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Abstract 

Most learning models assume, either implicitly or explicitly, 
that the goal of learning is to acquire a complete and veridical 
representation of the world, but this view assumes away the 
possibility that pragmatic goals can play a central role in 
learning. We propose instead that people are relatively frugal 
learners, acquiring goal-relevant information while ignoring 
goal-irrelevant features of the environment. Experiment 1 
provides evidence that learning is goal-dependent, and that 
people are relatively (but not absolutely) frugal when given a 
specific, practical goal. Experiment 2 investigates possible 
mechanisms underlying this effect, and finds evidence that 
people exhibit goal-driven attention allocation, but not goal-
driven reasoning. We conclude by examining how frugality 
can be integrated into Bayesian models of learning.  

Keywords: Goals, Learning, Task-effects, Rationality, 
Frugality, Bayesian inference 

Introduction 
Intuitively, what we need to know depends on what we want 
to do: the information we require from the environment will 
partially depend on our goals, desires, and intentions. For 
example, consider reading a recipe. If I am deciding whether 
to make this dish for a friend with a dairy allergy, then I 
need to know simply whether the dish contains any milk at 
all. If I am instead preparing a shopping list so that I can 
later make the dish for myself, then I need to know how 
much milk is required, not just whether any at all is 
involved. In this paper, we examine the extent to which 
learning is responsive to pragmatic goals (e.g. our desire to 
succeed at an expected future task).  

Many cognitive models of learning assume that 
individuals are trying to acquire (approximately) complete 
representations of their environments, so pragmatic goals 
play essentially no role. For example, most models of causal 
learning assume that agents are trying to learn the “true” 
causal structure; most models of language learning assume 
that people are trying to infer the underlying structure of the 
language; and most models of category learning assume 
people are trying to acquire conceptual representations that 
most closely track the world’s statistical regularities. Under 
these models, pragmatic goals play essentially no role in 
learning; instead, the learner always tries to acquire a 
(relatively) complete and veridical representation of the 
world. This representation can later be used for a range of 
practical purposes precisely because it is complete and 
veridical.  

Despite this, previous research suggests that pragmatic 
goals do impact learning. For example, people acquire 
different categories from identical data when learning 
occurs through a categorization task (selecting a category 
label based on a set of feature values) vs. a feature inference 
task (inferring a feature value given the values of other 
features) (e.g., Markman & Ross, 2003; Zhu & Danks, 
2007). Also, people learn more in dynamic control tasks 
when given a general learning goal (learn about the system) 
rather than a specific task (maintain the system at a specific 
state) (Burns & Vollmeyer, 2002; Osman & Heyes, 2005). 
Tasks have even been found to influence low-level 
processes; for instance, negative priming in selective 
attention is directed to only task-relevant dimensions of 
distractor objects (Frings & Wentura, 2006; Maruff et al., 
1999; Tipper, Weaver, & Houghton, 1994).  

While task effects are common, there has been little study 
of the extent to which learning is modulated by longer-term 
pragmatic goals (vs. the task performed during learning). 
Much of everyday learning is driven by the desire to 
succeed at an expected future task, and it is possible that 
learning is highly responsive to beliefs about how 
information will be used in the future. If this is the case, our 
models of learning cannot ignore the important role that 
pragmatic goals play in many real-world learning situations.  

Our central theoretical proposal is that people’s pragmatic 
goals direct their learning towards pragmatically relevant 
information and, perhaps more importantly, away from 
pragmatically irrelevant information. That is, people are 
relatively frugal learners who encode only the information 
they need: they acquire goal-relevant representations and 
ignore goal-irrelevant dimensions of the environment. We 
first report experimental results suggesting that people are 
relatively frugal when given a concrete, pragmatic goal 
(Experiment 1). We then present preliminary evidence about 
possible mechanisms underlying this frugality (Experiment 
2). We finish by arguing that frugality can be a ‘rational’ 
strategy that can be reconciled with commonly used models 
of rational learning, including Bayesian inference.  

Experiment 1 
Experiment 1 directly tests whether people display frugal 
learning when provided with a concrete, practical goal.  The 
learning paradigm involved four buttons that 
probabilistically produced numbers between 1 and 100, 
where two of the buttons had relatively high means and two 
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had relatively low means. At the outset, learners were 
assigned a task to perform after learning: they had to choose 
the button with either the highest (MAX condition) or 
lowest average (MIN condition), or else simply report the 
mean for each button (Expected Outcome, or EO condition).  

If people are frugal learners, then they should learn just 
the information necessary for their task and so learn more 
about task-relevant contrasts than task-irrelevant ones. For 
instance, the critical decision in MAX is which button has 
the highest mean. Participants can easily rule out the two 
low-mean buttons (since their numbers are much lower than 
the other two), and so focus on deciding between the two 
high-mean buttons. They should thus be more likely to learn 
the rank order of the two high-mean buttons than that of the 
two low-mean buttons. Conversely, MIN participants should 
be more likely to learn the rank order of the low-mean 
buttons than the high-mean ones. For EO participants, each 
contrast is equally relevant, so they should learn the rank 
orders (and hopefully the values) of all four buttons equally 
well. The EO condition thus acts as a control condition to 
determine the extent to which participants were able to learn 
about the values and rank order in this experiment. 

Participants 
149 Amazon Mechanical Turk participants (mean age=35.5; 
43% female,) were randomly assigned to one goal condition 
(MIN/MAX/EO), and one of two button order conditions 
(B-High/C-High). Participants received 50 cents for 
participation and 50 cents for performance. 29 participants 
were excluded based on independent criteria (see Results 
section), leaving 120 participants (mean age=36.9; 43% 
female) in the final analysis. 

Method 
Instructions All participants were told that they would be 
presented with a set of buttons, and that each button 
produced a number between 1 and 100 when pressed. They 
were told that the exact number produced by each button 
would vary, but that different buttons tended to produce 
higher or lower numbers. Participants were then assigned a 
task and told that they would be given a bonus based on 
their success at that task. In the MAX and MIN conditions, 
participants would later press a single button and receive a 
bonus dependent on the resulting number: either more if it 
was higher (MAX), or more if it was lower (MIN). In the 
EO condition, participants would later estimate the average 
number produced by each button and receive a bonus based 
on the accuracy of their estimates.  
 
Learning Phase The learning phase for all participants 
involved passively viewing ten trials in which all buttons 
were pressed simultaneously and then the results were 
displayed (Figure 1). The buttons were labeled and colored, 
and the numbers were displayed in a similarly colored 
square. Learning was self-paced, though participants had to 
view each trial for a minimum of three seconds. 

 
 

Figure 1: Example learning trial 
 

The button means were 80, 70, 30, and 20, and all had 
standard deviation of 9.8.1 The button means varied between 
button order conditions to ensure that response differences 
were not due to differences in the position or color of the 
best/worst buttons. In the B-High (vs. C-High) condition, 
the A/B/C/D means were: 30/80/20/70 (vs. 70/20/80/30).  
 
Testing Phase In the testing phase, all participants (i) chose 
between all four buttons in accordance with their goal; (ii) 
chose separately between the high and low pairs of buttons, 
again in accordance with their goal; and then (iii) estimated 
each button’s average. In the EO condition, participants 
were randomly assigned to choose the largest or smallest 
button for the forced choices in (i) and (ii). Numerical 
estimates for (iii) were recorded using a sliding scale 
between 1 and 100 with the exact number provided. After 
all questions had been answered, participants received 
feedback about the accuracy of their performance on 
question corresponding to their initial goal, along with the 
appropriate bonus.  

Results 
Exclusion Criteria With Mechanical Turk populations, it is 
particularly important to check if participants understood 
the instructions and paid attention during the task. We used 
two exclusion criteria: 
(i) Choice of a clearly suboptimal button (e.g., choice of 

µ=20 button in the MAX condition). Every observed 
number for the low-mean buttons is less than every 
observed number for the high-mean pair, so this 
behavior implies the participant did not understand the 
instructions or did not pay attention during learning.  

(ii) Mean estimate for a ‘goal-relevant button’ (i.e., those 
that should be focal given the goal) falling outside of 
the ‘acceptable range’ (i.e., more than 5 points outside 
of the actual observed range of either button in the 
relevant pair2). Mean estimates significantly larger or 
smaller than any actually observed value indicate either 
comprehension or attentional failure. We used only the 
goal-relevant button estimates since lack of attention to 

                                                             
1 Equal standard deviations imply that the optimal choice in 

MAX (MIN) is always the button with highest (lowest) mean. 
2 [52,100] for high buttons; [2,50] for low buttons. 
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goal-irrelevant buttons could be a deliberate (frugal) 
learning strategy.  

Twenty-nine participants were excluded (seven from MAX, 
nine from MIN, and thirteen from EO). 
 
Button Choices Participants made forced choices in 
accordance with their goal between (i) all four buttons; (ii-a) 
the two highest buttons; and (ii-b) the two lowest buttons. 
EO participants were randomly assigned to choose the 
largest or smallest each time. For analysis, choices were 
recoded as correct or incorrect. No significant differences in 
correctness were found between EO participants who chose 
largest vs. smallest (Fisher’s Exact Tests: all four buttons 
p=1.0; high pair p=.66; low pair p=.72), so they were pooled 
for further analyses. There was a significant effect of button 
order on the accuracy of choices between all four buttons 
(p<.05), but no effect on choices between the high (p=.82) 
or low (p=.22) pairs.  Only these latter comparisons provide 
the critical test for frugal learning, so we pool participants 
from the two order conditions in those analyses below.  
 

Table 1: Percentage of participants choosing the correct 
button (goal-relevant choices in bold; * = significantly 

different from chance). Chi-Square tests compare correct 
choice frequencies for the high vs. low choice sets. 

 
 % Correct Choices  Chi-Square  

 All  High Low X2 p 
MAX 77.5* 87.5* 67.5* 26.9 <.05* 
MIN 97.5* 45.0_   97.5* 4.59 <.05* 
EO 90.0* 85.0* 75.0* 1.25 .26 

 
Table 1 shows the percentages of correct choices for each 

choice set and goal condition. Participants in all conditions 
did significantly better than chance at choosing from all 
buttons (MAX: X2(1, N=40)=12.1, p<.05; MIN: X2(1, 
N=40)=36.1, p<.05; EO: X2(1, N=40)=25.6, p<.05). They 
also were better than chance for choices involving goal-
relevant pairs (high for MAX: X2(1, N=40)=22.5, p<.05; low 
for MIN: X2(1, N=40)=36.1, p<.05; both for EO: high: X2(1, 
N=40)=19.6, p<.05; low: X2(1, N=40)=10.0, p<.05). 
Performance on goal-irrelevant pairs varied; choices for the 
low pair in MAX were significantly better than chance 
(X2(1, N=40)=8.1, p<.05), but choices for the high pair in 
MIN were not (X2(1, N=40)=0.4, p=.53). It appears that at 
least some MAX participants learned goal-irrelevant 
information, while MIN participants did not. Crucially, 
participants in both conditions extracted more information 
about goal-relevant than goal-irrelevant buttons: they were 
significantly more accurate at choice for the goal-relevant 
pair than the goal-irrelevant pair (MAX: X2(1, N=80)=4.59, 
p<.05; MIN: X2(1, N=80)=26.9, p<.05). In contrast, no 
significant difference between choice performance was 
found in the EO condition (X2(1, N=80)=1.25, p=.264).  
 
Estimates Mean number estimates are displayed in Table 2; 
the button labels were recoded to reflect the rank order of 

their means (1=lowest, 4=highest). A two-way multivariate 
ANOVA with the number estimates as the dependent 
variables and the goal and button order as independent 
variables3 revealed a significant multivariate effect of goal 
condition (Pillai’s Trace=.44, F(8, 224)=7.90, p<.05); no 
significant effect of order (Pillai’s Trace=.07, F(4, 
111)=2.17, p=.08), and a significant goal-order interaction 
(Pillai’s Trace=.07, F(8, 224)=2.47 p<.05).4 Post-hoc 
comparisons were conducted using the Tukey HSD test at 
the α=.05 significance level. For the two higher buttons, 
MIN participant estimates were significantly lower (and less 
accurate) than from MAX and EO participants. There were 
no significant differences between estimates for the second 
lowest button. For the lowest button, estimates in the MAX 
condition were significantly higher (and less accurate) than 
those in MIN, but there were no differences between either 
of those conditions and the EO condition.  
 

Table 2: Mean estimates of average number for each of 
the four buttons (bold indicates goal-relevance) 

 
 1 (µ=20) 2 (µ=30) 3 (µ=70) 4 (µ=80) 

MAX 27.7 31.9 68.9 76.7 
MIN 19.6 28.2 60.6 62.1 
EO 23.2 31.9 70.0 76.8 

 
Table 3: Mean differences between estimates (bold 

indicates goal-relevance) 
 

 Low pair (2 – 1) High pair (4 – 3) 
MAX 4.2 7.8 
MIN 8.6 1.4 
EO 8.7 6.9 

 
It is somewhat informative that estimates were generally 

more accurate for goal-relevant buttons than goal-irrelevant 
ones, but we are more interested in whether people learned 
about differences between the buttons in each pair, goal-
relevant and goal-irrelevant. (We assume that both 
differences are goal-relevant in the EO condition.) Table 3 
gives mean differences between estimates for the high-mean 
buttons (4-3) and for the low-mean buttons (2-1). A two-
way multivariate ANOVA with the differences as dependent 
variables yielded a significant main effect of goal condition 
(Pillai’s Trace=.14, F(4, 228)=4.21, p<.05), but no order 
(Pillai’s Trace=.01, F(2, 113)=.28, p=.76) or interaction 
effects (Pillai’s Trace=.02, F(4, 228)=.55, p=.699). 

                                                             
3 A MANOVA of only the EO condition revealed no significant 

differences in mean estimates of participants instructed to choose 
high vs. low buttons (Pillai’s Trace = .182, F(4, 33)= 1.83 p=.146), 
so these participants are pooled for all further analyses.  

4 Estimates were significantly lower for goal-irrelevant buttons 
in B-HIGH vs. C-HIGH, regardless of whether the goal-irrelevant 
buttons were high or low. It is quite unclear what might underlie 
such a difference. More importantly, this interaction does not 
affect the estimated difference between these two buttons, and thus 
should not influence the substance of our findings. 
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Post-hoc comparisons (Tukey HSD with α=.05) showed 
that MIN participants reported a significantly smaller 
difference between the high-mean buttons than MAX and 
EO participants (between whom there was no significant 
difference). In contrast, MAX participants reported a 
significantly smaller contrast between the low-mean buttons 
than MIN and EO participants (between whom there was no 
significant difference). Thus the goal-relevance of the 
buttons had a significant effect on the difference that 
participants perceived (or failed to perceive) between them. 
Paired t-tests revealed a significant difference between 
estimates for the two low-mean buttons in the MAX 
condition (t(39)=2.80, p<.05), but no significant difference 
between the estimates for the two high-mean buttons in the 
MIN condition (t(39)=0.77, p=.45) reinforcing the 
conclusion that MAX participants learned some goal-
irrelevant information whereas MIN participants did not. 

Discussion 
Both participants’ choices and estimates of the button 

means revealed a significant influence of goal on learning. 
Participants in the MAX condition learned more about the 
higher buttons than the lower ones, although they still 
appeared to learn some information about the difference 
between the two lower buttons. Participants in the MIN 
condition learned more about the lower buttons than the 
higher buttons, and this asymmetry was so strong that they 
were at chance when choosing between the higher buttons 
and their estimates of the two button means were not 
significantly different. Moreover, participants in the EO 
condition learned the contrasts between both the high and 
low buttons, so relatively ‘complete’ learning was possible 
given the evidence. The evidence thus seems to be that 
people are at least somewhat frugal: they learn more goal-
relevant than goal-irrelevant information.  

This finding cannot be due simply to task familiarity, in 
which participants perform better because of repeated 
practice or advance knowledge of the task. Participants in 
the EO condition did not know that they would have to 
make forced choices, and yet performed well. Similarly, 
participants in the MIN and MAX conditions did not know 
they would have to estimate the average outcomes, yet they 
performed quite well at reporting goal-relevant button 
features. It appears that people focus on information 
relevant for achieving their goal, and can then use that 
information in a variety of ways. In contrast, they do not 
collect (as much) information about goal-irrelevant features. 

Substantial further questions remain about the extent of 
frugality in learning, the conditions (if any) that enhance or 
mitigate frugality, and the mechanisms that drive this effect. 
The results of this experiment are mixed on the extent of 
frugality. MAX participants appeared to be moderately 
frugal, as they learned some goal-irrelevant information but 
certainly less than was possible (as evidenced by the 
performance of the EO participants). In contrast, MIN 
participants appeared to be more radically frugal, learning 
little more than the information necessary for their goal. 

This asymmetry suggests that there may be conditions that 
encourage frugality. For example, the MIN condition might 
be more cognitively demanding than the MAX condition, as 
people might be more used to tracking large numbers than 
small ones (since higher numbers are usually better). 

This experiment demonstrated that people are relatively 
frugal learners, but also left open the question of the 
mechanisms underlying this process. A particularly 
intriguing question is whether it occurs because of how 
learners allocate attention, because of how they reason and 
make inferences, or both. Experiment 2 attempts to 
distinguish between these distinct possibilities.  

Experiment 2 
This experiment aimed to test whether goal effects are 
mediated purely by attention allocation, or also because of 
differences in reasoning about the goal-relevant objects. We 
used the same learning paradigm as Experiment 1, though 
with only MAX and MIN goal conditions. In addition, there 
were two task conditions that required different information 
for successful completion of the task. In the ONE condition, 
participants had to choose a single button in testing (as in 
Experiment 1), so should try to identify the single highest or 
lowest button. In the MANY condition, participants could 
choose multiple buttons, and so they should identify all 
buttons with average higher/lower than 50. That is, ONE 
required people to learn rank order but not average value, 
while MANY required the people to learn (very rough) 
averages, but not ranks. 

Both ONE and MANY require attention on the same 
buttons (high-mean in MAX, low-mean in MIN), and so 
attention allocation should be the same. Thus, if goal-
directed learning is due solely to attention modulation, then 
learning should be the same in the two conditions. However, 
if goal-directed learning involves goal-directed reasoning or 
encoding during learning, then MANY participants should 
learn less about the difference between the average values 
for the goal-relevant buttons, as that difference is irrelevant 
to that goal.  

Participants 
96 Mechanical Turk participants (mean age=36.0; 46% 
female) were randomly assigned to a goal (MIN/MAX) and 
task condition (ONE/MANY). Participants were paid 50 
cents for participation and 50 cents based on performance. 
16 participants were excluded (see Results below), leaving 
80 participants (mean age=36.8; 47% female) for analysis. 

Method 
Instructions were identical to Experiment 1, except that 
participants were told that they would be paid based on the 
amount that the final button outcome was higher/lower than 
50. In the MANY condition, participants were also told they 
would be able to press as many buttons as they wished.  

The learning phase was identical to Experiment 1, except 
that all participants were assigned to the B-High button 
order. The critical test in this experiment is between the 
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ONE and MANY participants within each goal condition 
(MAX/MIN), so controlling for button order between goal 
conditions was unnecessary. The only difference in the 
testing phase was that participants in the MANY condition 
were able to select more than one button in the four-button 
forced choice. 

Results & Discussion 
Exclusion Criteria The same exclusion criteria were used. 
16 participants were excluded from analysis (one from 
MAX-ONE, one from MAX-MANY, nine from MIN-ONE, 
and five from MIN-MANY). The asymmetry in exclusion 
numbers suggests that the MIN conditions yielded less 
comprehension or less diligence. However, the critical 
comparisons are within, rather than across, goal conditions, 
and so this asymmetry should not impact the results.  
 
Button Choices Table 4 compares the percentage of correct 
button choices for each goal and button pair in the ONE and 
MANY conditions. Chi Square tests (right hand column) 
revealed no significant differences between these 
conditions, even when the choice was goal-relevant in the 
ONE condition but not the MANY condition (e.g. high pair 
for MAX, low pair for MIN).  
 

Table 4: Percentage of participants choosing the correct 
button (* if sig. different than chance, bold if goal-relevant). 
 

 
Estimates The mean number estimates are shown in Table 
5. A two-way multivariate ANOVA with number estimates 
as the dependent variables and the goal and test task as the 
independent variables revealed a significant multivariate 
effect of goal (Pillai’s Trace=.26, F(4, 73)=6.47, p<.05), but 
no significant effect of task (Pillai’s Trace=.06, F(4, 
73)=1.12, p=.36) and no interaction (Pillai’s Trace=.02, F(4, 
73)=0.45, p=.36), suggesting that task type did not have an 
effect on the participant’s judgments.  
 

Table 5: Mean estimates of average number for each of 
the four buttons (bold indicates goal-relevance) 

 
 1 (µ=20) 2 (µ=30) 3 (µ=70) 4 (µ=80) 

MAX-ONE 23.4 29.5 68.1 76.4 
MAX-MANY 25.0 28.4 69.8 75.9 
MIN-ONE 19.1 27.6 64.2 66.7 
MIN-MANY 22.7 30.0 68.0 62.6 

 
 
 

Table 6: Mean differences between estimates (bold indicates 
goal-relevance) 

 
 Low pair (2 – 1) High pair (4 – 3) 

MAX-ONE 6.1 8.3 
MAX-MANY 3.4 6.1 
MIN-ONE 8.5 2.5 
MIN-MANY 7.3 -5.4 

 
As in Experiment 1, the critical comparison is whether 

participants learned the difference between buttons within 
the high and low pairs (see Table 6). A two-way 
multivariate ANOVA with the two comparison variables (4-
3 and 2-1) revealed a significant effect of goal (Pillai’s 
Trace=.17, F(2, 83)=8.36, p<.05), but no task (Pillai’s 
Trace=.05, F(2, 83)=2.15, p=.12) or interaction (Pillai’s 
Trace=.02, F(2, 83)=0.81, p=.45) effects, which reinforces 
the conclusion that participants learned differently between 
the two goals, but not between the two test phase tasks. 

 
Discussion The results of Experiment 2 suggest that goal-
dependence of learning arises principally because of 
attention allocation. We did not find evidence of differential 
information processing or encoding after attention has been 
allocated. Instead, it appears that people encode and process 
the button information similarly whenever the button is 
goal-relevant. That is, Experiment 2 is suggestive that a key 
mechanism in the goal-dependence of learning is attention 
allocation, with people focusing on the goal-relevant 
information. Of course, drawing any conclusions from a null 
result is difficult, and more experiments are clearly 
necessary before any general conclusions can be reached. 
Nevertheless, these results suggest that attention plays a key 
(and perhaps essential) role in the influences of goals.  

General Discussion and Conclusion 
These experiments clearly demonstrate that people’s longer-
term goals (i.e., not just learning tasks) influence their 
learning. Experiment 1 showed that people are relatively 
frugal about what they learn: they represent goal-relevant 
information significantly more accurately than goal-
irrelevant information. However, this frugality is not 
absolute, as the results of Experiment 2 (and some results in 
Experiment 1) suggest that people sometimes acquire richer 
representations than are strictly necessary for task success. 
Experiment 2 suggests that attention allocation plays a key 
role in goal-dependent learning, but that goal-relevant 
reasoning does not (at least, in this context). Other factors 
remain to be investigated: perhaps frugality occurs only 
under high cognitive load, or perhaps involves differential 
processing in more complex domains. We are far from 
understanding the conditions and mechanisms responsible 
for frugal learning. However, the experiments presented 
here suggest that this is an area ripe for future research.  

To the extent that people are frugal in their learning, this 
poses a significant challenge to the widespread practice of 
focusing on cognitive models that assume people have 

 % Correct Choices  Chi-Square  
 ONE MANY X2 p 
MAX high pair 90.0* 85.0* 0.23 .63 

 low pair 75.0* 60.0 1.03 .31 
MIN high pair 60.0   70.0 0.44 .51 
 low pair 80.0* 70.0 0.06 .81 
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purely epistemic goals (e.g., most rational models of 
learning and reasoning). However, it is not clear whether 
this is an inherent weakness of these modeling paradigms, 
or a byproduct of the lack of attention paid to pragmatic 
goals in current learning research. Most models of ‘rational’ 
learning are silent on the normative question of how goals 
should influence learning, and instead focus on how people 
should make inferences in order to arrive at true (or at least 
justified) conclusions. Bayesian inference provides a clear 
(and influential) example, but our discussion here applies 
equally well to any axiomatic theory of rationality (e.g. 
deductive inference).  

Bayesian models (Oaksford & Chater, 2007; Griffiths, 
Kemp, & Tenenbaum, 2008) assume that learners (i) have 
degrees of belief that are compatible with a probability 
distribution over a set of mutually exclusive and exhaustive 
hypotheses; and (ii) update this belief distribution by 
conditioning on new evidence. Crucially, the Bayesian 
updating procedure (Bayes’s Rule) is goal-invariant; its 
behavior depends only on the prior probabilities of the 
hypotheses and the probabilities of the evidence conditional 
on each possible hypothesis. The Bayesian model assumes 
that learners are only trying to determine the most probable 
hypothesis (or hypotheses) from among the previously 
specified possibilities. Thus, non-epistemic goals can 
influence learning only through the initial specification of a 
hypothesis space, or in the assignment of prior probabilities.  

Standard practice in Bayesian models of psychological 
phenomena is to use a hypothesis space covering all 
possible distinctions (e.g., all possible causal structures, all 
possible category schemes, etc.), but this choice is decidedly 
non-frugal and perhaps even sub-optimal. In the (very) long 
run, selecting a hypothesis space with maximally many 
distinctions will ensure that you learn as much as you can 
from the evidence. In the short run, however, such a space 
may be detrimental because it can increase the variance of 
the learning method and make overfitting more likely (for 
an extended discussion see Wellen & Danks, under review).  

An alternative is to use a hypothesis space that contains 
only goal-relevant distinctions. For instance, suppose you 
are a participant in Experiment 1 and your goal is to choose 
the button that produces the highest number. In this case, the 
hypothesis space need only distinguish between ‘worlds’ 
with different highest mean buttons. It need not encode the 
precise means or even the rank order of the suboptimal 
buttons; these are all irrelevant to the test phase choice. A 
frugal Bayesian learner could thus select a hypothesis space 
H with variation on only the relevant dimension, such as: H 
= {a is best, b is best, c is best, d is best}. In the Bayesian 
framework, however, the choice of hypothesis space occurs 
before the model can be applied. Hence, although frugality 
can be captured indirectly, it requires conceptual resources 
from outside the model.  

There are thus ways to (try to) incorporate non-epistemic 
goals in those models, but that theoretical work remains to 
be done. More generally, we conjecture that many standard 
models of learning can incorporate goal effects only through 

the way that they represent the learning problem (e.g., the 
assumed hypothesis space). If that is correct, then any 
attempts to model goal effects in learning will be forced to 
include aspects of the situation that have previously been 
simply stipulated by the theoretician (see also Wellen & 
Danks, under review). Moreover, there is likely to be a 
complex interaction between prior beliefs, goals, and 
evidence, which will further complicate matters. Of course, 
we are far from understanding how these (and other) factors 
interact to influence learning, but this paper provides some 
initial empirical constraints.  
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