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DC Polarization of Planar Electrodes  
Separated by Low-Dielectric Fluid 

In this Note, we review the derivation of the equations used by Jun Kim et al. Langmuir 21, 
8620 (2005).   

Capacitance with Neutral Fluid 

Consider a parallel plate capacitor consisting of two 
parallel plates, located at x=0 and at x=δ.  The fluid in between 
the plates has permittivity ε while the plates themselves have 
permittivity ε0.  Suppose we apply a voltage drop V between the 
two plates.  What charge will accumulate on the plates at steady 
state after any electrical current has subsided? 

Assuming that E = Ex(x)ex and no free charges in any of 
the media [i.e. ρ(x) = 0], then Gauss’s equation [see (12) in 
0Electrostatics of Continuous Media.doc]0F0F

* becomes  

 0xdE
dx

=       or     Ex(x) = const = –V/δ (1) 

The value of the integration constant is set by the boundary conditions on the electrostatic 
potential.  Assuming that V>0, this means that Ex is pointing in the –x direction.  From 
(anti-)symmetry (or overall electroneutrality), we expect that equal but opposite surface charge 
densities arise on the two surfaces:  

 σ–= –σ+ 

σ– > 0 and σ+ < 0 if V>0.  The electric field outside the two surfaces vanishes according to 
1H1HEofCM-(8) and (9): 

for x<0 or x>δ: Ex(x) = 0 

The magnitude of the charge density is related to the electric field strength by 2H2HEofCM-(7): 

 
2 2xE − + + + +σ − σ −σ − σ σ

= = = −
ε ε ε

 (2) 

                                                 

* Files referred to in this document can be found online at http://www.andrew.cmu.edu/user/dcprieve/Notes/. 
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Eliminating Ex between 4H4H(1) and 5H5H(2): V
+

ε
σ =

δ
 

The capacitance of the device is defined as the charge separated per unit area per unit voltage 
applied: 

 c
V

+σ ε
= =

δ
 

Capacitance with Thin Double Layers 

Jun uses the differential capacitance calculated from the Gouy-Chapman model.  The 
surface charge density in the Gouy-Chapman model is given by [see (16) from 
3H3HElectrohydrodynamics.doc]: 

 02 sinh
2
zekT

ze kT
ψκε ⎛ ⎞σ = ⎜ ⎟

⎝ ⎠
 (3) 

The differential capacitance is defined as 

 
0

0 02 cosh cosh
2 2 2

dl

dl
c

ze zed ze kTc
d kT ze kT kT

ψ ψσ κε ⎛ ⎞ ⎛ ⎞= = = κε⎜ ⎟ ⎜ ⎟ψ ⎝ ⎠ ⎝ ⎠
 (4) 

In particular, Jun used the differential capacitance corresponding to ψ0 → 0: 

 0
dlc = κε  (5) 

Comparing 6H6H(5) with 7H7H(3), we see that the differential capacitance from the Gouy-Chapman theory 
corresponds to an apparent plate spacing equal to the Debye length: δ = κ–1.   

The rationale for using the differential capacitance to interpret Jun’s experiments is not 
obvious, although it seems like a good guess.  Below we develop a model for slow changes in 
current during polarization of the double layers. 

Slow Polarization of Thin Double Layers 

Suppose in the absence of any applied voltage, the electrodes are not charged.  Following a 
step application of voltage V across the electrodes, separated by distance δ (see sketch on page 
8H8H1), the initial current density is given by Ohm’s law as 

 x x
KVi KE= = −
δ

 

In the absence of any Faradaic reaction to convert ionic charge to electronic charge, electric 
current causes charges to build up next to the electrode at a rate given by 
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 x
d

i
dt

+σ
=  (6) 

Once a diffuse layer of charge builds up, a potential drop across the layer occurs which reduces 
the electric field in the electrically neutral bulk solution, and therefore a decay in the current 
density.  The potential drop is given ψ0 by 9H9H(3) and the resulting current is given by 

 ( )02x
Ki V= − + ψ
δ

 (7) 

The sign of ψ0 will generally be opposite to the sign of V, which explains adding ψ0 instead of 
subtracting; the factor of 2 arises because we have two layers of charge, one next to either 
electrode.   

The graph below is an animation intended to convey how the electrostatic potential profile 
between two parallel plate electrodes evolves with time as polarization of the counterion clouds 
proceeds.1F

*  The initial state is unpolarized (maximum current) and the final state is completely 
polarized (zero current).   

 

Now we continue with the analysis of the dynamics.  Substituting 10H10H(3) and 11H11H(7) into 12H12H(6): 

                                                 

* If clicking on this figure does not start animation, go to website http://www.andrew.cmu.edu/user/dcprieve/Notes/ 
and click on Polarization.avi. 
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 ( )0
0

0
2

dlc

dd K V
d dt

+ ψσ
= − + ψ

ψ δ
 (8) 

or 0
0

2

dl dl

d K KV
dt c c
ψ

+ ψ = −
δ δ

   

If we assume that the differential capacitance cdl is constant (which would occur is ψ0 remains 
small), then this equation can be integrated to give a general solution of 

 ( )0 0
2exp

2
dl

Kt Vt A
c

⎛ ⎞
⎜ ⎟ψ = − −
⎜ ⎟δ⎝ ⎠

 

If the initial potential vanishes, then the particular solution is 

 ( )0 0
2exp 1

2
dl

V Ktt
c

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟ψ = − −
⎢ ⎥⎜ ⎟δ⎝ ⎠⎣ ⎦

 

This predicts that ψ0 decays from 0 to –V/2 with a decay time of  

 
0

2
dlc
K

δ
τ =  

Indeed this is exactly Jun’s model (although the derivation is not presented in Jun’s paper).   

Since V/2 is not usually small, we expect that these simple dynamics are not valid except 
possibly near the beginning of the decay.   Using 13H13H(4) in 14H14H(8) instead of a constant cdl, we have 

 
0

0 0
0

2cosh 0
2 2

dl

dl

c

c

ze d K V
kT dt
ψ ψ⎛ ⎞ ⎛ ⎞κε + ψ + =⎜ ⎟⎜ ⎟ δ ⎝ ⎠⎝ ⎠

 

Unfortunately, this ODE is not linear.  Dividing by 2K/δ: 

 
0

0 0
0cosh 0

2 2 2
dlc ze d V
K kT dt
τ

δ ψ ψ⎛ ⎞ + ψ + =⎜ ⎟
⎝ ⎠

 

 and multiplying by ze/2kT: 
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 0
0 0cosh 0

2 2 2 2
ze d ze ze V

kT dt kT kT
ψ⎛ ⎞ ⎛ ⎞ ⎛ ⎞τ ψ + ψ + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

or in dimensionless form: cosh 0dyy y V
dt

′+ + =
′

 (9) 

where 0
2
ze

y
kT
ψ

≡     tt ′ ≡
τ

     and     
4
zeVV
kT

′ ≡  

Initially the diffuse layer is not polarized but the surfaces might still bear a nonzero zeta 
potential.  So as a more general initial condition, let’s impose 

 y(0) = y0 

As t'→∞, dy/dt' → 0 and 15H15H(9) yields y(∞) = –V' 

Let  u = y + V'      so that     dy = du 

and coshy = cosh(u –V')  ≡ f (u) 

Then 16H16H(9) becomes ( ) 0duf u u
dt

+ =
′

 

which is now a first-order separable ODE.  The transformed initial condition is 

 u(0) = y0+ V'  

Separating ( ) duf u dt
u

′= −  

Integrating 
( )

( )

( )

0

u t

u

f u
du t

u

′

′= −∫      or     
( )

( )

( )0u

u t

f u
du t

u′

′=∫   

Substituting f(u),  we can write this as 

 
( )

( )

0 coshy V

u t

u V
du t

u

′+

′

′−
′=∫   (10) 

We are interested in how the current decays with time.  The current is given by 17H17H(7). 

 ( ) ( )0
4 42x

K K kT KkTi V V y u
ze ze

′= − + ψ = − + = −
δ δ δ
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Dividing by the initial value: 
( )
( ) 00

x

x

i t u
i u

=  

As t'→∞, y → –V' and u → 0.  The integral in 18H18H(10) is singular in this limit owing to the zero in the 
denominator.  One way to deal with this is to add and subtract one in the numerator: 

 

( )

( )

( )

( ) ( )

( )
( )

( )

0 0 0

0
0

cosh cosh 1

cosh 1
ln

u u u

u t u t u t

u

u t

u V u V dudu du
u u u

u Vu
du

u t u

′ ′ ′

′

′ ′− − −
= +

′− −
= +

′

∫ ∫ ∫

∫

 

As u→0, the integral converges to some constant (call it lnA) while the logarithm continues to 
grow.  Then exponentiating both sides of 19H19H(10) yields 

as t'→∞: 
( )
0 tu

A e
u t

′=
′

     or     ( ) 0 tu
u t e

A
′−′ →  

The graph below (computed by numerical integration) confirms this behavior, but the time 
required to reach this limit grows exponentially with u0.   

n last t( ):= i 0 1, n..:= j 0 2..:= n 12=

u0 5.8= toτi j, tfn u0 IoI0i j,,( ):= τJ 0.68 1.04 1.77( )T:=

J 2:=

τ τJJ:= τ 1.77=

SSE τ u0,( )
i

τ tfn u0 IoI0i J,,( )⋅ ti−( )2∑:=

τ

u0
⎛
⎜
⎝

⎞
⎟
⎠

Minimize SSE τ, u0,( ):= τ 1.859=

u0 3.085=

0.9

1
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Below is Jun’s experimental data for V = 1 volt applied across a gap of δ = 190 nm.  Assuming 
z=1, we convert V=1 volt into V' = 19.47 and u0 = 9.735.  The second parameter is τ and in the 
above plot, we used the values reported by Jun.   

 

u0 = 9.735 and Jun's τ

Time (sec)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

I/I0

0.5

0.6

0.7

0.8

0.9

1.0

The solid curves in the figure on the right, which are predicted from 20H20H(10), are not very good fits 
to the experimental data points.  Of course, Jun used a different fitting function (having a more 
arbitrary functional form) to obtain the good fits shown on the left.   

Below are best fits of 21H21H(10) to Jun’s data.  On the left, we have set u0 = 9.735 and varied τ to 
give the best fit.  The functional form is not quite right: the solid lines display more upward 
curvature than the experimental data, regardless of τ.  Thus 22H22H(10) underestimates I/I0 at short 
times and overestimates them at long times.  The best-fitting τ (see table below figures) is about 
half of Jun’s values for each concentration of OLOA.  In the figure on the right, we have varied 
both u0 and τ to obtain the best fit.  The fits are much better using τ’s close to those used by Jun; 
however the best fitting value of u0 is substantially less than 9.735.    

u0 = 9.735 and Best Fitting τ

Time (sec)
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Best Fitting u0 and τ

Time (sec)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

I/I0

0.5

0.6

0.7

0.8

0.9

1.0

 

 1-parameter fit (τ only) 2-parameter fit (u0 and τ) 
wt% OLOA u0 τJun (sec) τbest (sec) u0 τ (sec) 

0.5 9.735 1.77 0.866 3.09 1.86 
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1.57 9.735 1.04 0.467 5.35 1.03 
3.63 9.735 0.68 0.216 5.71 0.594 
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