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Abstract—Algorithmic systems that employ machine learning
play an increasing role in making substantive decisions in modern
society, ranging from online personalization to insurance and
credit decisions to predictive policing. But their decision-making
processes are often opaque—it is difficult to explain why a certain
decision was made. We develop a formal foundation to improve
the transparency of such decision-making systems. Specifically,
we introduce a family of Quantitative Input Influence (QII)
measures that capture the degree of influence of inputs on outputs
of systems. These measures provide a foundation for the design
of transparency reports that accompany system decisions (e.g.,
explaining a specific credit decision) and for testing tools useful
for internal and external oversight (e.g., to detect algorithmic
discrimination).

Distinctively, our causal QII measures carefully account for
correlated inputs while measuring influence. They support a
general class of transparency queries and can, in particular,
explain decisions about individuals (e.g., a loan decision) and
groups (e.g., disparate impact based on gender). Finally, since
single inputs may not always have high influence, the QII
measures also quantify the joint influence of a set of inputs
(e.g., age and income) on outcomes (e.g. loan decisions) and the
marginal influence of individual inputs within such a set (e.g.,
income). Since a single input may be part of multiple influential
sets, the average marginal influence of the input is computed
using principled aggregation measures, such as the Shapley value,
previously applied to measure influence in voting. Further, since
transparency reports could compromise privacy, we explore the
transparency-privacy tradeoff and prove that a number of useful
transparency reports can be made differentially private with very
little addition of noise.

Our empirical validation with standard machine learning algo-
rithms demonstrates that QII measures are a useful transparency
mechanism when black box access to the learning system is
available. In particular, they provide better explanations than
standard associative measures for a host of scenarios that we
consider. Further, we show that in the situations we consider,
QII is efficiently approximable and can be made differentially
private while preserving accuracy.

I. INTRODUCTION

Algorithmic decision-making systems that employ machine
learning and related statistical methods are ubiquitous. They
drive decisions in sectors as diverse as Web services, health-
care, education, insurance, law enforcement and defense [1],
[2], [3], [4], [5]. Yet their decision-making processes are often
opaque. Algorithmic transparency is an emerging research area
aimed at explaining decisions made by algorithmic systems.

The call for algorithmic transparency has grown in in-
tensity as public and private sector organizations increas-
ingly use large volumes of personal information and complex
data analytics systems for decision-making [6]. Algorithmic
transparency provides several benefits. First, it is essential
to enable identification of harms, such as discrimination,
introduced by algorithmic decision-making (e.g., high interest
credit cards targeted to protected groups) and to hold entities
in the decision-making chain accountable for such practices.
This form of accountability can incentivize entities to adopt
appropriate corrective measures. Second, transparency can
help detect errors in input data which resulted in an adverse
decision (e.g., incorrect information in a user’s profile because
of which insurance or credit was denied). Such errors can then
be corrected. Third, by explaining why an adverse decision
was made, it can provide guidance on how to reverse it (e.g.,
by identifying a specific factor in the credit profile that needs
to be improved).

Our Goal. While the importance of algorithmic transparency
is recognized, work on computational foundations for this
research area has been limited. This paper initiates progress
in that direction by focusing on a concrete algorithmic trans-
parency question:

How can we measure the influence of inputs (or features) on
decisions made by an algorithmic system about individuals or
groups of individuals?

Our goal is to inform the design of transparency reports,
which include answers to transparency queries of this form.
To be concrete, let us consider a predictive policing system
that forecasts future criminal activity based on historical data;
individuals high on the list receive visits from the police.
An individual who receives a visit from the police may seek
a transparency report that provides answers to personalized
transparency queries about the influence of various inputs
(or features), such as race or recent criminal history, on the
system’s decision. An oversight agency or the public may
desire a transparency report that provides answers to aggregate
transparency queries, such as the influence of sensitive inputs
(e.g., gender, race) on the system’s decisions concerning the
entire population or about systematic differences in decisions



among groups of individuals (e.g., discrimination based on
race or age). These reports can thus help identify harms and
errors in input data, and provide guidance on what input
features to work on to modify the decision.

Our Model. We focus on a setting where a transparency
report is generated with black-box access to the decision-
making system1 and knowledge of the input dataset on which
it operates. This setting models the kind of access available
to a private or public sector entity that pro-actively publishes
transparency reports. It also models a useful level of access
required for internal or external oversight of such systems
to identify harms introduced by them. For the former use
case, our approach provides a basis for design of transparency
mechanisms; for the latter, it provides a formal basis for
testing. Returning to our predictive policing system, the law
enforcement agency that employs it could proactively publish
transparency reports, and test the system for early detection
of harms like race-based discrimination. An oversight agency
could also use transparency reports for post hoc identification
of harms.

Our Approach. We formalize transparency reports by introduc-
ing a family of Quantitative Input Influence (QII) measures
that capture the degree of influence of inputs on outputs of
the system. Three desiderata drove the definitions of these
measures.

First, we seek a formalization of a general class of
transparency reports that allows us to answer many useful
transparency queries related to input influence, including but
not limited to the example forms described above about the
system’s decisions about individuals and groups.

Second, we seek input influence measures that appropriately
account for correlated inputs—a common case for our target
applications. For example, consider a system that assists in
hiring decisions for a moving company. Gender and the
ability to lift heavy weights are inputs to the system. They
are positively correlated with each other and with the hiring
decisions. Yet transparency into whether the system uses the
weight lifting ability or the gender in making its decisions (and
to what degree) has substantive implications for determining if
it is engaging in discrimination (the business necessity defense
could apply in the former case [7]). This observation makes
us look beyond correlation coefficients and other associative
measures.

Third, we seek measures that appropriately quantify input
influence in settings where any input by itself does not have
significant influence on outcomes but a set of inputs does.
In such cases, we seek measures of joint influence of a set
of inputs (e.g., age and income) on a system’s decision (e.g.,
to serve a high-paying job ad). We also seek measures of
marginal influence of an input within such a set (e.g., age)
on the decision. This notion allows us to provide finer-grained

1By “black-box access to the decision-making system” we mean a typical
setting of software testing with complete control of inputs to the system and
full observability of the outputs.

transparency about the relative importance of individual inputs
within the set (e.g., age vs. income) in the system’s decision.

We achieve the first desideratum by formalizing a notion
of a quantity of interest. A transparency query measures the
influence of an input on a quantity of interest. A quantity of
interest represents a property of the behavior of the system for
a given input distribution. Our formalization supports a wide
range of statistical properties including probabilities of various
outcomes in the output distribution and probabilities of output
distribution outcomes conditioned on input distribution events.
Examples of quantities of interest include the conditional
probability of an outcome for a particular individual or group,
and the ratio of conditional probabilities for an outcome for
two different groups (a metric used as evidence of disparate
impact under discrimination law in the US [7]).

We achieve the second desideratum by formalizing causal
QII measures. These measures (called Unary QII) model the
difference in the quantity of interest when the system operates
over two related input distributions—the real distribution and a
hypothetical (or counterfactual) distribution that is constructed
from the real distribution in a specific way to account for
correlations among inputs. Specifically, if we are interested in
measuring the influence of an input on a quantity of interest of
the system behavior, we construct the hypothetical distribution
by retaining the marginal distribution over all other inputs and
sampling the input of interest from its prior distribution. This
choice breaks the correlations between this input and all other
inputs and thus lets us measure the influence of this input
on the quantity of interest, independently of other correlated
inputs. Revisiting our moving company hiring example, if the
system makes decisions only using the weightlifting ability of
applicants, the influence of gender will be zero on the ratio of
conditional probabilities of being hired for males and females.

We achieve the third desideratum in two steps. First, we
define a notion of joint influence of a set of inputs (called
Set QII) via a natural generalization of the definition of the
hypothetical distribution in the Unary QII definition. Second,
we define a family of Marginal QII measures that model the
difference on the quantity of interest as we consider sets with
and without the specific input whose marginal influence we
want to measure. Depending on the application, we may pick
these sets in different ways, thus motivating several different
measures. For example, we could fix a set of inputs and ask
about the marginal influence of any given input in that set on
the quantity of interest. Alternatively, we may be interested in
the average marginal influence of an input when it belongs
to one of several different sets that significantly affect the
quantity of interest. We consider several marginal influence
aggregation measures from cooperative game theory originally
developed in the context of influence measurement in voting
scenarios and discuss their applicability in our setting. We
also build on that literature to present an efficient approximate
algorithm for computing these measures.

Recognizing that different forms of transparency reports
may be appropriate for different settings, we generalize our QII
measures to be parametric in its key elements: the intervention



used to construct the hypothetical input distribution; the quan-
tity of interest; the difference measure used to quantify the
distance in the quantity of interest when the system operates
over the real and hypothetical input distributions; and the
aggregation measure used to combine marginal QII measures
across different sets. This generalized definition provides a
structure for exploring the design space of transparency re-
ports.

Since transparency reports released to an individual, reg-
ulatory agency, or the public might compromise individual
privacy, we explore the possibility of answering transparency
queries while protecting differential privacy [8]. We prove
bounds on the sensitivity of a number of transparency queries
and leverage prior results on privacy amplification via sam-
pling [9] to accurately answer these queries.

We demonstrate the utility of the QII framework by de-
veloping two machine learning applications on real datasets:
an income classification application based on the benchmark
adult dataset [10], and a predictive policing application
based on the National Longitudinal Survey of Youth [11].
Using these applications, we argue, in Section VII, the need
for causal measurement by empirically demonstrating that
in the presence of correlated inputs, observational measures
are not informative in identifying input influence. Further,
we analyze transparency reports of individuals in our dataset
to demonstrate how Marginal QII can provide insights into
individuals’ classification outcomes. Finally, we demonstrate
that under most circumstances, QII measures can be made
differentially private with minimal addition of noise, and can
be approximated efficiently.

In summary, this paper makes the following contributions:
• A formalization of a specific algorithmic transparency

problem for decision-making systems. Specifically, we
define a family of Quantitative Input Influence metrics
that accounts for correlated inputs, and provides answers
to a general class of transparency queries, including the
absolute and marginal influence of inputs on various
behavioral system properties. These metrics can inform
the design of transparency mechanisms and guide pro-
active system testing and posthoc investigations.

• A formal treatment of privacy-transparency trade-offs,
in particular, by construction of differentially private
answers to transparency queries.

• An implementation and experimental evaluation of the
metrics over two real data sets. The evaluation demon-
strates that (a) the QII measures are informative; (b) they
remain accurate while preserving differential privacy; and
(c) can be computed quite quickly for standard machine
learning systems applied to real data sets.

II. UNARY QII

Consider the situation discussed in the introduction, where
an automated system assists in hiring decisions for a moving
company. The input features used by this classification system
are : Age, Gender, Weight Lifting Ability, Marital Status and
Education. Suppose that, as before, weight lifting ability is

strongly correlated with gender (with men having better overall
lifting ability than woman). One particular question that an
analyst may want to ask is: “What is the influence of the input
Gender on positive classification for women?”. The analyst
observes that 20% of women are approved according to his
classifier. Then, he replaces every woman’s field for gender
with a random value, and notices that the number of women
approved does not change. In other words, an intervention on
the Gender variable does not cause a significant change in
the classification outcome. Repeating this process with Weight
Lifting Ability results in a 20% increase in women’s hiring.
Therefore, he concludes that for this classifier, Weight Lifting
Ability has more influence on positive classification for women
than Gender.

By breaking correlations between gender and weight lifting
ability, we are able to establish a causal relationship between
the outcome of the classifier and the inputs. We are able to
identify that despite the strong correlation between a negative
classification outcome for women, the feature gender was not
a cause of this outcome. We formalize the intuition behind
such causal experimentation in our definition of Quantitative
Input Influence (QII).

We are given an algorithm A. A operates on inputs (also
referred to as features for ML systems), N = {1, . . . , n}.
Every i ∈ N , can take on various states, given by Xi. We let
X =

∏
i∈N Xi be the set of possible feature state vectors, let

Z be the set of possible outputs of A. For a vector x ∈ X
and set of inputs S ⊆ N , x|S denotes the vector of inputs in
S. We are also given a probability distribution π on X , where
π(x) is the probability of the input vector x. We can define a
marginal probability of a set of inputs S in the standard way
as follows:

πS(x|S) =
∑

{x′∈X|x′|S=x|S}

π(x′) (1)

When S is a singleton set {i}, we write the marginal
probability of the single input as πi(x).

Informally, to quantify the influence of an input i, we
compute its effect on some quantity of interest; that is, we
measure the difference in the quantity of interest, when the
feature i is changed via an intervention. In the example above,
the quantity of interest is the fraction of positive classification
of women. In this paper, we employ a particular interpretation
of “changing an input”, where we replace the value of every
input with a random independently chosen value. To describe
the replacement operation for input i, we first define an
expanded probability space on X × X , with the following
distribution:

π̃(x,u) = π(x)π(u). (2)

The first component of an expanded vector (x,u), is just
the original input vector, whereas the second component repre-
sents an independent random vector drawn from the same dis-
tribution π. Over this expanded probability space, the random
variable X(x, ui) = x represents the original feature vector.



The random variable X−iUi(x,u) = x|N\{i}ui, represents the
random variable with input i replaced with a random sample.
Defining this expanded probability space allows us to switch
between the original distribution, represented by the random
variable X , and the intervened distribution, represented by
X−iUi. Notice that both these random variables are defined
from X ×X , the expanded probability space, to X . We denote
the set of random variables of the type X ×X → X as R(X ).

We can now define probabilities over this expanded space.
For example, the probability over X remains the same:

Pr(X = x) =
∑

{(x′,u′)|x′=x}

π̃(x′,u′)

=

 ∑
{x′|x′=x}

π(x′)

(∑
u′

π(u′)

)
= π(x)

Similarly, we can define more complex quantities. The
following expression represents the expectation of a classifier
c evaluating to 1, when i is randomly intervened on:

E(c(X−iUi) = 1) =
∑

{(x,u)|c(xN\iui)=1}

π̃(x,u).

Observe that the expression above computes the probability
of the classifier c evaluating to 1, when input i is replaced
with a random sample from its probability distribution πi(ui).

∑
{(x,u)|c(xN\iui)=1}

π̃(x,u)

=
∑
x

π(x)
∑

{u′i|c(xN\iu
′
i)=1}

∑
{u|ui=u′i}

π(u)

=
∑
x

π(x)
∑

{u′i|c(xN\iu
′
i)=1}

πi(u
′
i)

We can also define conditional distributions in the usual
way. The following represents the probability of the classifier
evaluating to 1 under the randomized intervention on input i
of X , given that X belongs to some subset Y ⊆ X :

E(c(X−iUi) = 1 | X ∈ Y) =
E(c(X−iUi) = 1 ∧X ∈ Y)

E(X ∈ Y)
.

Formally, for an algorithm A, a quantity of interest QA(·) :
R(X ) 7→ R is a function of a random variable from R(X ).

Definition 1 (QII). For a quantity of interest QA(·), and an
input i, the Quantitative Input Influence of i on QA(·) is
defined to be

ιQA(i) = QA(X)−QA(X−iUi).

In the example above, for a classifier A, the quantity of
interest, the fraction of women (represented by the set W ⊆
X ) with positive classification, can be expressed as follows:

QA(·) = E(A(·) = 1 | X ∈ W),

and the influence of input i is:

ι(i) = E(A(X) = 1 | X ∈ W)−E(A(X−iUi) = 1 | X ∈ W).

When A is clear from the context, we simply write Q rather
than QA. We now instantiate this definition with different
quantities of interest to illustrate the above definition in three
different scenarios.

A. QII for Individual Outcomes

One intended use of QII is to provide personalized trans-
parency reports to users of data analytics systems. For exam-
ple, if a person is denied a job application due to feedback
from a machine learning algorithm, an explanation of which
factors were most influential for that person’s classification
can provide valuable insight into the classification outcome.

For QII to quantify the use of an input for individual
outcomes, we define the quantity of interest to be the classifi-
cation outcome for a particular individual. Given a particular
individual x, we define Qx

ind(·) to be E(c(·) = 1 | X = x).
The influence measure is therefore:

ιxind(i) = E(c(X) = 1 | X = x)− E(c(X−iUi) = 1 | X = x)
(3)

When the quantity of interest is not the probability of
positive classification but the classification that x actually
received, a slight modification of the above QII measure is
more appropriate:

ιxind-act(i) = E(c(X) = c(x) | X = x)
−E(c(X−iUi) = c(x) | X = x)

= 1− E(c(X−iUi) = c(x) | X = x)
= E(c(X−iUi) 6= c(x) | X = x)

(4)

The above probability can be interpreted as the probability
that feature i is pivotal to the classification of c(x). Computing
the average of this quantity over X yields:

∑
x∈X Pr(X = x)E(i is pivotal for c(X) | X = x)

= E(i is pivotal for c(X)).
(5)

We denote this average QII for individual outcomes as
defined above, by ιind-avg(i), and use it as a measure for
importance of an input towards classification outcomes.



B. QII for Group Outcomes

As in the running example, the quantity of interest may
be the classification outcome for a set of individuals. Given a
group of individuals Y ⊆ X , we define QYgrp(·) to be E(c(·) =
1 | X ∈ Y). The influence measure is therefore:

ιYgrp(i) = E(c(X) = 1 | X ∈ Y)− E(c(X−iUi) = 1 | X ∈ Y)
(6)

C. QII for Group Disparity

Instead of simply classification outcomes, an analyst may
be interested in more nuanced properties of data analytics
systems. Recently, disparate impact has come to the fore as a
measure of unfairness, which compares the rates of positive
classification within protected groups defined by gender or
race. The ‘80% rule’ in employment which states that the
rate of selection within a protected demographic should be
at least 80% of the rate of selection within the unprotected
demographic. The quantity of interest in such a scenario is
the ratio in positive classification outcomes for a protected
group Y from the rest of the population X \ Y .

E(c(X) = 1 | X ∈ Y)

E(c(X) = 1 | X 6∈ Y)

However, the ratio of classification rates is unstable at at
low values of positive classification. Therefore, for the com-
putations in this paper we use the difference in classification
rates as our measure of group disparity.

QYdisp(·) = |E(c(·) = 1 | X ∈ Y)− E(c(·) = 1 | X 6∈ Y)|
(7)

The QII measure of an input group disparity, as a result is:

ιYdisp(i) = QYdisp(X)−QYdisp(X−iUi). (8)

More generally, group disparity can be viewed as an as-
sociation between classification outcomes and membership
in a group. QII on a measure of such association (e.g.,
group disparity) identifies the variable that causes the associ-
ation in the classifier. Proxy variables are variables that are
associated with protected attributes. However, for concerns
of discrimination such as digital redlining, it is important
to identify which proxy variables actually introduce group
disparity. It is straightforward to observe that features with
high QII for group disparity are proxy variables, and also cause
group disparity. Therefore, QII on group disparity is a useful
diagnostic tool for determining discriminiation. The use of QII
in identifying proxy variables is explored experimentally in
Section VII-B. Note that because of such proxy variables,
simply ensuring that protected attributes are not input to
the classifier is not sufficient to avoid discrimination (see
also [12]).

III. SET AND MARGINAL QII

In many situations, intervention on a single input variable
has no influence on the outcome of a system. Consider, for
example, a two-feature setting where features are age (A) and
income (I), and the classifier is c(A, I) = (A = old) ∧ (I =
high). In other words, the only datapoints that are labeled 1
are those of elderly persons with high income. Now, given
a datapoint where A = young , I = low , an intervention on
either age or income would result in the same classification.
However, it would be misleading to say that neither age nor
income have an influence over the outcome: changing both the
states of income and age would result in a change in outcome.

Equating influence with the individual ability to affect the
outcome is uninformative in real datasets as well: Figure 1 is a
histogram of influences of features on outcomes of individuals
for a classifier learnt from the adult dataset [13]2. For most
individuals, all features have zero influence: changing the state
of one feature alone is not likely to change the outcome of
a classifier. Of the 19537 datapoints we evaluate, more than
half have ιx(i) = 0 for all i ∈ N , Indeed, changes to outcome
are more likely to occur if we intervene on sets of features.
In order to get a better understanding of the influence of a
feature i ∈ N , we should measure its effect when coupled
with interventions on other features. We define the influence
of a set of inputs as a straightforward extension of the influence
of individual inputs. Essentially, we wish the influence of a set
of inputs S ⊆ N to be the same as when the set of inputs is
considered to be a single input; when intervening on S, we
draw the states of i ∈ S based on the joint distribution of the
states of features in S, πS(uS), as defined in Equation (1).

We can naturally define a distribution over X ×
∏
i∈S Xi,

naturally extending (2) as:

π̃(x, uS) = π(x)πS(uS). (9)

We also define the random variable X−SUS(x,uS) =
x|N\SuS ; X−S(x,uS) has the states of features in N \ S
fixed to their original values in x, but features in S take on
new values according to uS .

Definition 2 (Set QII). For a quantity of interest Q, and an
input i, the Quantitative Input Influence of set S ⊆ N on Q
is defined to be

ιQ(S) = Q(X)−Q(X−SUS).

Considering the influence of a set of inputs opens up a
number of interesting questions due to the interaction between
inputs. First among these is how does one measure the
individual effect of a feature, given the measured effects of
interventions on sets of features. One natural way of doing so
is by measuring the marginal effect of a feature on a set.

2The adult dataset contains approximately 31k datapoints of users’ personal
attributes, and whether their income is more than $50k per annum; see
Section VII for more details.
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Fig. 1: A histogram of the highest specific causal influence
for some feature across individuals in the adult dataset. Alone,
most inputs alone have very low influence.

Definition 3 (Marginal QII). For a quantity of interest Q, and
an input i, the Quantitative Input Influence of input i over a
set S ⊆ N on Q is defined to be

ιQ(i, S) = Q(X−SUS)−Q(X−S∪{i}US∪{i}).

Notice that marginal QII can also be viewed as a difference
in set QIIs: ιQ(S ∪ {i}) − ιQ(S). Informally, the difference
between ιQ(S ∪ {i}) and ιQ(S) measures the “added value”
obtained by intervening on S ∪ {i}, versus intervening on S
alone.

The marginal contribution of i may vary significantly based
on S. Thus, we are interested in the aggregate marginal
contribution of i to S, where S is sampled from some
natural distribution over subsets of N \ {i}. In what follows,
we describe a few measures for aggregating the marginal
contribution of a feature i to sets, based on different methods
for sampling sets. The primary method of aggregating the
marginal contribution is the Shapley value [14]. The less
theoretically inclined reader can choose to proceed to Section
V without a loss in continuity.

A. Cooperative Games and Causality

In this section, we discuss how measures from the theory of
cooperative games define measures for aggregating marginal
influence. In particular, we observe that the Shapley value [14]
is characterized by axioms that are natural in our setting.
However, other measures may be appropriate for certain input
data generation processes.

Definition 2 measures the influence that an intervention on
a set of features S ⊆ N has on the outcome. One can naturally
think of Set QII as a function v : 2N → R, where v(S) is the
influence of S on the outcome. With this intuition in mind,
one can naturally study influence measures using cooperative
game theory, and in particular, prevalent influence measures in
cooperative games such as the Shapley value, Banzhaf index
and others. These measures can be thought of as influence

aggregation methods, which, given an influence measure v :
2N → R, output a vector φ ∈ Rn, whose i-th coordinate
corresponds in some natural way to the aggregate influence,
or aggregate causal effect, of feature i.

The original motivation for game-theoretic measures is
revenue division [15, Chapter 18]: the function v describes
the amount of money that each subset of players S ⊆ N can
generate; assuming that the set N generates a total revenue of
v(N), how should v(N) be divided amongst the players? A
special case of revenue division that has received significant
attention is the measurement of voting power [16]. In voting
systems with multiple agents with differing weights, voting
power often does not directly correspond to the weights of the
agents. For example, the US presidential election can roughly
be modeled as a cooperative game where each state is an agent.
The weight of a state is the number of electors in that state (i.e.,
the number of votes it brings to the presidential candidate who
wins that state). Although states like California and Texas have
higher weight, swing states like Pennsylvania and Ohio tend
to have higher power in determining the outcome of elections.

A voting system is modeled as a cooperative game: players
are voters, and the value of a coalition S ⊆ N is 1 if S
can make a decision (e.g. pass a bill, form a government,
or perform a task), and is 0 otherwise. Note the similarity
to classification, with players being replaced by features. The
game-theoretic measures of revenue division are a measure
of voting power: how much influence does player i have
in the decision making process? Thus the notions of voting
power and revenue division fit naturally with our goals when
defining aggregate QII influence measures: in both settings,
one is interested in measuring the aggregate effect that a single
element has, given the actions of subsets.

A revenue division should ideally satisfy certain desiderata.
Formally, we wish to find a function φ(N, v), whose input
is N and v : 2N → R, and whose output is a vector in
Rn, such that φi(N, v) measures some quantity describing
the overall contribution of the i-th player. Research on fair
revenue division in cooperative games traditionally follows an
axiomatic approach: define a set of properties that a revenue
division should satisfy, derive a function that outputs a value
for each player, and argue that it is the unique function that
satisfies these properties.

Several canonical fair cooperative solution concepts rely
on the fundamental notion of marginal contribution. given a
player i and a set S ⊆ N \ {i}, the marginal contribution of
i to S is denoted mi(S, v) = v(S ∪ {i}) − v(S) (we simply
write mi(S) when v is clear from the context). Marginal QII,
as defined above, can be viewed as an instance of a measure of
marginal contribution. Given a permutation π ∈ Π(N) of the
elements in N , we define Pi(σ) = {j ∈ N | σ(j) < σ(i)};
this is the set of i’s predecessors in σ. We can now simi-
larly define the marginal contribution of i to a permutation
σ ∈ Π(N) as mi(σ) = mi(Pi(σ)). Intuitively, one can think
of the players sequentially entering a room, according to some
ordering σ; the value mi(σ) is the marginal contribution that
i has to whoever is in the room when she enters it.



Generally speaking, game theoretic influence measures
specify some reasonable way of aggregating the marginal
contributions of i to sets S ⊆ N . That is, they measure a
player’s expected marginal contribution to sets sampled from
some distribution D over 2N , resulting in a payoff of

ES∼D[mi(S)] =
∑
S⊆N

Pr
D

[S]mi(S).

Thus, fair revenue division draws its appeal from the degree
to which the distribution D is justifiable within the context
where revenue is shared. In our setting, we argue for the use
of the Shapley value. Introduced by the late Lloyd Shapley, the
Shapley value is one of the most canonical methods of dividing
revenue in cooperative games. It is defined as follows:

ϕi(N, v) = Eσ[mi(σ)] =
1

n!

∑
σ∈Π(N)

mi(σ)

Intuitively, the Shapley value describes the following process:
players are sequentially selected according to some randomly
chosen order σ; each player receives a payment of mi(σ). The
Shapley value is the expected payment to the players under
this regime. The definition we use describes a distribution
over permutations of N , not its subsets; however, it is easy
to describe the Shapley value in terms of a distribution over
subsets. If we define p[S] = 1

n
1

(n−1
|S| )

, it is a simple exercise

to show that

ϕi(N, v) =
∑
S⊆N

p[S]mi(S).

Intuitively, p[S] describes the following process: first, choose
a number k ∈ [0, n− 1] uniformly at random; next, choose a
set of size k uniformly at random.

The Shapley value is one of many reasonable ways of
measuring influence; we provide a detailed review of two
others — the Banzhaf index [17], and the Deegan-Packel
index [18] — in Appendix A.

B. Axiomatic Treatment of the Shapley Value

In this work, the Shapley value is our function of choice for
aggregating marginal feature influence. The objective of this
section is to justify our choice, and provide a brief exposition
of axiomatic game-theoretic value theory. We present the
axioms that define the Shapley value, and discuss how they
apply in the QII setting. As we show, by requiring some
desired properties, one arrives at a game-theoretic influence
measure as the unique function for measuring information use
in our setting.

The Shapley value satisfies the following properties:

Definition 4 (Symmetry (Sym)). We say that i, j ∈ N are
symmetric if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.
A value φ satisfies symmetry if φi = φj whenever i and j are
symmetric.

Definition 5 (Dummy (Dum)). We say that a player i ∈ N
is a dummy if v(S ∪ {i}) = v(S) for all S ⊆ N . A value φ
satisfies the dummy property if φi = 0 whenever i is a dummy.

Definition 6 (Efficiency (Eff)). A value satisfies the efficiency
property if

∑
i∈N φi = v(N).

All of these axioms take on a natural interpretation in the
QII setting. Indeed, if two features have the same probabilistic
effect, no matter what other interventions are already in place,
they should have the same influence. In our context, the
dummy axiom says that a feature that never offers information
with respect to an outcome should have no influence. In the
case of specific causal influence, the efficiency axiom simply
states that the total amount of influence should sum to

Pr(c(X) = c(x) | X = x)− Pr(c(X−N ) = c(x) | X = x)

=1− Pr(c(X) = c(x)) = Pr(c(X) 6= c(x)).

That is, the total amount of influence possible is the likelihood
of encountering elements whose evaluation is not c(x). This is
natural: if the vast majority of elements have a value of c(x),
it is quite unlikely that changes in features’ state will have any
effect on the outcome whatsoever; thus, the total amount of
influence that can be assigned is Pr(c(X) 6= c(x)). Similarly,
if the vast majority of points have a value different from x,
then it is likelier that a random intervention would result in a
change in value, resulting in more influence to be assigned.

In the original paper by [14], it is shown that the Shapley
value is the only function that satisfies (Sym), (Dum), (Eff),
as well as the additivity (Add) axiom.

Definition 7 (Additivity (Add)). Given two games
〈N, v1〉, 〈N, v2〉, we write 〈N, v1 + v2〉 to denote the game
v′(S) = v1(S) + v2(S) for all S ⊆ N . A value φ satisfies the
additivity property if φi(N, v1) + φi(N, v2) = φi(N, v1 + v2)
for all i ∈ N .

In our setting, the additivity axiom makes little intuitive
sense; it would imply, for example, that if we were to multiply
Q by a constant c, the influence of i in the resulting game
should be multiplied by c as well, which is difficult to justify.

[19] offers an alternative characterization of the Shapley
value, based on the more natural monotonicity assumption,
which is a strong generalization of the dummy axiom.

Definition 8 (Monotonicity (Mono)). Given two games
〈N, v1〉, 〈N, v2〉, a value φ satisfies strong monotonicity if
mi(S, v1) ≥ mi(S, v2) for all S implies that φi(N, v1) ≥
φi(N, v2), where a strict inequality for some set S ⊆ N
implies a strict inequality for the values as well.

Monotonicity makes intuitive sense in the QII setting: if a
feature has consistently higher influence on the outcome in one
setting than another, its measure of influence should increase.
For example, if a user receives two transparency reports (say,
for two separate loan applications), and in one report gender
had a consistently higher effect on the outcome than in the
other, then the transparency report should reflect this.

Theorem 9 ([19]). The Shapley value is the only function that
satisfies (Sym), (Eff) and (Mono).



To conclude, the Shapley value is a unique way of measur-
ing aggregate influence in the QII setting, while satisfying a
set of very natural axioms.

IV. TRANSPARENCY SCHEMAS

We now discuss two generalizations of the definitions
presented in Section II, and then define a transparency schema
that map the space of transparency reports based on QII.

a) Intervention Distribution: In this paper we only con-
sider randomized interventions when the interventions are
drawn independently from the priors of the given input.
However, depending on the specific causal question at hand,
we may use different interventions. Formally, this is achieved
by allowing an arbitrary intervention distribution πinter such
that

π̃(x,u) = π(x)πinter(u).

The subsequent definitions remain unchanged. One example
of an intervention different from the randomized intervention
considered in the rest of the paper is one held constant at a
vector x0:

πinter
x0

(u) =

{
1 for u = x0

0 o.w.

A QII measure defined on the constant intervention as
defined above, measures the influence of being different from
a default, where the default is represented by x0.

b) Difference Measure: A second generalization allows
us to consider quantities of interest which are not real numbers.
Consider, for example, the situation where the quantity of
interest is an output probability distribution, as in the case
in a randomized classifier. In this setting, a suitable measure
for quantifying the distance between distributions can be
used as a difference measure between the two quantities of
interest. Examples of such difference measures include the
KL-divergence [20] between distribution or distance metrics
between vectors.

c) Transparency Schema: We now present a transparency
schema that maps the space of transparency reports based on
QII measures. It consists of the following elements:
• A quantity of interest, which captures the aspect of the

system we wish to gain transparency into.
• An intervention distribution, which defines how a coun-

terfactual distribution is constructed from the true distri-
bution.

• A difference measure, which quantifies the difference
between two quantities of interest.

• An aggregation technique, which combines marginal QII
measures across different subsets of inputs (features).

For a given application, one has to appropriately instantiate
this schema. We have described several instances of each
schema element. The choices of the schema elements are
guided by the particular causal question being posed. For
instance, when the question is: “Which features are most
important for group disparity?”, the natural quantity of interest

is a measure of group disparity, and the natural intervention
distribution is using the prior as the question does not suggest
a particular bias. On the other hand, when the question is:
“Which features are most influential for person A’s classifica-
tion as opposed to person B?”, a natural quantity of interest is
person A’s classification, and a natural intervention distribution
is the constant intervention using the features of person B.
A thorough exploration of other points in this design space
remains an important direction for future work.

V. ESTIMATION

While the model we propose offers several appealing prop-
erties, it faces several technical implementation issues. Several
elements of our work require significant computational effort;
in particular, both the probability that a change in feature state
would cause a change in outcome, and the game-theoretic
influence measures are difficult to compute exactly. In the
following sections we discuss these issues and our proposed
solutions.

A. Computing Power Indices

Computing the Shapley or Banzhaf values exactly is gen-
erally computationally intractable (see [21, Chapter 4] for a
general overview); however, their probabilistic nature means
that they can be well-approximated via random sampling.
More formally, given a random variable X , suppose that we
are interested in estimating some determined quantity q(X)
(say, q(X) is the mean of X); we say that a random variable
q∗ is an ε-δ approximation of q(X) if

Pr[|q∗ − q(X)| ≥ ε] < δ;

in other words, it is extremely likely that the difference
between q(X) and q∗ is no more than ε. An ε-δ approximation
scheme for q(X) is an algorithm that for any ε, δ ∈ (0, 1) is
able to output a random variable q∗ that is an ε-δ approxima-
tion of q(X), and runs in time polynomial in 1

ε , log 1δ.
[22] show that when 〈N, v〉 is a simple game (i.e. a game

where v(S) ∈ {0, 1} for all S ⊆ N ), there exists an ε-
δ approximation scheme for both the Banzhaf and Shapley
values; that is, for φ ∈ {ϕ, β}, we can guarantee that for any
ε, δ > 0, with probability ≥ 1− δ, we output a value φ∗i such
that |φ∗i − φi| < ε.

More generally, [23] observe that the number of i.i.d.
samples needed in order to approximate the Shapley value and
Banzhaf index is parametrized in ∆(v) = maxS⊆N v(S) −
minS⊆N v(S). Thus, if ∆(v) is a bounded value, then an ε-
δ approximation exists. In our setting, coalitional values are
always within the interval [0, 1], which immediately implies
the following theorem.

Theorem 10. There exists an ε-δ approximation scheme for
the Banzhaf and Shapley values in the QII setting.

B. Estimating Q

Since we do not have access to the prior generating the
data, we simply estimate it by observing the dataset itself.
Recall that X is the set of all possible user profiles; in this



case, a dataset is simply a multiset (i.e. possibly containing
multiple copies of user profiles) contained in X . Let D be a
finite multiset of X , the input space. We estimate probabilities
by computing sums over D. For example, for a classifier c,
the probability of c(X) = 1.

ÊD(c(X) = 1) =

∑
x∈D 1(c(x) = 1)

|D|
. (10)

Given a set of features S ⊆ N , let D|S denote the elements
of D truncated to only the features in S. Then, the intervened
probability can be estimated as follows:

ÊD(c(X−S) = 1) =

∑
uS∈D|S

∑
x∈D 1(c(x|N\SuS) = 1)

|D|2
.

(11)

Similarly, the intervened probability on individual outcomes
can be estimated as follows:

ÊD(c(X−S) = 1|X = x) =

∑
uS∈DS

1(c(x|N\SuS) = 1)

|D|
.

(12)

Finally, let us observe group disparity:∣∣∣ÊD(c(X−S) = 1 | X ∈ Y)− ÊD(c(X−S) = 1 | X /∈ Y)
∣∣∣

The term ÊD(c(X−S) = 1 | X ∈ Y) equals

1

|Y|
∑
x∈Y

∑
uS∈DS

1(c(x|N\SuS) = 1),

Thus group disparity can be written as:∣∣ 1

|Y|
∑
x∈Y

∑
uS∈DS

1(c(x|N\SuS) = 1)

− 1

|D \ Y|
∑

x∈D\Y

∑
uS∈DS

1(c(x|N\SuS) = 1)
∣∣. (13)

We write Q̂Ydisp(S) to denote (13).
If D is large, these sums cannot be computed efficiently.

Therefore, we approximate the sums by sampling from the
dataset D. It is possible to show using the According to the
Hoeffding bound [24], partial sums of n random variables
Xi, within a bound ∆, can be well-approximated with the
following probabilistic bound:

Pr

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−2nε2

∆

)
Since all the samples of measures discussed in the paper

are bounded within the interval [0, 1], we admit an ε-δ
approximation scheme where the number of samples n can
be chosen to be greater than log(2/δ)/2ε2. Note that these
bounds are independent of the size of the dataset. Therefore,
given an efficient sampler, these quantities of interest can be
approximated efficiently even for large datasets.

VI. PRIVATE TRANSPARENCY REPORTS

One important concern is that releasing influence measures
estimated from a dataset might leak information about in-
dividual users; our goal is providing accurate transparency
reports, without compromising individual users’ private data.
To mitigate this concern, we add noise to make the measures
differentially private. We show that the sensitivities of the QII
measures considered in this paper are very low and therefore
very little noise needs to be added to achieve differential
privacy.

The sensitivity of a function is a key parameter in ensuring
that it is differentially private; it is simply the worst-case
change in its value, assuming that we change a single data
point in our dataset. Given some function f over datasets, we
define the sensitivity of a function f with respect to a dataset
D, denoted by ∆f(D) as

max
D′
|f(D)− f(D′)|

where D and D′ differ by at most one instance. We use the
shorthand ∆f when D is clear from the context.

In order to not leak information about the users used
to compute the influence of an input, we use the standard
Laplace Mechanism [8] and make the influence measure
differentially private. The amount of noise required depends
on the sensitivity of the influence measure. We show that
the influence measure has low sensitivity for the individuals
used to sample inputs. Further, due to a result from [9] (and
stated in [25]), sampling amplifies the privacy of the computed
statistic, allowing us to achieve high privacy with minimal
noise addition.

The standard technique for making any function differ-
entially private is to add Laplace noise calibrated to the
sensitivity of the function:

Theorem 11 ([8]). For any function f from datasets to R,
the mechanism Kf that adds independently generated noise
with distribution Lap(∆f(D)/ε) to the k output enjoys ε-
differential privacy.

Since each of the quantities of interest aggregate over a
large number of instances, the sensitivity of each function is
very low.

Theorem 12. Given a dataset D,
1) ∆ÊD(c(X) = 1) = 1

|D|
2) ∆ÊD(c(X−S) = 1) ≤ 2

|D|
3) ∆ÊD(c(X−S) = 1|X = x) = 1

|D|

4) Q̂Ydisp(S) ≤ max
{

1
|D∩Y| ,

1
|D\Y|

}
Proof. We examine some cases here. In Equation 10, if two
datasets differ by one instance, then at most one term of the
summation will differ. Since each term can only be either 0
or 1, the sensitivity of the function is

∆ÊD(c(X) = 1) =

∣∣∣∣ 0

|D|
− 1

|D|

∣∣∣∣ =
1

|D|
.



Similarly, in Equation 11, an instance appears 2|D| − 1
times, once each for the inner summation and the outer
summation, and therefore, the sensitivity of the function is

∆ÊD(c(X−S) = 1) =
2|D| − 1

|D|2
≤ 2

|D|
.

For individual outcomes (Equation (12)), similarly, only one
term of the summation can differ. Therefore, the sensitivity of
(12) is 1/|D|.

Finally, we observe that a change in a single element x′ of
D will cause a change of at most 1

|D∩Y| if x′ ∈ D ∩ Y , or
of at most 1

|D\Y| if x′ ∈ D \ Y . Thus, the maximal change to

(13) is at most max
{

1
|Y| ,

1
|D\Y|

}
.

While the sensitivity of most quantities of interest is low
(at most a 2

|D| ), Q̂
Y
disp(S) can be quite high when |Y| is either

very small or very large. This makes intuitive sense: if Y is
a very small minority, then any changes to its members are
easily detected; similarly, if Y is a vast majority, then changes
to protected minorities may be easily detected.

We observe that the quantities of interest which exhibit
low sensitivity will have low influence sensitivity as well:
for example, the local influence of S is 1(c(x) = 1) −
ÊD(c(X−S) = 1] | X = x); changing any x′ ∈ D (where
x′ 6= x will result in a change of at most 1

|D| to the local
influence.

Finally, since the Shapley and Banzhaf indices are normal-
ized sums of the differences of the set influence functions, we
can show that if an influence function ι has sensitivity ∆ι,
then the sensitivity of the indices are at most 2∆ι.

To conclude, all of the QII measures discussed above
(except for group parity) have a sensitivity of α

|D| , with α
being a small constant. To ensure differential privacy, we need
only need add noise with a Laplacian distribution Lap(k/|D|)
to achieve 1-differential privacy.

Further, it is known that sampling amplifies differential
privacy.

Theorem 13 ([9], [25]). If A is 1-differentially private, then
for any ε ∈ (0, 1), A′(ε) is 2ε-differentially private, where
A′(ε) is obtained by sampling an ε fraction of inputs and
then running A on the sample.

Therefore, our approach of sampling instances from D to
speed up computation has the additional benefit of ensuring
that our computation is private.

Table I contains a summary of all QII measures defined in
this paper, and their sensitivity.

VII. EXPERIMENTAL EVALUATION

We demonstrate the utility of the QII framework by develop-
ing two simple machine learning applications on real datasets.
Using these applications, we first argue, in Section VII-A,
the need for causal measurement by empirically demonstrat-
ing that in the presence of correlated inputs, observational
measures are not informative in identifying which inputs were

actually used. In Section VII-B, we illustrate the distinction
between different quantities of interest on which Unary QII
can be computed. We also illustrate the effect of discrimination
on the QII measure. In Section VII-C, we analyze transparency
reports of three individuals to demonstrate how Marginal QII
can provide insights into individuals’ classification outcomes.
Finally, we analyze the loss in utility due to the use of
differential privacy, and provide execution times for generating
transparency reports using our prototype implementation.

We use the following datasets in our experiments:
• adult [10]: This standard machine learning benchmark

dataset is a a subset of US census data that classifies
the income of individuals, and contains factors such as
age, race, gender, marital status and other socio-economic
parameters. We use this dataset to train a classifier that
predicts the income of individuals from other parameters.
Such a classifier could potentially be used to assist credit
decisions.

• arrests [11]: The National Longitudinal Surveys are a
set of surveys conducted by the Bureau of Labor Statistics
of the United States. In particular, we use the National
Longitudinal Survey of Youth 1997 which is a survey of
young men and women born in the years 1980-84. Re-
spondents were ages 12-17 when first interviewed in 1997
and were subsequently interviewed every year till 2013.
The survey covers various aspects of an individual’s life
such as medical history, criminal records and economic
parameters. From this dataset, we extract the following
features: age, gender, race, region, history of drug use,
history of smoking, and history of arrests. We use this
data to train a classifier that predicts history of arrests to
aid in predictive policing, where socio-economic factors
are used to decide whether individuals should receive a
visit from the police. This application is inspired by a
similar application in [26].

The two applications described above are hypothetical ex-
amples of decision-making aided by machine learning that use
potentially sensitive socio-economic data about individuals,
and not real systems that are currently in use. We use these
classifiers to illustrate the subtle causal questions that our QII
measures can answer.

We use the following standard machine learning classifiers
in our dataset: Logistic Regression, SVM with a radial basis
function kernel, Decision Tree, and Gradient Boosted Decision
Trees. Bishop’s machine learning text [27] is an excellent
resource for an introduction to these classifiers. While Logistic
Regression is a linear classifier, the other three are nonlinear
and can potentially learn very complex models. All our ex-
periments are implemented in Python with the numpy library,
and the scikit-learn machine learning toolkit, and run on an
Intel i7 computer with 4 GB of memory.

A. Comparison with Observational Measures

In the presence of correlated inputs, observational measures
often cannot identify which inputs were causally influential.
To illustrate this phenomena on real datasets, we train two



Name Notation Quantity of Interest Sensitivity
QII on Individual Outcomes (3) ιind(S) Positive Classification of an Individual 1/|D|
QII on Actual Individual Outcomes (4) ιind-act(S) Actual Classification of an Individual 1/|D|
Average QII (5) ιind-avg(S) Average Actual Classification 2/|D|
QII on Group Outcomes (6) ιYgrp(S) Positive Classification for a Group 2/|D ∩ Y|
QII on Group Disparity (8) ιYdisp(S) Difference in classification rates among groups 2max(1/|D \ Y|, 1/|D ∩ Y|)

TABLE I: A summary of the QII measures defined in the paper

classifiers: (A) where gender is provided as an actual input,
and (B) where gender is not provided as an input. For classifier
(B), clearly the input Gender has no effect and any correlation
between the outcome and gender is caused via inference from
other inputs. In Table II, for both the adult and the arrests

dataset, we compute the following observational measures:
Mutual Information (MI), Jaccard Index (Jaccard), Pearson
Correlation (corr), and the Disparate Impact Ratio (disp) to
measure the similarity between Gender and the classifiers
outcome. We also measure the QII of Gender on outcome.
We observe that in many scenarios the observational quantities
do not change, or sometimes increase, from classifier A to
classifier B, when gender is removed as an actual input
to the classifier. On the other hand, if the outcome of the
classifier does not depend on the input Gender, then the QII
is guaranteed to be zero.

B. Unary QII Measures

In Figure 2, we illustrate the use of different Unary QII
measures. Figures 2a, and 2b, show the Average QII measure
(Equation 5) computed for features of a decision forest classi-
fier. For the income classifier trained on the adult dataset, the
feature with highest influence is Marital Status, followed by
Occupation, Relationship and Capital Gain. Sensitive features
such as Gender and Race have relatively lower influence.
For the predictive policing classifier trained on the arrests

dataset, the most influential input is Drug History, followed by
Gender, and Smoking History. We observe that influence on
outcomes may be different from influence on group disparity.

QII on group disparity: Figures 2c, 2d show influences
of features on group disparity for two different settings. The
figure on the left shows the influence of features on group
disparity by Gender in the adult dataset; the figure on the
right shows the influence of group disparity by Race in the
arrests dataset. For the income classifier trained on the
adult dataset, we observe that most inputs have negative
influence on group disparity; randomly intervening on most
inputs would lead to a reduction in group disparity. In other
words, a classifier that did not use these inputs would be fairer.
Interestingly, in this classifier, marital status and not sex has
the highest influence on group disparity by sex.

For the arrests dataset, most inputs have the effect of
increasing group disparity if randomly intervened on. In
particular, Drug history has the highest positive influence on
disparity in arrests. Although Drug history is correlated with
race, using it reduces disparate impact by race, i.e. makes fairer
decisions.

In both examples, features correlated with the sensitive
attribute are the most influential for group disparity according
to the sensitive attribute instead of the sensitive attribute
itself. It is in this sense that QII measures can identify
proxy variables that cause associations between outcomes and
sensitive attributes.

QII with artificial discrimination: We simulate discrimi-
nation using an artificial experiment. We first randomly assign
ZIP codes to individuals in our dataset. Then to simulate
systematic bias, we make an f fraction of the ZIP codes
discriminatory in the following sense: All individuals in the
protected set are automatically assigned a negative classifi-
cation outcome. We then study the change in the influence
of features as we increase f . Figure 3a, shows that the
influence of Gender increases almost linearly with f . Recall
that Marital Status was the most influential feature for this
classifier without any added discrimination. As f increases,
the importance of Marital Status decreases as expected, since
the number of individuals for whom Marital Status is pivotal
decreases.

C. Personalized Transparency Reports

To illustrate the utility of personalized transparency reports,
we study the classification of individuals who received poten-
tially unexpected outcomes. For the personalized transparency
reports, we use decision forests.

The influence measure that we employ is the Shapley value,
with the underlying cooperative game defined over the local
influence Q. In more detail, v(S) = ιQA(S), with QA being
E[c(·) = 1 | X = x]; that is, the marginal contribution of
i ∈ N to S is given by mi(S) = E[c(X−S) = 1 | X =
x]− E[c(X−S∪{i}) = 1 | X = x].

We emphasize that some features may have a negative
Shapley value; this should be interpreted as follows: a feature
with a high positive Shapley value often increases the certainty
that the classification outcome is 1, whereas a feature whose
Shapley value is negative is one that increases the certainty
that the classification outcome would be zero.

Mr. X: The first example is of an individual from the
adult dataset, who we refer to as Mr. X, and is described in
Figure 4a. He is is deemed to be a low income individual, by
an income classifier learned from the data. This result may be
surprising to him: he reports high capital gains ($14k), and
only 2.1% of people with capital gains higher than $10k are
reported as low income. In fact, he might be led to believe that
his classification may be a result of his ethnicity or country
of origin. Examining his transparency report in Figure 4b,
however, we find that the the most influential features that led



logistic kernel svm decision tree random forest
adult arrests adult arrests adult arrests adult arrests

MI A 0.045 0.049 0.046 0.047 0.043 0.054 0.044 0.053
MI B 0.043 0.050 0.044 0.053 0.042 0.051 0.043 0.052

Jaccard A 0.501 0.619 0.500 0.612 0.501 0.614 0.501 0.620
Jaccard B 0.500 0.611 0.501 0.615 0.500 0.614 0.501 0.617

corr A 0.218 0.265 0.220 0.247 0.213 0.262 0.218 0.262
corr B 0.215 0.253 0.218 0.260 0.215 0.257 0.215 0.259
disp A 0.286 0.298 0.377 0.033 0.302 0.335 0.315 0.223
disp B 0.295 0.301 0.312 0.096 0.377 0.228 0.302 0.129
QII A 0.036 0.135 0.044 0.149 0.023 0.116 0.012 0.109
QII B 0 0 0 0 0 0 0 0

TABLE II: Comparison of QII with associative measures. For 4 different classifiers, we compute metrics such as Mutual
Information (MI), Jaccard Index (JI), Pearson Correlation (corr), Group Disparity (disp) and Average QII between Gender and
the outcome of the learned classifier. Each metric is computed in two situations: (A) when Gender is provided as an input to
the classifier, and (B) when Gender is not provided as an input to the classifier.

to his negative classification were Marital Status, Relationship
and Education.

Mr. Y: The second example, to whom we refer as Mr. Y
(Figure 5), has even higher capital gains than Mr. X. Mr. Y is
a 27 year old, with only Preschool education, and is engaged
in fishing. Examination of the transparency report reveals that
the most influential factor for negative classification for Mr.
Y is his Occupation. Interestingly, his low level of education
is not considered very important by this classifier.

Mr. Z: The third example, who we refer to as Mr. Z
(Figure 6) is from the arrests dataset. History of drug use
and smoking are both strong indicators of arrests. However,
Mr. X received positive classification by this classifier even
without any history of drug use or smoking. On examining
his classifier, it appears that race, age and gender were most
influential in determining his outcome. In other words, the
classifier that we train for this dataset (a decision forest) has
picked up on the correlations between race (Black), and age
(born in 1984) to infer that this individual is likely to engage in
criminal activity. Indeed, our interventional approach indicates
that this is not a mere correlation effect: race is actively being
used by this classifier to determine outcomes. Of course, in
this instance, we have explicitly offered the race parameter
to our classifier as a viable feature. However, our influence
measure is able to pick up on this fact, and alert us of
the problematic behavior of the underlying classifier. More
generally, this example illustrates a concern with the black
box use of machine learning which can lead to unfavorable
outcomes for individuals.

D. Differential Privacy

Most QII measures considered in this paper have very low
sensitivity, and therefore can be made differentially private
with negligible loss in utility. However, recall that the sensi-
tivity of influence measure on group disparity ιYdisp depends on
the size of the protected group in the dataset D as follows:

ιYdisp = 2 max

(
1

|D \ Y|
,

1

|D ∩ Y|

)
For sufficiently small minority groups, a large amount of

noise might be required to ensure differential privacy, leading

to a loss in utility of the QII measure. To estimate the loss
in utility, we set a noise of 0.005 as the threshold of noise
at which the measure is no longer useful, and then compute
fraction of times noise crosses that threshold when Laplacian
noise is added at ε = 1. The results of this experiment are as
follows:
Y Count Loss in Utility
Race: White 27816 2.97× 10−14

Race: Black 3124 5.41× 10−14

Race: Asian-Pac-Islander 1039 6.14× 10−05

Race: Amer-Indian-Eskimo 311 0.08
Race: Other 271 0.13
Gender: Male 21790 3.3× 10−47

Gender: Female 10771 3.3× 10−47

We note that for most reasonably sized groups, the loss in
utility is negligible. However, the Asian-Pac-Islander, and the
Amer-Indian-Eskimo racial groups are underrepresented in this
dataset. For these groups, the QII on Group Disparity estimate
needs to be very noisy to protect privacy.

E. Performance

We report runtimes of our prototype for generating trans-
parency reports on the adult dataset. Recall from Section VI
that we approximate QII measures by computing sums over
samples of the dataset. According to the Hoeffding bound to
derive an (ε, δ) estimate of a QII measure, at ε = 0.01, and
n = 37000 samples, δ = 2 exp(−nε2) < 0.05 is an upper
bound on the probability of the output being off by ε. Table III
shows the runtimes of four different QII computations, for
37000 samples each. The runtimes of all algorithms except
for kernel SVM are fast enough to allow real-time feedback
for machine learning application developers. Evaluating QII
metrics for Kernel SVMs is much slower than the other metrics
because each call to the SVM classifier is very computationally
intensive due to a large number of distance computations that
it entails. We expect that these runtimes can be optimized
significantly. We present them as proof of tractability.
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Fig. 2: QII measures for the adult and arrests datasets

logistic kernel-svm decision-tree decision-forest
QII on Group Disparity 0.56 234.93 0.57 0.73

Average QII 0.85 322.82 0.77 1.12
QII on Individual Outcomes (Shapley) 6.85 2522.3 7.78 9.30
QII on Individual Outcomes (Banzhaf) 6.77 2413.3 7.64 10.34

TABLE III: Runtimes in seconds for transparency report computation

VIII. DISCUSSION

A. Probabilistic Interpretation of Power Indices

In order to quantitatively measure the influence of data
inputs on classification outcomes, we propose causal inter-
ventions on sets of features; as we argue in Section III,
the aggregate marginal influence of i for different subsets
of features is a natural quantity representing its influence. In
order to aggregate the various influences i has on the outcome,
it is natural to define some probability distribution over (or
equivalently, a weighted sum of) subsets of N \ {i}, where
Pr[S] represents the probability of measuring the marginal
contribution of i to S; Pr[S] yields a value

∑
S⊆N\{i}mi(S).

For the Banzhaf index, we have Pr[S] = 1
2n−1 , the Shapley

value has Pr[S] = k!(n−k−1)!
n! (here, |S| = k), and the Deegan-

Packel Index selects minimal winning coalitions uniformly at
random. These choices of values for Pr[S] are based on some
natural assumptions on the way that players (features) interact,
but they are by no means exhaustive. One can define other
sampling methods that are more appropriate for the model
at hand; for example, it is entirely possible that the only
interventions that are possible in a certain setting are of size
≤ k + 1, it is reasonable to aggregate the marginal influence
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Fig. 3: The effect of discrimination on QII.

of i over sets of size ≤ k, i.e.

Pr[S] =

{
1

(n−1
|S| )

if |S| ≤ k

0 otherwise.

The key point here is that one must define some aggregation
method, and that choice reflects some normative approach on
how (and which) marginal contributions are considered. The
Shapley and Banzhaf indices do have some highly desirable
properties, but they are, first and foremost, a-priori measures
of influence. That is, they do not factor in any assumptions on
what interventions are possible or desirable.

One natural candidate for a probability distribution over S
is some natural extension of the prior distribution over the
dataset; for example, if all features are binary, one can identify
a set with a feature vector (namely by identifying each S ⊆ N
with its indicator vector), and set Pr[S] = π(S) for all S ⊆ N .

Age 23
Workclass Private
Education 11th
Education-Num 7
Marital Status Never-married
Occupation Craft-repair
Relationship Own-child
Race Asian-Pac-Islander
Gender Male
Capital Gain 14344
Capital Loss 0
Hours per week 40
Country Vietnam
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(b) Transparency report for Mr. X’s negative classification

Fig. 4: Mr. X

If features are not binary, then there is no canonical way to
transition from the data prior to a prior over subsets of features.

B. Fairness

Due to the widespread and black box use of machine
learning in aiding decision making, there is a legitimate
concern of algorithms introducing and perpetuating social
harms such as racial discrimination [28], [6]. As a result,
the algorithmic foundations of fairness in personal informa-
tion processing systems have received significant attention
recently [29], [30], [31], [12], [32]. While many of of the
algorithmic approaches [29], [31], [32] have focused on group
parity as a metric for achieving fairness in classification,
Dwork et al. [12] argue that group parity is insufficient as
a basis for fairness, and propose a similarity-based approach
which prescribes that similar individuals should receive similar
classification outcomes. However, this approach requires a
similarity metric for individuals which is often subjective and
difficult to construct.

QII does not suggest any normative definition of fairness.
Instead, we view QII as a diagnostic tool to aid fine-grained
fairness determinations. In fact, QII can be used in the spirit
of the similarity based definition of [12]. By comparing the
personalized privacy reports of individuals who are perceived



Age 27
Workclass Private
Education Preschool
Education-Num 1
Marital Status Married-civ-spouse
Occupation Farming-fishing
Relationship Other-relative
Race White
Gender Male
Capital Gain 41310
Capital Loss 0
Hours per week 24
Country Mexico
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(b) Transparency report for Mr. Y’s negative classification

Fig. 5: Mr. Y.

to be similar but received different classification outcomes,
and identifying the inputs which were used by the classifier to
provide different outcomes. Additionally, when group parity
is used as a criteria for fairness, QII can identify the features
that lead to group disparity, thereby identifying features being
used by a classifier as a proxy for sensitive attributes.

The determination of whether using certain proxies for
sensitive attributes is discriminatory is often a task-specific
normative judgment. For example, using standardized test
scores (e.g., SAT scores) for admissions decisions is by and
large accepted, although SAT scores may be a proxy for
several protected attributes. In fact, several universities have
recently announced that they will not use SAT scores for
admissions citing this reason [33], [34]. Our goal is not
to provide such normative judgments. Rather we seek to
provide fine-grained transparency into input usage (e.g., what’s
the extent to which SAT scores influence decisions), which
is useful to make determinations of discrimination from a
specific normative position.

Finally, we note that an interesting question is whether
providing a sensitive attribute as an input to a classifier is
fundamentally discriminatory behavior, even if QII can show
that the sensitive input has no significant impact on the

Birth Year 1984
Drug History None
Smoking History None
Census Region West
Race Black
Gender Male

(a) Mr. Z’s profile
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(b) Transparency report for Mr. Z’s positive classification

Fig. 6: Mr. Z.

outcome. Our view is that this is a policy question and different
legal frameworks might take different viewpoints on it. At a
technical level, from the standpoint of information use, the
two situations are identical: the sensitive input is not really
used although it is supplied. However, the very fact that it
was supplied might be indicative of an intent to discriminate
even if that intended goal was not achieved. No matter what
the policy decision is on this question, QII remains a useful
diagnostic tool for discrimination because of the presence of
proxy variables as described earlier.

IX. RELATED WORK

A. Quantitative Causal Measures

Causal models and probabilistic interventions have been
used in a few other settings. While the form of the inter-
ventions in some of these settings may be very similar, our
generalization to account for different quantities of interests
enables us to reason about a large class of transparency
queries for data analytics systems ranging from classification
outcomes of individuals to disparity among groups. Further,
the notion of marginal contribution which we use to compute
responsibility does not appear in this line of prior work.

Janzing et al. [35] use interventions to assess the causal
importance of relations between variables in causal graphs;
in order to assess the causal effect of a relation between two
variables, X → Y (assuming that both take on specific values
X = x and Y = y), a new causal model is constructed, where
the value of X is replaced with a prior over the possible values
of X . The influence of the causal relation is defined as the KL-



Divergence of the joint distribution of all the variables in the
two causal models with and without the value of X replaced.
The approach of the intervening with a random value from the
prior is similar to our approach of constructing X−S .

Independently, there has been considerable work in the
machine learning community to define importance metrics for
variables, mainly for the purpose of feature selection (see [36]
for a comprehensive overview). One important metric is called
Permutation Importance [37], which measures the importance
of a feature towards classification by randomly permuting
the values of the feature and then computing the difference
of classification accuracies before and after the permutation.
Replacing a feature with a random permutation can be viewed
as a sampling the feature independently from the prior.

There exists extensive literature on establishing causal re-
lations, as opposed to quantifying them. Prominently, Pearl’s
work [38] provides a mathematical foundation for causal rea-
soning and inference. In [39], Tian and Pearl discuss measures
of causal strength for individual binary inputs and outputs in a
probabilistic setting. Another thread of work by Halpern and
Pearl discusses actual causation [40], which is extended in [41]
to derive a measure of responsibility as degree of causality.
In [41], Chockler and Halpern define the responsibility of a
variable X to an outcome as the amount of change required
in order to make X the counterfactual cause. As we discuss
in Appendix A-B, the Deegan-Packel index is strongly related
to causal responsibility.

B. Quantitative Information Flow

One can think of our results as a causal alternative to
quantitative information flow. Quantitative information flow is
a broad class of metrics that quantify the information leaked
by a process by comparing the information contained before
and after observing the outcome of the process. Quantitative
Information Flow traces its information-theoretic roots to the
work of Shannon [42] and Rényi [43]. Recent works have
proposed measures for quantifying the security of information
by measuring the amount of information leaked from inputs to
outputs by certain variables; we point the reader to [44] for an
overview, and to [45] for an exposition on information theory.
Quantitative Information Flow is concerned with information
leaks and therefore needs to account for correlations between
inputs that may lead to leakage. The dual problem of trans-
parency, on the other hand, requires us to destroy correlations
while analyzing the outcomes of a system to identify the causal
paths for information leakage.

C. Interpretable Machine Learning

An orthogonal approach to adding interpretability to ma-
chine learning is to constrain the choice of models to those that
are interpretable by design. This can either proceed through
regularization techniques such as Lasso [46] that attempt
to pick a small subset of the most important features, or
by using models that structurally match human reasoning
such as Bayesian Rule Lists [47], Supersparse Linear Integer
Models [48], or Probabilistic Scaling [49]. Since the choice

of models in this approach is restricted, a loss in predictive
accuracy is a concern, and therefore, the central focus in
this line of work is the minimization of the loss in accuracy
while maintaining interpretability. On the other hand, our
approach to interpretability is forensic. We add interpretability
to machine learning models after they have been learnt. As a
result, our approach does not constrain the choice of models
that can be used.

D. Experimentation on Web Services

There is an emerging body of work on systematic experi-
mentation to enhance transparency into Web services such as
targeted advertising [50], [51], [52], [53], [54]. The setting in
this line of work is different since they have restricted access
to the analytics systems through publicly available interfaces.
As a result they only have partial control of inputs, partial
observability of outputs, and little or no knowledge of input
distributions. The intended use of these experiments is to
enable external oversight into Web services without any coop-
eration. Our framework is more appropriate for a transparency
mechanism where an entity proactively publishes transparency
reports for individuals and groups. Our framework is also
appropriate for use as an internal or external oversight tool
with access to mechanisms with control and knowledge of
input distributions, thereby forming a basis for testing.

E. Game-Theoretic Influence Measures

Recent years have seen game-theoretic influence measures
used in various settings. Datta et al. [55] also define a measure
for quantifying feature influence in classification tasks. Their
measure does not account for the prior on the data, nor does
it use interventions that break correlations between sets of
features. In the terminology of this paper, the quantity of
interest used by [55] is the ability of changing the outcome by
changing the state of a feature. This work greatly extends and
generalizes the concepts presented in [55], by both accounting
for interventions on sets, and by generalizing the notion of
influence to include a wide range of system behaviors, such
as group disparity, group outcomes and individual outcomes.

Game theoretic measures have been used by various re-
search disciplines to measure influence. Indeed, such measures
are relevant whenever one is interested in measuring the
marginal contribution of variables, and when sets of variables
are able to cause some measurable effect. Lindelauf et al. [56]
and Michalak et al. [57] use game theoretic influence measures
on graph-based games in order to identify key members of
terrorist networks. Del Pozo et al. [58] and Michalak et al. [59]
use similar ideas for identifying important members of large
social networks, providing scalable algorithms for influence
computation. Bork et al. [60] use the Shapley value to assign
importance to protein interactions in large, complex biological
interaction networks; Keinan et al. [61] employ the Shapley
value in order to measure causal effects in neurophysical
models. The novelty in our use of the game theoretic power
indices lies in the conception of a cooperative game via a
valuation function ι(S), defined by an randomized intervention



on inputs S. Such an intervention breaks correlations and
allows us to compute marginal causal influences on a wide
range of system behaviors.

X. CONCLUSION & FUTURE WORK

In this paper, we present QII, a general family of metrics
for quantifying the influence of inputs in systems that process
personal information. In particular, QII lends insights into the
behavior of opaque machine learning algorithms by allowing
us to answer a wide class of transparency queries ranging
from influence on individual causal outcomes to influence
on disparate impact. To achieve this, QII breaks correlations
between inputs to allow causal reasoning, and computes the
marginal influence of inputs in situations where inputs cannot
affect outcomes alone. Also, we demonstrate that QII can
be efficiently approximated, and can be made differentially
private with negligible noise addition in many cases.

An immediate next step in this line of work is to explore
adoption strategies in the many areas that use personal infor-
mation to aid decision making. Areas such as healthcare [3],
predictive policing [1], education [4], and defense [5] all have
a particularly acute need for transparency in their decision
making. It is likely that specific applications will guide us in
our choice of a QII metric that is appropriate for that scenario,
which includes a choice for our game-theoretic power index.

We have not considered situations where inputs do not
have well understood semantics. Such situations arise often in
settings such as image or speech recognition, and automated
video surveillance. With the proliferation of immense process-
ing power, complex machine learning models such as deep
neural networks have become ubiquitous in these domains.
Defining transparency and developing analysis techniques in
such settings is important future work.
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APPENDIX A
ALTERNATIVE GAME-THEORETIC INFLUENCE MEASURES

In what follows, we describe two alternatives to the Shapley
value used in this work. The Shapley value makes intuitive
sense in our setting, as we argue in Section III-B. However,
other measures may be appropriate for certain input data
generation processes. In what follows we revisit the Banzhaf
index, briefly discussed in Section III-A, and introduce the
readers to the Deegan-Packel index, a game-theoretic influ-
ence measure with deep connections to a formal theory of
responsibilty and blame [41].

A. The Banzhaf Index

Recall that the Banzhaf index, denoted βi(N, v) is defined
as follows:

βi(N, v) =
1

2n−1

∑
S⊆N\{i}

mi(S).

The Banzhaf index can be thought of as follows: each
j ∈ N \ {i} will join a work effort with probability 1

2
(or, equivalently, each S ⊆ N \ {i} has an equal chance
of forming); if i joins as well, then its expected marginal
contribution to the set formed is exactly the Banzhaf index.
Note the marked difference between the probabilistic models:
under the Shapley value, we sample permutations uniformly
at random, whereas under the regime of the Banzhaf index,
we sample sets uniformly at random. The different sampling
protocols reflect different normative assumptions. For one,
the Banzhaf index is not guaranteed to be efficient; that is,∑
i∈N βi(N, v) is not necessarily equal to v(N), whereas it

is always the case that
∑n
i=1 ϕi(N, v) = v(N). Moreover, the

Banzhaf index is more biased towards measuring the marginal
contribution of i to sets of size n

2 ±O(
√
n); this is because the

expected size of a randomly selected set follows a binomial
distribution B(n, 1

2 ). On the other hand, the Shapley value is
equally likely to measure the marginal contribution of i to sets
of any size k ∈ {0, . . . , k}, as i is equally likely to be in any
one position in a randomly selected permutation σ (and, in
particular, the the set of i’s predecessors in σ is equally likely
to have any size k ∈ {0, . . . , n− 1}).

Going back to the QII setting, the difference in sampling
procedure is not merely an interesting anecdote: it is a sig-
nificant modeling choice. Intuitively, the Banzhaf index is
more appropriate if we assume that large sets of features
would have a significant influence on outcomes, whereas the
Shapley value is more appropriate if we assume that even
small sets of features might cause significant effects on the
outcome. Indeed, as we mention in Section VIII, aggregating
the marginal influence of i over sets is a significant modeling
choice; while using the measures proposed here is perfectly
reasonable in many settings, other aggregation methods may
be applicable in others.

Unlike the Shapley value, the Banzhaf index is not guar-
anteed to be efficient (although it does satisfy the symmetry
and dummy properties). Indeed, [62] shows that replacing
the efficiency axiom with an alternative axiom, uniquely

characterizes the Banzhaf index; the axiom, called 2-efficiency,
prescribes the behavior of an influence measure when two
players merge. First, let us define a merged game; given a
game 〈N, v〉, and two players i, j ∈ N , we write T = {i, j}.
We define the game v̄ on N \T ∪{t̄} as follows: for every set
S ⊆ N \{i, j}, v̄(S) = v(S), and v̄(S ∪{t̄}) = v(S ∪{i, j}),
note that the added player t̄ represents the two players i and
j who are now acting as one. The 2-Efficiency axiom states
that influence should be invariant under merges.

Definition 14 (2-Efficiency (2-EFF)). Given two players i, j ∈
N , let v̄ be the game resulting from the merge of i and j into
a single player t̄; an influence measure φ satisfies 2-Efficiency
if φi(N, v) + φj(N, v) = φt̄(N \ {i, j} ∪ {t̄}, v̄).

Theorem 15 ([62]). The Banzhaf index is the only function
to satisfy (Sym), (D), (Mono) and (2-EFF).

In our context, 2-Efficiency can be interpreted as follows:
suppose that we artificially treat two features i and j as
one, keeping all other parameters fixed; in this setting, 2-
efficiency means that the influence of merged features equals
the influence they had as separate entities.

B. The Deegan-Packel Index

Finally, we discuss the Deegan-Packel index [18]. While
the Shapley value and Banzhaf index are well-defined for any
coalitional game, the Deegan-Packel index is only defined for
simple games. A cooperative game is said to be simple if
v(S) ∈ {0, 1} for all S ⊆ N . In our setting, an influence
measure would correspond to a simple game if it is binary
(e.g. it measures some threshold behavior, or corresponds to
a binary classifier). The binary requirement is rather strong;
however, we wish to draw the reader’s attention to the Deegan-
Packel index, as it has an interesting connection to causal
responsibility [41], a variant of the classic Pearl-Halpern
causality model [40], which aims to measure the degree to
which a single variable causes an outcome.

Given a simple game v : 2N → {0, 1}, let M(v) be the set
of minimal winning coalitions; that is, for every S ∈ M(v),
v(S) = 1, and v(T ) = 0 for every strict subset of S. The
Deegan-Packel index assigns a value of

δi(N, v) =
1

|M(v)|
∑

S∈M(v):i∈S

1

|S|
.

The intuition behind the Deegan-Packel index is as follows:
players will not form coalitions any larger than what they
absolutely have to in order to win, so it does not make sense
to measure their effect on non-minimal winning coalitions.
Furthermore, when a minimal winning coalition is formed,
the benefits from its formation are divided equally among its
members; in particular, small coalitions confer a greater benefit
for those forming them than large ones. The Deegan-Packel
index measures the expected payment one receives, assuming
that every minimal winning coalition is equally likely to form.
Interestingly, the Deegan-Packel index corresponds nicely to
the notion of responsibility and blame described in [41].



Suppose that we have a set of variables X1, . . . , Xn set to
x1, . . . , xn, and some binary effect f(x1, . . . , xn) (written
as f(x)) occurs (say, f(x) = 1). To establish a causal
relation between the setting of Xi to xi and f(x) = 1,
[40] require that there is some set S ⊆ N \ {i} and some
values (yj)j∈S∪{i} such that f(x−S∪{i}, (yj)j∈S∪{i}) = 0,
but f(x−S , (yj)j∈S) = 1. In words, an intervention on the
values of both S and i may cause a change in the value of
f , but performing the same intervention just on the variables
in S would not cause such a change. This definition is at the
heart of the marginal contribution approach to interventions
that we describe in Section III-A. [41] define the responsibility
of i for an outcome as 1

k+1 , where k is the size of the
smallest set S for which the causality definition holds with
respect to i. The Deegan-Packel index can thus be thought of
as measuring a similar notion: instead of taking the overall
minimal number of changes necessary in order to make i a
direct, counterfactual cause, we observe all minimal sets that
do so. Taking the average responsibility of i (referred to as
blame in [41]) according to this variant, we obtain the Deegan-
Packel index.

Example 16. Let us examine the following setup, based on
Example 3.3 in [41]. There are n = 2k + 1 voters (n is an
odd number) who must choose between two candidates, Mr.
B and Mr. G ([41] describe the setting with n = 11). All
voters elected Mr. B, resulting in an n-0 win. It is natural to
ask: how responsible was voter i for the victory of Mr. B?
According to [41], the degree of responsibility of each voter
is 1

k+1 . It will require that i and k additional voters change
their vote in order for the outcome to change. Modeling this
setup as a cooperative game is quite natural: the voters are the
players N = {1, . . . , n}; for every subset S ⊆ N we have

v(S) =

{
1 if |S| ≥ k + 1

0 otherwise.

That is, v(S) = 1 if and only if the set S can change the
outcome of the election. The minimal winning coalitions here
are the subsets of N of size k + 1, thus the Deegan-Packel
index of player i is

δi(N, v) =
1

|M(v)|
∑

S∈M(v):i∈S

1

|S|

=
1(
n
k+1

)(n
k

)
1

k + 1
=

1

n− k
=

1

k + 1

We note that if one assumes that all voters are equally likely
to prefer Mr. B over Mr. G, then the blame of voter i would
be computed in the exact manner as the Deegan-Packel index.


