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Coulomb’s Law

Reference -- Jackson, "Classical Electrodynamics," Wiley, 1962, pp1-14.

In 1785, the French physicist Charles Augustin Coulomb measured the force between two charged bodies and determined that:
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Time Out: units

Actually, Coulomb established the proportionality between force, charge and distance.  The proportionality constant depends on the units used for charge.  The expression above, in which the 4 has been factored out, is said to employ rationalized SI units:
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By factoring the 4 out here, we avoid the appearance of 4 later on (in Gauss’s law and elsewhere); hence, the constant has been “rationalized”.  Some authors still employ nonrationalized units, which we will denote by adding a prime to the notation:



[image: image4.wmf]2

8

2

00

11N-m

7.1520710

4

Coul

==´

¢

pee


A third set of units, called the electrostatic system of units (esu’s), is also sometimes used.  Instead of coulombs, another unit of charge is defined (called the statcoulomb) such that when two point charges, each having one statcoulomb of charge, are separated by one centimeter, they produce an electrostatic force equal to one dyne:
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In this system of units, the permittivity is unity (dimensionless):
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By defining the unit of charge in this way, we have reduced the number of fundamental units required from 4 in SI units (mass, length, time and charge) to 3 in esu’s (mass, length and time).  Engineers have encounted such a reduction before.  Recall Newton’s second law: in the English engineering units (lbm, lbf, ft and sec), it is written using a proportionality constant (gc):
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In the metric system (SI), the unit of force (N) is defined as the force required to give an acceleration of 1 m/sec2 to a mass of 1 Kg:
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for which the proportionality constant in Newton’s law becomes unity:
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and we need only 3 fundament units (Kg, m and sec) such the unit of force is derived.  

Time In: now that we have discussed the various systems of units, let’s return to Coulomb’s law.  
Suppose our two charges are located at x1 and x2.  The direction of the force on the charge at x2 (say) is pointing away from Q1 if Q1Q2>0 and toward Q1 if Q1Q2<0.  One vector pointing away from 1 in the direction of 2 is:
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Converting this into a unit vector and multiplying it by the magnitude of the force as given by Coulomb's law, yields:
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Now this is the vectorial force on the charge located at point 2.  A second part of Coulomb's law is superposition: in the case of multiple point charges, the net force is the linear sum of the forces due to each point charge:
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is the net force on test charge Q located at x.  The force per unit charge is called the electric field:
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Indeed, this is the electric field at location x due to the other charges.

Gauss's Law: Integral Form

To obtain a more useful form of Coulomb’s Law, reconsider the electric field due to a single point charge, q, which we will locate at the origin of a spherical coordinate system (i.e. x' = 0).  Coulomb's law then predicts the electric field will depend only on the radial distance from the point charge and the force will be directed away from the point.  In spherical coordinates, this direction is er:
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Now suppose we integrate the normal component of this vector over some arbitrary closed surface.  First let's consider the contribution from one element of surface having 

da = area of element

n = unit outward normal
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The second fraction on the right-hand-side of the first equation turns out to be the element of solid angle, d, subtended by the surface da.  To see this, refer to the sketch at right, which is a edge view of the surface element da, whose normal n makes an angle of  with the unit vector er.  Thus

n.er  = cos

and n.er da is the area of a spherical cap of radius r subtended by d.  Integration over any closed surface is now quite easy:
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where there are 4 solid radians (steradians - a contraction of stereo and radian) in a sphere, just like there are 2 radians in a circle.*  Note that the position of the charge inside the surface is not important to the value of this integral.  Due to linear superposition (a consequence of Coulomb's law), I can easily write the result for any number of point charges, distributed in any way through the interior of the surface A:
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where the sum is over all charges inside the closed surface A.  Charges located outside the surface do not contribute (as it turns out) to the integral.  This result is called Gauss's Law.  

Coulomb’s Law for Continua

When the number of charges n is very large, then we might consider describing the distribution of charges using (x) instead of Qi and xi.  
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which we call the charge density.  It’s like the more familiar mass density (also commonly denoted by ) except that the numerator is the total charge inside V instead of the total mass.  

Making the following substitutions


xi  x'      and     
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 the sum in (1)

 can be replaced by the integral
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Equation (3)

 is equation (1.5) from Jackson (p3), which is the direct distributed counterpart to Coulomb’s law.  

Example #1: Electric Field Near a Charged Plate

Assuming all the free charges are confined to the plane z=0, (3)

 yields
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Dotting both sides by ez:
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where, in cylindrical coordinates, we have 


x = rer() + zez
and
x' = r'er(')

On the axis of the disk, r=0 and we have
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(5)

 becomes
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In the limit that the test charge is placed very close to the plate (i.e. z << R), the normal component of the electric field becomes



[image: image27.wmf]2

n

E

s

=

e

 
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6)

Since the z-axis is defined to be pointing away from the disk, this electric field also points away from the disk (assuming >0).  


Example #2: Electric Field Near 2-Sided Disk
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Let’s now suppose that the disk has two different sides.  Suppose that the charge density of these two sides is different.  In principle, Coulomb’s law is additive and we can just sum the separate effects of the two uniformly charged surfaces.  But what value of  is used in (6)

?  For the region between the two charged plates, there is no ambiguity because a single material having 2 separates all the charges, including the test charge:



[image: image28.wmf]2312

2

2

2

E

s-s

=

e


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (7)

where E2 is positive when directed upward.  Notice that if the two surfaces have equal charges (i.e. 12 = 23), there is zero electric field inside the disk.  

To determine E1, we apply the general electrostatic boundary condition
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where n1 is the unit vector pointing normal to the interface into material “1” (i.e. upward).  Keeping in mind the sense defined for E2, we note that E2.n1 = +E2 and this b.c. becomes
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Substituting E2 from 
(7)

:
 GOTOBUTTON ZEqnNum491600  \* MERGEFORMAT 
or
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The b.c. at the second interface becomes
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where n3 is the unit vector pointing normal to the interface into material “3” (i.e. downward).  Keeping in mind the sense defined for E2, we note that E2.n3 = –E2 and this b.c. becomes
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Comparing (9)

, we see that the magnitude of the electric fields on either side of the 2-sided disk are the same (assuming 1 = 3), but their directions are opposite.  (8)

 and 
This is Coulomb’s law for continua.  Now we proceed one step further by showing that this electric field is derivable from a potential.  This requires the following equation
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Proof: to convince yourself that this last equation is correct, consider a change of variables: let r = x – x', where r = rer is the position vector in spherical coordinates and er() is the unit vector pointing in to the r-direction (direction of unit vector depends on spherical coordinates  and ).  This is equivalent to locating the origin of spherical coordinates at point x'.  Then the above equation can be written as
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(3)

, then interchanging order of integration (with respect to x') and differentiation (with respect to x), yields
(10)

 into 
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where
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which is called the electrostatic potential.  To the extent that this integral converges, we have just proven that E is derivable from a potential.  From Theorem III, we also know that E is irrotational:
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To calculate the total charge inside a macroscopic surface (like A in (2)

 becomes
(2)

), we just integrate the charge density over the region inside.  Thus 
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Using the Divergence Theorem, the left-hand side can also be expressed as a volume integral over the same domain:
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Combining the two volume integrals:
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Since this integral must vanishe for all choices of the region V, the integrand must vanish at every point in the region; thus
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which is also called Gauss’s Law (differential form).  Substituting (12)

(11)

 into 
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we obtain a single scalar equation in the electrostatic potential.  This is called Poisson’s Equation.  
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Boundary Conditions at a Charged Interface

Consider a charged interface between two different dielectric media.  To obtain an appropriate boundary condition for such an interface, we apply Gauss's law to a “pill-box” straddling the interface.  For a dielectric medium, the displacement vector D [ E + (1/0)P] replaces E in the integral form of Gauss's law given by (2)

 becomes:
Error! Reference source not found.

, we have D = rE and (2)

.  After substituting 
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Let the area of the faces be Af and the thickness of the pill-box be l (lI in Phase I and lII in Phase II).  Applying the Mean Value Theorem, we can write the integrals as
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where the carets 
[image: image49.wmf]L

 denote the appropriate “mean” values.  The surface integral was decomposed into three contributions: the two plane faces and the curved side wall of the cylinder; C is the perimeter of the face and Cl is the area of the side wall.  Next, we will let the thickness l of the pill box shrink to zero.  Three of the five terms vanish (those proportional to l), leaving

l  0:
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after dividing out Af.  If we now let Af be sufficiently small, we can replace the mean values by the point values.  Finally noting that nI = -nII  n, we obtain

Af  0:
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where n1 is the unit normal pointing into medium 1.  This implies that a discontinuity in the normal component of E may occur at an interface.  

To get a relation involving the tangential components of E, we can exploit the conservative nature of the electric field.  The existence of a scalar field, (x), such that:


E = -
means that
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for all closed contours, C.  For example, let's choose the contour to be a thin rectangle straddling the interface and lying in the xy plane, where the yz plane is the charged interface.  On the vertical paths dx = +eydy on the right side (direction is upward) and dx = -eydy on the left side (direction is downward).  On the horizontal path, dx = -exdx on the top (direction is toward left) and dx = +exdx on the bottom (direction is toward right).  Applying the Mean Value Theorem to evaluating the contour integral:
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Letting x 0:
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after the y has been cancelled out.  

Letting y 0:
E2y = E1y
Similiarly, we could have choosen our contour to lie in the xz plane, and show that:


E2z = E1z
Thus we have proved that the tangential components are continuous across a charged interface.  We can write this more compactly as a single vector equation:
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These two equations relating the normal and tangential components of the electric field on either side of a charged interface serve as boundary conditions in problems on electrostatics
d





� EMBED CorelDRAW.Graphic.12  ���

















� EMBED CorelDRAW.Graphic.12  ���











� EMBED CorelDRAW.Graphic.12  ���








* This is the origin of the factor of 4, which distinguishes “rationalized” units from “non-rationalized” units.  By writing Coulomb’s law with 4 in the denominator, we avoid 4 in Gauss’s law.  The corresponding value of 0 is in “rationalized” units.  
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