -0.5604 (0.0255) 0.1029 (0.0033) 0.3670 (0.1976) 0.1327 (0.0870) –
J = 4 0.7290 (0.0223) -0.5602 (0.0245) 0.1033 (0.0025) 0.3715 (0.2036) 0.0828 (0.0905) –
J = 5 0.7239 (0.0268) -0.5583 (0.0273) 0.1034 (0.0024) 0.3678 (0.0931) 0.0435 (0.1083) –
Mean and standard deviation for 100 simulations.

Table 10: Heterogeneous Monte Carlo Simulation Results Case (2): 1Market and 300 Periods

DGP: 1 Market, T = 300

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7337 (0.0182) -0.5464 (0.0276) 0.0872 (0.0152) 0.1913 (0.2566) 0.1547 (0.0881) 0.8298 (0.0300)
J = 3 0.7349 (0.0211) -0.5490 (0.0255) 0.0810 (0.0208) 0.2278 (0.2159) 0.1161 (0.0911) 0.8425 (0.0395)
J = 4 0.7394 (0.0246) -0.5486 (0.0242) 0.0737 (0.0217) 0.2045 (0.1532) 0.0583 (0.0964) 0.8573 (0.0417)
J = 5 0.7401 (0.0305) -0.5464 (0.0271) 0.0721 (0.0234) 0.2364 (0.1349) 0.0042 (0.1066) 0.8610 (0.0441)

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7373 (0.0211) -0.5464 (0.0276) 0.1026 (0.0049) 0.3218 (0.1837) 0.1493 (0.0829) –
J = 3 0.7280 (0.0210) -0.5490 (0.0255) 0.1028 (0.0033) 0.3262 (0.1736) 0.1082 (0.0889) –
J = 4 0.7218 (0.0221) -0.5486 (0.0242) 0.1033 (0.0025) 0.3278 (0.1908) 0.0507 (0.0916) –
J = 5 0.7154 (0.0267) -0.5464 (0.0271) 0.1036 (0.0025) 0.3331 (0.0945) 0.0023 (0.1043) –
Mean and standard deviation for 100 simulations.

model parameters. First, our method does a fair job at recovering consumer preferences
for varying degrees of heterogeneity. Naturally, as the degree of heterogeneity decreases
the precision and lack of bias increases. However, recovering parameters associated with the
unobservables is quite difficult, particularly when J increases and even with modest amounts
of consumer heterogeneity.
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Table 11: Heterogeneous Monte Carlo Simulation Results Case (3): 1Market and 300 Periods

DGP: 1 Market, T = 300

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7294 (0.1900) -0.5333 (0.0272) 0.0897 (0.0157) 0.1342 (0.2514) 0.1264 (0.0838) 0.8245 (0.0311)
J = 3 0.7289 (0.0224) -0.5352 (0.0253) 0.0828 (0.0213) 0.2085 (0.1975) 0.0790 (0.0916) 0.8459 (0.0403)
J = 4 0.7332 (0.0262) -0.5345 (0.0240) 0.0747 (0.0221) 0.1588 (0.1936) 0.0150 (0.0941) 0.8556 (0.0424)
J = 5 0.7336 (0.0323) -0.5319 (0.0269) 0.0726 (0.0236) 0.1909 (0.1207) -0.0429 (0.1031) 0.8607 (0.0444)

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7318 (0.0209) -0.5333 (0.0272) 0.1024 (0.0049) 0.2569 (0.2332) 0.1219 (0.0839) –
J = 3 0.7211 (0.0210) -0.5353 (0.0253) 0.1027 (0.0032) 0.2776 (0.1979) 0.0748 (0.0893) –
J = 4 0.7136 (0.0219) -0.5345 (0.0240) 0.1034 (0.0025) 0.2691 (0.1708) 0.0126 (0.0900) –
J = 5 0.7058 (0.0265) -0.5319 (0.0269) 0.1040 (0.0025) 0.2931 (0.0977) -0.0438 (0.0988) –
Mean and standard deviation for 100 simulations.

Table 12: Heterogeneous Monte Carlo Simulation Results Case (4): 1Market and 300 Periods

DGP: 1 Market, T = 300

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7509 (0.0216) -0.5034 (0.0260) 0.1055 (0.0179) 0.2241 (0.1685) 0.2262 (0.0888) 0.7943 (0.0361)
J = 3 0.7491 (0.0271) -0.5057 (0.0246) 0.1025 (0.0240) 0.2542 (0.1299) 0.2449 (0.0975) 0.8012 (0.0459)
J = 4 0.7543 (0.0322) -0.5065 (0.0233) 0.0964 (0.0253) 0.2547 (0.1141) 0.2429 (0.1069) 0.8134 (0.0494)
J = 5 0.7562 (0.0402) -0.5068 (0.0263) 0.0969 (0.0288) 0.2762 (0.1009) 0.2519 (0.1312) 0.8128 (0.0548)

δ = 0.75 α = −0.5 σ = 0.1033 ρ = 0.25 φ = 0.25 β = 0.8

J = 2 0.7528 (0.0203) -0.5034 (0.0260) 0.1028 (0.0051) 0.2138 (0.1941) 0.2261 (0.0889) –
J = 3 0.7503 (0.0206) -0.5057 (0.0246) 0.1031 (0.0034) 0.2543 (0.1377) 0.2441 (0.0957) –
J = 4 0.7508 (0.0216) -0.5065 (0.0233) 0.1034 (0.0026) 0.2719 (0.1217) 0.2411 (0.1045) –
J = 5 0.7520 (0.0261) -0.5068 (0.0263) 0.1034 (0.0024) 0.2896 (0.0964) 0.2512 (0.1302) –
Mean and standard deviation for 100 simulations.
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2 Assumption Table

Here we detail the nature of the assumptions we have made in the paper, noting situations
that are consistent with our assumptions as well as those that are inconsistent with the
assumption. We expect this might help the reader understand and evaluate the suitability
of the method to their application.

Table 13: Summary of Assumptions

A# Interpretation Consistent Inconsistent

A5(i) Time invariance of
marginal and con-
ditional (on x, p)
unobservable state
distribution

Unobserved quality control process is constant
over time, or changes in distribution of unob-
servable quality are accompanied with changes
in observed product characteristics or prices. If
we interpret ξjt as advertising (or quality con-
trol) of the product (either hardware or soft-
ware in our empirical application), and if the
observables (price and characteristics) for the
products don’t change, then the conditional
distribution of unobservable quality remains
the same.

If we interpret ξ as advertising,
then the advertising expenditures
becomes less (or more) volatile over
time, while product characteristics
and price remain constant. Sim-
ilarly, quality control process im-
proves while x and p remain the
same. Note: Since this is a con-
ditional expectation (on p and x),
it does not restrict advertising from
increasing in volatility when prices
decrease, for example. Thus, in
practice it is fairly flexible.

A5(ii) Future unobserv-
able state ξj,t+1

is independent of
current observable
state (xjt, pjt),
conditional on fu-
ture observed state
(xj,t+1, pj,t+1).

If ξj,t+1 is set based on xj,t+1 and pj,t+1, then
we are ok. Similarly, advertising expenditures
are made after the product is manufactured
and price is set. Also, if product quality control
process is independent of past period features
and prices.

In period t + 1, firm observes only
the prior period’s xjt and pjt and
sets advertising (or quality control)
levels ξj,t+1 based on that, and
before current period’s xj,t+1 and
pj,t+1.

A6(i) (Conditional
on xt, pt) in-
dependence of
contemporane-
ous unobservable
states (ξjt) across
products j

Each firm makes its quality control or adver-
tising choices independently based on x and p.
Note that these choices can depend on the ob-
servable characteristics of the prices and char-
acteristics of products made by competitors.
Note: Even in the strategic case, if the strat-
egy only depends on observable characteristics
of all products, this assumption will be valid.

Firms set advertising expenditures
based on expected strategic re-
sponses of competitors and they
have some information about com-
petitor’s advertising choice.

A6(ii) Two or more
products with
same variance of
unobservable (ξ)
conditional on
(xt, pt)

We have some subset of products that have
same variance, conditional on observables
(i.e. when their observable characteristics and
prices are the same). If we have at least one
firm with multiple products, and we expect
that the (conditional) variance for these mul-
tiple products is identical, then the condition
is satisfied. This might happen when the firm
has a single quality control process across all
products.

Each product has different condi-
tional variance. This maybe possi-
ble if each firm has only one prod-
uct, and each firm has very different
advertising policy or quality con-
trol policy even when the observable
product characteristics and prices of
these products are same.
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A# Interpretation Consistent Inconsistent

A7 (Conditional on
xt, pt) unobserv-
able states (ξjt)
across products
j have same dis-
tribution (except
mean)

At least two products made by similar man-
ufacturer with same quality control process,
or similar advertising policies. Note that only
the (conditional) distribution is required to be
identical, not the actual realizations. Also
the conditional mean can be different, so only
higher-order moments, that is the shape, not
the location, of their probability density func-
tions, need to be same.

There are no two products with sim-
ilar advertising or quality control
policies, implying all products have
materially different processes that
vary in higher-order moments, con-
ditional on observable state.

A8 State Evolution
Dependence Struc-
ture

Observable characteristics evolve based on pre-
vious period observables (characteristics and
prices). Observables characteristics do not de-
pend on current or prior unobservables, except
price. Unobservables can be quality control
process that impact fit and finish of product
which do not impact the features developed in
future. Note: price and quality control may
be contemporaneously related, as might be ex-
pected, since firm can set price based on real-
ization of unobservable quality.

Firm invests more in observable
product characteristics (e.g. bet-
ter camera) because its unobserv-
able quality control (or finish) was
poor.

A8’ State Evolution
Dependence Struc-
ture

Current advertising or quality control process
does not impact future prices or product char-
acteristics. Current advertising only depends
on current prices and product characteristics,
but not on past observable characteristics or
prices

Firm sets higher advertising level to
compensate because its past observ-
able product characteristics did not
drive demand.

A9 Unobservable State
Evolution

Unobservable characteristics do not depend on
competitor’s price levels. In the quality control
interpretation of ξjt, this is very likely since
the quality control processes are long-term and
are unlikely to be changed in response to a
competitor’s contemporaneous price level. In
the advertising interpretation, it implies that
advertising or promotional budgets are set in-
dependent of current competitor prices. They
can depend on own prices.

A firm (Apple) sets advertising bud-
get to be higher to respond to a
competitor (Samsung) slashing its
price levels.
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3 Alternative Counterfactual Procedure

Here we present an alternative to solving the ex-ante value function that does not require
value function iteration, the discretization of state variables, nor the use of interpolation.
Our counterfactual method is implemented in two steps. The first step recovers the counter-
factual impact on within market shares, relative to a given product. This step thus captures
the competitive substitution effects between products and does not depend on consumer be-
liefs in our model specification. The second step moves beyond the competitive effects and
determines the impact on the outside market share. The second step allows the researcher
to quantify the impact on overall demand, and evaluates whether the counterfactual change
leads to expansion or contraction of overall demand.

We consider the counterfactual change of a current product characteristic xjt to counter-
factual xcjt without changing product fixed effect, δj, or unobserved product characteristic
ξjt. Other counterfactuals, such as changes to the distribution of state variables, can be ad-
dressed similarly. As is standard in structural models, we assume the counterfactual does not
affect consumers’ preference, product fixed effects and unobserved characteristics. Hence we
use the estimated coefficients and unobservable residuals (α, β, γ, δj, ξjt). In the sequel, we
use superscript “c” to denote counterfactual objects, e.g. scjt denotes counterfactual market
share of product j. We also assume the counterfactual price pcjt is held constant.

The first step is to generate the counterfactual within or relative market share. By eq. (6),
we have counterfactual relative market share as a function of counterfactual (xcjt, pcjt),

ln

(
scjt
sc1t

)
= (xcjt − xc1t)′γ̃ − α(pcjt − pc1t) +

δj − δ1
1− β

+
ξjt − ξ1t
1− β

.

After estimation of (α, β, γ̃, δj, (ξjt− ξ1t)), we are able to express scjt/sc1t as a known function
of (xcjt, pcjt, δj, ξjt). For simplicity of exposition, let

s̃cjt = scjt/s
c
1t,

and let mc
t denote the vector of all counterfactual state variables.

We can express the counterfactual market share sc1t as a function of the counterfactual
relative market shares and the counterfactual outside market share sc0t:

sc1t =
1− sc0t(mc

t)∑J
j=1 s̃

c
jt(m

c
t)
. (1)
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We write sc0t(mc
t) to emphasize that the counterfactual outside market share sc0t is a function

of counterfactual market state variables.
The second step finds the counterfactual outside market share sc0t(mc

t) from the following
equation:

ln

(
1− sc0t(mc

t)

sc0t(m
c
t)

)
= λ(mc

t) + β E
[
ln(1− sc0,t+1(m

c
t+1))

∣∣∣mc
t

]
, (2)

where

λ(mc
t) = ln

(
J∑
j=1

s̃cj,t

)
− β E

[
ln

(
J∑
j=1

s̃cj,t+1

) ∣∣∣∣∣mc
t

]
+ vc1t(m

c
t)− β E

(
vc1,t+1(m

c
t+1)

∣∣mc
t

)
,

vc1t(m
c
t) = xc1tγ̃ − αpc1t +

δ1
1− β

+
ξ1t

1− β
. (3)

From the first step, we have determined ln
(∑J

j=1 s̃
c
j,t

)
. If ξ1t was known, vc1t(mc

t) and hence
λ(mc

t), are known as well. We discuss how to determine ξ1t below.
Eq. (2) follows from eq. (11), from which we have

ln

(
sc1t
sc0t

)
− vc1t(mc

t) = −β E
(
vc1,t+1(m

c
t+1)− ln sc1,t+1

∣∣mc
t

)
.

Substituting sc1t above with its formula from eq. (1), we get eq. (2). For a stationary dynamic
programming problem, sc0t(mc

t) is a time invariant function. Eq. (2) is then an integral
equation of sc0t, from which one solve sc0t.

3.1 Dimension reduction and other details

In many applications, the dimension of the market state variables mc
t is proportional to the

number of states per product with the number of products as an exponential, and could
be computationally infeasible to solve. The curse of dimensionality could arise if either the
number of products or observed characteristics is large. For example, in our mobile phone
application, there are 7 brands and 9 product characteristics (including 7 product features,
price and 1 unobservable characteristic), leading to a 9× 7 = 63-dimensional continuous
state space. Thus, if we discretize the continuous variables and represent them each with n
points, the dimension of the state space mc

t is n63. Thus, if we choose n = 10, we have 1063

points in the state space. Solving this problem with value function iteration, for example,
becomes computationally infeasible.

Thus, we consider using alternative approaches to computing the value function. Tradi-
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tionally, researchers assume consumers track all state variables, but as noted above this leads
to a curse of dimensionality. One widely known approach that eliminates this problem is to
assume consumers track the inclusive value as the relevant state variable (Melnikov, 2013;
Gowrisankaran and Rysman, 2012) so that consumers make choices based on the evolution
of the inclusive value. An alternative and less restrictive option as it does not rely on the in-
clusive value sufficiency assumption (which implies that if two different states have the same
option value, then they also have the same value function) is to assume consumers track the
conditional value function vjt of all products. Thus, the state space in this latter example is
of dimension J . This is more general than the inclusive value assumption, since the inclusive
value is a deterministic function of the conditional values of all products. Broadly speaking,
our counterfactual approach could accommodate any conceivable set of assumptions that
can be used to generate the consumer choice data. Depending on the application context,
different methods might be more or less suitable.

Below we reduce the dimension by replacing mc
t with (vc1t, . . . , v

c
Jt), which is defined by

eq. (3). Then eq. (2) reads

ln

(
1− sc0t(vc1t, . . . , vcJt)
sc0t(v

c
1t, . . . , v

c
Jt)

)
= λ(vc1t, . . . , v

c
Jt)+β E

[
ln(1−sc0,t+1(v

c
1,t+1, . . . , v

c
J,t+1))

∣∣∣vc1t, . . . , vcJt],
(4)

In practice the conditional expectation terms in the above display and λ(vc1t, . . . , vcJt) can be
estimated by a nonparametric regression. Because sc0t(vc1t, . . . , vcJt) is a conditional probability
of choice, one can use the series logit method in the treatment effects literature (Hirano,
Imbens, and Ridder, 2003) to approximate it:

s0(v
c
1t, . . . , v

c
Jt; ρ) =

exp(ψ(vc1t, . . . , v
c
Jt)
′ρ)

1 + exp(ψ(vc1t, . . . , v
c
Jt)
′ρ))

, (5)

where ψ(vc1t, . . . , vcJt) is a vector of known approximating functions, e.g. polynomials, of
vc1t, . . . , v

c
Jt. We use this functional form for convenience since the market share is bounded,

i.e. s0 ∈ [0, 1], and other functions that constrained it in such a manner would be applicable
as well. We then use eq. (4) to find ρ, e.g. by least squares, to recover the counterfactual
outside market share. Once we calculate the counterfactual outside market share, we can
determine scjt from eq. (1).

As we discussed in §5 of the main text, we also need to know ξ1t, which appears in
λ(vc1t, . . . , v

c
Jt) above, but more generally in order to solve for the ex-ante value function.

There are two different ways to implement this, which trades off an additional assumption
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for computational simplicity. The first is discussed in the text and consists of drawing from
the estimated distribution of ξjt. The second is to take an alternative approach that uses
the following formula for ξ1t, which follows from eq. (11),(

1− βφ1

1− β

)
ξ1t = y1t − δ1 + β E(w1,t+1 | xt, pt, ξt). (6)

If we assume that

E(w1,t+1 | xt, pt, ξt) = E(w1,t+1 | xt, pt, ξ2t − ξ1t, . . . , ξJt − ξ1t), (7)

we can identify and estimate ξjt, because ξjt − ξ1t is identified (c.f. eq. (18)). When ξ1t and
p1t is highly correlated, the bias (difference between the left-hand side and the right-hand
side in the above display) is expected to be small. The extreme case is when (p1t, ξ1t) follow a
bivariate normal distribution (as we assumed in estimation), and their correlation coefficient
is one. In this extreme case, knowing p1t is equivalent to knowing ξ1t, hence eq. (7) holds.

4 Derivatives for Calculating Asymptotic Variance

We derive the formulas for ∂g1,(j,k),t(θ1)/∂θ, ∂g2,(j,0),t(θ1)/∂θ, ∂g3,j,t(θ)/∂θ, ∂g4,(j,k),t(θ)/∂θ,
and ∂g5,(j,k),t(θ)/∂θ. It is easier to calculate the derivatives for θ1 = (α, β, γ̃′, δ′)′ and θ2 =

(ρ̃′ , σ2, φ′). For ∂g1,(j,k),t(θ1)/∂θ, we have

g1,(j,k),t,α(θ) = z(j,k),t(pjt − pkt)

g1,(j,k),t,β(θ) = −z(j,k),t(δj − δk)/(1− β)2

g1,(j,k),t,γ̃(θ) = −z(j,k),t(xjt − xkt)′

g1,(j,k),t,δi(θ) =


0 if i 6= j, i 6= k

−z(j,k),t/(1− β) if i = j

z(j,k),t/(1− β) if i = k

g1,(j,k),t,θ2(θ) = 0′.
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For ∂g2,(j,0),t(θ1)/∂θ, we have

g2,(j,0),t,α(θ) = xj,t,IV,t(pjt − βpj,t+1)

g2,(j,0),t,β(θ) = xj,t,IV,twj,t+1

g2,(j,0),t,γ̃(θ) = xj,t,IV,t(−x′jt + βx′j,t+1)

g2,(j,0),t,δi(θ) =

0 if i 6= j

−xj,t,IV,t if i = j

g2,(j,0),t,θ2(θ) = 0′.

For ∂g3,j,t(θ)/∂θ, we have

g3,j,t,α(θ) = zρ,jt(1− β)(pjt − βpj,t+1)

g3,j,t,β(θ) = zρ,jt[−(yjt + βwj,t+1) + (1− β)wj,t+1 + ρ̃j p̃j,t+1]

g3,j,t,γ̃(θ) = zρ,jt(1− β)(−x′jt + βx′j,t+1)

g3,j,t,δ(θ) = 0′

g3,j,t,ρ̃i(θ) =

0 if i 6= j

−zρ,jt(p̃jt − βp̃j,t+1) if i = j

g3,j,t,σ2(θ) = 0′

g3,j,t,φ(θ) = 0′.

For ∂g4,(j,k),t(θ)/∂θ, we will need ∂d(j,k),t(θ)/∂θ:

d(j,k),t,α(θ) = (1− β)(pjt − pkt)

d(j,k),t,β(θ) = −
[
ln

(
sjt
skt

)
− (xjt − xkt)′γ̃ + α(pjt − pkt)

]
d(j,k),t,γ̃(θ) = −(1− β)(xjt − xkt)′

d(j,k),t,δi(θ) =


0 if i 6= j, i 6= k

−1 if i = j

1 if i = k

d(j,k),t,θ2(θ) = 0′.

16



We have

g4,(j,k),t,θ1(θ) = d(j,k),td(j,k),t,θ1(θ)

g4,(j,k),t,ρ̃i(θ) =


0 if i 6= j, i 6= k

ρ̃kp̃jtp̃kt if i = j

ρ̃j p̃jtp̃kt if i = k

g4,(j,k),t,σ2(θ) = −1

g4,(j,k),t,φ(θ) = 0′.

For ∂g5,(j,k),t(θ)/∂θ, we have

g5,(j,k),t,α(θ) =
d(j,k),t
βσ2

d(j,k),t,α(θ)−
(
1− β
β

)
(pjt − βpj,t+1)

d(j,k),t
σ2
−(

1− β
β

)
(yjt + βwj,t+1)

d(j,k),t,α(θ)

σ2

g5,(j,k),t,β(θ) =

(
d(j,k),td(j,k),t,β(θ)

βσ2
−
d2(j,k),t
2β2σ2

)
+

1

β2
(yjt + βwj,t+1)

d(j,k),t
σ2
−(

1− β
β

)[
wj,t+1

d(j,k),t
σ2

+ (yjt + βwj,t+1)
d(j,k),t,β(θ)

σ2

]
g5,(j,k),t,γ̃(θ) =

d(j,k),t
βσ2

d(j,k),t,γ̃(θ)−(
1− β
β

)[
(−x′jt + βx′j,t+1)

d(j,k),t
σ2

+ (yjt + βwj,t+1)
d(j,k),t,γ̃(θ)

σ2

]
g5,(j,k),t,δ(θ) =

[
d(j,k),t
βσ2

−
(
1− β
β

)
(yjt + βwj,t+1)

1

σ2

]
d(j,k),t,δ(θ)

g5,(j,k),t,ρ̃(θ) = 0′

g5,(j,k),t,σ2(θ) = −

[
d2(j,k),t
2β

−
(
1− β
β

)
(yjt + βwj,t+1)d(j,k),t

]
1

σ4

g5,(j,k),t,φi(θ) =

0 if i 6= j

−1 if i = j
.
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