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Abstract

We develop a new approach using market level data to model, identify, and estimate

a dynamic discrete choice demand model for durable goods with continuous unobserved

product specific state variables. They are specified as serially correlated and correlated

with the observed product characteristics, particularly price. We provide a method

to estimate all model primitives, including the consumer’s discount factor and the

state transition distributions of unobserved product characteristics, without the need

to reduce the dimension of the state space or by other approximation techniques such

as discretizing state variables. We prove the identification of model primitives and

provide an estimation algorithm where the most computationally demanding step is a

linear regression. Lastly, we show how it can be implemented in an application where

we estimate the demand for smartphones.
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1 Introduction

In recent years, dynamic discrete choice (DDC) models have become more prevalent in
marketing and economics due to their ability to analyze the dynamic aspects of firms’ and
consumers’ preferences, and the consequent intertemporal tradeoffs across a wide range of
substantive contexts. As researchers recognize and seek to incorporate these factors into
their modeling, the complexity of estimating such models remains a challenging barrier for
research. Specifically, defining a tractable state space for such models is often a difficult
task, leading some to adopt ad hoc approximation approaches. The task becomes even more
challenging in the absence of an approximation method and when the researcher incorporates
multiple dimensions of unobserved state variables, individual and choice specific.

In the demand estimation literature these unobservables relate to traditional individual-
product specific idiosyncratic errors and unobserved product characteristics.1 Estimation is
further complicated when the unobserved product characteristics are serially correlated and
correlated with observed state variables given that computing the ex-ante expected value
function involve high-dimensional integration over all unobserved state variables (idiosyn-
cratic and product characteristics). This is especially problematic when there are many
available products, each with their own unobserved characteristic.

Our main contribution is to develop a novel approach using market level data to model,
identify, and estimate a dynamic discrete choice demand model for durable goods with
continuous unobserved product specific state variables, in addition to the commonly included
individual-product idiosyncratic errors. The unobserved states or product characteristics
are specified as serially correlated and correlated with the observed product characteristics,
particularly price. We provide a method to estimate all model primitives, including the
consumer’s discount factor, without the need to reduce the dimension of the state space or
by other approximation techniques such as discretizing state variables. In this sense, our
method avoids the curse of dimensionality—a large practical problem when implementing
DDC models.

We provide rigorous proof of identification and an algorithm for estimation where the
most computationally demanding step is a linear regression. Following the sequence of linear
regressions, applied researchers will have estimated all primitives of the dynamic structural
model. The estimation simplicity and the absence of the curse of dimensionality will aid
model specification because the researcher no longer faces the trade off between including

1The inclusion of the latter unobserved state is necessary to account for the endogeneity of product price
or other observed characteristics
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more state variables with the feasibility of estimation, or the dilemma of reducing the di-
mension of state variables at the cost of incurring omitted variable bias. Thus, researchers
are able to estimate multiple model specifications at little computational cost. The major
limitations of the method are (a) there need to be two or more terminal choices in the
DDC model (e.g. purchasing a product then leaving the market permanently), and (b) the
DDC model can only accommodate to multinomial logit or generalized extreme value (GEV)
nested logit structure, not unobservable heterogeneity.

Our identification results are novel relative to the literature on identifying DDC models.
Our model for durable goods can be understood as a general DDC model in which a subset
of unobserved state variables (unobserved product characteristics herein) are continuous,
serially correlated and correlated with other observed state variables. The existing identi-
fication results (Magnac and Thesmar, 2002; Norets, 2009; Kasahara and Shimotsu, 2009;
Arcidiacono and Miller, 2011, 2018; Hu and Shum, 2012; Hu, Shum, Tan, and Xiao, 2017)
in the literature of DDC models cannot be applied here.

Most of the research focusing on individual-level data do not include persistent unobserv-
able state variables (e.g. Bajari, Chu, Nekipelov, and Park, 2016; Daljord, Nekipelov, and
Park, 2018).2 The following exceptions involving persistent unobservables are worth noting.
Hu and Shum (2012) study dynamic binary choice models with continuous unobserved state
variable, but their identification result is limited to the conditional choice probabilities and
state transition distribution functions, not to model primitives like flow utility functions and
discount factor. Norets (2009) does include a serially correlated unobservable idiosyncratic
error, which is individual-specific rather than an aggregate product shock like in our case.
Arcidiacono and Miller (2011) model persistent unobservables, but limit them to a discrete
set of values.

Our linear estimation approach is also new relative to the literature on estimating DDC
models. First, our estimation approach is not an approximation method, and thus does
not rely on the validity of specific approximations like interpolation or other value function
approximations, or behavioral assumptions that consumers only consider some function of
the state space and not the entire state (Melnikov, 2013; Gowrisankaran and Rysman, 2012).
Second, our estimator does not exhibit a curse of dimensionality, because it does not require
the estimation or approximation of the ex-ante expected value function, as is almost always
the case with prior papers (e.g. Rust, 1994; Bajari et al., 2016). Third, we estimate more

2We note that Daljord et al. (2018) presents an innovative way to identify the discount factor in DDC
models with individual data. The primary differences is that our setting involves persistent unobservable
state variables, whereas those are not present in the aforementioned paper.
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model primitives than the current literature since our method recovers not just the pref-
erence parameters but also the discount factor and the transition process for observed and
unobserved state evolution.

Our work builds on several foundational papers in the demand estimation literature. First
is the result that the difference between choice-specific payoff is a function of individual choice
probabilities (Hotz and Miller, 1993) in static and dynamic settings. The work of Berry
(1994) and the BLP model (Berry, 1994; Berry, Levinsohn, and Pakes, 1995; Berry and
Haile, 2014) on demand estimation with market level data including unobservable product
characteristics have been extensively used. This is similar to our setting, but focused on a
static environment.

Extending the BLP models to a dynamic setting with forward-looking agents is challeng-
ing. Some researchers either don’t model persistent unobserved shocks (Song and Chinta-
gunta, 2003), or make them time-invariant (Goettler and Gordon, 2011). Others have focused
on improving the computational speed of fixed point estimators with a variety of approaches.
Melnikov (2013) and Gowrisankaran and Rysman (2012) develop an approximation based on
inclusive value sufficiency that allows the researcher to collapse the multi-dimensional state
into one dimension, making the problem much more computationally tractable. Moreover,
the formal identification in the paper is not specified. Derdenger and Kumar (2018) have
studied the approximation properties of this approach, and have shown that in general it is
a biased and an inconsistent estimator. Dubé, Fox, and Su (2012) propose a constrained op-
timization approach (Su and Judd, 2012) to estimate static and dynamic structural models
base on aggregate data. Also noteworthy is Sun and Ishihara (2018) who present a sim-
ple Monte Carlo based approach to significantly diminish the burden of dynamic structural
models.

While the literature has made advances in computational tools that eliminate the costly
nested fixed point algorithm used in dynamic models, our approach is different in that we
have focused on proving identification of model primitives, and also in that our approach
avoids any computation of the value function in the estimation process.

The simplicity of our estimator is quite powerful, but does come at a cost. In addition
to the two previously mentioned limitations, we discuss two others. First, consumers in our
model face an optimal stopping situation in that their choice is to continue in the market
without purchasing (“no purchase”) or to purchase a product and forever exit the market
(terminal choice). Specifically, the model must have two or more terminal choices for the
estimator to be linear in preferences and for preferences to be estimated via instrumental
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variables (IV). That said, the model and estimator does allow for non-terminal choices where
an individual is faced with a choice of say “lease one car” as long as the consumer choice
does not affect the future transition of state variables. We do not track individual product
inventory holdings. Thus, environments where choices exhibit state dependence with repeat
purchases would not be appropriately characterized.

Second, our computationally simple approach applies to a class of models similar to Berry
(1994), i.e. type 1 and GEV distribution for idiosyncratic errors. This limitation eliminates
any possibility of incorporating unobserved consumer heterogeneity in preferences as in Berry
et al. (1995). This may be problematic to those interested in understanding policies targeted
to heterogeneous populations, though it should be highlighted that our model can incorpo-
rate any observable heterogeneity for a finite number of classes. However, it is well known
that identifying unobserved consumer heterogeneity using aggregate data is quite difficult in
practice. Albuquerque and Bronnenberg (2009) illustrate that, “in isolation neither variable
[(market share or brand penetration)] may lead to precise estimates of heterogeneity”. Sudhir
(2013) also states that “identification of heterogeneity is tough with aggregate data.” As a
result, we attempt to mitigate the lack of unobserved heterogeneity through the estimation
of a GEV model. Future work would benefit from recognizing Albuquerque and Bronnenberg
(2009), Sudhir (2013) and others and include additional micro-data and moment conditions
to precisely pin down the distribution of unobserved consumer heterogeneity.

Third, in our model we generally can only identify the difference between two unobserved
product characteristics, a challenge for counterfactual analysis. We attempt to address this
concern with two approaches. The first is to simply draw from the identified distribution
of only one unobserved state variable a large number of times to provide an identified set
on the policy experiment. In practice, there is little to no added cost to this method as
compared to what a researcher does in order to generate a confidence interval (draws from
all parameters). Next, we show that unobserved product characteristics are identified if the
correlation between at least one unobserved state variable and price is perfectly correlated.
This second option has the benefit of being testable.

The last limitation is a required stationarity assumption for the identification and es-
timation of the dynamic evolution of state variables. In particular, we require the joint
distribution of the unobserved and observed product characteristics and price to be time
invariant for at least two periods. If such joint distribution changes in every period, the
model will not be identified. The intuition is similar to the identification of a linear panel
data model where regression coefficients and the unobserved fixed effect are assumed time
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invariant for at least two periods in order to use a fixed effect or first difference estimator to
identify/estimate the model. Thus, it is is typically not a limitation in applications. When
the number of periods is large and one suspects that the joint distribution of product charac-
teristics and price could have changed, one can split the sample into a few sub-samples, and
estimate the preferences and/or the dynamic evolution of state variables for each sub-sample,
as long as there are enough number of periods in each sample.

There are a number of institutional features of an empirical context that make our model
more suitable. Our approach is likely to prove useful in settings where the dynamics and
intertemporal tradeoffs are of first-order importance to researchers, and where the state space
is large, which reflect a number of empirical settings. Durable goods with a long replacement
fit best, e.g. solar panel. However, even products with a smaller replacement cycle would
work if the discount factor is low. Since our method allows the researcher to recover the
discount factor easily, one could simply run the model to determine suitability even when the
researcher is not sure about the discount factor. The data required for the model is aggregate
market-level data, but allows significant flexibility in the nature of variation. While our
identification results only require T = 2 periods of data (with multiple markets), in practice,
for estimation, a longer panel is helpful. Thus, the researcher can deploy this method even
with data from only one market (e.g. national), or a smaller panel with data from multiple
markets (e.g. states or metropolitan areas). The Monte Carlo studies in the online appendix
§1 demonstrate recovery for different combinations of markets and time periods.

After presenting the identification and estimation of our estimator, we illustrate its use
with data from the cell phone market. Using monthly data from ten different states we
estimate consumer preferences for phone hardware including smartphones. We determine
Apple had the largest fixed effect and Blackberry had the smallest out of all brands. Ad-
ditionally, we find the unobserved product characteristics were positively serially correlated
for Apple, yet were negatively for Blackberry. After the recovery of consumer preferences,
we run several counterfactuals to identify the feature that most impacts consumer adoption.
Counterfactual analysis finds that removing Bluetooth or Wi-Fi from phones dramatically
changes the within market shares. Without Wi-Fi, Apple’s iPhone would lose substantial
market share compared to other brands. This is due to Wi-Fi almost exclusively being avail-
able only on the iPhone. Moreover, Bluetooth was found to have the largest overall demand
on the market, with its absence leading to roughly a 20 percentage point increase in the
market share of the outside good.

The rest of the paper is structured as follows. In §2, we present the basic modeling
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approach. In §3, we detail the assumptions, and show the identification for the model
parameters. In §4, we obtain the estimators of preference parameters and state transition
distribution. In §5, we discuss counterfactual implementation. In §6, we provide an empirical
application of the model in the smartphone hardware market around the introduction of
the iPhone. In the counterfactual analysis, we evaluate market outcomes when product
characteristics exogenously change. In the Appendix A we present the extension to the GEV
model along with the cellphone demand estimates using a nested logit model structure.

This paper comes with an online appendix, which contains (a) numerical studies about
our estimators under various scenarios, (b) discussion about the interpretation of the as-
sumptions in empirical marketing research context, (c) implementation details about the
counterfactual procedure, and (d) various formulas that will be helpful for calculating the
asymptotic variance of our estimators.

2 Model

Our model follows the previous literature on dynamic discrete choice models of demand,
particularly those that employ market level data. Although the model is general, it is
especially appropriate for durable products, since consumers in such markets are typically
forward looking and weigh the trade-off of making a purchase now versus the option value
of waiting.

The choice set of a consumer i in period t is Jt ⊆ J ≡ {0, 1, . . . , J}, where 0 denotes
outside good, “no purchase,” and 1, . . . , J are products. The possible time varying choice set
corresponds to the observed entry-exit of products in the market. In each period t, consumer
i considers whether or not to purchase a product from the available products Jt \ {0}. If
he decides to purchase, he then chooses which to buy. Once a consumer has purchased a
product, he exits the market completely. Hence, purchasing a product is a terminal action in
our model. The consumer decision process is thus equivalent to an optimal stopping problem.
The presence of a terminal choice greatly simplifies the identification and estimation because
the expected life-time utility of a terminal choice is easy to characterize.

2.1 Consumer Utility

Consumers consider numerous product and market characteristics that may affect their cur-
rent and future purchase utilities, such as price, age of product and quality. The state can
be described as Ωit ≡ (xt, pt, ξt, εit), where pt denotes the vector of product prices, xt de-
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notes the vector of the other observable product characteristics, ξt denotes the unobserved
(to econometrician) product characteristics, and εit is the vector of individual choice-specific
idiosyncratic shocks, which are unobservable to researchers. Denote mt ≡ (xt, pt, ξt) the
market level state.

Assumption 1 (Markov Process). Pr(Ωi,t+1 |Ωit, Ωi,t−1, . . .) = Pr(Ωi,t+1 |Ωit).

Typically, in a product choice model, we can include all the product variables in the
state space, x′t ≡ (x′1t, . . . , x

′
Jt) and pt ≡ (p1t, . . . , pJt)

′, where xjt and pjt denote the vector of
observable product characteristics and the price of product j in period t, respectively. There
is some abuse of notation because xjt and pjt are indeed not defined if product j does not
exist in period t, i.e. j 6∈ Jt.

We normalize the expected period utility of the outside good to be 0. Hence, if consumer
i does not purchase in period t, he receives flow utility

ui0t = 0 + εi0t.

This normalization is only for simplicity of exposition. Our arguments still hold when ui0t
is a parametric function of observed characteristics of the outside good and additive in
εi0t. This is useful because it has been shown that unlike the case of static discrete choice
models, normalization in dynamic discrete choice models is not innocuous for the purpose
of counterfactual predictions (e.g. Norets and Tang, 2014).

When consumer i purchases product j at time t, his flow utility during the purchase
period t is:

uijt = f(xjt, ξjt)− αpjt + εijt. (1)

He then receives the identical flow utility f(xjt, ξjt) in each period τ > t following his
purchase. In particular, let

f(xjt, ξjt) = x′jtγ + δj + ξjt.

Let δ = (δ1, . . . , δJ)′. The term δj is the unobserved product fixed effect. The vector
ξt = (ξ1t, . . . , ξJt)

′ is unobservable to researchers, and ξjt is a scalar with E(ξjt) = 0. One
typically views δj + ξjt as a measure of functional or design quality. Hereafter, we refer ξjt
as the unobserved characteristics of product j at time t, which may be serially correlated.
Possible interpretations of unobservable product-period specific shocks ξjt are not limited to
the following:

(i) Product quality: if the firm has a quality control in the production process, then there
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is likely some degree of randomness or stochasticity in the manufacturing process. This
would vary by product-period and fit the assumptions about ξ in the paper. Note that
depending on the production process, this could also be serially correlated, which we
accommodate in our model. In our application below using cell phone data, ξjt can be
thought as the quality of software on the phone, battery life, durability, etc.

(ii) Advertising: we might have product-period unobservable advertising levels, both by
manufacturers, or network carriers and retailers like Best Buy in our application. Since
advertising expenditures decisions are set well in advance, it is quite likely for such
expenditures to be serially correlated.

The inclusion of these unobserved product characteristics (states) are important. The data
the researcher collects to estimate demand models is almost always incomplete, as it does
not contain all the state variables that consumers use to make their decisions. A consequence
of this fact was first discussed in the work of Berry (1994) about the endogeneity of price.
Berry (1994) makes the important point that the earlier study of Trajtenberg (1989), which
included idiosyncratic errors but did not include unobservable product characteristics (ξj,t)
concluded that there was a positive price coefficient, implying that higher prices led to
increased demand.

Another econometric problem when one only uses idiosyncratic errors like in Bajari et al.
(2016) is that if the data generating process had product-period unobservables (e.g. adver-
tising or quality control variations over time) but were ignored, then the idiosyncratic errors
would pick up those factors, as in Song and Chintagunta (2003). In such a case, we would
have correlation of idiosyncratic errors across individuals and time, if the unobservable prod-
uct characteristics were serially correlated. Since almost all papers effectively specify such
idiosyncratic errors to be independent across agents, this would lead to a mis-specification
and biased parameter estimates.

2.2 Dynamic Decision Problem

The consumer makes a trade-off between buying in the current period t and waiting to
make a purchase in the next period. The crucial intertemporal trade-off is in the consumer’s
expectation of how the market level state variables mt = (xt, pt, ξt) evolve in the future. For
example, if the product characteristics (or price) are expected to improve over time, then
the consumer is incentivized to wait.

Consumer i in period t chooses from the set of choices Jt, which includes the option 0
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to wait without purchasing any product. However, if the consumer purchases, recall that he
exits the market immediately upon purchase.

For a consumer in the market faced with a state Ωit in period t, we can write the Bellman
equation in terms of the value function Vt(Ωit) as follows:

Vt(Ωit) = max

(
εi0t + β E(Vt+1(Ωi,t+1) |Ωit), max

j∈Jt\{0}
vj(Ωit) + εijt

)
,

where the first term within brackets is the present discount utility associated with the decision
to not purchase, j = 0, any product in period t. The discount factor is β ∈ [0, 1). The choice
of not purchasing in period t provides flow utility εi0t, and a term that captures expected
future utility associated with choice j = 0, conditional on the current state being Ωit.
This last term is the option value of waiting to purchase. The second term within brackets
indicates the value associated with the purchase of a product. Given the fact that consumers
exit the market after the purchase of any product, a consumer’s choice specific value function
can be written as the sum of the current period t utility and the stream of utilities in periods
following purchase:

vjt(Ωit) =
f(xjt, ξjt)

1− β
− αpjt =

x′jtγ + δj + ξjt

1− β
− αpjt, j ∈ Jt \ {0}. (2)

We also let
v0t(Ωit) = β E(Vt+1(Ωi,t+1) |Ωit). (3)

The value function Vt(Ωit) involves consumer i’s flow utility shock εit. Assumption 2(i)
below ensures

E(Vt+1(Ωi,t+1) |Ωit) = E
(
V̄t+1(xt+1, pt+1, ξt+1)

∣∣ xt, pt, ξt),
where

V̄t+1(xt+1, pt+1, ξt+1) ≡ E(Vt+1(Ωi,t+1) | xt+1, pt+1, ξt+1).

The expectation in the above display is taken over εi,t+1.

Assumption 2 (Conditional independence). For all t, we have

(i) Ωi,t+1 ⊥⊥ εit | (xt, pt, ξt);

(ii) εi,t+1 ⊥⊥ Ωit | (xt+1, pt+1, ξt+1).
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The role of part (ii) will be clear soon. Under Assumption 2, we know that vj is a function
of market level state variables mt = (xt, pt, ξt) only. Let sjt be the market share of product
j at time t. Given a conditional distribution function F (· |mt) of εit, we have

sjt(mt) = Pr(vjt(mt) + εijt ≥ vkt(mt) + εikt, k ∈ Jt |mt)

=

∫
1 (vjt(mt) + εijt ≥ vkt(mt) + εikt, k ∈ Jt)F ( d εit |mt). (4)

Our results below do not require that the value function Vt(Ωit) or the integrated value
function V̄t(mt) be time invariant. This could be desirable in applications, because the
introduction of new products or technology innovation could change the consumer’s value
function.

3 Identification

We start by clarifying the data and the structural parameters of the model. With the data,
we observe market shares sjt, observable product characteristics xjt and prices pjt for j ∈ Jt.
Structural parameters include consumer preference parameters θ1 = (α, β, γ′, δ′)′, the state
transition distribution function F (Ωi,t+1 | Ωit), and the initial distribution function F (Ωit)

for some period t. In general, we need to know θ1, F (Ωi,t+1 | Ωit) and F (Ωit) in order to
simulate the consumer’s dynamic decisions starting from period t and market shares under
various counterfactual experiments.

Using conditional independence (Assumption 2), we have

F (Ωit) = F (mt)F (εit |mt), F (Ωi,t+1 |Ωit) = F (mt+1 |mt)F (εi,t+1 |mt+1).

Moreover, we will assume that εit ⊥⊥ mt and F (εit) are known for all t. We can write
F (mt) = F (xt, pt)F (ξt | xt, pt). Thus, the cumulative distribution function (CDF) F (xt, pt)

is identified from observed xt and pt. Our focus is then on F (ξt | xt, pt) and F (mt+1 |mt).
The difficulty is that we do not observe ξt. In the remainder of this section, we show how to
identify θ1, F (ξt | xt, pt), and F (mt+1 |mt) nonparametrically under mild restrictions.

We give a brief summary of our results in this section. To identify preference θ1, one
only needs to know F (εit |mt) and to have IV that are uncorrelated with unobserved char-
acteristics ξt. To identify E(ξjt |xt, pt), we further assume that F (ξt |xt, pt) is time invariant.
To identify Var(ξjt) and Var(ξjt | xt, pt), one needs one additional assumption that is to
assume that the unobserved characteristics ξ1t, . . . , ξJt are independent and homoscedastic
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conditional on xt and pt. To identify F (ξt | xt, pt) nonparametrically, one needs a further
assumption that is to assume that the unobserved characteristics ξjt have identical distri-
bution except for their conditional mean. To identify F (mt+1 |mt) nonparametrically, one
needs additional assumptions, among which one would require that ξt+1 is an autoregressive
process and xt+1 ⊥⊥ (ξt, ξt+1) | (xt, pt) or (xt+1, pt+1) ⊥⊥ ξt | (xt, pt) Most identification results
are constructive, hence they can be used as formulas for estimation.

It is well known that without assuming that F (εit |mt) is known, the flow utility functions
and discount factor are not separately identified (e.g. Magnac and Thesmar, 2002). Our
restriction on F (εit | mt) is twofold. First, we assume εit ⊥⊥ mt. Second, we know the
marginal distribution of εit, which will be Type I extreme value distribution. In Appendix A
we present identification and estimation for a GEV distribution.

Assumption 3. Assume that consumer i’s utility shocks εit = (εi0t, . . . , εiJt)
′ are indepen-

dent of mt = (xt, pt, ξt). Let εi0t + ω, . . . , εiJt + ω be independent identically distributed Type
I extreme value with density f(εijt + ω = ε) = exp[−(ε+ e−ε)], where ω ≈ 0.5772 is Euler’s
constant.

Assumption 3 does not allow correlation between market level state variables and unob-
served consumer heterogeneity. This can be restrictive in some applications. For example,
consumers may be heterogeneous in their preference for design or quality, which is captured
by ξt in this model. Such consumer preference is unobserved, hence it is denoted by εit. This
implies that εit and ξt are correlated. Allowing for such correlation between εit and the other
state variables in general has been a difficult problem in the literature of dynamic discrete
choice model (see Magnac and Thesmar, 2002; Arcidiacono and Miller, 2011). It seems to
be harder here since ξt in mt is unobservable.

It should be remarked that the assumption of independent idiosyncratic shocks is re-
quired, but the assumption on Type I distribution or any specific distribution is not essential
for our identification arguments, because our arguments start from expressing the difference
between the payoffs of purchasing different products as a function of market shares, which
holds for more general distribution of εit (Hotz and Miller, 1993). However, it greatly sim-
plifies the exposition and estimation.

3.1 Consumer Preference

Let θ′1o = (αo, βo, δo, γ
′
o) denote the true values. To make the idea clear, we consider a simple

case with two products (1 and 2) in addition to the outside good 0. Both products are always
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available. Remark 6 shows that our arguments can also be applied to show the identification
when the choice set varies over time. It follows from the multinomial logit model that the
market share sjt(mt) has the following formula

sjt(mt) = exp(vjt(mt))/
∑

k∈Jt exp(vkt(mt)).

Hence for any two products j, k ∈ Jt, we have sjt/skt = exp(vjt(mt))/exp(vkt(mt)), or

ln(sjt/skt) = vjt(mt)− vkt(mt). (5)

The moment conditions used in the identification arguments as well as in the estimation
below are from the log shares ratio between two products. To show identification, we will
only use the two ratios ln(s2t/s1t) and ln(s2t/s0t). Eq. (5) is similar to Berry (1994). The
key difference is that v0t(mt) in Berry or BLP equals zero, while v0t(mt) here depends on an
unknown value function.

In eq. (5), letting j = 2, k = 1, we have ln(s2t/s1t) = v2t(mt)− v1t(mt), that is

ln

(
s2t
s1t

)
= (x2t − x1t)′γ̃ − α(p2t − p1t) +

δ2 − δ1
1− β

+
ξ2t − ξ1t
1− β

, (6)

with
γ̃ = γ/(1− β).

Eq. (6) explains the relative market share by the difference of product characteristics. Eq. (6)
resembles a linear regression since we observe ln(s2t/s1t), (x2t−x1t) and (p2t−p1t). Let z(2,1),t
denote a vector of instruments that are uncorrelated with ξ2t − ξ1t. We can identify γ̃, α,
and (δ2 − δ1)/(1− β) with one period of data from the moment equation

E(g1,(2,1),t(θ1o)) = 0,

g1,(2,1),t(θ1) = z(2,1),t

[
ln

(
s2t
s1t

)
− (x2t − x1t)′γ̃ + α(p2t − p1t)−

δ2 − δ1
1− β

]
. (7)

We next show the identification of the discount factor β and product fixed effect δ. Once
β is identified, γ is identified from the already identified γ̃ = γ/(1 − β). In eq. (5), letting
j = 2, k = 0, we have

ln

(
s2t
s0t

)
= x′2tγ̃ − αp2t +

δ2
1− β

+
ξ2t

1− β
− β E

(
V̄t+1(mt+1)

∣∣mt

)
. (8)
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Define the already identified term yt:

yt = ln(s2t/s0t)− x′2tγ̃ + αp2t.

Note that yt is a function of mt only. We rewrite eq. (8) with yt(mt),

yt(mt) =
δ2

1− β
+

ξ2t
1− β

− β E
(
V̄t+1(mt+1)

∣∣mt

)
. (9)

By the expectation maximization formula of the multinomial logit model (e.g. Arcidiacono
and Miller, 2011), we have

V̄t(mt) = v2(mt)− ln s2t(mt) =

(
x′2tγ̃ − αp2t +

δ2
1− β

+
ξ2t

1− β

)
− ln s2t(mt). (10)

Define another identified term wt:

wt = x′2tγ̃ − αp2t − ln s2t(mt).

Clearly, wt is a function of mt only. Then we have

V̄t(mt) = wt(mt) +
δ2

1− β
+

ξ2t
1− β

, for all t.

Substituting V̄t+1(mt+1) in eq. (9) with the above display, we have the conditional moment
restriction

yt(mt) =
δ2

1− β
+

ξ2t
1− β

− β E

(
wt+1(mt+1) +

δ2
1− β

+
ξ2,t+1

1− β

∣∣∣∣mt

)
. (11)

Since yt(mt) is a function of mt only, E(yt |mt) = yt. Moreover, E(ξ2t |mt) = ξ2t because ξ2t
is an element of mt. As a result, the above display implies

E

(
yt + βwt+1 − δ2 −

1

1− β
ξ2t +

β

1− β
ξ2,t+1

∣∣∣∣mt

)
= 0. (12)

By this conditional moment condition, we know that for any integrable function η(mt) we
have

E

[(
yt + βwt+1 − δ2 −

1

1− β
ξ2t +

β

1− β
ξ2,t+1

)
η(mt)

]
= 0. (13)

The conditional moment eq. (12) will be very useful. As its first application, we show
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the identification of product fixed effect δ when the discount factor β is known. Given β,
letting η(mt) = 1, we have

δ2 = E(yt + βwt+1).

Here we used E(ξ2t) = E(ξ2,t+1) = 0. Since we have identified (δ2 − δ1)/(1− β), we identify
δ1 given δ2 and β.

As the second application of eq. (12), we show the identification of β. The market
level state mt includes (x′1t, x

′
2t, p1t, p2t). Let x2t,IV be a vector of functions of mt such that

cov(x2t,IV , ξ2t) = cov(x2t,IV , ξ2,t+1) = 0.3 We can identify β and δ2 from

E(g2,(2,0),t(θ1o)) = 0,

g2,(2,0),t(θ1) =
(
yt + βwt+1 − δ2, (yt + βwt+1 − δ2)x′2t,IV

)′
. (14)

For example, if x2t,IV is a scalar, we explicitly have

β = − cov(yt, x2t,IV )/ cov(wt+1, x2t,IV ),

provided that cov(wt+1, x2t,IV ) 6= 0 (corresponding to rank condition in IV regression). From
the definition of wt+1, the rank condition requires that x2t,IV must be correlated with the
next period market level state variables or market share s2,t+1. The following proposition is
a summary about the identification of consumer preference.

Proposition 1. Suppose Assumptions 1 to 3 hold. Let dx = dimxjt. If there is a vector of IV
z(2,1),t such that E[z(2,1),t(ξ2t−ξ1t)] = 0 and rank E[z(2,1),t((x2t−x1t)′, (p2t−p1t))] = dx+1, and
there is a vector-valued function x2t,IV of mt such that cov(x2t,IV , ξ2t) = cov(x2t,IV , ξ2,t+1) = 0

and cov(wt+1, x2t,IV ) 6= 0, we can identify consumer preference parameters α, β and γ and
product fixed effect δ with two periods of data.

Moreover, the above constructive identification arguments suggest a simple estimation
method for θ1 = (α, β, δ′, γ′)′. An IV regression can estimate γ̃, (δ2 − δ1)/(1 − β) and α.
Another IV regression of yt on −wt+1 with IV x2t,IV can be used to estimate the discount
factor β. Such an estimator does not impose any further distributional assumptions about
state transition law besides the first-order Markovian assumption.4 As a result, there is no
“curse of dimensionality” in the estimation of consumer preferences.

3It should be remarked that x2t,IV does not need to be a component of x2t. For example, x2t,IV can be
x1t + x2t if cov(xjt, ξ2t) = cov(xjt, ξ2,t+1) = 0 for both j = 1 and 2.

4Implicitly, we assumed the unobserved product characteristics are mean stationary.
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Remark 1 (Why can we identify the discount factor?). In dynamic discrete choice models, in
order to identify the discount factor, it is usually necessary to have an excluded variable that
does not affect current utility but does impact future payoff (e.g. Fang and Wang, 2015). To
see why we can identify the discount factor even without the excluded variable, let’s assume
that there are no unobserved product characteristics ξjt and δj = 0. The key reason is that
we can identify the mean value vj for each product j from relative market shares. Without
ξjt, we have

ln(s2t/s1t) = (x2t − x1t)′γ̃ − α(p2t − p1t).

We identify γ̃ and α, hence vj for every product j. Knowing vj and the market share sjt
from data, we henceforth know the integrated value function V̄t by (Arcidiacono and Miller,
2011)

V̄t(mt) = vj(xjt, pjt)− ln sjt.

Next,

ln(s2t/s0t) = v2(x2t, p2t)− v0(mt)

= v2(x2t, p2t)− β E(V̄t+1(mt+1) |mt)

= v2(x2t, p2t)− β E[v2(x2,t+1, p2,t+1)− ln s2,t+1 |mt]. (15)

Note that mt = (x1t, p1t, x2t, p2t) here. Because we know v2, and market shares s2t, s0t, s2,t+1

are included in the data, we can identify the conditional expectation term, hence β.
In general, in dynamic discrete choice models, the mean value vj for each alternative

j depends on the unknown value function, hence β cannot be identified from the relative
choice probabilities first. Our arguments do not apply to the general dynamic discrete choice
model.

With unobserved product characteristics ξjt, we are required to use x2t,IV , a nonrandom
function of mt. Taking the conditional expectation of both sides of eq. (15) given x2t,IV , we
have

E(ln(s2t/s0t) | x2t,IV ) = E(v2(x2t, p2t, ξ2t) | x2t,IV )−

β E[v2(x2,t+1, p2,t+1, ξ2,t+1)− ln s2,t+1 | x2t,IV ].

Because the unobserved ξ2t enters in v2(x2t, p2t, ξ2t) additively, ξ2t and ξ2,t+1 disappear from
the above display by E(ξ2t | x2t,IV ) = E(ξ2,t+1 | x2t,IV ) = 0. �
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Remark 2 (What if there were only one product on the market?). When there is only one
product on the market, one can still identify consumer preferences (α, β, γ′, δ′) with certain
rank condition. However, such identification has limited practical relevance.

Suppose product 2 is the only product on the market. By definition of market share,
s2t = 1 − s0t. For identification, we have only eq. (8). We still have eq. (10) and the
conditional moment equation eq. (12). The new issue is that yt and wt+1 have not been
identified. Explicitly, eq. (12) reads

E(eq. (16) |mt) = 0,

with

ln

(
s2t
s0t

)
− x′2tγ̃ + αp2t + β

(
x′2,t+1γ̃ − αp2,t+1 − ln s2,t+1

)
− δ2−

1

1− β
ξ2t +

β

1− β
ξ2,t+1. (16)

Here mt = (x2t, p2t, ξ2t). The exogenous observed characteristics can only be derived from
x2t. Provided that E(ξ2t | x2t) = E(ξ2,t+1 | x2t) = 0, we have

E

[
ln

(
s2t
s0t

)
− x′2tγ̃ + αp2t + β

(
x′2,t+1γ̃ − αp2,t+1 − ln s2,t+1

)
− δ2

∣∣∣∣ x2t] = 0,

which can be rearranged as follows,

E

(
ln

(
s2t
s0t

) ∣∣∣∣ x2t)− β E(ln s2,t+1 | x2t)+

[β E(x2,t+1 | x2t)− x2t]′γ̃ + [E(p2t | x2t)− β E(p2,t+1 | x2t)]α− δ2 = 0. (17)

Viewing E(ln(s2t/s0t) | x2t) as the dependent variable, and E(ln s2,t+1 | x2t), E(x2,t+1 | x2t),
x2t, E(p2t | x2t), and E(p2,t+1 | x2t) as the independent variables, the above display is just a
linear regression equation. Provided that those regressors are not collinear, one can identify
α, β, γ, and δ. The collinearity could happen for example if E(x2,t+1 | x2t) is linear in x2t.

Even if the identification holds, in practice it may not be as useful. To see this, suppose
the discount factor β is known. Since the model is a linear regression, the variance of the
estimator of γ̃ is proportional to the inverse of the variance of the regressor β E(x2,t+1 |x2t)−
x2t. In practice, β is close to one, and x2,t is persistent (in some cases, x2t is time invariant).
This implies that the variance of β E(x2,t+1 | x2t)− x2t can be very small, hence the variance
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of estimating γ̃ can be very large. The same issue applies to the variance of estimating α
when price p2t is also persistent.

The above issue does not occur in a static model. In the static model, which corresponds
to β = 0, eq. (12) becomes

ln(s2t/s0t) = x′2tγ − αp2t + δ2 + ξ2t.

Let σ2
x = Var(x2t). Then the variance of estimating γ from the above static model is

proportional to σ−2x . Considering eq. (17), suppose β is known, and E(x2,t+1 | x2t) = ρx2t.
The variance of the regressor (β E(x2,t+1 | x2t) − x2t) = (βρ − 1)x2t is then (1 − βρ)2σ2

x,
hence the variance of estimating γ from the dynamic model is proportional to (1−βρ)−2σ−2x .
Clearly, if β and ρ are close to one, (1− βρ)−2 will be very large. Given this observation, it
is not recommended to run a dynamic model with only one product. �

3.2 Dynamics of State Evolution

We now focus on identification of the firm side variables, mt, which in turn impact the
state space for the consumer. While the identification of consumer preferences above did not
require us to assume stationarity of the state evolution process, stationarity will be necessary
for us to identify the state transition distribution.

Assumption 4 (Stationary Markov Process). The first-order Markov process mt is station-
ary. The conditional distribution function F (mt+1 |mt) is time invariant, and F (mt) is the
stationary distribution of mt.

We will first show the identification of marginal distribution function F (mt) then the
conditional distribution function F (mt+1 |mt).

3.2.1 Identification of F (mt)

We first identify E(ξjt | xt, pt) with the stationary Assumption 5 about ξt below. Then we
show nonparametric identification of F (ξt | xt, pt) with additional restrictions.

Assumption 5. (i) The marginal distribution function F (ξt) and the conditional distri-
bution function F (ξt | xt, pt) are both time invariant.

(ii) ξt+1 ⊥⊥ (xt, pt) | (xt+1, pt+1).
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Though Assumption 5.(i) is implied by Assumption 4, we state it separately because it in-
volves unobserved characteristics ξt whose interpretation depends on empirical applications.
It is more informative to applied researchers to state the restriction about ξt separately.

By eq. (6) and the identification of β, we can identify ξ2t − ξ1t. Such difference will be
frequently used latter. Denote

dt = ξ2t − ξ1t. (18)

It follows from eq. (6) that

dt = (1− β) ln(s2t/s1t)− (x2t − x1t)′γ − (δ2 − δ1) + (1− β)α(p2t − p1t).

Variable dt is an identified object.
It is important to note that it is likely that we cannot identify ξjt, only the difference

ξ2t − ξ1t. Eq. (11) reads

δ2
1− β

+
ξ2t

1− β
− β E

(
wt+1 +

δ2
1− β

+
ξ2,t+1

1− β

∣∣∣∣ xt, pt, ξt)− yt = 0.

The unknown ξ2t appears both linearly and nonlinearly as conditioning variable in the above
display. Recall that wt+1 = x′2,t+1γ̃ − αp2,t+1 − ln s2,t+1 and yt = ln(s2t/s0t) − x′2tγ̃ + αp2t.
In general, in order to show identification of ξ2t, one needs to prove that the left-hand-side
(LHS) of the above display is globally monotone in ξ2t, whose primitive condition is unclear
to us because yt and wt+1 depend on market shares, hence value function. It is expected that
∂yt/∂ξ2t > 0 and −∂wt+1/∂ξ2,t+1 > 0, because the market share is expected to be increasing
in ξ2t. As a result, the sign of the derivative of the LHS of the above display with respect
to ξ2t is indeterminate, when ξ2,t+1 is positively correlated with ξ2t. Intuitively, the increase
in ξ2t can make both purchasing now and waiting to purchase in the future more desirable,
hence the market share is not necessarily monotone in ξ2t. In practice, after the estimation
of model primitives, one can try to solve ξ2t from the above equation numerically by trying
random starting guess of the solution. If the equation has multiple solutions, the numerical
solution is likely to depend on the choice of starting values. We tried to solve ξ2t for our
model used in the Monte Carlo studies reported in online appendix, and found that the
solution of ξ2t does not depend on the starting values, which suggests that ξ2t is identifiable
for that model.

One sufficient yet uninteresting condition is that (x2,t+1, p2,t+1, s2,t+1, ξ2,t+1) ⊥⊥ ξt |(xt, pt).
In this condition one can drop ξt from the conditioning variables from the conditional expec-
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tation and solve ξ2t.5 However, in practice, unobserved product characteristics ξt are serially
correlated as seen in our empirical application. Moreover, next period’s market share is typ-
ically correlated with the current period’s unobserved product characteristics despite their
price and xt. For example, if the current ξt is high, consumers tend to buy now rather than
waiting until next period.

We now show how to identify E(ξjt |xt, pt). By E(ξ1t |xt, pt) = E(ξ2t |xt, pt)−E(dt |xt, pt),
we only need to show the identification of E(ξ2t | xt, pt). Multiplying both sides of eq. (12)
with (1− β), we have

E
[
(1− β)yt + β(1− β)wt+1 − (1− β)δ2 − ξ2t + βξ2,t+1

∣∣mt

]
= 0.

Since xt, pt ∈ mt, apply the law of iterated expectation, and we have

E
[
(1− β)yt + β(1− β)wt+1 − (1− β)δ2 − ξ2t + βξ2,t+1

∣∣ xt, pt] = 0. (19)

Now define

h(x, p) = E[(1− β)yt + β(1− β)wt+1 − (1− β)δ2 | xt = x, pt = p],

π(x, p) = E(ξ2t | xt = x, pt = p).

The function h(x, p) is nonparametrically identified since we observe yt, wt+1, xt and pt. The
unknown function π(x, p) is the parameter of interest.

Eq. (19) implies an integral equation of π(x, p), from which π(x, p) is identified. We have
from eq. (19) that

h(xt, pt) = π(xt, pt)− β E(ξ2,t+1 | xt, pt)

= π(xt, pt)− β E[E(ξ2,t+1 | xt+1, pt+1, xt, pt) | xt, pt]

= π(xt, pt)− β E[E(ξ2,t+1 | xt+1, pt+1) | xt, pt]

= π(xt, pt)− β E(π(xt+1, pt+1) | xt, pt)

= π(xt, pt)− β
∫
π(x, p)F ( dx, d p | xt, pt).

The third line follows from ξt+1 ⊥⊥ (xt, pt) | (xt+1, pt+1) in Assumption 5. The fourth line
used the stationary assumption about F (ξt |xt, pt). The conditional CDF F (xt+1, pt+1 |xt, pt)

5In the solution, one will need E(ξ2,t+1 | xt, pt). Below, we will identify E(ξ2,t+1 | xt+1, pt+1). Then we
can identify E(ξ2,t+1 | xt, pt) = E[E(ξ2,t+1 | xt+1, pt+1) | xt, pt] by Assumption 5.
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in the last line is identifiable from data about (xt, pt). We then have a Fredholm integral
equation of type 2,

π(x, p)− β
∫
π(x′, p′)F ( dx′, d p′ | x, p) = h(x, p).

We know that there would be a unique solution of π(x, p) (the proof similar to Lemma 2 of
Chou and Ridder, 2017). The proof is to view the left-hand-side of the above equation as a
linear operator of π(x, p). Of course, if one is concerned only about π(p2t) ≡ E(ξ2t | p2t), one
may consider the conditional moment equation

E
[
(1− β)yt + β(1− β)wt+1 − (1− β)δ2 − ξ2t + βξ2,t+1

∣∣ p2t] = 0, (20)

and the identification of π(p2t) follows from similar arguments. The next proposition outlines
this result.

Proposition 2. In addition to the conditions of Proposition 1, suppose Assumption 4 and
5 hold. We can identify E(ξjt | xt, pt) for each product j ∈ Jt.

To identify the conditional variance Var(ξt | xt, pt), we need additional assumptions.

Assumption 6. (i) The unobserved characteristics ξ1t, . . . , ξJt are independent conditional
on (xt, pt);

(ii) Assume that Var(ξ1t | xt, pt) = · · · = Var(ξJt | xt, pt) = σ2(xt, pt).

The homoskedasticity assumption is not essential. Remark 3 below discusses the exten-
sion with heteroskedasticity.

Using dt = ξ2t − ξ1t, it can be shown that

E(d2t | xt, pt) = 2σ2(xt, pt) + [E(ξ2t | xt, pt)− E(ξ1t | xt, pt)]2.

Since we have identified E(ξ1t | xt, pt) and E(ξ2t | xt, pt), we identify σ2(xt, pt) from the above
display.

As for the unconditional variance, we use

Var(ξjt) = E(ξ2jt) = E
[
E(ξ2jt | xt, pt)

]
.

Moreover, E(ξ2jt | xt, pt) = σ2(xt, pt) + E(ξjt | xt, pt)2. Since we have identified σ2(xt, pt) and
E(ξjt | xt, pt), we identify E(ξ2jt | xt, pt) and hence Var(ξjt).
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Proposition 3. In addition to the conditions of Proposition 2, suppose Assumption 6 holds.
We then can identify Var(ξjt | xt, pt) and Var(ξjt).

The fact that we can identify both the conditional mean and variance of ξjt given (xt, pt)

is quite useful. By the conditional independence of the unobserved product characteristics
(Assumption 6(i)), we can write F (ξ1t, . . . , ξJt |xt, pt) =

∏J
j=1 F (ξ1t |xt, pt). If the conditional

distribution of ξjt given xt, pt belongs to the location scale family, the conditional mean and
variance will determine the distribution of F (ξt | xt, pt).

For two products j and k, if we assume F (ξjt | xt, pt) and F (ξkt | xt, pt) are “similar” in
the following sense, we indeed can nonparametrically identify F (ξjt | xt, pt).

Assumption 7. For any two products j and k, conditional on (xt, pt), ξjt and ξkt have
identical distribution, except for their conditional mean.

Let ξ̃jt = ξjt − E(ξjt | xt, pt). From eq. (18), we have

ξ̃2t − ξ̃1t = dt + E(ξ1t | xt, pt)− E(ξ2t | xt, pt).

The two random variables ξ̃2t and ξ̃1t are independent and identically distributed condi-
tional on xt, pt. We also identify the conditional distribution F (ξ̃2t − ξ̃1t | xt, pt) = F

(
dt +

E(ξ1t |xt, pt)−E(ξ2t |xt, pt) |xt, pt
)
because all dt, xt, pt and the conditional means are identi-

fied. The distribution function of F (ξ̃1t | xt, pt) or equivalently F (ξ̃2t | xt, pt) can be obtained
from the deconvolution process, when the distribution function F (ξ̃1t | xt, pt) is symmetric
at zero. Such a deconvolution is called “constrained deconvolution” in statistics (see e.g.
Belomestnyi, 2002; Belomestny, 2003). The constraint is that the individual CDFs F (ξ̃2t)

and F (ξ̃1t) are identical. Theorem 3 of Belomestnyi (2002) gives the sufficient conditions for
determining F (ξ̃1t | xt, pt) from F (ξ̃2t − ξ̃1t | xt, pt).

Proposition 4. In addition to the conditions of Proposition 3, suppose Assumption 7 holds.
Let ϕ(t;xt, pt) the characteristic function of ξjt conditional on xt, pt. Conditional on xt, pt,
if ξjt has absolute moment of order 2, |ϕ(t;xt, pt)| + |ϕ(t;xt, pt)

′| + |ϕ(t;xt, pt)
′′| 6= 0, and

F (ξ̃1t | xt, pt) is symmetric at zero, F (ξjt | xt, pt) and F (ξt | xt, pt) are identified.

Remark 3 (Heteroskedasticity). When we have 3 or more products, we only need to assume
that there are at least two products whose conditional variance Var(ξjt |xt, pt) is the same. To
see this, suppose there are 3 products, and Var(ξ1t | xt, pt) = Var(ξ2t | xt, pt). We have shown
how to identify Var(ξ1t | xt, pt). To identify Var(ξ3t | xt, pt), we simply use d31,t = ξ3t − ξ1t.
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By eq. (6), we have

d31,t = (1− β) log(s3t/s1t)− (x3t − x1t)′γ − (δ3 − δ1) + (1− β)α(p3t − p1t),

which is identified. By the same arguments, we have

E(d231,t | xt, pt) = Var(ξ3t | xt, pt) + Var(ξ1t | xt, pt) + [E(ξ3t | xt, pt)− E(ξ1t | xt, pt)]2.

We then identify Var(ξ3t | xt, pt) from this display. �

3.2.2 F (mt+1 |mt)

Note that mt = (xt, pt, ξt) and ξt is J × 1 vector. We are going to show the semiparametric
identification of F (mt+1 |mt) by restricting the relationship between ξt+1 and mt to be have
certain linear functional form.

Below we present two versions of identification results under two different assumptions 8
and 8′. Under either assumption, the conclusion will be F (mt+1 |mt) is identified. Depending
on the context of one’s empirical research, one may find one assumption is more appropriate
than the other. Roughly speaking, Assumption 8 is more appropriate if ξt can be understood
as design or product quality which can affect the price. Assumption 8′, however, is more
appropriate if ξt can be understood as the spending of advertisement that is determined
based on the product price.

Assumption 8. Assume that

(i) ξt+1 ⊥⊥ (xt, pt) | ξt,

(ii) xt+1 ⊥⊥ (ξt, ξt+1) | (xt, pt),

(iii) and pt+1 ⊥⊥ (xt, pt, ξt) | (xt+1, ξt+1).

This implies that the following decomposition

F (mt+1 |mt) = F (ξt+1 | ξt)F (xt+1 | xt, pt)F (pt+1 | xt+1, ξt+1).

(iv) Assume that F (ξt+1 | ξt) = F (ξ1,t+1 | ξ1t) · · ·F (ξJ,t+1 | ξJt), and ξj,t+1 and ξkt are uncor-
related for any two distinct products j and k,

(v) and
ξj,t+1 = φjξjt + νj,t+1,
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where νj,t+1 has mean zero and is independent of ξjt.

These assumptions can be interpreted as follows. At the beginning of period t+ 1, each
manufacturer j receives its ξj,t+1, which depends on ξjt. Meanwhile, xt+1 is generated based
only on xt and pt. Given ξj,t+1 and xt+1 in period t+ 1, manufacturers then determine their
prices for period t+ 1.

The component F (xt+1|xt, pt) is directly identified from data. The component F (pt+1|xt+1, ξt+1)

is identified, because we have previously identified the joint distribution below:

F (mt+1) = F (xt+1, pt+1)F (ξt+1 | xt+1, pt+1)

The last to be identified is F (ξt+1 | ξt).
To identify φj, we only need E(ξj,t+1ξjt). Using eq. (13) with η(mt) = ξ2t − ξ1t, we have

E

[
(yt + βwt+1)ξ2t − ξ1t − δ2ξ2t − ξ1t −

1

1− β
ξ2tξ2t − ξ1t +

β

1− β
ξ2,t+1ξ2t − ξ1t

]
= 0.

By Assumption 8.(iv), E(ξ2,t+1ξ1t) = 0. So we have the following formula for E(ξ2,t+1ξ2t):

E(ξ2,t+1ξ2t) =
E(ξ22t)− E(ξ2tξ1t)

β
− 1− β

β
E[(yt + βwt+1)dt].

By the conditional independence between ξ1t and ξ2t given xt, pt (Assumption 6(i)), we have

E(ξ2tξ1t) = E[E(ξ2t | xt, pt) E(ξ1t | xt, pt)].

Hence E(ξ2,t+1ξ2t) is identified. We can then identify E(ξ1tξ1,t+1) from E[(ξ2t − ξ1t)(ξ2,t+1 −
ξ1,t+1)] = E(dtdt+1). Previously, we have identified the distribution F (ξjt | xt, pt). Hence
the marginal distribution F (ξjt) is identified. Under the assumption that νt ⊥⊥ ξ2t, we can
identify the distribution F (νjt) by deconvolution.

Proposition 5. In addition to the conditions of Proposition 4, suppose Assumption 8 holds.
We can identify F (ξt+1 | ξt), henceforth F (mt+1 |mt).

Remark 4. Suppose we can decompose xt into two parts x1t and x2t, and that x2t is correlated
with ξt. We can decompose F (mt+1 |mt) with

F (mt+1 |mt) = F (ξt+1 | ξt)F (x1,t+1 | xt, pt)F (pt+1, x2,t+1 | x1,t+1, ξt+1).
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F (pt+1, x2,t+1 | x1,t+1, ξt+1) is not a problem since we have identified the joint distribution
F (mt+1). �

Assumption 8′. Assume that

(i) (xt+1, pt+1) ⊥⊥ ξt | (xt, pt),

(ii) ξt+1 ⊥⊥ (xt, pt) | (xt+1, pt+1, ξt).

This implies the following decomposition:

F (mt+1 |mt) = F (xt+1, pt+1 | xt, pt)F (ξt+1 | xt+1, pt+1, ξt).

(iii) Assume that

F (ξt+1 | xt+1, pt+1, ξt) =
J∏
j=1

F (ξj,t+1 | xj,t+1, pj,t+1, ξjt),

(iv) and
ξj,t+1 = φ0j + φ1jξjt + φ2jpj,t+1 + φ′3jxj,t+1 + νj,t+1,

where νj,t+1 has mean zero and is independent of of (ξjt, pj,t+1, xj,t+1).

These assumptions can be interpreted as follows. At the beginning of period t+ 1, each
manufacturer j produced their products for period t+1 and determined the price pt+1 based
on (xt, pt) in the previous year. Then they decide the spending of advertisement ξt+1 for this
year based on the new price and product features, and the spending last year.

View the equation of Assumption 8′.(iv) as a linear regression, we then have that φj =

(φ0j, φ1j, φ2j, φ
′
3j)
′ equals

φj =

E


1 ξjt pj,t+1 xj,t+1

ξjt ξ2jt ξjtpj,t+1 ξjtxj,t+1

pj,t+1 pj,t+1ξjt p2j,t+1 pj,t+1xj,t+1

xj,t+1 xj,t+1ξjt xj,t+1pj,t+1 x2j,t+1



−1

E


ξj,t+1

ξj,t+1ξjt

ξj,t+1pj,t+1

ξj,t+1xj,t+1


Because we have identified E(ξjt | xt, pt), we first identify E(ξjt | pjt) = E[E(ξjt | pjt, xjt) | pjt],
then identify E(ξjtpjt) = E[E(ξjt |pjt)pjt]. For the same reason, we can identify E(ξjtxjt). We
have also shown the identification of E(ξj,t+1ξjt). We only need to show the identification of
E(ξjtpj,t+1) and E(ξjtxj,t+1).
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Using eq. (13) with η(mt) = pj,t+1, we have

E

[
(yt + βwt+1)pj,t+1 − δ2pj,t+1 −

1

1− β
ξ2tpj,t+1 +

β

1− β
ξ2,t+1pj,t+1

]
= 0.

Hence

E(ξ2tpj,t+1) = (1− β) E((yt + βwt+1)pj,t+1)− (1− β)δ2 E(pj,t+1) + β E(ξ2,t+1pj,t+1),

is identified. Letting η(mt) = xj,t+1, we can also identify E(ξ2txj,t+1). Hence φj is identified.
We can also nonparametrically identify the distribution of F (νt) by deconvolution, because
we can identify the distribution of φ0j + φ1jξjt + φ2jpj,t+1 + φ′3jxj,t+1. To see this, we have

F (xt+1, pt+1, ξt | xt, pt) = F (xt+1, pt+1 | xt, pt)F (ξt | xt, pt)

by part (i) of Assumption 8′. Now multiply both sides by F (xt, pt), we have

F (xt+1, pt+1, xt, pt, ξt) = F (xt+1, pt+1, xt, pt)F (ξt | xt, pt).

Both distribution functions in the right-hand-side have been identified, hence we can identify
F (xt+1, pt+1, xt, pt, ξt). The marginal distribution F (xt+1, pt+1, ξt) can be obtained by inte-
grating out xt, pt. As a known function of (xt+1, pt+1, ξt), the distribution of φ0j + φ1jξjt +

φ2jpj,t+1 + φ′3jxj,t+1 is identified. Moreover, vj,t+1 ⊥⊥ (ξjt, xt+1, pt+1) and we know the distri-
bution of ξj,t+1, we can identify F (νjt).

Proposition 5′. In addition to the conditions of Proposition 4, suppose Assumption 8′ holds.
We can identify F (ξt+1 | xt+1, pt+1, ξt), henceforth F (mt+1 |mt).

Remark 5 (Non-terminal choices). Up to now, we have assumed that a consumer’s choice is
terminal, e.g. “buy one car then exit the market.” We can extend the analysis to allow for
non-terminal choice, e.g. “lease one car.” For simplicity, assume that there is a third product
“lease one car”. Let the flow utility of the third product be

ui3t = x′3tγ − αp3t + δ3 + ξ3t + εi3t.

By buying product 3, the consumer remains on the market. Hence the choice specific value
function v3t is as follows,

v3t = x′3tγ − αp3t + δ3 + ξ3t + β E(V̄t+1(mt+1) |mt).
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Recall that v0t = β E(V̄t+1(mt+1) |mt). We then have

ln(s3t/s0t) = v3t − v0t = x′3tγ − αp3t + δ3 + ξ3t,

which is the standard regression model in the BLP model. It is well known that one can
identify ξ3t itself in general (Berry and Haile, 2014). Once one has identified ξ3t, the joint
distribution F (p3t, ξ3t) and the autocorrelation corr(ξ3t, ξ3,t+1) are identified. So non-terminal
choice does not break our arguments.

It should be remarked that the main reason why this works is that the current non-
terminal choice, “lease one car” today, does not affect the future market state mt+1. Hence
the expected future payoff E(V̄t+1(mt+1) | mt) does not vary with respect to choice. As a
result, the payoff difference between the choice of “lease one car” and the choice of “outside
good” is simply the flow utility difference. In most dynamic discrete choice with individual
level data, this does not hold because in most applications, the current choice affects the
transition of state variables; hence the expected future payoff is also alternative specific. �

Remark 6 (Changing choice set). It is important to remark that our identification (above)
and estimation arguments (below) rely only on the need for the same products to exist in
two consecutive periods. Of course for estimation, one will need multiple markets when there
are only two periods of data available. Consider one example: in period 1 and 2, there are
two products a and b, and in period 3 and 4, there are two products b and c. This example
has both entry (product c) and exit (product a). In each period, we assume we have enough
number of markets. To identify/estimate the preference parameters, we can use all four
periods by taking account of the log market share ratio between b and a for periods 1 and
2, b and c for periods 3 and 4. To identify/estimate the product specific correlation between
price and unobserved product characteristic and the serial correlation of unobserved product
characteristic, we can use periods 1 and 2 for product a, periods 1 to 4 for product b, and
periods 3 and 4 for product c. �

4 Estimation

For simplicity of exposition, we focus on the case that the data are from one single market,
e.g. the US, over T consecutive periods. Both numerical studies and empirical application
show the case with multiple markets. Below, we first describe the estimation routine for
parameters and then describe the variance estimation. The estimation routine involves only
IV and linear regressions. We will then discuss the assumptions made in the paper, followed
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by comments about data requirements in practice. However, for applied marketers who are
only interested in understanding how to implement our procedure, we include Table 1 which
concisely presents the six ordinary least square (OLS) or IV regressions that are required to
estimate the model primitives.

4.1 Preference

4.1.1 Preference for the observed characteristics and price

Step 1 : Estimate (γ̃′ ≡ γ′/(1− β), α) using the following moment equation:

E(g1,(j,k),t(θ1o)) = 0, for 0 < j < k ≤ J,

g1,(j,k),t(θ1) = z(j,k),t

[
ln

(
sjt
skt

)
− (xjt − xkt)′γ̃ + α(pjt − pkt)−

δj − δk
1− β

]
.

The vector z(j,k),t is a vector of IV that are uncorrelated with (ξjt − ξkt). The moment
equation follows from eq. (7) in identification.

In practice, one can estimate γ̃ and α by an IV regression of ln(sjt/skt) on (xjt − xkt)
and (pjt − pkt) with IV z(j,k),t using data t = 1, . . . , T and a set of selected pairs of products
(j, k). In real data applications, we found that it is desirable to divide the products into
a few clusters based on their prices, e.g. run a k-means clustering by price, and consider
only inter-cluster pairs of products. The underlying reason is that price difference pjt − pkt
is usually endogenous. If two products are close in their price, e.g. they come from the same
cluster, the instrument z(j,k),t is likely to be weak.

Letting ˆ̃γ and α̂ be the obtained estimates, define

yjt = ln

(
sjt
s0t

)
− x′jtγ̃ + αpjt and wjt = x′jtγ̃ − αpjt − ln sjt,

and their estimates

ŷjt = ln

(
sjt
s0t

)
− x′jt ˆ̃γ + α̂pjt and ŵjt = x′jt ˆ̃γ − α̂pjt − ln sjt.

4.1.2 Discount factor

Step 2 : Estimate β using

E(g2,(j,0),t(θ1o)) = 0, for 0 < j < J,
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Table 1: Estimation Recipe

Step Dependent Variable Independent Variables1 IV

1 ln(sjt/skt) (xjt − xkt) −(pjt − pkt) z(j,k),t
2

γ̃ α

2 ŷjt‡ −ŵj,t+1‡ xjt,IV
3

β

3 (ŷjt + β̂ŵj,t+1) 14 OLS
δj

4 (1− β̂)(ŷjt + β̂ŵj,t+1) (p̃jt − β̂p̃j,t+1) zρ,jt
5

ρ̃j

5 d̂2(j,k),t/2 + ˆ̃ρj ˆ̃ρkp̃jtp̃kt ‡ 1 OLS
σ2

6 d̂2(j,k),t/(2β̂σ̂
2) − [(1 − β̂)/β̂](ŷjt +

β̂ŵj,t+1)d̂(j,k),t/σ̂
2

1 OLS

φj

‡ Variable Definitions:

1. ŷjt = ln
(
sjt
s0t

)
− x′jt ˆ̃γ + α̂pjt

2. ŵjt = x′jt ˆ̃γ − α̂pjt − ln sjt

3. d̂(j,k),t = (1− β̂)
[
ln
(
sjt
skt

)
− (xjt − xkt)′ ˆ̃γ + α̂(pjt − pkt)− δ̂j−δ̂k

1−β̂

]
1 The (IV) regression coefficient estimates associated with independent variables
are estimates of the parameters underneath the independent variables.

2 The IV z(j,k),t is uncorrelated with (ξjt − ξkt).
3 The IV xjt,IV is uncorrelated with ξjt and ξj,t+1.
4 This indicates regression with intercept term only.
5 zρ,jt(pjt) is a vector of functions of pjt, e.g. zρ,jt(pjt) = (pjt, p

2
jt, . . . , p

K
jt)
′ for

some integer K ≥ 1, or eq. (22).
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where
g2,(j,0),t(θ1) = xjt,IV (yjt + βwj,t+1 − δj).

The above moment equation follows from eq. (14) in identification. In practice, to estimate
β, one simply runs an IV regression of ŷjt on −ŵj,t+1 using xjt,IV as the IV for ŵj,t+1 using
data t = 1, . . . , T − 1 and j = 1, . . . , J .

4.1.3 Expected unobserved product fixed effect

Step 3 : Estimate δj using
E(yjt + βwj,t+1 − δj) = 0,

which corresponds to the above moment equation when xjt,IV = 1. In practice, one runs
a linear regression for each j of (ŷjt + β̂ŵj,t+1) on a constant of one using data from t =

1, . . . , T − 1.
Define d̂(j,k),t, which will be used in the estimation of the other parameters,

d̂(j,k),t = (1− β̂)

[
ln

(
sjt
skt

)
− (xjt − xkt)′ ˆ̃γ + α̂(pjt − pkt)−

δ̂j − δ̂k
1− β̂

]
.

4.2 F (mt) and F (mt+1 |mt)

The full nonparametric estimation of F (mt) and F (mt+1 |mt) would be unreliable in a small
sample, which is the case in most applications using market level data. We consider the
assumption of normal distribution to simplify the problem while keeping the interesting
dynamics and joint dependence among mt. For exposition simplicity, we assume that the
distribution F (xt, pt) and F (xt+1 | xt, pt) are known.

Assumption 9. (i) xt ⊥⊥ ξt | pt and ξt+1 ⊥⊥ pt | pt+1.

(ii) Assume the necessary conditional independence so that

F (ξ1t, . . . , ξJt | p1t, . . . , pJt) = F (ξ1t | p1t) · · ·F (ξJt | pJt).

In particular, this implies ξjt ⊥⊥ pkt | pjt for j 6= k.

(iii) For each product j, assume that (pjt, ξjt) follows bivariate normal distribution:(
pjt

ξjt

)
∼ N

((
µpjt

0

)
,

(
σ2
pjt ρjσσpjt

σ2

))
.
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Let
p̃jt = (pjt − µpjt)/σpjt,

be the standardised price. The bivariate normal distribution implies that

E(ξjt | pjt) = ρjσp̃jt.

This also implies that νj,t+1 in the AR(1) process ξj,t+1 = φjξjt+νj,t+1 follows a normal
distribution.

Given this assumption, the primary interests are to estimate σ2 = Var(ξjt), ρj = corr(pjt, ξjt),
and φj. However, it is easier to estimate ρ̃j = ρjσ as a whole parameter. Let θ2 =

(ρ̃1, . . . , ρ̃J , σ, φ1, . . . , φJ)′ and θ = (θ′1, θ
′
2)
′.

4.2.1 Correlation between product price and unobserved product characteristic

Step 4 : estimate ρ̃j ≡ ρjσ using

E(g3,j,t(θo)) = 0, for 0 < j ≤ J,

where
g3,j,t(θ) = zρ,jt(pjt)rjt, (21)

rjt = (1− β)(yjt + βwj,t+1)− (1− β)δj − ρ̃j(p̃jt − βp̃j,t+1)

Here zρ,jt(pjt) is a vector of functions of pjt, e.g. zρ,jt(pjt) = (pjt, p
2
jt, . . . , p

K
jt)
′ for some integer

K ≥ 1. We discuss the optimal choice of zρ,jt(pjt) below. In practice, one can estimate ρ̃j
for each j by an IV regression of (1− β̂)(ŷjt + β̂ŵj,t+1) on (p̃jt − β̂p̃j,t+1) with IV zρ,jt.

It should be remarked that in practice ρ̃j is more difficult to estimate than θ1 = (α, β, γ′, δ′)′

for three reasons. First, to estimate ρ̃j, one has only T − 1 number of observations. Second,
the sampling error in estimating θ1 impacts the estimation of ρ̃j. Third, the variance of ρ̃j
is proportional to the inverse of the variance of (p̃jt− βp̃j,t+1). When price is persistent over
time, the variance of (p̃jt − βp̃j,t+1) is small.

The above moment condition was derived from the following arguments. We have

E
[
(1− β)(yjt + βwj,t+1)− (1− β)δj − ξjt + βξj,t+1

∣∣ pjt] = 0,

from eq. (20) in identification. By the bivariate normal assumption and the assumption
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ξj,t+1 ⊥⊥ pjt | pj,t+1, we have
E(ξjt | pjt) = ρjσp̃jt = ρ̃j p̃jt,

E(ξj,t+1 | pjt) = E(E(ξj,t+1 | pj,t+1) | pjt) = E(ρjσp̃j,t+1 | pjt) = E(ρ̃j p̃j,t+1 | pjt).

Hence E(rjt | pjt) = 0. Given the conditional moment equation, it is well known (see Newey,
1993) that the optimal instrument is

z(pjt) =
p̃jt − β E(p̃j,t+1 | pjt)

Σj(pjt)
, (22)

where
Σj(pjt) = E(r2jt | pjt).

In practice, the optimal instrument can be replaced by its sample analog. First, E(p̃j,t+1 |pjt)
can be replaced by the fitted value of a nonparametric regression or polynomial regression
of p̃j,t+1 on pjt depending on the sample size. To estimate Σj(pjt), run a linear regression of
(1− β̂)(ŷjt+ β̂ŵj,t+1) on (p̃jt− β̂p̃j,t+1) for each product j. Denote r̂jt the residuals from such
a linear regression. Then Σj(pjt) can be estimated by the fitted value of a nonparametric
regression or polynomial regression of r̂2jt on pjt for each product j. Note, if one is willing to
accept that E(r2jt | pjt) = E(r2jt), Σj(pjt) can then be estimated by the sample variance of r̂jt.

4.2.2 Variance of unobserved product characteristic

Step 5 : estimate σ using

E(g4,(j,k),t(θo)) = 0, for 0 < j < k ≤ J,

g4,(j,k),t(θ) = d2(j,k),t/2 + ρ̃j ρ̃kp̃jtp̃kt − σ2.

In practice, one can run a linear regression of d̂2(j,k),t/2 + ˆ̃ρj ˆ̃ρkp̃jtp̃kt on a constant one using
data t = 1, . . . , T and all selected pair of products. Knowing ρ̃j = ρjσ and σ, we know the
joint distribution of (ξjt, pjt).

The above moment condition holds because

E
(
d2(j,k),t

)
= E

[
(ξjt − ξkt)2

]
= 2σ2 − 2 E(ξjtξkt)

= 2σ2 − 2 E[E(ξjt | pjt) E(ξkt | pkt)]

= 2σ2 − 2ρ̃j ρ̃k E(p̃jtp̃kt).
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From above, we also have
E
(
d2(j,k),t

)
2σ2

= 1− E(ξjtξkt)

σ2
. (23)

4.2.3 Serial correlation of unobserved product characteristic

Step 6 : estimate φj using

E(g5,(j,k),t(θo)) = 0, for k 6= j,

g5,(j,k),t(θ) =
d2(j,k),t
2βσ2

− 1− β
β

(yjt + βwj,t+1)
d(j,k),t
σ2

− φj.

In practice, one can run a linear regression for each j of d̂2(j,k),t/(2β̂σ̂
2) − [(1 − β̂)/β̂](ŷjt +

β̂ŵj,t+1)d̂(j,k),t/σ̂
2 on a constant one using data t = 1, . . . , T − 1 and the selected pairs of

products.
The above moment equation follows from

φj = cov(ξj,t+1, ξjt)/σ
2 = E(ξj,t+1ξjt)/σ

2.

We have

E(ξj,t+1ξjt) =
σ2 − E(ξjtξkt)

β
− 1− β

β
E
[
(yjt + βwj,t+1)d(j,k),t

]
, for k 6= j.

By eq. (23), we have

φj =
1

β

E
(
d2(j,k),t

)
2σ2

− 1− β
β

E

(
(yjt + βwj,t+1)

d(j,k),t
σ2

)
, for k 6= j.

Knowing φj and σ2, we know the distributional properties of the AR(1) process of ξjt.

4.3 Asymptotic Variance

To derive the asymptotic variance, let gt(θ) be a vector of functions from stacking g1,(j,k),t(θ1),
g2,(j,0),t(θ1), g3,j,t(θ), g4,(j,k),t(θ), and g5,(j,k),t(θ). Then the estimation problem can be viewed
as a generalized method of moments (GMM) problem with moment equation E(gt(θ)) = 0.
Asymptotically, the above sequential estimator gives the same estimates as minimizing a
GMM objective function using moment functions gt(θ) and certain weighting matrix W .
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Below we present the asymptotic variance of θ̂. By standard GMM results, the asymptotic
variance is

(G′WG)−1G′WΩW ′G(G′WG)−1,

where W is a weighting matrix such that G′WG is non-singular,

G = E

(
∂gt(θ)

∂θ

)
, and Ω = E(gtg

′
t).

We did not write the usual optimal GMM variance matrix (G′Ω−1G)−1 because Ω here might
be singular when some moment functions are collinear. Taking moment function g1,(j,k),t(θ1)
for example, if z(j,k),t = z(k,j),t, g1,(j,k),t(θ1) = −g1,(k,j),t(θ1).

Without loss of generality, let gt(θ)′ = (gat(θ)
′, gbt(θ)

′) and

Ω =

(
E(gatg

′
at) E(gatg

′
bt)

E(gbtg
′
at) E(gbtg

′
bt)

)
=

(
Ωa Ωab

Ωba Ωb

)
.

Assume that Ωa is full-rank, and rank(Ω) = rank(Ωa). That is gbt is redundant given the
linearly independent moment functions gat. The covariance matrix Ω is singular here. By
letting

W =

(
Ω−1a 0

0 0

)
,

one can show that

(G′WG)−1G′WΩW ′G(G′WG)−1 = (G′aΩ
−1
a Ga)

−1,

where Ga = E(∂gat(θ)/∂θ), which is the optimal covariance matrix using only the linearly
independent moment conditions gat(θ).

The exact form of ∂gt(θ)/∂θ depends on the selected pairs of products (j, k) used in
the estimation. §4 contains the formulas for ∂g1,(j,k),t(θ1)/∂θ, ∂g2,(j,0),t(θ1)/∂θ, ∂g3,j,t(θ)/∂θ,
∂g4,(j,k),t(θ)/∂θ, and ∂g5,(j,k),t(θ)/∂θ, which are useful calculating the exact variance formulas.

Remark 7 (Estimating Standard Errors in Practice). Even though we present a sequential
estimator above, one should not use the standard errors reported along these sequential steps.
This is because these standard errors do not take into account the sampling error from the
estimation in the earlier steps. One should instead use the asymptotic variance formulas
that are derived assuming a joint parametric GMM estimation process. To evaluate these
formulas, one plugs in the parameters estimates from either the sequential or joint procedure,
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because they are both consistent. Thus, to summarize, the estimation of parameters is carried
out sequentially, but the estimation of standard errors is done jointly.

4.4 Summary of Assumptions

Given that we have presented numerous assumptions for identification and estimation of
parameters, we provide a summary of them in Table 13 of the online appendix highlighting
the settings where the assumptions are consistent and inconsistent. There are a few points
that deserve further explanation.

First, we note that Assumptions 1 to 4 are standard in the dynamic structural models
literature, similar assumptions are detailed in a number of papers (Rust, 1994; Hotz and
Miller, 1993; Bajari, Benkard, and Levin, 2007). For the estimation of preference parameters,
only Assumptions 1 to 3 are required.

Assumptions 5 to 9 on unobservable state variables (product-period specific) are mostly
new since most prior research does not consider a persistent unobservable state.6 These are
required for identification of the observable and unobservable state evolution process.

Third, Assumption 9 is only required to make parametric estimation possible due to data
limitations encountered in practice. There, we specify a bivariate normal distribution, which
characterizes the contemporaneous dependence between price and the unobservable product
characteristics. We also specify that unobservable characteristic for a product j only depends
on its price and not the price of competing products k 6= j.

Finally, many of the assumptions are made on conditional distributions or moments of
conditional distributions. Typically, the conditioning variables are some combination of
observables, xjt and pjt. Thus, the dimension of observable product characteristics xjt and
their variation play a significant role in the assumption. In situations where we have many
product characteristics or when they span a greater support, the assumptions that restrict
conditional moments could be viewed as less restrictive. Because our method does not have
to worry about the curse of dimensionality from increasing the dimension of xjt, one can
make these assumptions less restrictive by adding more observable product characteristics
if data permitted. It is easy to understand from the following example. Suppose there
are two products, and they are dishes served by two restaurants. Let ξ1t and ξ2t be the
unobserved taste of the two dishes. Assumption 6.(ii) in the paper says that Var(ξ1t |xt, pt) =

Var(ξ2t |xt, pt). Without any conditioning variables, Assumption 6.(ii) will require Var(ξ1t) =

Var(ξ2t), which is strong. However, if the conditioning variables include food ingredients,
6The closest paper is that of Norets (2009), who models a serially correlated idiosyncratic shock.
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recipes, tenure of chef etc., it is reasonable to assume Assumption 6.(ii).
Another point is worth noting on the conditional moment restrictions. The larger the

support of the conditioning variables, (xt, pt), the less restrictive the assumptions are. If, on
the other hand all product characteristics are binary and prices show no variation, then the
restrictions become stronger. For example, if we have an X variable that indicates whether
the smartphone supports music or not (binary), that would be more restrictive. If on the
other hand, the music variable actually indicated different support for types of formats (e.g.
MP3, WAV, OGG etc.), then we can view it as being less restrictive.

4.5 Data Requirements for Estimation

We now discuss the data requirements for employing our estimator. For consumer parameters
α, β, γ, it uses the data on all products J across marketsM and time periods T . For product
specific parameters (δj fixed effect and evolution of state space parameters), the length of the
panel T and markets M is relevant. With Assumption 9 (Normal distribution), estimation
reduces to a linear regression. Thus, the realistic sample size would be comparable to the
sample size that the researcher would use for a linear regression.

With regard to the non-parametric estimation within certain steps, there are only two
instances. They are E(p̃j,t+1 | pjt) and E(r2jt | pjt) in the construction of the optimal IV for
estimation step 4.

First, one does not have to use the optimal IV. Instead, one can use a sequence of poly-
nomials of price as the IV, and the estimator is still consistent though inefficient. Similarly,
even if the nonparametric estimates Ê(p̃j,t+1 | pjt) and Ê(r2jt | pjt) of the conditional expec-
tations have large estimation error, the constructed optimal IV is still a valid IV (because
the nonparametric estimates will still be a function of price pjt), and hence the estimation
is valid, though it’s no longer efficient.

Second, the nonparametric regressions for estimating E(p̃j,t+1 | pjt) and E(r2jt | pjt) involve
only one single regressor, pjt. Hence it does not require much more data than the linear
regression of p̃j,t+1 on pjt or the linear regression of r2jt on pjt. It is known that if one used
a linear regression to estimate the conditional expectation, the mean-squared-error (MSE)
is of order O(n−1), and the MSE of nonparametric regression has the order of O(n−4/5).
In other words, if one believes 20 number of observations is sufficient to estimate the linear
regression of p̃j,t+1 on pjt, then 25 number of observations will be enough for its nonparametric
regression counterpart.
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5 Counterfactual Implementation

The estimation of consumer preference parameters did not require the direct computation
of the value function nor require an assumption about how consumers form future beliefs.
However, in order to run any type of counterfactual analysis, the researcher is required to
compute the ex-ante value function based on the estimated parameters.

In addition to the stationary Assumption 4, any counterfactual analysis requires that:

(i) Consumer preference: preference parameters do not change under the counterfactual;

(ii) Consumer expectations : expectations are specified (e.g. rational expectations or perfect
foresight);

(iii) State evolution: determine how the state variables evolve. The typical assumption is
that observable states evolve in the same manner as the evolution process present in
data, although the researcher is free to specify a different evolution process, and then
compute counterfactual outcomes for that case.

As long as we have the above, we can perform a counterfactual analysis by simulating indi-
vidual consumer choices under the counterfactual setting due to the fact that primitives for
the agent and the state evolution parameters are identified. All that is required are assump-
tions on consumer expectations and what beliefs consumers have about the evolution of the
state space (e.g. consumer track the evolution of each individual product’s characteristics,
the conditional value function of each good, or a market statistic such as the inclusive value).
As a result, we are able to employ our model primitives to examine the impact of a change
of any of the observed characteristics in the flow utilities, a price change, exit of a product,
early entry of an observed product, as well as policies that change consumer expectations.7

In order to implement any counterfactual exercises and recover the impact of market
share or revenues, we must specify ξ1t. With this, all other ξjt are identified because ξjt −
ξ1t is identified (c.f. eq. (18)). One such approach is to simulate ξ1t from its estimated

7In stationary models like ours, Arcidiacono and Miller (2018) determine that a counterfactual policy
change induced by an innovation to the state transition is identified as long as the true utility value associated
with the Arcidiacono and Miller (2011) representation of the value function is known. One computationally
light method which allows for the recovering of counterfactual outcomes where state transitions change is
with the use of the inclusive value sufficiency assumption. In this method, both the change in flow utilities
and state transitions are accounted for, with the latter by simply re-estimating the AR(1) process for the
counterfactual inclusive value. For exit models we are able to simulate forward the unobserved state variables
because again we identify and estimate its transition process.
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AR(1) process and determine the ex-ante value function for each draw to obtain a range of
counterfactual results.8

6 Empirical Application

We now examine an empirical setting in which we use our method to obtain estimates of
preferences as well as other market or product-level factors including the correlation between
price and the unobservable product characteristic, and serial correlation in the unobservable
product characteristics. We focus on the market for mobile phone hardware in the US during
the period June 2007–May 2008 (12 months). For this setting, we use data from the top 10
states across the United States, with each of the states serving as markets. The top 6 brands
overall are chosen as separate products, and all other brands are included in a generic Other
brand choice.

6.1 Data

We have a number of product features at the brand level for each of these markets. The
features vary both temporally as well as across markets. These product characteristics are
averaged at the brand choice level across products within the brand for each market and
period. More specifically, variables are generated using a weighted average based on sales in
each period.

Table 2 shows the basic summary statistics of the market by showing the mean of prod-
uct characteristics for each brand in the sample.9 The top brands in the market include
Apple (iPhone), RIM (Blackberry), Samsung, LG, Nokia, Motorola and Others. This mar-
ket displays differentiation among the brands with the first two brands arguably represent
smartphones whereas the rest were primarily focused on feature phones (or dumbphones)
during this time frame. The “x” variables are observable product characteristics, and include
indicator variables for the presence of Bluetooth support (xblue), GPS capability (xgps),
presence of a physical qwerty keyboard (xqwerty), whether music capability was supported
(xmusic), and Wi-Fi support (xwifi). The two numeric variables characterized the weight of
the device in ounces (xweight), and the talktime in hours (xtalktime). Typical battery life
was measured in hours of talktime, which does not seem to be the case at present. Recall also

8In the online appendix §3 we present a solution for solving the value function that does not require value
function iteration, the discretization of state variables, nor the use of interpolation, and an alternative way
to determine ξ1t.

9Due to a non-disclosure agreement, we cannot report brand-level price and market share data.
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Table 2: Summary Statistics for Mobile Phone Data: Mean of Characteristics

Brand price xblue xgps xweight xqwerty xmusic xwifi xtalktime share n of obs

Other 0.34 0.29 3.36 0.16 0.24 0.04 4.41 120
Moto 0.57 0.44 3.42 0.03 0.35 0.00 4.83 120
Samsung 0.61 0.35 2.98 0.10 0.43 0.01 4.31 120
LG 0.68 0.68 3.50 0.18 0.55 0.00 4.05 120
Nokia 0.41 0.09 3.28 0.01 0.35 0.00 4.33 120
Blackberry 0.87 0.43 3.59 0.87 0.73 0.03 4.07 119
Apple 1.00 0.04 4.50 0.00 1.00 1.00 7.87 111
All 131.86 0.64 0.34 3.50 0.19 0.52 0.15 4.80 18.9

that most phones at the time were feature phones (not smartphones), and typical phones
only had a numeric keypad with 10 buttons, rather than the full QWERTY keyboard.

The price shows significant variation, with very low-priced as well as high-priced models
over $400. A majority of the phones at the time did have Bluetooth support, but not GPS
support. QWERTY keyboards were not as prevalent, with the exception of Blackberry, which
was well known for this feature. About 50% of the phones had some degree of music support,
but some of this support was tied in to carrier-based music services (like downloading tones)
which were quite expensive, since customers of a carrier like Verizon or AT&T were seen
as a captive market. Surprisingly, except for iPhone, the majority of the phones did not
support Wi-Fi, a feature which is taken for granted in the present market. Phones weighed
an average of 350 ounces (100 grams), and lasted for about 5 hours of talktime before the
battery was depleted.

The correlation between the product characteristics is detailed in Table 3. Here, we ex-
amine correlation in features for products (brands) across markets and time periods. We find
that product characteristics are positively correlated, with the following exceptions. Weight
and GPS seem to be negatively correlated, which is somewhat surprising since we might
expect them to be positive. However, we observe that some larger phones were already high-
priced and left out the GPS feature. Talktime (or battery life) is also negatively correlated
with GPS and the presence of a QWERTY keyboard.

6.2 Model

We model J products in each market and time period. Consumers are indexed by i, products
by j, markets (States) by ` and periods by t. The period utility for a consumer i making a
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Table 3: Correlation between Product Characteristics for Mobile Phone Data

xblue xgps xweight xqwerty xmusic xwifi xtalktime

xblue 1.000 0.093 0.661 0.396 0.901 0.563 0.494
xgps − 1.000 −0.157 0.303 −0.068 −0.437 −0.516
xweight − − 1.000 0.080 0.707 0.783 0.738
xqwerty − − − 1.000 0.315 −0.226 −0.336
xmusic − − − − 1.000 0.680 0.591
xwifi − − − − − 1.000 0.947
xtalktime − − − − − − 1.000

purchase of product j in market ` at time t is:

uij`t = δj + x′j`tγ + αpj`t + ξj`t + εij`t.

After purchasing, he receives flow utility δj+x′j`tγ+ξj`t+εij`τ in each following period τ > t.
The “no purchase” option is modeled as receiving a period utility of 0, with an option to
continue in the market as in §2. Consumers who purchase exit the market, and thus can be
modeled as receiving the discounted stream of future utilities immediately upon purchase.
Thus they obtain in expectation (δj + γXj`t + ξj`t)/(1− β) + αPj`t. Consumers who do not
purchase continue in the market and receive the expected discounted value of waiting or
β E(V̄ (mt+1) |mt).

The estimation follows the multi-step procedure described in §4 above. The standard
error and t-values were obtained from the GMM variance formula.

6.3 Results

The results of the estimation are detailed in Table 4. There are a few noteworthy observations
regarding the first step IV regression results. We exclude price and music as potentially
endogenous variables and use the other product characteristics as instruments in the IV
regression. We also use additional instruments obtained as the mean product characteristics
and price for comparison products in other markets. These comparison products are chosen
by a clustering process, where Apple and RIM (Blackberry) are grouped in one cluster, which
could be interpreted as the smartphone cluster, other well regarded brands of feature phones
at the time are grouped in a second cluster (Motorola, Samsung, LG and Nokia), and finally
all other brands are grouped in a third cluster. For a product, the products in other clusters
serve as comparison products in order to provide a sufficient degree of variation.
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Table 4: Estimation Results of Mobile Phone Market

Parameter Estimate Std. Error t Value F Value1

Step 1: preference, γ/(1− β)

price -0.01 0.001 -19.2 13.5
xblue 5.37 0.387 13.9
xgps 0.79 0.213 3.7

xweight -0.37 0.095 -3.9
xqwerty 1.03 0.169 6.1
xmusic -8.63 0.454 -19.0 9.3
xwifi 3.37 0.379 8.9

xtalktime 0.29 0.061 4.7

Step 2: discount factor β 0.79 0.006 122.1 9.5

Step 3: fixed effect

δMoto -0.36 0.043 -8.4
δSamsung -0.43 0.042 -10.2

δLG -0.29 0.039 -7.5
δNokia -0.38 0.053 -7.2

δBlackberry -0.55 0.043 -12.9
δApple -0.03 0.050 -0.5
δOther -0.34 0.038 -8.8

Step 4: correlation between price
and unobserved product
characteristics

ρMoto 0.27 0.025 10.6 75.6
ρSamsung 0.21 0.021 10.0 75.5

ρLG 0.38 0.034 11.0 71.5
ρNokia 0.28 0.025 11.2 88.7

ρBlackberry 0.53 0.050 10.6 72.1
ρApple 0.89 0.079 11.2 49.6
ρOther 0.25 0.023 10.8 61.4

Step 5: std. error of ξjt σ 0.29 0.003 93.2

Step 6: autocorrelation of ξjt

φMoto 0.63 0.041 15.3
φSamsung 0.96 0.041 23.4

φLG 0.85 0.049 17.2
φNokia 0.57 0.040 14.2

φBlackberry -0.44 0.089 -5.0
φApple 0.32 0.145 2.2
φOther 0.46 0.015 30.8

1 “F value” is the first stage F test statistic on excluded IV.
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First, we observe that the price and all the product characteristics are significant in the
regression. The relative sales response to product characteristics is positive for Bluetooth
and GPS, but negative for weight and music. Wi-Fi capabilities as well as talk time (which
measures effective battery life) are also positive as we might expect. It might seem that the
result about music is somewhat counter-intuitive; however, there are two contextual reasons
that help understand this effect. First, recall that in 2007, music capabilities of most phones
were very rudimentary, and they typically did not support well known MP3 music format,
and capabilities of streaming with Spotify or other Internet services were also unavailable.
Second, many consumers who cared about music owned iPods or other dedicated music
(MP3) players, and phones were really seen as a rather poor substitute for these until the
iPhone became popular over the years. We tested for weak instruments and did not find this
in our setting.

The coefficients of product characteristics are scaled by 1/(1 − β). Thus, the first step
results in Table 4 do not directly depend on β. However, obtaining the appropriately scaled
coefficients of the product characteristics requires us to either assume or estimate β.

Step 2 of Table 4 provides the estimate of β, which is the (negative of) coefficient of wt+1

in step 2 detailed in §4. We find that β̂ ≈ 0.8, and it is highly significant. For our monthly
data, β = 0.8 implies that after 24 months, which is the typical length of cell phone contract
in the US, the cell phone has no additional utility, β24 = 0.824 = 0.0047, for consumers.

Having obtained the discount factor, we proceed with estimating the product fixed effects,
which are detailed in §4. The fixed effects are detailed in step 3 of Table 4.

We find that the most negative fixed effect is for Blackberry (RIM), followed by Samsung
and the other feature phone manufacturers. Apple has the highest fixed effect of all firms.

Finally, we examine the remaining set of all parameter estimates in Steps 4-6 of Table 4.
We have previously described the product characteristics, discount factor as well as the fixed
effects for the products. We now focus attention on the dynamics of the state transition
process, as detailed in §2. The correlation between the product price and the structural
error (or unobserved product characteristic) is captured by ρj for product j. We find that all
these correlations are positive, and Apple has the highest such correlation. One interpretation
is that for Apple, there is a stronger connection between its price and unobserved product
characteristics, relative to other manufacturers, which is consistent with the recognition
it received for designing the iPhone to be unique and highly differentiated. The weakest
correlation is observed for Samsung and Other (generic) feature phones.

Next, we find the variance of the unobservable product characteristic ξjt to be small but
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significant. This partially explains why our estimates are significant. This unobservable
characteristic evolves differently across the products. We note a strong serial correlation
for Samsung and LG, indicating their relative stability over time, whereas in the case of
Blackberry, we observe a negative value, consistent with new designs being released during
this time period.

We also note that in Appendix A.3 are the empirical results pertaining to a nested logit
structure.

6.4 Counterfactual

Next, we look to analyze the impact a number of observable product characteristics have on
sale. Specifically, we examine the sales (market share) impact when xwifi, xgps and xblue
are individually set to 0 for all products. In order to determine the corresponding impact
for each phone, we use the method proposed in §5 of the online appendix. For completeness
we discuss two important details associated with the implementation. First, in the series
approximation of the outside market share in eq. (5), we use the quadratic polynomial of vcjt
for each j = 1, . . . , 7 and the inclusive value ln(

∑7
j=1 exp(vcjt)). The inclusive value is used

to capture the possible interaction between vc1t, . . . , vcJt. Second, we use eq. (6)-(7) from the
online appendix to recover ξApple,t, because of its high correlation (0.89) between its price
and ξApple,t. In particular, we let

ξ̂1t =

(
1− β̂

1− β̂φ̂1

)[
ŷ1t − δ̂1 + β̂ E(ŵ1,t+1 | xt, pt, d̂(2,1),t, . . . , d̂(J,1),t)

]
,

and ξ̂jt = ξ̂1t + d̂(j,1),t. For exposition simplicity, we omit the subscript of state/market.
Recall d(j,1),t = ξjt − ξ1t. The conditional expectation was estimated nonparametrically.

Figure 1 shows the counterfactual substitution effects among brands. We compute how
the log market shares relative to Apple change from the observed data to the counterfac-
tual (e.g. no Wi-Fi). We find that removing the Bluetooth or Wi-Fi dramatically change
the within market shares. Without Wi-Fi, iPhone would lose a substantial amount of its
market share when compared with other brands. We note that Wi-Fi is almost exclusively
available on iPhone (Table 2) during the data period. Thus, it could be viewed as providing
a competitive advantage to Apple in that it provides full Internet access. Also, removing
GPS does not seem to impact the within market share significantly. This might be due
to most consumers not using their phones for GPS, since they were very poor substitutes
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Figure 1: Impact on Within Market Shares

with limited screen size and visibility during the data period. Also, the GPS capabilities
provided by phones required consumers to pay an additional monthly fee to their cellular
service provider.

Table 5 shows the counterfactual outside market share, which can be understood as the
impact on overall demand. The average in Table 5 is taken over all months for each state
(market). Table 5 shows that removing Wi-Fi or GPS has little effect on the overall demand.
However, removing Bluetooth has a large effect on the overall demand. Table 6 reports the
total effects by showing the market shares in different counterfactual settings.

7 Conclusion

We develop a new method to estimate dynamic discrete choice models using only aggregate
data. While the extant methods for such estimation are fairly computationally burdensome,
our proposed approach has the advantage that it can handle a large number of products
and a large number of product attributes, across a number of markets and time periods.
The computational complexity is of the order of a linear (or IV) regression to obtain the
parameter estimates, making it easily accessible.
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Table 5: Average Counterfactual Outside Market Share (Percentage)

State No Change xwifi = 0 xgps = 0 xblue = 0

California 64.4 64.0 68.9 91.5
Florida 71.2 70.9 72.1 91.4
Georgia 66.9 67.7 70.3 91.9
Illinois 67.7 68.6 70.3 90.9
Michigan 68.1 68.7 72.7 91.8
New Jersey 63.1 63.4 70.1 89.8
New York 66.1 66.8 70.5 89.5
Ohio 72.5 72.1 75.1 89.7
Pennsylvania 71.1 70.9 74.1 91.5
Texas 67.0 66.7 68.7 91.4

Table 6: Average Counterfactual Market Shares (Percentage)

Brand No Change xwifi = 0 xgps = 0 xblue = 0

Other 6.91 6.19 6.59 4.02
Moto 8.86 9.43 7.66 1.71
Samsung 5.94 6.10 5.44 0.96
LG 5.60 5.93 3.91 0.62
Nokia 2.87 3.02 3.26 1.65
BB 1.40 1.35 1.21 0.08
Apple 0.62 0.02 0.72 0.01
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We demonstrate the validity through proofs of the asymptotic properties of the estima-
tors, and demonstrate parameter recovery in finite sample simulations. Further, we show
the results in a practical application using data from the market for mobile phone handsets.

While the method requires minimal assumptions on the state transition process and other
primitives, there are a few limitations worth noting. First, the method allows for product-
level differences across both observed and unobserved dimensions, but is only applicable
for logit or GEV distributions. However, our method is able to leverage specific properties
of a setting where there are 2 or more terminal (or renewal) choices, making the problem
similar to a linear model. While the method does not incorporate unobserved consumer
heterogeneity in preferences, the approach is suitable for cases where this limitation is offset
by the computational simplicity and the fact that no assumptions are needed about the
state space or how state variables transition in order to estimate preference parameters. We
expect that building further on this research to broaden its applicability to be a worthwhile
area for further exploration.
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A Nested Logit Extension

The multinomial logit specification has the notorious “independent irrelevant alternative”
properties. We consider below a nested logit model as a remedy. First split the products
{0, 1 . . . , J} into κ + 1 exhaustive and mutually exclusive sets. Denote GA the A-th group.
The outside good 0 is assumed to be the only member of group 0. When one product,
excepting for 0, forms a group by itself, we call it a “stand-alone” product. For a product j,
let s̄jt be the market share of the group containing j, let s̃jt = sjt/s̄jt be the within group
market share. Of course, if product j is a stand-alone product, s̄jt = sjt and s̃jt = 1.

Assumption A.1. Assume that εit follows the following GEV distribution

F (εit) = exp

[
−

κ∑
A=0

(∑
j∈GA

e−εijt/ζ(A)
)ζ(A)]

The unknown scale parameter ζ(A) determines within nest correlation of group GA. For any
group A with one single product, such as G0 = {0}, let ζ(A) = 1.

For any product j, we also use ζj to denote the within nest correlation of the group
containing j. For example, if j ∈ GA, ζj = ζ(A). It is well known that the within nest
correlation coefficient is 1− ζ(A)2.

A.1 Identification

For any two products j and k on the market in period t, we have the ratio of their market
shares as follows,

sjt
skt

=
exp(vjt/ζj)

exp(vkt/ζk)

µ
(ζj−1)/ζj
jt

µ
(ζk−1)/ζk
kt

and
s̄jt
s̄kt

=
µjt
µkt

,

by the nested logit model. If GA is the group containing j,

µjt =
(∑
`∈GA

exp(v`t/ζj)
)ζj

.

Proposition A.1. If (i) product j and k belong to the same group, or (ii) product k forms
a group by itself, we have

ln

(
s̃jt
s̃kt

)
=
vjt − vkt

ζj
− ζ−1j ln

(
s̄jt
s̄kt

)
.
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Proof. For any two products j and k (including the outside option 0), we have

ln

(
sjt
skt

)
=
vjt
ζj
− vkt
ζk

+

(
ζj − 1

ζj

)
ln

(
s̄jt
s̄kt

)
+

[(
ζj − 1

ζj

)
−
(
ζk − 1

ζk

)]
lnµkt.

The above complicated market shares ratio can be simplified in two special cases. First,
if product j and k are from the same group, then µjt = µkt and ζj = ζk. We have

ln

(
sjt
skt

)
=
vjt − vkt

ζj
.

When j and k are from the same group, s̄jt = s̄kt, s̃jt/s̃kt = sjt/skt, and the proposition
holds. Second, if product k itself forms a group, ζk = 1, lnµkt = vkt, and skt = s̄kt. For any
product j, we have that

ln

(
sjt
skt

)
=
vjt − vkt

ζj
+

(
ζj − 1

ζj

)
ln

(
s̄jt
s̄kt

)
.

Subtracting both sides with ln(s̄jt/s̄kt), one will get the conclusion. �

For each group A = 1, . . . , κ, we can identify the within nest correlation ζ(A) and the
preference parameters (α, β, γ) by the following arguments. Without loss of generality, sup-
pose product 2 ∈ GA, and product 1 either comes from the same group as product 2 or
product 1 is a stand-alone product. From Proposition A.1, we have

ln

(
s̃2t
s̃1t

)
= (x2t−x1t)′γ̃/ζ2− (p2t− p1t)α/ζ2 +

δ2 − δ1
(1− β)ζ2

− ζ−12 ln

(
s̄2t
s̄1t

)
+

ξ2t − ξ1t
(1− β)ζ2

. (A.1)

Recall that γ̃ = γ/(1− β), and note that ζ2 = ζ(A) since 2 ∈ GA. Letting z(2,1),t be a vector
of IV that are uncorrelated with ξ2t − ξ1t (assuming the constant term 1 is always included
in the IV), we have

E
(
g1,(2,1),t(θo)

)
= 0,

where

g1,(2,1),t(θ) = z(2,1),t

[
ln

(
s̃2t
s̃1t

)
− (x2t − x1t)′γ̃/ζ2 + (p2t − p1t)α/ζ2 −

δ2 − δ1
(1− β)ζ2

+ ζ−12 ln

(
s̄2t
s̄1t

)]
.

We can identify γ̃/ζ2, α/ζ2, (δ2 − δ1)/[(1 − β)ζ2], and the difference (ξ2t − ξ1t)/[(1 − β)ζ2].
When product 1 is a stand-alone product, ln(s̄2t/s̄1t) 6= 0, hence we can also identify ζ−12 , γ̃,
α, (δ2−δ1)/(1−β), and (ξ2t−ξ1t)/(1−β). If 1 and 2 are from the same group, ln(s̄2t/s̄1t) = 0
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and ζ2 is not identified from the equation.
We next consider the identification of β, δ2 and ζ2 (if there was no stand-alone product).

The conclusion is
E(g2,(2,0),t(θo)) = 0,

where
g2,(2,0),t(θ) = x2t,IV

[
ln

(
s̄2t
s̄0t

)
+ ζ2yt − βζ2yt+1 − β ln s̄2,t+1 − δ2

]
,

and
yt = ln s̃2t − x′2tγ̃/ζ2 + p2tα/ζ2, (A.2)

and the IV x2t,IV is a vector of functions ofmt such that cov(x2t,IV , ξ2t) = cov(x2t,IV , ξ2,t+1) =

0. If ζ2 has been identified in the first step, the moment condition is linear in (β, δ2).
Otherwise, there are three parameters, β, ζ2 and δ2, and this moment condition is nonlinear
in them for the presence of βζ2.

We now derive the above conclusion. Using Proposition A.1 for the case j = 2 and k = 0,
we have

ln s̃2t =
v2t − v0t

ζ2
− ζ−12 ln

(
s̄2t
s̄0t

)
,

because s̃0t = 1. Using the notation of yt in eq. (A.2), we have

yt =
δ2

(1− β)ζ2
+

ξ2t
(1− β)ζ2

− ζ−12 ln

(
s̄2t
s̄0t

)
− v0t
ζ2
. (A.3)

The next objective is to derive an alternative formula of v0t = β E(V̄t+1(mt+1) | mt). It
follows the expectation maximization formula for nested logit model (see e.g. Arcidiacono
and Miller, 2011, lemma 3) that

V̄t = v2t − [ζ2 ln s2t + (1− ζ2) ln s̄2t]

= −ζ2yt +
δ2

1− β
+

ξ2t
1− β

− ln s̄2t.

Hence v0t = β E(V̄t+1 |mt) becomes

v0t = β E

(
−ζ2yt+1 +

δ2
1− β

+
ξ2,t+1

1− β
− ln s̄2,t+1

∣∣∣∣mt

)
. (A.4)
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Substituting v0t in eq. (A.3) with eq. (A.4), we have

yt =
δ2

(1− β)ζ2
+

ξ2t
(1− β)ζ2

−ζ−12 ln

(
s̄2t
s̄0t

)
+β E

(
yt+1 −

δ2
(1− β)ζ2

− ξ2,t+1

(1− β)ζ2
+

ln s̄2,t+1

ζ2

∣∣∣∣mt

)
.

This implies the following conditional moment condition,

E

(
yt +

ln(s̄2t/s̄0t)

ζ2
− βyt+1 − β

ln s̄2,t+1

ζ2
− δ2
ζ2
− 1

1− β
ξ2t
ζ2

+
β

1− β
ξ2,t+1

ζ2

∣∣∣∣mt

)
= 0.

Multiplying both sides of the above display by ζ2, we have the following

E

(
ζ2yt + ln

(
s̄2t
s̄0t

)
− βζ2yt+1 − β ln s̄2,t+1 − δ2 −

1

1− β
ξ2t +

β

1− β
ξ2,t+1

∣∣∣∣mt

)
= 0.

Then we have the stated conclusion by the arguments in the paper.
Letting

ỹt = ζ2yt + ln(s̄2t/s̄0t), and w̃t+1 = −ζ2yt+1 − ln s̄2,t+1,

we have
E

(
ỹt + βw̃t+1 − δ2 −

1

1− β
ξ2t +

β

1− β
ξ2,t+1

∣∣∣∣mt

)
= 0, (A.5)

Because we have identified ζ2, ỹt and w̃t, they are identified terms. Eq. (A.5) now is identical
to the conditional moment equation in the multinomial case excepting for the identified
object ỹt and w̃t. Hence we can use the same arguments in the multinomial case to show the
identification of the dynamics of state evolution in the nested logit case. Also, we denote
d̃t = ξ2t − ξ1t for the nested logit case, and

d̃t = (1− β)ζ2 ln

(
s̃2t
s̃1t

)
− (x2t − x1t)′γ + (1− β)α(p2t − p1t)− (δ2 − δ1) + (1− β) ln

(
s̄2t
s̄1t

)
.

A.2 Estimation

We focus on the case where the data are from one single market over T consecutive periods.

A.2.1 Preference

No stand-alone product Suppose excepting for the outside good, every group contains
at least two products.

Step 1 : For each group A = 1, . . . , G, estimate (γ̃′/ζ(A), α/ζ(A)) using the following
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moment equation:

E
(
g1,(j,k),t(θo)

)
= 0, for j, k ∈ GA and j > k,

g1,(j,k),t(θ) = z(j,k),t

[
ln

(
s̃jt
s̃kt

)
− (xjt − xkt)′γ̃/ζA + (pjt − pkt)α/ζA −

δj − δk
(1− β)ζA

]
.

The vector z(j,k),t is a vector of IV that are uncorrelated with (ξjt − ξkt).
In practice, one can estimate (γ̃′/ζ(A), α/ζ(A)) by an IV regression of ln(s̃jt/s̃kt) on

xjt − xkt and pjt − pkt with IV z(j,k),t using data t = 1, . . . , T . Letting ˜̂γ/ζ(A) and α̂/ζ(A)

be the obtained estimates, define

yjt = ln s̃jt − x′jtγ̃/ζj + pjtα/ζj,

and their estimates
ŷjt = ln s̃jt − x′jt ̂̃γ/ζj + pjtα̂/ζj.

Note that ζj = ζ(A) when j ∈ GA.
Step 2 : Estimate β, ζ, and δ. Define a list of group dummy variables dGA,jt = 1 if j ∈ GA

and = 0 otherwise. Estimate β, ζ, and δ using

E(g2,(j,0),t(θo)) = 0,

where

g2,(j,0),t(θ) = xjt,IV

[
ln

(
s̄jt
s̄0t

)
+

κ∑
A=1

ζ(A)dGA,jtyjt −
κ∑

A=1

βζ(A)dGA,j,t+1yj,t+1 − β ln s̄j,t+1 − δj

]
.

In practice, one can first estimate β and ζ(1), . . . , ζ(κ) by solving the nonlinear least
square problem,

min
β,ζ

J∑
j=1

T−1∑
t=1

ĝ2,(j,0),t(θ)
′ĝ2,(j,0),t(θ),

where

ĝ2,(j,0),t(θ) = (xjt,IV−x̄j,IV )

[
ln

(
s̄jt
s̄0t

)
+

κ∑
A=1

ζ(A)dGA,jtŷjt −
κ∑

A=1

βζ(A)dGA,j,t+1ŷj,t+1 − β ln s̄j,t+1

]
.

Here x̄j,IV = T−1
∑T

t=1 xjt,IV is the sample average of xjt,IV . As for initial values, one can
run an IV regression of ln(s̄jt/s̄0t) on dGA,jtŷjt, dGA,j,t+1ŷj,t+1 and ln s̄j,t+1 with IV xjt,IV , and

51



use the coefficients associated with dGA,jtŷjt and ln s̄j,t+1 as the initial values for ζ(A) and β.
After obtaining ζ̂ and β̂, one can let

δ̂j = T−1
T−1∑
t=1

ln

(
s̄jt
s̄0t

)
+ ζ̂j ŷjt − β̂ζ̂jyj,t+1 − β̂ ln s̄j,t+1

be the estimate of δj.

With stand-alone product When there are stand-alone products, the above estimation
can be simplified. Without loss of generality, assume product 1, . . . , J1 are stand-alone
products, and they form group 1, . . . , J1, respectively. If J1 = J , this becomes multinomial
logit case.

Step 1 : Multiplying both sides of eq. (A.1) by the within nest correlation coefficient, we
in general have

ln

(
s̄jt
s̄kt

)
=
δj − δk
1− β

+ (xjt − xkt)′γ̃ − (pjt − pkt)α− ζj ln

(
s̃jt
s̃kt

)
+
ξjt − ξkt
1− β

.

Note that ln(s̄jt/s̄kt) = 0 if j, k are from the same nest, and ln(s̃jt/s̃kt) = 0 if j and k are
both stand-alone product. When there is at least one stand-alone product, i.e. J1 ≥ 1, we
can estimate ζ(J1 + 1), . . . , ζ(κ) (ζ(0) = · · · = ζ(J1) = 1), γ̃ and α by the following,

g1,(j,k),t(θ) = (z(j,k),t−z̄(j,k))

[
ln

(
s̄jt
s̄kt

)
− (xjt − xkt)′γ̃ + (pjt − pkt)α +

κ∑
A=J1+1

ζ(A)dGA,jt ln

(
s̃jt
s̃kt

)]
,

where z̄(j,k) = T−1
∑T

t=1 z(j,k),t. In practice, we run an IV regression of ln(s̄jt/s̄kt) on xjt−xkt,
pjt − pkt, and dGA,jt ln(s̃jt/s̃kt) with IV z(j,k),t.

Step 2 : Estimate β. Because ζj has been estimated in the first step, ỹt and w̃t are now
known. In general, define

ỹjt = ζjyjt + ln(s̄jt/s̄0t), and w̃j,t+1 = −ζjyj,t+1 − ln s̄j,t+1, (A.6)

We then can estimate β using
E(g2,(j,0),t(θo)) = 0,

where
g2,(j,0),t(θ) = xjt,IV (ỹjt + βw̃t+1 − δj).
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In practice, to estimate β, one simply runs an IV regression of ˆ̃yjt on − ˆ̃wj,t+1 using xjt,IV as
the IV.

Step 3 : Estimate δj using

E(ỹjt + βw̃t+1 − δj) = 0.

In practice, one runs a linear regression for each j of (ˆ̃yjt + β̂ŵj,t+1) on a constant of one
using data from t = 1, . . . , T − 1.

A.2.2 F (mt) and F (mt+1 |mt)

We make the same normal distribution assumption as in the paper. The estimation of the
parameters in F (mt) and F (mt+1 | mt) in nested logit case is identical to the multinomial
logit case by replacing d(j,k),t, yjt and wjt in multinomial logit case with d̃(j,k),t, ỹjt, and w̃jt,
where ỹjt and w̃jt are defined in eq. (A.6), and

d̃(j,k)t = (1−β)ζj ln

(
s̃jt
s̃kt

)
− (xjt−xkt)′γ+ (1−β)α(pjt− pkt)− (δj− δk) + (1−β) ln

(
s̄jt
s̄kt

)
,

with or without stand-alone products. So we will not repeat the procedures.

A.3 Mobile Phone Market Application with Nested Logit Specifi-

cation

Using the nested logit (NL) specification, we re-estimated the cell phone market application.
Besides the outside option, there are three nests in the model. Nest 1 consists of Apple
and RIM (Blackberry), nest 2 consists of the well regarded brands of feature phones at the
time (Motorola, Samsung, LG and Nokia), and nest 3 consists of all other brands. In this
specification, “all other brands” is a stand-alone product, hence we use the estimation method
outlined for the case with stand-alone product. In estimation, we use the same IV as we use
in the multinomial logit (MNL) specification. The results are detailed in Table A.1.

The correlation coefficient for nest 2 (well regarded feature phones) is almost 1.00. This
is likely because these feature phones are very similar. The correlation coefficient for nest 1
(Blackberry and iPhone) is 0.78 due to some important difference between these two phones,
e.g. iPhone can access Wi-Fi, though they are both smartphones.

The estimates of many important parameters in the NL case are close to the estimates in
the MNL case. The price coefficient, α, in both NL and MNL is −0.01. The estimate of the
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discount factor, β, in NL is 0.97, which is bigger than 0.8 in the MNL case. The ordering
of the estimated fixed effect among different phones from both MNL and NL is similar—
iPhone has the highest fixed effect, while Blackberry has the lowest. Also, similar to the
estimates in the MNL, iPhone has the highest correlation between price and unobserved
product characteristics. The estimates of the serial correlation of ξjt are somewhat different
from the MNL case. The most noticeable difference is the iPhone, whose autocorrelation
coefficient is greater than 1. This means ξiPhone,t is a nonstationary process, which could be
due to that the iPhone had only been in the market for a few months.

It is noticeable that the estimated standard error of ξjt is substantially smaller than the
MNL case. This can be understood from the regression formula in the NL case,

ln

(
s̄jt
s̄kt

)
=
δj − δk
1− β

+ (xjt − xkt)′γ̃ − (pjt − pkt)α− ζj ln

(
s̃jt
s̃kt

)
+
ξjt − ξkt
1− β

.

Note that in the MNL case, each product forms a nest by itself, and above equation becomes

ln

(
s̄jt
s̄kt

)
=
δj − δk
1− β

+ (xjt − xkt)′γ̃ − (pjt − pkt)α +
ξjt − ξkt
1− β

.

The “regressor” ln(s̃jt/s̃kt) vanishes in the MNL case. The estimated variance of ξjt essentially
depends on the variance of the “error term” (ξjt − ξkt)/(1 − β) in the above regression
equations. In the NL case, we have one additional regressor ln(s̃jt/s̃kt), hence the variance of
the residuals will be reduced. The observed reduction of the variance of unobserved product
characteristics after controlling for nest or group market share suggests that in empirical
research, one might be able to at least reduce the influence of the unobserved product
characteristics by using certain observed group characteristics, e.g. the nest or group market
share herein.
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Table A.1: Estimation Results of Mobile Phone Market: Nested Logit

Parameter Estimate Std. Error1 t Value F Value2

Step 1: preference,
γ/(1− β), and within
nest corr

price -0.01 0.00 -4.60 6.81
xblue 1.00 0.58 1.72
xgps 0.47 0.09 5.22

xweight -0.08 0.05 -1.72
xqwerty -1.55 0.45 -3.41
xmusic -0.27 1.04 -0.26 13.17
xwifi 0.68 0.91 0.75

xtalktime 0.12 0.05 2.39
Corr in nest 1 0.78 0.15 5.35 27.70
Corr in nest 2 1.00 0.00 371.13 29.6

Step 2: discount factor β 0.97 0.10 9.55 29.6

Step 3: fixed effect

δMoto 0.15 0.07 2.07
δSamsung 0.16 0.07 2.21

δLG 0.12 0.07 1.64
δNokia 0.19 0.07 2.56

δBlackberry 0.11 0.08 1.40
δApple 0.28 0.08 3.52
δOther 0.16 0.07 2.14

Step 4: correlation between price
and unobserved product
characteristics

ρMoto 0.14 0.02 5.54 50.11
ρSamsung 0.17 0.03 6.28 46.84

ρLG 0.21 0.03 7.14 45.39
ρNokia 0.20 0.03 7.89 59.89

ρBlackberry 0.24 0.07 3.28 45.61
ρApple 0.69 0.11 6.13 31.62
ρOther 0.25 0.05 5.00 35.85

Step 5: std. error of ξjt σ 0.05 0.00 41.22

Step 6: autocorrelation of ξjt

φMoto 0.08 0.02 4.34
φSamsung 0.04 0.01 4.05

φLG 0.45 0.03 17.73
φNokia 0.40 0.03 14.33

φBlackberry 0.42 0.07 5.66
φApple 4.67 0.23 20.28

1 The standard error reported here are obtained from sequential estimation steps.
2 “F value” is the first stage F test statistic on excluded IV.
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