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Abstract

The Cantor Schroeder-Bernstein Theorem states that if there exists an injection f : A → B
and an injection g : B → A, then there exists a bijection h : A → B. This is an intuitive result,
but its proof is surprisingly tricky.

In this article, we briefly review injections, surjections, and bijections, and use these basic facts
to support a proof of the Cantor Schroeder-Bernstein Theorem.

Much of this article was derived from https://web.williams.edu/Mathematics/lg5/CanBer.

pdf. Here we just fill in all of the details.

1 Preliminaries
This should mostly be review. You should work out proofs of each of these theorems yourself.

1.1 Functions

Definition 1.1 (Injection).

A function f : A → B is injective if and only if f(x) = f(y) implies x = y.

In other words, if the outputs are the same, the inputs must be the same.

Definition 1.2 (Surjection).

A function f : A → B is surjective if for all b ∈ B, there exists some a ∈ A such that f(a) = b.

Definition 1.3 (Bijection).

A function f : A → B is a bijection if it is an injection and it is a surjection.

Prove the following theorem.

Theorem 1.4 (Bijectivity is an equivalence relation).

We say that A ∼ B if and only if there exists a bijection f : A → B. Then ∼ is an equivalence
relation. That is,

1. Reflexivity: A ∼ A.

2. Symmetry: A ∼ B implies B ∼ A.

3. Transitivity: A ∼ B and B ∼ C implies A ∼ C.
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1.2 Unions and Intersections

Definition 1.5 (Union).

Consider a (possibly infinite) series of sets Ai. Then
⋃

Ai is the set of elements contained in at
least one Ai.

Definition 1.6 (Intersection).

Consider a (possibly infinite) series of sets Ai. Then
⋂

Ai is the set of elements contained in every
Ai.

From here on out we will commit an abuse of notation. Given a function f : A → B and A0 ⊆ A,
we write f(A0) to denote the range of f on A0. In other words, f(A0) (which is a subset of B) is the
set of elements b such that there exists some element a ∈ A0 where f(a) = b.

The following theorem will be useful for the last part of our proof.

Theorem 1.7.
Given a set A, a series of sets Ai ⊆ A, and an injective function f :

⋃
Ai → B,

f(
⋃

Ai) =
⋃

f(Ai)

f(
⋂

Ai) =
⋂

f(Ai)

2 Cantor Schroeder-Bernstein

2.1 Groundwork
Define sequences An and Bn recursively as follows:

1. A0 = A

2. B0 = B

3. An = g(Bn−1) for n ≥ 1

4. Bn = f(An−1) for n ≥ 1

The following two lemmas are the meat of the proof.

Lemma 2.1. For n ≥ 0, An ∼ Bn+1.

Proof. Recall that Bn+1 = g(An). Note that g : An → Bn+1 is injective as g is injective on the
entirety of A. And since Bn+1 = rangeAn by definition, g is also surjective. Thus g : An → Bn+1 is a
bijection. □

By symmetry, we have Bn ∼ An+1 as well.

Lemma 2.2. For n ≥ 0, An ⊇ An+1 and Bn+1 ⊇ Bn.

Let us first look at a few small cases to gain some intuition. Note that

(A0, A1, A2, A3) = (A, gB, gfA, gfgB).



Notice for every term except for A0, there is a g on the “outside”. So if we can show inclusion on
the sets g is being applied on, then we can also show inclusion on the result after g is implied.

As a concrete example,

B ⊇ fA =⇒ gB ⊇ gfA.

Proof. We induct on n. The base case is straightforward, so we omit it.
Recall that An = g(Bn−1) and An+1 = g(Bn). Since Bn−1 ⊇ Bn, we conclude that g(Bn−1) ⊇

g(Bn). By symmetry, we have Bn ⊇ Bn+1 as well. □

2.2 Using our lemmas
Now there are two cases. Either there exists some n such that An = An+1 or Bn = Bn+1, in which
case we are done, or there does not. The full details of the first case are left to Appendix A, but here
is a general sketch. We have An ∼ An+1 ∼ Bn, where the important part is An ∼ Bn. We can show
that An ∼ Bn =⇒ An−1 ∼ Bn−1, which eventually cascades to A0 ∼ B0.

Now suppose that there exists no n such that An = An+1 or Bn = Bn+1. Then we can rewrite
Lemmas 2.2 and 2.1 as follows.

Lemma 2.3. For n ≥ 0, An ⊋ An+1 and Bn ⊋ Bn+1.

Then define A⋆
n as An − An+1 (where − is set subtraction). Define B⋆ similarly. Note that A⋆

n is
never empty as the inclusions in Lemma 2.3 are strict and An is never empty. This is a simple proof
by induction; full details in Appendix B.

Lemma 2.4. For n ≥ 0, A⋆
n ∼ B⋆

n+1.

The proof is left to Appendix C.

Lemma 2.5. There exists a bijection h0 :
⋃

Ai →
⋃
Bi.

This is a consequence of Lemma D.1.
Let’s take stock of where we are. We have bijected most of A to most of B, and with Lemma D.1

we have a tool to compose bijections of disjoint unions. So all we have to do is answer the following
questions:

1. What part of A is not in
⋃
A⋆

i ?

2. How do we biject it to its counterpart in B?

Lemma 2.6. The disjoint union of
⋃
A⋆

i and
⋂

Ai is A.

Proof. Note that a ∈ A is in
⋃
A⋆

i if and only if there exists some n such that a ∈ An but a ̸∈ An+1.
If there exists no such n, then because a ∈ A0, we conclude a is in every Ai. In other words, a ∈

⋂
Ai.

□

Lemma 2.7. The function f is a bijection from
⋂

Ai to
⋂

Bi.

Proof. Note by Theorem 1.7 that

f(
⋂

Ai) =
⋂

Bi+1,

and B0

⋂
Bi+1 =

⋂
Bi as every Bi is a subset of B0.

So the range of f(
⋂
Ai) is exactly

⋂
Bi, meaning that f :

⋂
Ai →

⋂
Bi is a surjection. Since f is

injective by definition, f is a bijection, as desired. □

To finish, note that by Lemma D.1,
⋃

A⋆
i ∼

⋃
B⋆

i and
⋂

Ai ∼
⋂

Bi implies A ∼ B.



A Proof of non-strict inclusion case
Here we handle the full details of the non-strict inclusion case as a separate theorem.

Theorem A.1.
For any n ≥ 0, An = An+1 =⇒ A0 ∼ B0.

If we show this, we show by symmetry that Bn = Bn+1 =⇒ A0 ∼ B0.

Lemma A.2. For any n ≥ 0, An ∼ Bn =⇒ A0 ∼ B0.

Proof. We proceed by induction on n. The base case of n = 0 is obvious.
Now suppose An ∼ Bn; we want to show that An+1 ∼ Bn+1. But by Lemma 2.1,

Bn ∼ An+1 ∼ Bn+1 ∼ An,

which implies that A0 ∼ B0. □

Note that An ∼ An+1 ∼ Bn by Lemma 2.1, which implies A0 ∼ B0 by Lemma A.2, as desired.

B An is non-empty

Lemma B.1. For all n ≥ 0, An and Bn are non-empty.

Proof. We induct on n. This is obviously true for n = 0.1

Now suppose An and Bn are non-empty; we want to show that An+1 and Bn+1 are non-empty.
But An+1 is the range of g(Bn), and since Bn is non-empty, all we must do to show An+1 is non-empty
is select an element in Bn.

Symmetrically, Bn+1 is non-empty. □

C Proof of bijection betweenA⋆
n andB⋆

n+1

Lemma C.1. For all n ≥ 0, there is a bijection between An −An+1 and Bn+1 −Bn+2.

Proof. Note that f bijects An to Bn+1, and furthermore, it also bijects An+1 into Bn+2. Since
An ⊇ An+1 and Bn ⊇ Bn+1,

f(An −An+1) = f(An)− f(An+1) = Bn+1 −Bn+2.

Since f is injective, f bijects An −An+1 to Bn+1 −Bn+2. □

D Disjoint union bijections
This is a lemma that is generally useful even outside of this specific proof.

Lemma D.1. Suppose there exists a sequence of pairwise disjoint sets Ai and another such sequence
Bi. Then, ⋃

Ai ∼
⋃

Bi.

Proof. Select a bijection fi : Ai → Bi for each i. Then, we can explicitly construct a bijection
f :

⋃
Ai → Bi as follows: if a ∈ Ai, then f(a) = fi(a). This is well defined because a ∈ Ai for exactly

one i.
1This is not strictly true, but the case where A0 = B0 = ∅ is so trivial that we don’t care.



⋃
𝐴𝑖

𝐴0

𝐴1

. . .

𝑓0

𝑓1

. . .

𝑓

⋃
𝐵𝑖

𝐵0

𝐵1

. . .

□
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