
CHAPTER 3
Length and Area Techniques

In this chapter we develop some basic length and area techniques. For lengths, we will cover the Pythagorean
Theorem, adding and subtracting lengths of segments on the same line, the Two Tangent Theorem, and finding
the distance between the centers of tangent circles.

For areas, we will use 𝑏ℎ
2 to find the area of a triangle, explain how to find the area of a circle and a sector of a

circle, and use addition and subtraction to find the area of composite figures.

3.1 Lengths
We start with a fundamental postulate that we will use for the rest of the chapter and the rest of the entire book.

Postulate 3.1. If point 𝐵 lies on segment 𝐴𝐶, then 𝐴𝐵 + 𝐵𝐶 = 𝐴𝐶.

𝐴 𝐵 𝐶

We can rearrange this into 𝐴𝐵 = 𝐴𝐶 −𝐵𝐶, so subtraction follows from this additive postulate as well. The other
direction, which states that 𝐵 lies on segment 𝐴𝐶 only if 𝐴𝐵 + 𝐵𝐶 = 𝐴𝐶, follows from the Triangle Inequality, so
we do not need to include it as part of this postulate.

3.1.1 The Pythagorean Theorem
We start by explicitly mentioning and proving the Pythagorean Theorem, which we have been implicitly using in
the last couple of chapters.

Theorem 3.2 (Pythagorean Theorem).

In △𝐴𝐵𝐶 with ∠𝐶 = 90◦, 𝑎2 + 𝑏2 = 𝑐2.

𝐴

𝐵
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There are two proofs that we will present: one with similar triangles and another with areas. Since we’re
starting with length techniques, you should consider the similarity proof the “canonical” one, but the area proof
does not require much technical knowledge.

Proof. This proof uses similar triangles. Let 𝐻 be the foot of the altitude from 𝐶 to 𝐴𝐵.

𝐴

𝐵

𝐶

𝐻

Note that △𝐴𝐻𝐶 ∼ △𝐴𝐶𝐵 ∼ △𝐶𝐻𝐵. Thus,

𝐴𝐻
𝐴𝐶

=
𝐴𝐶
𝐴𝐵

𝐻𝐵
𝐶𝐵

=
𝐶𝐵
𝐴𝐵

This implies that 𝐴𝐻 = 𝐴𝐶2

𝐴𝐵 and 𝐻𝐵 = 𝐵𝐶2

𝐴𝐵 . But note that 𝐴𝐻 + 𝐻𝐵 = 𝐴𝐵, so

𝐴𝐵 = 𝐴𝐻 + 𝐻𝐵 =
𝐴𝐶2

𝐴𝐵
+ 𝐵𝐶2

𝐴𝐵
.

Multiplying both sides by 𝐴𝐵 gives us our desired result. □

Proof. This proof uses areas; refer to the diagram below.
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Note that we can get the area of the large square by squaring the side length. This gives us an area of (𝑎 + 𝑏)2.
But also note that we can add the area of the small square and the 4 triangles to get the area of the large square,

which gives us an area of 𝑐2 + 2𝑎𝑏.
Since (𝑎 + 𝑏)2 = 𝑐2 + 2𝑎𝑏, subtracting 2𝑎𝑏 from both sides gives us 𝑎2 + 𝑏2 = 𝑐2, as desired. □

Let’s start by discussing special right triangles. We know from ?? that all right triangles (indeed, all triangles)
with the same angles have the same ratios of side lengths too. With the Pythagorean Theorem, we can explicitly
find these ratios for triangles with certain angles.

Example 3.3 (30–60–90 Triangle).

In △𝐴𝐵𝐶, say ∠𝐶 = 90◦ and ∠𝐴 = 30◦. Prove that the side lengths 𝑎, 𝑏, 𝑐 have a ratio of 1,
√

3, and 2. In other
words, show that

𝑎 : 𝑏 : 𝑐 = 1
2 :

√
3

2 : 1.



Solution. Take equilateral triangle 𝐴𝐵𝐷 and let 𝐶 be the midpoint of 𝐵𝐷.1 By SSS congruence, △𝐴𝐷𝐶 � △𝐴𝐵𝐶,
implying that 𝐷𝐶 = 𝐶𝐵. Since 𝐷𝐶 + 𝐶𝐵 = 𝐷𝐵, 𝐶𝐵 = 1

2𝐷𝐵.

𝐴

𝐷 𝐵𝐶

Since △𝐴𝐵𝐶 is equilateral, 𝐶𝐵 = 1
2𝐴𝐵. By the Pythagorean Theorem (1.2),

𝐴𝐶2 = 𝐴𝐵2 − 𝐶𝐵2

𝐴𝐶2 = 𝐴𝐵2 −
(
1
2𝐴𝐵

)2

𝐴𝐶2 =
3
4𝐴𝐵

2

𝐴𝐶 =

√
3

2 𝐴𝐵.

Thus,

𝑎 : 𝑏 : 𝑐 = 𝐵𝐶 : 𝐶𝐴 : 𝐴𝐵 =
1
2 :

√
3

2 : 1,

as desired. ■

Problem 3.4 (45–45–90 Triangle). In △𝐴𝐵𝐶, say ∠𝐶 = 90◦ and ∠𝐴 = 45◦. Find the ratio of the side lengths of
△𝐴𝐵𝐶. Hint: 7

Some other right triangles are noteworthy because their sides are all integers. For instance, there exists a right
triangle with lengths 3, 4, and 5.

From now on, we will refer to a right triangle with lengths 𝑎, 𝑏, and 𝑐 as an 𝑎–𝑏–𝑐 right triangle. The triangle
mentioned previously would be a 3–4–5 right triangle.

If 𝑎2 + 𝑏2 = 𝑐2, we call the integers (𝑎, 𝑏, 𝑐) a Pythagorean triple. Here are a few common triples you might
want to know:

• 3–4–5

• 5–12–13

• 7–24–25

• 8–15–17

• 9–40–41

It doesn’t hurt to verify that each of these triples is indeed a Pythagorean triple. Don’t bother memorizing them
though; once you’ve solved enough problems, you’ll naturally be able to recognize Pythagorean triples.

Now let’s get down to some examples of the Pythagorean Theorem at play.

Example 3.5 (AIME I 2006/1).

In quadrilateral 𝐴𝐵𝐶𝐷, ∠𝐵 is a right angle, diagonal 𝐴𝐶 is perpendicular to 𝐶𝐷, 𝐴𝐵 = 18, 𝐵𝐶 = 21, and
𝐶𝐷 = 14. Find the perimeter of 𝐴𝐵𝐶𝐷.

1The way you’d construct △𝐴𝐵𝐷 is by reflecting 𝐵 about 𝐶. However, we’ll sacrifice a little bit of rigor in favor of not using a concept
introduced much later.



Solution. We’re missing one side length of 𝐴𝐵𝐶𝐷: the length of 𝐷𝐴. By the Pythagorean Theorem (1.2),

𝐷𝐴2 = 𝐴𝐶2 + 𝐶𝐷2 = 𝐴𝐵2 + 𝐵𝐶2 + 𝐶𝐷2 = 182 + 212 + 142 = 961,

implying that 𝐷𝐴 = 31. Thus, the perimeter is 18 + 21 + 14 + 31 = 84.

𝐴

𝐵 𝐶

𝐷
18

21

14

■

Example 3.6.

Show that 𝐴𝐵2 + 𝐵𝐶2 + 𝐶𝐷2 + 𝐷𝐴2 = 𝐴𝐶2 + 𝐵𝐷2 for all parallelograms 𝐴𝐵𝐶𝐷.

Solution. Let 𝐴𝐶 intersect 𝐵𝐷 at 𝑃. Note by ?? that 𝐴𝑃 = 𝑃𝐶 and 𝐵𝑃 = 𝑃𝐷. SSS implies △𝐴𝐵𝑃 � △𝐶𝐵𝑃 �
△𝐴𝐷𝑃 � △𝐶𝐷𝑃, so ∠𝐴𝐵𝑃 = ∠𝐶𝐵𝑃 = ∠𝐴𝐷𝑃 = ∠𝐶𝐷𝑃 = 90◦. Also, 𝐴𝐶 = 2𝐴𝑃 and 𝐵𝐷 = 2𝐵𝑃.

𝐴

𝐵

𝐶

𝐷

𝑃

By the Pythagorean Theorem (1.2),

𝐴𝐵2 = 𝐴𝑃2 + 𝐵𝑃2

𝐵𝐶2 = 𝐵𝑃2 + 𝐶𝑃2

𝐶𝐷2 = 𝐶𝑃2 + 𝐷𝑃2

𝐷𝐴2 = 𝐷𝑃2 + 𝐴𝑃2.

Adding this all up yields

𝐴𝐵2 + 𝐵𝐶2 + 𝐶𝐷2 + 𝐷𝐴2 = 2𝐴𝑃2 + 2𝐵𝑃2 + 2𝐶𝑃2 + 2𝐷𝑃2

= 4𝐴𝑃2 + 4𝐶𝑃2

= 𝐴𝐶2 + 𝐵𝐷2 ,

as desired. ■

The “only if” direction is true too; all quadrilaterals satisfying the length condition are parallelograms. However,
we will need tools from ?? — specifically, the Law of Cosines (??) — to prove it. Therefore, we will show the other
direction in Example ??.

Example 3.7 (13–14–15 Triangles).

Say in △𝐴𝐵𝐶 that 𝐴𝐵 = 13, 𝐵𝐶 = 14, and 𝐶𝐴 = 15. Let 𝐷 be the foot of the altitude from 𝐴 to 𝐵𝐶. What are
the lengths 𝐴𝐷, 𝐵𝐷, and 𝐶𝐷?



This example is important: 13–14–15 triangles, while not being right triangles themselves, often appear in
geometry problems. (In fact, the next example features one.) You will see why when you know the answer.

Solution. Say 𝐵𝐷 = 𝑥, which implies that 𝐶𝐷 = 14− 𝑥. By the Pythagorean Theorem (1.2) on △𝐴𝐵𝐷 and △𝐴𝐶𝐷
respectively,

𝐴𝐵2 = 𝐵𝐷2 + 𝐴𝐷2

𝐴𝐶2 = 𝐶𝐷2 + 𝐴𝐷2

Substituting in the values we have gives

132 = 𝑥2 + 𝐴𝐷2

152 = (14 − 𝑥)2 + 𝐴𝐷2

Subtracting the first equation from the second gives

56 = 196 − 28𝑥,

implying that 𝑥 = 5. Thus 𝐶𝐷 = 9 and 𝐴𝐷 = 12.

𝐴

𝐵 𝐶𝐷

13 15

𝑥 14 − 𝑥
■

Sometimes it’s not obvious that you can invoke the Pythagorean Theorem at all. Nor is it obvious which right
triangle you should construct (i.e. where the bases should be). The next two examples demonstrate this.

Example 3.8 (NARML 2020/1).

Suppose 𝐴𝐵𝐶𝐷 is a rectangle with 𝐴𝐵 = 14 and 𝐵𝐶 = 28. If point 𝑃 outside 𝐴𝐵𝐶𝐷 satisfies the conditions
𝑃𝐴 = 13 and 𝑃𝐵 = 15, compute the length of 𝑃𝐶.

Solution. Let the line through 𝑃 perpendicular to 𝐴𝐵 intersect 𝐴𝐵 at 𝑀 and 𝐶𝐷 at 𝑁 . Since 𝐴𝐵 and 𝐶𝐷 are
parallel, 𝑃𝑁 is also perpendicular to 𝐶𝐷.

𝑃

𝐴 𝐵

𝐶𝐷

𝑀

𝑁



Note that 𝑃𝑀 = 12 as △𝑃𝐴𝐵 is a 13 − 14 − 15 triangle, so 𝐵𝑀 = 𝐶𝑁 = 9 and 𝑃𝑁 = 𝑃𝑀 +𝑀𝑁 = 𝑃𝑀 + 𝐵𝐶 =

12 + 28 = 40. Thus by the Pythagorean Theorem (1.2),

𝑃𝐶 =
√

92 + 402 = 41.

■

Example 3.9 (JMC 10 2020/17).

Let △𝐴𝐵𝐶 be acute and let 𝐷 be the foot of the altitude from 𝐴 to 𝐵𝐶. If 𝐴𝐷 = 24 and 𝐵𝐶 = 32, what is the
distance between the midpoints of 𝐵𝐷 and 𝐴𝐶?

Solution. Let 𝑀 be the midpoint of 𝐵𝐷, 𝑁 be the midpoint of 𝐴𝐶, and 𝐻 be the foot of the altitude from 𝑁 to
𝐴𝐶. Then note that △𝐴𝐷𝐶 ∼ △𝑁𝐻𝐶 with a scale factor of 2 (since 𝐴𝐶 = 2𝑁𝐶 by definition), so 𝑁𝐻 = 𝐴𝐷

2 = 12.
Using the same pair of similar triangles, we can deduce that 𝑀𝐻 = 𝑀𝐷 + 𝐻𝐷 = 𝐵𝐷

2 + 𝐶𝐷
2 = 𝐵𝐶

2 = 16.
So by the Pythagorean Theorem (1.2) on △𝑁𝐻𝑀,

𝑀𝑁 =
√
𝑀𝐻2 + 𝑁𝐻2 =

√
162 + 122 = 20.

𝐵 𝐶

𝐴

𝐷𝑀

𝑁

𝐻

■

Notice we leverage the lengths we have: we want to use 𝐴𝐷 and 𝐵𝐶 somehow — 𝐴𝐷 especially, because the
only way we can use 𝐴𝐷 is by dropping an altitude from 𝑁 to 𝐴𝐶.

The Pythagorean Theorem also works well with circles, particularly when chords are drawn. Say there is a
circle centered at 𝑂 passing through 𝐴 and 𝐵. Then, if 𝑀 is the foot of the altitude from 𝑂 to 𝐴𝐵 (recall that 𝑀 is
the midpoint of 𝐴𝐵 by Problem ??), then we can invoke the Pythagorean Theorem on △𝑂𝐴𝑀.

𝑂

𝐴 𝐵𝑀

When we have multiple chords like 𝐴𝐵, we may be able to set up a system of equations as this next example
will show.

Example 3.10 (DMC 10B 2021/14).

Rectangle 𝐴𝐵𝐶𝐷 has 𝐴𝐵 = 6 and 𝐵𝐶 = 4. A circle passes through 𝐴 and 𝐵 and intersects side 𝐶𝐷 at two points
which trisect the side. What is the area of the circle?



Solution. Let 𝑂 be the center of this circle, and let the line through 𝑂 perpendicular to 𝐴𝐵 intersect 𝐴𝐵 at 𝑀 and
𝐶𝐷 at 𝑁 .

𝐴 𝐵

𝐶𝐷

𝑀

𝑁𝑃 𝑄

𝑂

Note that 𝑀 and 𝑁 are the midpoints of 𝐴𝐵 and 𝐶𝐷, respectively, because △𝑂𝐴𝐵 and △𝑂𝐶𝐷 are isosceles. By
the Pythagorean Theorem (1.2),

𝑂𝐴2 = 𝐴𝑀2 +𝑀𝑂2

𝑂𝑃2 = 𝑃𝑁2 + 𝑁𝑂2.

Note that 𝐴𝑀 = 3 and 𝑃𝑁 = 1, and also note that 𝑂𝐴 = 𝑂𝑃. Subtracting the second equation from the first
gives

0 = 32 − 12 +𝑀𝑂2 − 𝑁𝑂2

8 = 𝑁𝑂2 −𝑀𝑂2

= (𝑁𝑂 +𝑀𝑂)(𝑁𝑂 −𝑀𝑂)
= 4(4 − 2𝑀𝑂).

This implies that 𝑀𝑂 = 1 and 𝑁𝑂 = 3. Thus the area of the circle is

𝜋𝑂𝐴2 = 𝜋(𝐴𝑀2 +𝑀𝑂2) = 𝜋(32 + 12) = 10𝜋.

■

3.1.2 The Triangle Inequality
With the Pythagorean Theorem, we unlock one of the most important length techniques: the Triangle Inequality.

Theorem 3.11 (Triangle Inequality).

Given points 𝐴, 𝐵, and 𝐶,
𝐴𝐵 + 𝐵𝐶 ≥ 𝐴𝐶,

with equality if and only if 𝐵 lies on segment 𝐴𝐶.

We say that lengths 𝐴𝐵, 𝐵𝐶, and 𝐶𝐴 satisfy the triangle inequality if 𝐴𝐵 + 𝐵𝐶 ≥ 𝐶𝐴, 𝐵𝐶 + 𝐶𝐴 ≥ 𝐴𝐵, and
𝐶𝐴 + 𝐴𝐵 ≥ 𝐵𝐶.

Proof. Let 𝑃 be the foot of the altitude from 𝑃 to 𝐴𝐶. By the Pythagorean Theorem (1.2), 𝐴𝐵 ≥ 𝐴𝑃 and 𝐵𝐶 ≥ 𝑃𝐶,
with equality if and only if 𝐵𝑃 = 0 in both cases.

𝐴

𝐵

𝑃 𝐶



Now note 𝐴𝑃 + 𝑃𝐶 ≥ 𝐴𝐶 with equality if and only if 𝑃 lies on segment 𝐴𝐶. (We can say “only if” because
Postulate 1.1 will apply in some way since 𝐴, 𝐵, and 𝐶 are collinear.)

Thus,
𝐴𝐵 + 𝐵𝐶 ≥ 𝐴𝑃 + 𝑃𝐶 ≥ 𝐴𝐶,

with both inequalities simultaneously reaching equality if and only if 𝐵 lies on segment 𝐴𝐶, as desired. □

As promised in the beginning of this section, we have used the Triangle Inequality to show that 𝐴𝐵 + 𝐵𝐶 = 𝐴𝐶
only if 𝐵 lies on segment 𝐴𝐶.

The converse of the Triangle Inequality, which guarantees the existence of a triangle if its lengths satisfy the
Triangle Inequality, is also useful. (We use the term “converse” a little loosely here.)

Theorem 3.12 (Converse of Triangle Inequality).

A triangle with lengths 𝑎, 𝑏, and 𝑐 exists if and only if 𝑎, 𝑏, and 𝑐 satisfy the Triangle Inequality (1.11).

If this is your first read through the chapter, the proof isn’t particularly important; rather, it is important to
know what assumptions we are allowed to make (e.g. triangles with “valid” lengths always exist), which is why
this theorem is presented to begin with. Experienced geometers, on the other hand, may want to verify or even
derive these equations on their own.

Proof. The “only if” direction is just the Triangle Inequality; we only include it for completeness.2 Hence we
focus solely on the “if” direction.

Let the triangle we will construct be △𝐴𝐵𝐶, where we want 𝐵𝐶 = 𝑎, 𝐶𝐴 = 𝑏, and 𝐴𝐵 = 𝑐, as is standard.
Without loss of generality, say 𝑎 ≥ 𝑏 and 𝑎 ≥ 𝑐. Now we explicitly perform this construction.

Construct segment 𝐵𝐶 with length 𝑎. Now, pick point 𝑃 on segment 𝐵𝐶 such that 𝐵𝑃 = 𝑎2−𝑏2+𝑐2

2𝑎 , and now pick

point 𝐻 on the line through 𝑃 perpendicular to 𝐵𝐶 such that 𝐻𝑃 =
2
√
𝑠(𝑠−𝑎)(𝑠−𝑏)(𝑠−𝑐)

𝑎 . An explicit computation with
the Pythagorean Theorem (1.2) — which we omit — shows that 𝐶𝐴 = 𝑏 and 𝐴𝐵 = 𝐶, as desired. □

If you know Heron’s Formula, seeing ℎ =
2
√
𝑠(𝑠−𝑎)(𝑠−𝑏)(𝑠−𝑐)

𝑎 should raise some eyebrows. Indeed, a calculation
with 𝑏ℎ

2 shows that the area of a triangle with sides 𝑎, 𝑏, and 𝑐 is
√
𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐). This is no coincidence:

this proof is remarkably similar to the proof of Heron’s Formula with the Pythagorean Theorem. Here we have
omitted many details, but when we prove Heron’s Formula in ??, we will explicitly derive and perform all of the
calculations.

Problem 3.13 (Semiperimeter Triangle Inequality). Show that the triangle inequality is equivalent to 𝐴𝐶 ≤
𝐴𝐵+𝐵𝐶+𝐶𝐴

2 .

This form of the triangle inequality is known as the Semiperimeter Triangle Inequality because the right side is
the semiperimeter, i.e. half of the perimeter.

As a corollary, if the triangle inequality is true for the largest length of three lengths, it is true for all three
lengths. This can be very useful when checking if a triangle with particular lengths can exist. For instance, a
triangle with sides 3, 4, 5 exists because 5 ≤ 3+4+5

2 . However, a “triangle” with sides 3, 4, and 9 does not exist,
because 8 ≥ 3+4+9

2 .
It is also worth noting that a triangle whose vertices all lie on the same line sometimes may not be considered a

triangle. For instance, it is possible for 𝐴𝐵 = 3, 𝐵𝐶 = 4, and 𝐶𝐴 = 7 — this is because 7 = 3+4+7
2 and occurs when 𝐵

lies on segment 𝐴𝐶 — but you’d be hard-pressed to call this a proper triangle. Indeed, when a triangle’s vertices
all lie on the same line, it is called a degenerate triangle.

The Triangle Inequality can also be extended to more than two intermediate segments, which further reinforces
the idea that the shortest path between two points is a line.3

2“Converse” is a bit of a misnomer for this theorem, and its formulation is not exactly the same as the Triangle Inequality.
3This is not a proof of the concept, just a tool for building intuition. If two segments isn’t shorter than a straight line, then intuitively, neither

should three segments be, or four...



Example 3.14 (Extended Triangle Inequality).

Prove that given points 𝑃0, 𝑃1, . . . , 𝑃𝑛+1,

𝑃0𝑃1 + 𝑃1𝑃2 + · · · + 𝑃𝑛𝑃𝑛+1 ≥ 𝑃0𝑃𝑛+1

with equality if and only if 𝑃𝑖 lies on segment 𝑃𝑖−1𝑃𝑖+1 for all 1 ≤ 𝑖 ≤ 𝑛.

𝐴0

𝐴1

𝐴2

𝐴3

𝐴4

Figure 3.15: The Extended Triangle Inequality with 4 segments; in this case, 𝐴0𝐴1 + 𝐴1𝐴2 + 𝐴2𝐴3 + 𝐴3𝐴4 ≤ 𝐴0𝐴4.

The equality condition is equivalent to 𝑃0, 𝑃1, . . ., 𝑃𝑛+1 lying on the same line, in that order.

Solution. Note that in general, because of the Triangle Inequality 1.11, 𝑃𝑖−1𝑃𝑖 + 𝑃𝑖𝑃𝑖+1 ≥ 𝑃𝑖−1𝑃𝑖+1 with equality
when 𝑃𝑖 lies on segment 𝑃𝑖−1𝑃𝑖+1, implying that

𝑃0𝑃1 + · · · + 𝑃𝑖−1𝑃𝑖 + 𝑃𝑖𝑃𝑖+1 ≥ 𝑃0𝑃1 + · · · + 𝑃𝑖−1𝑃𝑖+1

with the same equality condition. Applying this repeatedly gives

𝑃0𝑃1 + · · · + 𝑃𝑖𝑃𝑖+1 ≥ 𝑃0𝑃1 + · · · + 𝑃𝑖−1𝑃𝑖+1 ≥ · · · ≥ 𝑃0𝑃𝑛+1.

(We’ve done a little bit of implicit relabeling of points when repeatedly applying the inequality, but the general
concept is identical each time.)

Each of these inequalities reaches equality when 𝑃𝑖 lies on segment 𝑃𝑖−1𝑃𝑖+1, and iterating yields:

• 𝑃𝑛 lies on 𝑃𝑛−1𝑃𝑛+1

• 𝑃𝑛−1 lies on 𝑃𝑛−2𝑃𝑛+1

• ...and so on.

In the end, this is equivalent to 𝑃𝑖 lying on segment 𝑃𝑖−1𝑃𝑖+1, as desired. ■

If the general case is confusing, you should try proving the inequality for 𝑛 = 2. This should give you some
intuition for how the general argument works. (The original Triangle Inequality is equivalent to 𝑛 = 1, so the next
step would be 𝑛 = 2.)

A useful example of the Extended Triangle Inequality is determining the furthest and closest possible distances
between two points on two different circles.

Example 3.16.

Consider two circles 𝜔1 and 𝜔2 with radii 𝑟1, 𝑟2 and centers 𝑂1, 𝑂2, respectively. If 𝑂1𝑂2 ≥ 𝑟1 + 𝑟2, point 𝑃 is
on 𝜔1, and point 𝑄 is on 𝜔2, what is the minimum length of segment 𝑃𝑄? The maximum?

Solution. We first find the maximum length of 𝑃𝑄. Note that 𝑃𝑄 ≤ 𝑃1𝑂1 + 𝑂1𝑂2 + 𝑂2𝑃2 = 𝑟1 + 𝑂1𝑂2 + 𝑟2 by
the Extended Triangle Inequality (1.14), with equality when 𝑃, 𝑂1, 𝑂2, and 𝑄 lie on a line in that order.



𝑃
𝑄

𝑂1 𝑂2 𝑃 𝑄
𝑂1 𝑂2

The equality condition.

Figure 3.17: 𝑃𝑄 ≤ 𝑃𝑂1 + 𝑂1𝑂2 + 𝑂2𝑄.

Now we find the minimum length of 𝑃𝑄. Note that 𝑂1𝑂2 ≤ 𝑂1𝑃 + 𝑃𝑄 + 𝑃𝑂2 with equality when 𝑂1, 𝑃, 𝑄,
and 𝑂2 lie on a line in that order, implying that 𝑂1𝑂2 − (𝑟1 + 𝑟2) ≤ 𝑃𝑄 with the same equality condition.

𝑃
𝑄

𝑂1 𝑂2
𝑃 𝑄

𝑂1 𝑂2

The equality condition.

Figure 3.18: 𝑂1𝑂2 ≤ 𝑂1𝑃 + 𝑃𝑄 + 𝑃𝑂2.

■

3.1.3 Tangents
In this subsection we develop some theory for tangents: both lines tangent to circles and circles tangent to circles
will be covered. Heavy use of the Pythagorean Theorem follows.

Definition 3.19 (Tangent Line).

We say line ℓ is tangent to circle 𝜔 if and only if it intersects 𝜔 at exactly one point. If, for example, we denote
the point of intersection as 𝑃, then we say ℓ is tangent to 𝜔 at point 𝑃.

𝑃

We start by establishing an important relation between the tangent and radius of a circle.

Theorem 3.20 (Tangent Perpendicularity).

If line ℓ is tangent to circle 𝜔 with center 𝑂 at 𝑃, then 𝑂𝑃 is perpendicular to ℓ .

This theorem is the basis for this entire subsection, much like the postulates of previous chapters were the basis
for said chapters. The only reason it isn’t marked as a postulate is because we can prove this vital result.

Even without a proof, this result should intuitively feel true. The shortest path from a point 𝑂 to a line ℓ is
the segment from 𝑂 perpendicular to ℓ because of the Pythagorean Theorem (1.2). Therefore, if the circle and the



line “barely intersect”, then the radius should “barely” be long enough to reach the line, meaning it should be
perpendicular to the line. Of course, this is just intuition to convince you the theorem should be true. It does not
replace the proof below.

Proof. Assume for the sake of contradiction that 𝑂𝑃 is not perpendicular to ℓ . Then let 𝑀 be the point on ℓ such
that 𝑂𝑀 ⊥ ℓ . Now reflect 𝑃 across 𝑀 to get 𝑄, and note that

𝑂𝑄2 = 𝑂𝑀2 +𝑀𝑄2 = 𝑂𝑀2 +𝑀𝑃2 = 𝑂𝑃2.

Thus 𝑂𝑄 = 𝑂𝑃, implying that𝑄 lies on 𝜔. Since 𝑃 and 𝑀 are distinct points, 𝑃 and𝑄 must also be distinct points,
contradiction.

𝑃 𝑄𝑀

𝑂

□

Problem 3.21. Prove the converse of Theorem 1.20: if line ℓ intersects 𝜔 at point 𝑃 and 𝑂𝑃 is perpendicular to ℓ ,
then ℓ is tangent to 𝜔. Hint: 3

Now we will use the Triangle Inequality to show that two circles can intersect at most twice, assuming that they
are distinct.

Theorem 3.22 (Intersections of Two Circles).

If two circles intersect a finite number of times, they intersect at most twice.

While this theorem is important, it is the proof that is really illuminating, particularly the earlier parts that
mention the Triangle Inequality. Concepts like internally tangent and externally tangent circles are naturally
derived from it, so this proof is one you should pay close attention to.

Proof. Say the circles are 𝜔1 and 𝜔2 with radii 𝑟1, 𝑟2 and centers 𝑂1, 𝑂2, respectively. (If 𝜔1 and 𝜔2 intersect a
positive finite number of times, this implies that 𝑂1 and 𝑂2 are distinct points. In any case, the case where 𝑂1 = 𝑂2
is just a minor detail.) Then the number of times 𝜔1 and 𝜔2 intersect is based on the Triangle Inequality (1.11) for
lengths 𝑟1, 𝑟2, and 𝑂1𝑂2.

If there is some point 𝑃 that lies on both 𝜔1 and 𝜔2, then △𝑃𝑂1𝑂2 must satisfy the Triangle Inequality (??.
Thus, for example, if we have some case like 𝑂1𝑂2 > 𝑟1 + 𝑟2 or 𝑟1 > 𝑂1𝑂2 + 𝑟2, then the circles would not intersect,
because no point 𝑃 would satisfy these length conditions.

𝑂1 𝑂2 𝑂1 𝑂2

Figure 3.23: 𝑂1𝑂2 > 𝑟1 + 𝑟2 and 𝑟1 > 𝑂1𝑂2 + 𝑟2, respectively.



If 𝑃 lies on line 𝑂1𝑂2, then by Postulate 1.1, this point 𝑃 is unique. Otherwise, reflecting 𝑃 about 𝑂1𝑂2 gives
another intersection point𝑄. Now we claim that for any point𝑄 on 𝜔1 and 𝜔2 such that𝑄 ≠ 𝑃, 𝑃𝑄 is perpendicular
to 𝑂1𝑂2.

Since △𝑃𝑄𝑂1 and △𝑃𝑄𝑂2 are isosceles, the line through 𝑂1 perpendicular to 𝑃𝑄 passes through the midpoint
of 𝑃𝑄, and same for the line through 𝑂2 perpendicular to 𝑃𝑄. Thus these two lines are identical, implying
𝑃𝑄 ⊥ 𝑂1𝑂2. The Pythagorean Theorem (1.2) shows that the distance from 𝑄 to 𝑂1𝑂2 can only take one value, so
only two intersection points exist.

𝑂1 𝑂2

𝑃

𝑄

□

When 𝑟1 + 𝑟2 = 𝑂1𝑂2, we say that 𝜔1 and 𝜔2 are externally tangent, and when 𝑟1 − 𝑟2 = 𝑂1𝑂2, we say that 𝜔1
and 𝜔2 are internally tangent.4 Note in these cases that the tangency point 𝑃 lies on 𝑂1𝑂2, as described by the
proof. The diagrams below show why we use these terms.

𝑂1 𝑂2𝑃 𝑂1 𝑂2 𝑃

Figure 3.24: On the left, two externally tangent circles. On the right, two internally tangent circles. Note that in
both cases, the tangency point 𝑃 lies on line 𝑂1𝑂2. This is because of Postulate 1.1.

Next we present a corollary of the proof of Theorem 1.22 that ties tangent lines and circles together.

Theorem 3.25.
Say that circles 𝜔1 and 𝜔2 are tangent at 𝑃, whether externally or internally. Then there is a line ℓ passing
through 𝑃 tangent to both 𝜔1 and 𝜔2.

Proof. Because𝑂1, 𝑂2, and 𝑃 are collinear, the line through 𝑃 perpendicular to𝑂1𝑃 is also perpendicular to𝑂2𝑃.
Thus, said line is tangent to both 𝜔1 and 𝜔2 by Theorem 1.20.

4Strictly, the definition of internal tangency is |𝑟1 − 𝑟2 | = 𝑂1𝑂2.



𝑂1 𝑂2 𝑃

□

Problem 3.26. Show the converse of Theorem 1.25: if there is some line ℓ passing through 𝑃 tangent to both 𝜔1
and 𝜔2, then 𝜔1 and 𝜔2 must be tangent at 𝑃.

Another powerful corollary of the proof of Theorem 1.22 is the Two Tangent Theorem, a crucial tool for length
chasing.

Theorem 3.27 (Two Tangent Theorem).

Consider a circle 𝜔 centered at 𝑂 with radius 𝑟. Let 𝑃 be a point outside 𝜔; that is, let 𝑃 be a point such that
𝑂𝑃 > 𝑟. Then:

• There are exactly two lines ℓ1 and ℓ2 that pass through 𝑃 and are tangent to 𝜔.

• Say ℓ1, ℓ2 are tangent to 𝜔 at 𝐴 and 𝐵 respectively. Then 𝑃𝐴 = 𝑃𝐵.

Proof. Let ℓ be any line tangent to 𝜔 at𝑋. Note that 𝑃𝑋2 = 𝑃𝑂2−𝑂𝑋2 = 𝑃𝑂2−𝑟2, implying that 𝑃𝑋 =
√
𝑃𝑂2 − 𝑟2,

as 𝑃𝑂 > 𝑟.
Since a line is uniquely determined by two points, the possible lines ℓ are uniquely determined by the possible

points 𝑋, since ℓ must also pass through 𝑃. The locus of points 𝑋 that satisfy 𝑃𝑋 =
√
𝑃𝑂2 − 𝑟2 is a circle. Thus 𝜔

and the locus of points 𝑋 intersect at most twice.
Because both radii are less than𝑃𝑂 and (𝑃𝑋+𝑟)2 > 𝑃𝑋, which implies𝑃𝑋+𝑟 > 𝑃𝑂, these circles intersect exactly

twice by the Triangle Inequality (1.11). If we refer to these intersection points 𝐴 and 𝐵, then 𝑃𝐴 =
√
𝑃𝑂2 − 𝑟2 = 𝑃𝐵

by definition, as desired.

𝑂

𝑃

𝑋

□

With our theory established, we now turn to some examples. First, we will explore some properties of the
incircle, the circle tangent to segments 𝐴𝐵, 𝐵𝐶, and 𝐶𝐴.



Example 3.28.

Say the incircle of △𝐴𝐵𝐶 is tangent to segments 𝐵𝐶, 𝐶𝐴, and 𝐴𝐵 at 𝐷, 𝐸, and 𝐹, respectively, and say that half
the perimeter — also known as the semiperimeter — of △𝐴𝐵𝐶 is 𝑠. Then show that 𝐴𝐸 = 𝐴𝐹 = 𝑠 − 𝑎, and
analogously, 𝐵𝐹 = 𝐵𝐷 = 𝑠 − 𝑏 and 𝐶𝐷 = 𝐶𝐸 = 𝑠 − 𝑐.

𝐴

𝐵 𝐶𝐷

𝐸
𝐹

Solution. Say 𝐴𝐸 = 𝐴𝐹 = 𝑥, 𝐵𝐹 = 𝐵𝐷 = 𝑦, and 𝐶𝐷 = 𝐶𝐸 = 𝑧.5 Also note that by definition, 2𝑥 + 2𝑦 + 2𝑧 =

𝐴𝐵 + 𝐵𝐶 + 𝐶𝐴 = 2𝑠, implying 𝑥 + 𝑦 + 𝑧 = 𝑠.
Now note that 𝑦 + 𝑧 = 𝐵𝐷 + 𝐶𝐷 = 𝐵𝐶, so (𝑥 + 𝑦 + 𝑧) − (𝑦 + 𝑧) = 𝑠 − 𝑎 as desired.6 ■

Example 3.29.

In △𝐴𝐵𝐶, let 𝐸 and 𝐹 be points on segments 𝐶𝐴 and 𝐴𝐵 such that 𝐸𝐹 ∥ 𝐵𝐶 and 𝐸𝐹 is tangent to the incircle of
△𝐴𝐵𝐶. What is the length of 𝐸𝐹?

𝐴

𝐵 𝐶

𝐸𝐹

Solution. Say that the incircle intersects 𝐸𝐹, 𝐶𝐴, and 𝐴𝐵 at 𝑃, 𝑋, and 𝑌, respectively. Note that 𝐸𝑋 = 𝐸𝑃 and
𝐹𝑌 = 𝐹𝑃 by the Two Tangent Theorem (1.27).

Since △𝐴𝐹𝐸 ∼ △𝐴𝐵𝐶, our strategy will now be to find the perimeter of △𝐴𝐹𝐸 and compare it to the perimeter
of △𝐴𝐵𝐶 to find the factor of similarity. Then, we can find 𝐸𝐹 by comparing it to 𝐵𝐶.

Now note that 𝐸𝐹 = 𝐸𝑃 + 𝐹𝑃 = 𝐸𝑋 + 𝐹𝑌, implying that the perimeter of △𝐴𝐹𝐸 is 𝐴𝐸 +𝐴𝐹 + 𝐸𝐹 = (𝐴𝐸 + 𝐸𝑋) +
(𝐴𝐹 + 𝐹𝑌) = 𝐴𝑋 + 𝐴𝑌. By Example 1.28, 𝐴𝑋 + 𝐴𝑌 = 2(𝑠 − 𝑎) = 𝑏 + 𝑐 − 𝑎. Thus,

𝐸𝐹 =
𝑏 + 𝑐 − 𝑎
𝑎 + 𝑏 + 𝑐 𝐵𝐶 =

𝑎(𝑏 + 𝑐 − 𝑎)
𝑎 + 𝑏 + 𝑐 .

5These lengths are equal by the Two Tangent Theorem (1.27).
6Note that 𝐵𝐹 = 𝐵𝐷 = 𝑠 − 𝑏 and 𝐶𝐷 = 𝐶𝐸 = 𝑠 − 𝑐 by symmetry.



𝐴

𝐵 𝐶

𝐸𝐹 𝑃
𝑋

𝑌

■

The formula for the previous example is quite complicated. Trying to blindly memorize it is counterproductive.
Instead, remember the main steps of the solution:

• The perimeter of △𝐴𝐹𝐸 is 𝐴𝑋 + 𝐴𝑌 by the Two Tangent Theorem (1.27).

• You should remember what the length of 𝐴𝑋 (and 𝐴𝑌) is; Example 1.28 is something you should know by
heart.

• Use △𝐴𝐹𝐸 ∼ △𝐴𝐵𝐶 to find 𝐸𝐹.

It is also worth noting that in the last example, there is no need to know all three of the values 𝑎, 𝑏, and 𝑐. We
only need to know 𝑎 and 𝑠 to find the length of 𝐸𝐹.

Now we move on from the incircle and show how all of our length techniques can be used together.

Example 3.30 (AMC 10B 2007/18).

A circle of radius 1 is surrounded by 4 circles of radius 𝑟 as shown. What is 𝑟?

1

𝑟𝑟

𝑟 𝑟

Solution. Refer to the figure below for point names.

1

𝑟𝑟

𝑟 𝑟

𝑃

𝑂

𝐴



Since the circles are symmetrically placed, 𝑂𝐴𝑃 is a right triangle, where 𝐴 is a point of tangency. Because the
circle with radius 𝑟 is tangent to the circle with radius 1, 𝑂𝑃 = 1 + 𝑟. By the Pythagorean Theorem (1.2),

𝑂𝐴2 + 𝐴𝑃2 = 𝑂𝑃2

2𝑟2 = (𝑟 + 1)2
𝑟2 − 2𝑟 + 1 = 2

(𝑟 − 1)2 = 2

𝑟 − 1 =
√

2

𝑟 = 1 +
√

2.

■

Example 3.31 (AMC 10A 2004/22).

Square 𝐴𝐵𝐶𝐷 has side length 2. A semicircle with diameter 𝐴𝐵 is constructed inside the square, and the
tangent to the semicircle from 𝐶 intersects side 𝐴𝐷 at 𝐸. What is the length of 𝐶𝐸?

𝐴 𝐵

𝐶𝐷

𝐸

Solution. Say 𝐸𝐶 intersects the semicircle at 𝑃. By the Two Tangent Theorem (1.27), 𝐸𝐴 = 𝐸𝑃 and 𝐶𝑃 = 𝐶𝐵 = 2.
Then by the Pythagorean Theorem (1.2),

𝐷𝐸2 + 𝐷𝐶2 = 𝐶𝐸2

(2 − 𝐸𝐴)2 + 22 = (2 + 𝐸𝑃)2
4 = 8𝐸𝐴
1
2 = 𝐸𝐴.

Thus 𝐶𝐸 = 2 + 1
2 = 5

2 .

𝐴 𝐵

𝐶𝐷

𝐸

𝑃

■

3.2 Areas
Because the proofs of our main area formulas and the definition of area itself are heavily predicated on calculus,
much rigor will be omitted in this section. Instead, our “proofs” will mostly be focused on intuition, answering



the question “why should this feel right?” rather than “how do we know for sure?”

3.2.1 Triangles
You likely already know the formula 𝑏ℎ

2 . To introduce a little more rigor, we will first formally define what the base
and height of a triangle (as lengths of segments, rather than segments) are with respect to a vertex 𝐴.

Definition 3.32 (Base and Height).

Pick some vertex 𝐴 of △𝐴𝐵𝐶. Then the base of △𝐴𝐵𝐶 with respect to 𝐴 is the length of side 𝐵𝐶, and the height
of △𝐴𝐵𝐶 with respect to 𝐴 is 𝛿(𝐴, 𝐵𝐶).

Recall that 𝛿(𝐴, 𝐵𝐶) is the distance from point 𝐴 to line 𝐵𝐶.

Theorem 3.33 ( 𝑏ℎ2 ).

Let 𝑏 and ℎ be the base and height of △𝐴𝐵𝐶 with respect to any vertex. Then the area of △𝐴𝐵𝐶 is 𝑏ℎ
2 .

This should be true because the area of a right triangle should be half the area of a rectangle with the same leg
lengths, because two such right triangles form said rectangle. (We take for granted that the area of a 𝑤× 𝑙 rectangle
is 𝑤𝑙.)

Figure 3.34: Why 𝑏ℎ
2 is true for right triangles.

For what follows, we are taking the base and height of △𝐴𝐵𝐶 with respect to 𝐴. To show 𝑏ℎ
2 is still true when

• ∠𝐵 and ∠𝐶 are both acute,

• or one of ∠𝐵 and ∠𝐶 are obtuse,

we should add and subtract areas, respectively. (Postulate 1.48, which is further ahead, is relevant here.)

Addition of areas when ∠𝐵 and ∠𝐶 are both acute.
Subtraction of areas when one of ∠𝐵 or ∠𝐶 are obtuse.

Figure 3.35: 𝑏ℎ
2 is also true for non-right triangles.

Problem 3.36. Show that an equilateral triangle with side length 𝑥 has area
√

3𝑥2

4 . Hint: 8
𝑏ℎ
2 can also be used in ways besides direct area calculations. Say you have two triangles with bases 𝑏1, 𝑏2 and

heights ℎ1, ℎ2, respectively. If you know the area of the first triangle (i.e. 𝑏1ℎ1
2 ) and the ratios 𝑏2

𝑏1
and ℎ2

ℎ1
, you can

find the area of the second triangle (i.e. 𝑏2ℎ2
2 ). Note that you do not need to know any of 𝑏1, 𝑏2, ℎ1, or ℎ2 for this

technique to work.



Example 3.37.

Say lines 𝐴𝐶 and 𝐵𝐷 intersect at 𝑃. Show that

[𝐴𝐵𝑃]
[𝐶𝐷𝑃] =

𝐴𝑃 · 𝐵𝑃
𝐶𝑃 · 𝐷𝑃 .

Solution. By Problem ??, 𝐴𝑃𝐶𝑃 =
𝛿(𝐴,𝐵𝑃)
𝛿(𝐶,𝐷𝑃) . Combining the previous observation with 𝑏ℎ

2 ,

𝐴𝑃 · 𝐵𝑃
𝐶𝑃 · 𝐷𝑃 =

𝛿(𝐴, 𝐵𝑃) · 𝐵𝑃
𝛿(𝐶, 𝐷𝑃) · 𝐷𝑃 =

[𝐴𝐵𝑃]
[𝐶𝐷𝑃] .

𝐴

𝐵

𝐶

𝐷𝑃

■

Example 3.38 (AMC 10A 2008/20).

Trapezoid 𝐴𝐵𝐶𝐷 has bases 𝐴𝐵 and 𝐶𝐷 and diagonals intersecting at 𝐾. Suppose that 𝐴𝐵 = 9, 𝐷𝐶 = 12, and
the area of △𝐴𝐾𝐷 is 24. What is the area of trapezoid 𝐴𝐵𝐶𝐷?

Solution. By Postulate ??, ∠𝐴𝐵𝐾 = ∠𝐶𝐷𝐾 and ∠𝐵𝐴𝐾 = ∠𝐷𝐶𝐾. Thus △𝐴𝐵𝐾 ∼ △𝐶𝐷𝐾, and since 𝐴𝐵
𝐶𝐷 = 3

4 , the
ratio of similarity is 3 : 4.

Since 𝐴𝐾 : 𝐾𝐶 = 3 : 4, adding 𝐾𝐶 to the left side of the ratio yields 𝐴𝐶 : 𝐾𝐶 = 7 : 4, implying that

[𝐴𝐷𝐶] = 7
4 [𝐾𝐷𝐶].

By Postulate 1.487,
[𝐴𝐷𝐾] + [𝐾𝐷𝐶] = [𝐴𝐷𝐶],

implying that

[𝐴𝐷𝐾] = 3
4 [𝐾𝐷𝐶],

or
[𝐾𝐷𝐶] = 4

3 [𝐴𝐷𝐾] = 32.

Thus [𝐴𝐷𝐶] = 24 + 32 = 56.
Now note that the height of △𝐷𝐴𝐶 with respect to 𝐴 is the same as the height of △𝐶𝐴𝐵 with respect to 𝐶.

However, the base of △𝐷𝐴𝐶 is 12, while the base of △𝐶𝐴𝐵 is 9. Therefore,

[𝐶𝐴𝐵] = 9
12 [𝐷𝐴𝐵] = 42.

This yields a total area of 56 + 42 = 98.

𝐴 𝐵

𝐶𝐷

𝐾

9

12
7This is introduced later in the chapter. For the purposes of this example, you can just treat it as “areas add”.



■

3.2.2 Circles
You likely also know the formula 𝜋𝑟2. However, as with triangles, we will first introduce a bit of rigor by defining
𝜋.

Definition 3.39.
We say 𝜋 is the ratio of the circumference of a circle to its diameter.

We will take for granted that this ratio 𝜋 is the same for each circle. Note that 2𝜋 is the ratio of the circumference
of a circle to its radius.

Theorem 3.40 (Area of a Circle).

The area of a circle with radius 𝑟 is 𝜋𝑟2.

We can approximate the area of a circle with a regular polygon whose vertices are all on its circumference.

Figure 3.41: Approximating a circle with a pentagon.

As we increase the sides of the polygon, its area becomes closer to the area of the circle. Now here’s the kicker:
if we draw segments from the center of the polygon to its vertices, then we can use 𝑏ℎ

2 to find its area.

Figure 3.42: The solid red lines enclose the triangles whose areas we will sum. The dotted red lines indicate the
heights of these triangles.

As the polygon has more sides, the sum of the bases will approach the circumference of the circle and the height
will approach the radius of the circle. Since all the triangles have the same height, we can multiply the sum of the
bases with the height and then divide by two to get the total area. Doing this, we find that the area of a circle is

1
2 · 2𝜋𝑟 · 𝑟 = 𝑟2.

We can also find the area of a sector of a circle. A sector is exactly what it sounds like: a slice of a circle through
the center, similar to a pizza slice.



Figure 3.43: The sector encloses the shaded area.

More precisely, it is the figure formed by an arc and the corresponding radii. For additional rigor, we should
properly define what an arc and a sector are.

Definition 3.44 (Arc of a Circle).

An arc of a circle is a path along the circumference of a circle.

If the length of the arc is 𝑠 and the circumference is 2𝜋𝑟, then we say the measure of the arc is 360◦ · 𝑠
2𝜋𝑟 .

Definition 3.45 (Sector of a Circle).

A sector of a circle is formed by taking an arc and joining its endpoints with the center of the circle.

The measure of a sector is the same as the measure of its corresponding arc.

If the length of a sector’s corresponding arc is 𝑠, then the fraction of the total circumference it covers is 𝑠
2𝜋𝑟 .

Thus, the fraction of the total area it covers should be the same.

Theorem 3.46 (Area of a Sector).

A sector with arc length 𝑠 in a circle of radius 𝑟 has area

𝑠
2𝜋𝑟 · 𝜋𝑟2 =

𝑠𝑟
2 .

Problem 3.47. If a sector of a circle with area 𝐴 has measure 𝑚, show that the sector has area 𝑚
360 · 𝐴.

3.2.3 The Principle of Inclusion-Exclusion
Our fundamental postulate for this subsection is that areas can be added, and conversely, they can be subtracted
as well. We’ve already implicitly used this idea in our intuitive “proof” of 𝑏ℎ

2 .

Postulate 3.48. Given two disjoint8 figures 𝐴 and 𝐵, the area of the figure attained by combining 𝐴 and 𝐵 is the
same as the sum of the areas of figures 𝐴 and 𝐵.

8Alternatively, non-overlapping.



𝐴

𝐵

Figure 3.49: [𝐴𝐵] = [𝐴] + [𝐵].

Of course, we must first determine the areas of figures if we want to be able to meaningfully add them.
Therefore, this postulate never appears on its own in a problem; in some way or another, an area formula will also
have to be utilized.

Example 3.50 (Winter MAT 2022/5).

Let 𝐴𝐵𝐶𝐷 be a rectangle and 𝑀 and 𝑁 be midpoints on the sides of the rectangle, as shown in the diagram
below. The areas of the different triangles within the rectangle are shown to be 299, 298, and 297. What is the
area of the shaded region?

299 298

297

𝐴 𝐵

𝐶𝐷

𝑀 𝑁

Solution. After dropping the altitudes from the points on 𝐴𝐵 and 𝐶𝐷, we end up with three pairs of congruent
right triangles. The pair on the left has area 299, and the pair on the right has area 297. Then the pair of congruent
triangles in the center has area 298 − 297 = 1. The bottom triangle with area 299 + 1 = 300 and the shaded triangle
have equal heights, but the bottom triangle’s base is half that of the shaded triangle. The shaded triangle then has
area 2 · 300 = 600.

𝐴 𝐵

𝐶𝐷

𝑀 𝑁
299

297

297

299 1

1

■



Example 3.51 (AMC 8 2015/25).

One-inch squares are cut from the corners of this 5 inch square. What is the area in square inches of the largest
square that can be fitted into the remaining space?

Solution. The figure below is the best configuration.

Note that it can be decomposed into a square of side length 3 and four triangles with base 3 and height 1. Thus,
its area is

32 + 4 · 1
2 · 3 · 1 = 15.

■

Though Postulate 1.48 only explicitly mentions addition, it can be used for subtraction too. And it is subtraction,
rather than addition, that often makes for not so straightforward applications.

Example 3.52.

In the figure below is a 60◦ sector of a circle with radius 1. Find the shaded area.

Solution. By Postulate 1.48, the area of the sector is the sum of the area of the shaded area and the triangle.
Denote the area of the shaded area as 𝐾.

Note the unshaded triangle is an equilateral triangle with side length 1, and note the sector has area 1
6 · 12𝜋, so

𝐾 +
√

3
4 =

𝜋
6 .

Thus 𝐾 = 𝜋
6 −

√
3

4 . ■



Example 3.53 (AMC 8 2014/20).

Rectangle 𝐴𝐵𝐶𝐷 has sides 𝐶𝐷 = 3 and 𝐷𝐴 = 5. A circle of radius 1 is centered at 𝐴, a circle of radius 2 is
centered at 𝐵, and a circle of radius 3 is centered at 𝐶. What is the area of the region inside the rectangle but
outside all three circles?

A

B C

D5

3

Solution. We subtract the area of the circles in the rectangle from the area of the rectangle. Since 1
4 of each circle

is in the rectangle, our desired area is

3 · 5 − 1
4𝜋(1

2 + 22 + 32) = 15 − 7𝜋
2 .

■

These past two examples were fairly straightforward because both the total regions and the regions to subtract
were both clearly drawn. However, sometimes you will only be given a strange figure and have to complete it into
something more ordinary yourself. The next example demonstrates this.

Example 3.54 (AMC 8 2017/25).

In the figure shown, 𝑈𝑆 and 𝑈𝑇 are line segments each of length 2, and 𝑚∠𝑇𝑈𝑆 = 60◦. Arcs 𝑇𝑅 and 𝑆𝑅 are
each one-sixth of a circle with radius 2. What is the area of the region shown?

𝑈

𝑆 𝑇

𝑅

Solution. Let 𝐴 be the center of arc 𝑆𝑅 and 𝐵 be the center of arc 𝑇𝑅. Observe that because 𝐴𝐵 is parallel to 𝑆𝑇
and ∠𝑈𝑆𝑇 = ∠𝑆𝐴𝑅, 𝑆 lies on𝑈𝐴 by Postulate ??. (More precisely,𝑈𝑆 ∥ 𝑆𝐴, implying𝑈𝑆 and 𝑆𝐴 are the same line
since they intersect.)

Now draw △𝑈𝐴𝐵. The area of our desired region is the area of △𝑈𝐴𝐵 minus the area of the arcs, or
√

3 · 42

4 − 2 · 1
6 · 22𝜋 = 4

√
3 − 4𝜋

3 .

𝑈

𝑆 𝑇

𝑅𝐴 𝐵



■

So far we have only been doing addition and subtraction of disjoint regions, and if the subsection ended here,
“The Principle of Inclusion-Exclusion” would be a poor choice of a title. However, the final — and in my opinion,
hardest — application of Postulate 1.48 is using it to find the area of the union of overlapping figures.

𝐴 𝐵𝐶

Take the figure above. Regions 𝐴 and 𝐵 are circles, and region 𝐶 is the overlap of regions 𝐴 and 𝐵. There are
two ways to think about the area of [𝐴𝐵]:

• Add the area of 𝐴 and the area of 𝐵 together. Then, note that we counted the area in 𝐶 twice, so subtract it.

• Make two new regions 𝐴 − 𝐶 and 𝐵 − 𝐶, where 𝐴 − 𝐶 is 𝐴 with 𝐶 removed and likewise with 𝐵 − 𝐶. Then
we add the areas of disjoint figures 𝐴 − 𝐶, 𝐵 − 𝐶, and 𝐶.

𝐴 − 𝐶 𝐵 − 𝐶𝐶

Figure 3.55: Here we use the second approach.

Either way, we get the same area in the end: [𝐴𝐵] = [𝐴] + [𝐵] − [𝐶].

Example 3.56.

There are two circles with radius 1 and centers 𝐴 and 𝐵 such that 𝐴𝐵 =
√

3. Find the area of the union of the
circles.

Solution. Let our regions 𝐴 and 𝐵 be the circles with centers 𝐴 and 𝐵. We can easily see that [𝐴] + [𝐵] = 2𝜋. To
find the union of the areas, we just have to subtract the area of the region shaded below from 2𝜋.

𝑃

𝑄

𝐴 𝐵

Instead of finding the entire shaded area, we find half of it. Note that 𝑃𝑄 = 1, so △𝐴𝑃𝑄 is equilateral.

𝑃

𝑄

𝐴



Observe now that finding this shaded area is identical to Example 1.52, so we skip the calculations and take for
granted that it has area 𝜋

6 −
√

3
4 . Then the area of the union of the circles is

2𝜋 − 2(𝜋6 −
√

3
4 ) = 5𝜋

3 +
√

3
2 .

■

It is possible to extend this concept out to more than two figures, just as the combinatorial Principle of Inclusion-
Exclusion extends beyond two sets. However, this seldom appears in problems, so we will not demonstrate nor
require it in the text.

3.3 Problems
Good problems are not mindless applications of one concept. Rather, they will weave multiple concepts together
under a general idea or theme. Do not expect any of the problems to only use one concept, and expect many of
them to require ideas and facts found in previous chapters.

Problem 3.57 (Intersection of a Circle and a Line). Show that a circle and line intersect at most twice. Hints:
1 6 5

Problem 3.58 (Inradius of a Right Triangle). A right triangle has legs of lengths 𝑎 and 𝑏 and hypotenuse of
length 𝑐. Find, in terms of 𝑎, 𝑏, and 𝑐, the inradius of this triangle. Hint: 4

Problem 3.59 (AMC 10A 2013/12). In △𝐴𝐵𝐶, 𝐴𝐵 = 𝐴𝐶 = 28 and 𝐵𝐶 = 20. Points 𝐷, 𝐸, and 𝐹 are on sides 𝐴𝐵,
𝐵𝐶, and 𝐴𝐶, respectively, such that 𝐷𝐸 and 𝐸𝐹 are parallel to 𝐴𝐶 and 𝐴𝐵, respectively. What is the perimeter of
parallelogram 𝐴𝐷𝐸𝐹?

𝐴

𝐵 𝐶

𝐷

𝐸

𝐹

Problem 3.60 (Amador Valley Geometry Bee 2022/2). A square is inscribed in a semicircle of radius 1 such
that one of its sides lays entirely on its diameter. If the area of this square can be expressed as 𝑚

𝑛 for relatively prime
positive integers 𝑚 and 𝑛, find 𝑚 + 𝑛.

Problem 3.61 (AAMC 10A 2021/6). Alexis starts at the park, walks 80 meters south, 340 meters in some direction,
and then 160 meters east. Given that her ending location is 𝑘 meters directly north from the park, what is the value
of 𝑘?

Problem 3.62 (AMC 10B 2022/2). In rhombus 𝐴𝐵𝐶𝐷, point 𝑃 lies on segment 𝐴𝐷 so that 𝐵𝑃 ⊥ 𝐴𝐷, 𝐴𝑃 = 3,
and 𝑃𝐷 = 2. What is the area of 𝐴𝐵𝐶𝐷? (Note: The figure is not drawn to scale.)



𝐴

𝐵 𝐶

𝐷𝑃

Problem 3.63 (AMC 10A 2022/5). Square 𝐴𝐵𝐶𝐷 has side length 1. Points 𝑃, 𝑄, 𝑅, and 𝑆 each lie on a side of
𝐴𝐵𝐶𝐷 such that 𝐴𝑃𝑄𝐶𝑅𝑆 is an equilateral convex hexagon with side length 𝑠. What is 𝑠?

Problem 3.64 (AMC 10B 2023/7). Square𝐴𝐵𝐶𝐷 is rotated 20◦ clockwise about its center to obtain square 𝐸𝐹𝐺𝐻,
as shown below. What is the degree measure of ∠𝐸𝐴𝐵?

𝐴 𝐵

𝐶𝐷

𝐸

𝐹

𝐺

𝐻

Problem 3.65 (AMC 8 2016/22). Rectangle 𝐷𝐸𝐹𝐴 below is a 3 × 4 rectangle with 𝐷𝐶 = 𝐶𝐵 = 𝐵𝐴. What is the
area of the “bat wings”?

𝐷 𝐶 𝐵 𝐴

𝐸 𝐹

Problem 3.66 (AMC 8 2013/24). Squares 𝐴𝐵𝐶𝐷, 𝐸𝐹𝐺𝐻, and 𝐺𝐻𝐼𝐽 are equal in area. Points 𝐶 and 𝐷 are the
midpoints of sides 𝐼𝐻 and 𝐻𝐸, respectively. What is the ratio of the area of the shaded pentagon 𝐴𝐽𝐼𝐶𝐵 to the sum
of the areas of the three squares?

𝐴 𝐵

𝐶𝐷𝐸

𝐹 𝐺

𝐻 𝐼

𝐽

Problem 3.67 (AMC 12B 2022/10). Regular hexagon 𝐴𝐵𝐶𝐷𝐸𝐹 has side length 2. Let 𝐺 be the midpoint of 𝐴𝐵,
and let 𝐻 be the midpoint of 𝐷𝐸. What is the perimeter of 𝐺𝐶𝐻𝐹?

Problem 3.68 (Summer MAT 2023/1). A plus sign is formed with five congruent squares. A gray square with
area 11 is placed inside the plus sign such that the inner vertices of the plus sign lie on the sides of the square. The
indicated triangles all have area 4. Find the area of the plus sign.



4

4

4

4

11

Problem 3.69 (HMMT Nov. General 2021/3). Let 𝐴𝐵𝐶𝐷 be a unit square. A circle with radius 32
49 passes

through point 𝐷 and is tangent to side 𝐴𝐵 at point 𝐸. Then 𝐷𝐸 = 𝑚
𝑛 , where 𝑚, 𝑛 are positive integers and

gcd(𝑚, 𝑛) = 1. Find 100𝑚 + 𝑛.

Problem 3.70 (AAMC 10A 2021/12). Let 𝐴𝐵𝐶𝐷 be a rectangle with 𝐴𝐵 = 5 and 𝐵𝐶 = 8. There exists a circle
tangent to sides 𝐴𝐵, 𝐵𝐶, and 𝐶𝐷 of the rectangle that meets side 𝐷𝐴 at points 𝑋 and 𝑌. What is 𝑋𝑌2?

Problem 3.71 (AMC 10A 2023/11). A square of area 2 is inscribed in a square of area 3, creating four congruent
triangles, as shown below. What is the ratio of the shorter leg to the longer leg in the shaded right triangle?

Problem 3.72 (AMC 10A 2011/18). Circles 𝐴, 𝐵, and 𝐶 each have radius 1. Circles 𝐴 and 𝐵 share one point of
tangency. Circle 𝐶 has a point of tangency with the midpoint of 𝐴𝐵. What is the area inside circle 𝐶 but outside
circle 𝐴 and circle 𝐵?

𝐴 𝐵

𝐶

Problem 3.73 (AMC 10A 2022/10). Daniel finds a rectangular index card and measures its diagonal to be 8
centimeters. Daniel then cuts out equal squares of side 1 cm at two opposite corners of the index card and
measures the distance between the two closest vertices of these squares to be 4

√
2 centimeters, as shown below.

What is the area of the original index card?

8

4
√

2



Problem 3.74 (AMC 12A 2023/18). Circle 𝐶1 and 𝐶2 each have radius 1, and the distance between their centers
is 1

2 . Circle 𝐶3 is the largest circle internally tangent to both 𝐶1 and 𝐶2. Circle 𝐶4 is internally tangent to both 𝐶1
and 𝐶2 and externally tangent to 𝐶3. What is the radius of 𝐶4?

Problem 3.75 (AMC 10B 2022/16). The diagram below shows a rectangle with side lengths 4 and 8 and a square
with side length 5. Three vertices of the square lie on three different sides of the rectangle, as shown. What is the
area of the region inside both the square and the rectangle?

4

8

5

Problem 3.76 (AMC 12A 2009/20). Convex quadrilateral 𝐴𝐵𝐶𝐷 has 𝐴𝐵 = 9 and 𝐶𝐷 = 12. Diagonals 𝐴𝐶 and
𝐵𝐷 intersect at 𝐸, 𝐴𝐶 = 14, and △𝐴𝐸𝐷 and △𝐵𝐸𝐶 have equal areas. What is 𝐴𝐸?

Problem 3.77 (AIME II 2007/9). Rectangle 𝐴𝐵𝐶𝐷 is given with 𝐴𝐵 = 63 and 𝐵𝐶 = 448. Points 𝐸 and 𝐹 lie on
𝐴𝐷 and 𝐵𝐶 respectively, such that 𝐴𝐸 = 𝐶𝐹 = 84. The inscribed circle of triangle 𝐵𝐸𝐹 is tangent to 𝐸𝐹 at point 𝑃,
and the inscribed circle of triangle 𝐷𝐸𝐹 is tangent to 𝐸𝐹 at point 𝑄. Find 𝑃𝑄.

Problem 3.78 (AMC 10A 2017/10). Joy has 30 thin rods, one each of every integer length from 1 cm through 30
cm. She places the rods with lengths 3 cm, 7 cm, and 15 cm on a table. She then wants to choose a fourth rod that
she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she
choose as the fourth rod? Hint: 2

Challenge Problem 3.79. Consider trapezoid 𝐴𝐵𝐶𝐷 with bases 𝐴𝐵 and 𝐶𝐷, and let diagonals 𝐴𝐶 and 𝐵𝐷
intersect at 𝑃. Prove that [𝐴𝐵𝑃] + [𝐶𝐷𝑃] ≥ 1

2 [𝐴𝐵𝐶𝐷]. When does equality occur?

Challenge Problem 3.80. Theorem 1.12 states that given any set of 3 lengths that satisfies the Triangle Inequality,
there exists a (possibly degenerate) triangle with those lengths. Does this extend beyond three sides? That is,
given a set of lengths 𝑙1 , . . . , 𝑙𝑛 that satisfy the Extended Triangle Inequality, must there exist an 𝑛-sided polygon
with lengths 𝑙1 , . . . , 𝑙𝑛? (We say a set of lengths satisfies the Extended Triangle Inequality if 𝑙𝑖 ≤ 𝑙1+···+𝑙𝑛

2 for all
1 ≤ 𝑖 ≤ 𝑛.)

Challenge Problem 3.81 (AMC 12A 2021 Fall/21). Let 𝐴𝐵𝐶𝐷 be an isosceles trapezoid with 𝐵𝐶 ∥ 𝐴𝐷 and
𝐴𝐵 = 𝐶𝐷. Points 𝑋 and 𝑌 lie on diagonal 𝐴𝐶 with 𝑋 between 𝐴 and 𝑌, as shown in the figure. Suppose
∠𝐴𝑋𝐷 = ∠𝐵𝑌𝐶 = 90◦, 𝐴𝑋 = 3, 𝑋𝑌 = 1, and 𝑌𝐶 = 2. What is the area of 𝐴𝐵𝐶𝐷?

2 1 3 𝐴

𝐵

𝐶

𝐷

𝑌 𝑋

Challenge Problem 3.82 (AMC 10B 2019/23). Points 𝐴 = (6, 13) and 𝐵 = (12, 11) lie on circle 𝜔 in the plane.
Suppose that the tangent lines to 𝜔 at 𝐴 and 𝐵 intersect at a point on the 𝑥-axis. What is the area of 𝜔?



Challenge Problem 3.83 (AMC 12B 2021/17). Let 𝐴𝐵𝐶𝐷 be an isoceles trapezoid having parallel bases 𝐴𝐵
and 𝐶𝐷 with 𝐴𝐵 > 𝐶𝐷. Line segments from a point inside 𝐴𝐵𝐶𝐷 to the vertices divide the trapezoid into four
triangles whose areas are 2, 3, 4, and 5 starting with the triangle with base 𝐶𝐷 and moving clockwise as shown in
the diagram below. What is the ratio 𝐴𝐵

𝐶𝐷 ?

𝐴 𝐵

𝐶𝐷
2

3
4

5



APPENDIX A
Hints

1. Let the center of the circle be 𝑂 and the line be ℓ . Draw the foot of the altitude from 𝑂 to ℓ . (For subsequent
hints, we will refer to it as 𝐻.)

2. The claim in Problem 1.80 is true.

3. Let 𝑋 be a point on ℓ distinct from 𝑃. Using the Pythagorean Theorem (1.2), what can you say about the
length of 𝑂𝑋 compared to the length of 𝑂𝑃?

4. Call our right triangle △𝐴𝐵𝐶 and say ∠𝐶 = 90◦. Then the tangent length from 𝐶 is equal to the inradius.
(Why?)

5. Essentially, the value of 𝑃𝐻 is fixed (if it exists at all). If 𝐻 is fixed and ℓ passes through 𝐻, then at most how
many points 𝑃 exist such that 𝑃𝐻 =

√
𝑂𝑃2 − 𝑂𝐻2? (Assume 𝑃𝐻 is a real number; otherwise, the circle and

line never intersect and we have nothing left to prove.)

6. Say 𝑃 lies on the circle and the line. By the Pythagorean Theorem (1.2), 𝑃𝐻2 = 𝑂𝑃2 − 𝑂𝐻2.

7. Note that ∠𝐴 = ∠𝐵, so 𝑎 = 𝑏.

8. Refer to Example 1.3.



APPENDIX B
Solutions

Chapter 3
3.4. Note that 𝑎 = 𝑏 because ∠𝐴 = ∠𝐵. By the Pythagorean Theorem (1.2),

𝑎2 + 𝑏2 = 𝑐2.

Since 𝑎 = 𝑏, this implies 2𝑎2 = 𝑐2, or 𝑐 = 𝑎
√

2. Thus

𝑎 : 𝑏 : 𝑐 = 1 : 1 :
√

2.

(If we scale 𝑐 to 1 in the ratio, which will be useful when trigonometry is introduced, then 𝑎 : 𝑏 : 𝑐 =
√

2
2 :

√
2

2 : 1.)
3.21. No point𝑋 on ℓ distinct from 𝑃 lies on 𝜔 because by the Pythagorean Theorem (1.2),𝑂𝑋2 = 𝑂𝑃2+𝑃𝑋2 > 𝑂𝑃2,
implying that 𝑂𝑋 > 𝑂𝑃.
3.26. This is a direct result of Theorem 1.20: if 𝑂1 and 𝑂2 are the centers of 𝜔1 and 𝜔2, then 𝑂1𝑃 ⊥ ℓ ⊥ 𝑂2𝑃,
implying that 𝑂1𝑃 and 𝑂2𝑃 are the same line.
3.60. Let the center of the semicircle be 𝑂, a vertex of the square on the semicircle be 𝐴, and the foot of the altitude
from 𝐴 to the diameter be 𝐻.

𝐴

𝐻𝑂

Note that 𝑂𝐻 = 1
2𝐴𝐻, and 𝑂𝐻2 +𝐴𝐻2 = 1. This implies that 𝐴𝐻 = 2√

5
, so the area of the square is 4

5 . Thus our
answer is 4 + 5 = 9.
3.80. Yes, the converse of the Extended Triangle Inequality is true. We implicitly assume that 𝑛 ≥ 3 since no polygon
with fewer sides exist, and we proceed by induction. (Refer to Section ?? for a brief introduction to induction.)

Our base case of 𝑛 = 3 is already known: this is just Theorem 1.12. So we move on to the inductive step.
Assume this is true for 𝑛. Now we want to show it is true for 𝑛 + 1. In general, we can replace two lengths 𝑙𝑖

and 𝑙 𝑗 with some other length 𝑙 as long as 𝑙𝑖 , 𝑙 𝑗 and 𝑙 satisfy the Triangle Inequality. This is because we can just
construct an 𝑛-gon with length 𝑙 replacing lengths 𝑙𝑖 and 𝑙 𝑗 . If the vertices of the segment of length 𝑙 are 𝐴 and 𝐵,
then we can construct our 𝑛 + 1-gon by constructing a point 𝑃 such that 𝐴𝑃 = 𝑙𝑖 and 𝑃𝐵 = 𝑙 𝑗 , and then replacing
segment 𝐴𝐵 with segments 𝐴𝑃 and 𝑃𝐵.



𝑙

𝑙𝑖 𝑙 𝑗

The replacement process described is contingent on the new set of lengths satisfying the Extended Triangle
Inequality as well; that way, we can construct the initial 𝑛-gon to begin with. We now show this is possible.

Take the longest length 𝑙𝑖 out of 𝑙1 , . . . , 𝑙𝑛+1 and any other length 𝑙 𝑗 , and let 𝑙𝑘 be the longest length remaining.
Now if 𝑙𝑖 − 𝑙 𝑗 ≥ 𝑙𝑘 , replacing 𝑙𝑖 and 𝑙 𝑗 with 𝑙𝑖 − 𝑙 𝑗 still preserves the Triangle Inequality, as

𝑙𝑖 − 𝑙 𝑗 ≤
𝑙1 + · · · + 𝑙𝑛 − 2𝑙 𝑗

2 .

(Note that 𝑙𝑖 − 𝑙 𝑗 is still the longest length in our new set of 𝑙’s, and replacing 𝑙𝑖 and 𝑙 𝑗 with 𝑙𝑖 − 𝑙 𝑗 decreases the sum
of the 𝑙’s by 2𝑙 𝑗 .)

And if 𝑙𝑖 − 𝑙 𝑗 ≤ 𝑘, then replacing 𝑙𝑖 and 𝑙 𝑗 with 𝑙𝑘 also preserves the Triangle Inequality, as there are two sides
of length 𝑙𝑘 , meaning the perimeter is at least 2𝑙𝑘 , so the semiperimeter is at least 𝑙𝑘 .
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