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Abstract

We consider a setting in which we get to choose which game is played
by a group of players. We would like to choose a game that favors our-
selves, one of the players or the social preferences of the players. Unfor-
tunately, given the potentially multiplicity of equilibria, it is in general
(conceptually) hard to tell which of two games is better. Oesterheld and
Conitzer (2022) propose that we use assumptions about outcome corre-
spondence – i.e., about how the outcomes of different games relate – to
allow comparisons in some cases. For example, it seems reasonable to
assume that isomorphic games are played isomorphically. From such as-
sumptions we can sometimes deduce that the outcome of one game Γ is
guaranteed to be better than the outcome of another game Γ′, even if we
don’t have beliefs about how each of Γ and Γs will be played individually.
Following Oesterheld and Conitzer, we then call Γs a safe improvement
on Γ.

In this paper, we study how to derive safe improvement relations.
We first show that if we are given a set of games and arbitrary as-
sumptions about outcome correspondence between these games, deriv-
ing safe improvement relations is co-NP-complete. We then study the
(in)completeness of a natural set of inference rules for outcome corre-
spondence. We show that in general the inference rules are incomplete.
However, we also show that under natural, generally applicable assump-
tions about outcome correspondence the rules are complete.

∗This is a very early draft. Currently the appendix is removed.
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1 Introduction

Imagine you have to choose between two (say, normal-form) games, Γ1 and Γ2

for Alice and Bob to play tomorrow. You have some stake in the outcome of
the game, e.g., because of externalities or because you are Alice’s and/or Bob’s
friend. Which of Γ1 and Γ1 should you choose? (Relatedly, what if by default,
Alice and Bob play some game Γ, but now they are offered to play some alternate
game Γs instead? When would they both consent?)

In general, assessments of what game to choose are conceptually difficult,
because each of the games may have multiple solutions (e.g., multiple Nash
equilibria). Whether we prefer one game over another hinges on how this mul-
tiplicity of solutions is resolved. For example, imagine that you can decide
whether Alice and Bob play a Game of Chicken or a trivial game in which they
both receive $5. Then (depending on your preferences over the outcomes) the
decision hinges on which – if any – equilibrium of Chicken Alice and Bob will
play.

In this paper, we build on the safe Pareto improvement approach of Oester-
held and Conitzer (2022) to address this problem. Roughly, we imagine that we
consider some (potentially infinite) set of games. We make some (qualitative,
non-probabilistic) assumptions about how the outcomes of pairs of these games,
as played by a set of agents (Alice and Bob in the above example), relate. For
example, we might assume that if two games are isomorphic, then Alice and
Bob would play them isomorphically (ibid., Assumption 2). Following Oester-
held and Conitzer, we call such statements about the relationships of games
outcome correspondences. From this set of assumptions about outcome corre-
spondence we can infer new facts about outcome correspondence. For instance,
if we know an outcome relation between Γa and Γb and an outcome relation
between Γb and Γc, then we can also infer using some sort of transitivity rule
(Lemma 2.1 of the present paper; Lemma 2.3 of Oesterheld and Conitzer 2022)
an outcome relation between Γa and Γc. In some cases, we will be able to infer
outcome correspondences that show that the outcome of one game Γs is always
better than the outcome of another game Γ, even without resolving the multi-
plicity of solutions in the underlying games. We will then say that Γs is a safe
improvement on Γ. If in particular we have that the outcome of Γs is better
than the outcome Γ under a Pareto (partial) order over outcomes, we call Γs a
safe Pareto improvement in line with Oesterheld and Conitzer.

As a simple example, consider the three games in Figure 1. (Note that
all three games are essentially versions of the Game of Chicken and each have
exactly three equilibria, two pure and one mixed.) We make the following
assumptions about outcome correspondence, illustrated by lines in the figure.
In Γa, the pure strategy C ′ is strictly dominated by mixing appropriately over
D and C. Now note that Γb is obtained from Γa by removing C ′. It seems
plausible that Γa and Γb will therefore be played the same way. That is, if Alice
and Bob play (D,D) in Γa, then they will also play (D,D) in Γb, and so on.
Meanwhile, we can see that Γb and Γc are isomorphic (with payoffs transformed
by the positive affine function x 7→ 2x+ 4). Again, it therefore seems plausible
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Figure 1: An example of three games with plausible outcome correspondences
between them

that Γb and Γc will be played in the same way – in particular that they will be
played isomorphically.

Now imagine that under these assumptions about outcome correspondence,
we need to decide whether to let Alice and Bob play Γa or Γc. Imagine that
our goal for the purpose of this choice is to optimize for Alice and/or Bob’s
preferences. Now notice that from the given outcome correspondences we can
infer the aforementioned transitivity rule an outcome correspondence between
Γa and Γb: if Alice and Bob play (D,D) in Γa, then they play (F, F ) in Γc;
if Alice and Bob play (D,C) in Γa, then they play (F,E) in Γc; and so on.
By considering each outcome individually, we can see that the outcome of Γc

is guaranteed to be strictly better for both Alice and Bob. Thus, Γc is a safe
(Pareto) improvement on Γc; when given the choice we should let Alice and Bob
play Γc instead of Γa. Importantly, we don’t need to assume anything about
how Alice and Bob resolve the equilibrium selection posed by each of Γa,Γb,Γc.

The concept of safe (Pareto) improvements is widely applicable to strategic
settings. Oesterheld and Conitzer (2022) focus on two players who each instruct
their agent by shaping their utility functions (cf. Baumann, 2017; Clifton, 2020,
Sect. 4.2). Oesterheld and Sauerberg (2024) show how the concept of safe Pareto
improvements can be used to assess ex post verifiable commitments. However,
the broad conceptualization of safe (Pareto) improvements of the present paper
points at many new fields of applications. For example, mechanism design
studies the question of how to shape a game played by Alice and Bob. We
believe that in some settings – specifically settings where mechanisms induce a
game with multiple Nash equilibria – the concept of safe (Pareto) improvements
can be used to assess and compare different possible mechanisms. As such, the
concept of safe improvements can be viewed as complementing concepts like
best-Nash (cf. price of stability) and worst-Nash (cf. price of anarchy) that are
widely used for comparing different mechanisms.

Contributions: After introducing some notation and background (Sec-
tion 2), we introduce a new framework for reasoning about safe (Pareto) im-
provement framework (Section 3). In doing so, we generalize the setting of
Oesterheld and Conitzer (2022): We define safe improvements relative to ar-
bitrary preferences over outcomes rather than specifically Pareto preferences.
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Furthermore, we define safe improvements on arbitrary binary constraint struc-
tures.

Throughout this paper, we address the following question: Given some set
of games and given some assumptions about outcome correspondence between
these games, can we conclude that one game is a safe (Pareto) improvement
over another?

In Section 4, we analyze the computational complexity of deciding this prob-
lem if we are given a finite set of games and explicitly represented outcome
correspondence assumptions between these games. We prove that this problem
is co-NP-complete, even under various restrictions on the outcome correspon-
dence assumptions. Roughly speaking, we can view the assumptions as defining
a binary constraint structure a la the binary constraint satisfaction problem
(CSP). Binary CSP is NP-complete. However, in the context of SIs, we are not
interested in finding a satisfying assignment (a way in which the agents might
play the different games that satisfies all the assumptions) but in whether spe-
cific facts hold about all satisfying assignments. In general, this problem is
co-NP-complete, because it is the complement of an NP-complete problem. We
strengthen the result in various ways to show that it applies even if we restrict
attention to problem instances that satisfy various plausibility assumptions.

In Section 5, we consider the problem of inferring safe Pareto improvements
under restrictions on what type of assumptions we make. In particular, we ask
whether under such restrictions local inference (such as the above application
of the transitivity rule) are complete. In particular, we note that most natural
generic assumptions about outcome correspondence (such as: isomorphic games
are played isomorphically; dominated actions can be removed; duplicate actions
can be removed) satisfy a condition called max-closedness known from the CSP
literature. We show that under this condition, the local rules of inference are
complete (Theorem 4). From that we immediately obtain an efficient algorithm
for deriving S(P)Is. We show that completeness holds even if we consider count-
ably many assumptions and games. We then demonstrate the usefulness of the
completeness results for proving complexity results.

2 Preliminaries

Normal-form games We here briefly introduce some game-theoretic nota-
tion. An n-player (normal-form) game is a tuple Γ = (A1, ..., An, u1, ..., un) of
sets of (pure) strategies or actions A1, ..., An and utility functions ui : A1× ...×
An → R mapping (pure) strategy profiles onto utilities. We call a pure strategy
profile a a Nash equilibrium if we have for every player i that ui(a−i, ai) ≤ ui(a).
We say that a strategy ai strictly dominates another strategy a′i if for all a−i

we have that ui(ai,a−i) > ui(a
′
i,a−i). We say that (Φi : Ai → A′

i)i=1,...,n is an
isomorphism between two n-player games Γ and Γ′ if there are λi > 0, bi such
that for all a1, ..., an we have ui(a1, ..., an) = λiu

′
i(a1, ..., an) + bi.
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Set-valued functions We use set-valued functions to express outcome cor-
respondences between games. A set-valued function Φ : X ⊸ Y is a binary
relation between X and Y , i.e., Φ is a subset of X × Y . For any x ∈ X, we
write Φ(x) := {y ∈ Y | (x, y) ∈ Φ}. Note that by specifying Φ(x) for each
x ∈ X we fully specify Φ. For any M ⊆ X, we write Φ(M) ⊆ S

x∈M Φ(x). For
any Φ : X ⊸ Y we define Φ−1 : Y ⊸ X by Φ−1 := {(y, x) | (x, y) ∈ Φ}. For
two multi-valued functions Φ : X ⊸ Y and Ψ : Y × Z, we define their compo-
sition Ψ ◦ Φ. Finally, for Φ,Ψ : X ⊸ Y we define Φ ∩ Ψ : X ⊸ Y to be the
argument-wise intersection of Φ and Ψ, i.e., the set-valued function defined by
(Φ ∩Ψ)(x) = Φ(x) ∩Ψ(x) for all x ∈ X.

Binary constraint structures A binary constraint structure is a triplet
(X ,D,A), where:

• X is a set of variables.
• D = (DX)X∈X is a family of finite domains, one for each variable.
• A is a set of binary constraints. Each binary constraint is a triplet
(X,Y,Φ) where X and Y are variables and Φ ⊆ DX ×DY is a subset of
the domains corresponding to X and Y . Will generally write constraints
as X ∼Φ Y .

An assignment for (X ,D,A) associates with each variable X a value vX in DX .
We say that an assignment satisfies a binary constraint structure if for each
constraint (X,Y,Φ) ∈ A we have that (vX , vY ) ∈ A. We call (X ,D,A) finite if
X , D and A are all finite.

The binary constraint satisfaction problem (BCSP) consists in deciding whether
there exists a satisfying assignment for a given binary constraint structure. The
problem is well-known to be NP-complete.

Theorem 1. BCSP is NP-complete, even if we restrict the domains to have
size at most three. If we restrict the domains to have size two, then the problem
is solvable in polynomial time.

Given a binary constraint structure, we can often tighten the constraints by
drawing inferences from the existing constraints. In the literature on BCSP, this
is known as constraint propagation. In the following we in particular introduce
the rules necessary for imposing path consistency Montanari, 1974. We follow
the notation of Oesterheld and Conitzer (2022).

Lemma 2. Let Γ, Γ′, Γ̂ be games and Φ,Ξ : A ⊸ A′, Ψ : A′ ⊸ Â be outcome
correspondence functions. Then the following hold:

1. Transitivity: If Γ ∼Φ Γ′ and Γ′ ∼Ψ Γ̂, then Γ ∼Ψ◦Φ Γ̂.
2. Intersection: If Γ ∼Φ Γ′ and Γ ∼Ψ Γ′, then X ∼Ψ∩Ξ Y , where Ψ∩Ξ refers

to the element-wise intersection of the multi-valued functions Ψ and Ξ.
3. Reflexivity: Γ ∼idA

Γ, where idA : A ⊸ A : a 7→ {a}.
4. Symmetry: If Γ ∼Φ Γ′, then Γ′ ∼Φ−1 Γ.
5. Γ ∼allA,A′ Γ

′, where allA,A′ : A ⊸ A′ : a 7→ A′.

The proof can be found in Appendix E.
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3 Safe (Pareto) improvements and outcome cor-
respondence

A generic definition of safe (Pareto) improvements We now introduce
a formalism for safe (Pareto) improvements, which is slightly generalized and
adapted from Oesterheld and Conitzer (2022). We defer to Oesterheld and
Conitzer for a more detailed introduction and motivation of the concepts in this
section. We compare the high-level formalisms in detail in Appendix H.

Imagine that we have the choice between some set of variablesX0, X1, ..., Xn.
Each variable can result in one of a number of possible values or outcomes. We
are uncertain which outcome any given variable might result in.

We have some preferences ⪰ over the outcomes of the different variables.
These preferences may be incomplete, however. That is, there are pairs of
outcomes of which neither is preferred to the other. For instance, you might
imagine that we are choosing as a group of people with diverging preferences
and our group preferences are only definite in cases of consensus.

The most standard approach to choosing between the variables involves as-
signing probabilistic beliefs to the outcomes. But in some cases such probabilis-
tic beliefs are controversial or very difficult to assign. Let’s imagine that instead
of probabilistic beliefs, we are only willing or able to act on qualitative beliefs
about how the outcomes of different variables relate. For instance, we might
strongly believe that if Xi were to result in outcome o, then Xj would result in
outcome o′.

Then we might still be able to adjudicate between some pairs of variables. In
particular, it might be that from the outcome correspondence assumptions we
can infer that one variable will always yield an outcome that is to be preferred
over the outcome of another variable.

By interpreting the variables, outcomes and outcome correspondence as-
sumptions as a binary constraint structure, we can formalize this as follows.

Definition 1. Let (X ,D,A) be a binary constraint structure. Let ⪰ be a partial
order on ∪D (i.e., on the union of all the outcomes of A). Let X,Y ∈ X be two
variables. We say that Y is a safe improvement on X w.r.t. ⪰ if each satisfying
assignment (vZ)Z∈X of (X ,D,A) satisfies vX ≤ vY .

One perspective on the safe improvement relation is that it is an application
of decision-theoretic dominance with preferences ⪰, with uncertainty over the
satisfying assignments.

If ⪰ is a Pareto ordering in particular, then we say that Y is a safe Pareto
improvement on X. Note that Pareto orderings are partial orders.

Safe (Pareto) improvements in strategic settings Throughout this pa-
per, we will typically consider safe (Pareto) improvements in strategic settings.
That is, we imagine that each variable in X corresponds to a strategic inter-
action between a group of agents. For simplicity, we assume specifically that
the agents play a normal-form game. The domains D are the possible outcomes
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of the normal-form games. We imagine that a principal preferences ⪰ chooses
which game is played by the agents. Note that ⪰ must compare outcomes across
different normal-form games and ⪰ isn’t necessarily (though in this paper often
will be) related to the agents’ utilities in the underlying game.

In game-theoretic settings we typically imagine that the principal’s uncer-
tainty is due to the multiplicity of solutions (e.g., multiplicity of Nash equilibria,
rationalizable strategies). This uncertainty seems especially intractable. There-
fore, it seems especially natural to be unwilling to assign probabilistic beliefs.
Moreover, if we imagine that the principal is a group of decision makers, it seems
plausible that they disagree about how the multiplicity of solutions is resolved.

Meanwhile, in the game-theoretic context it is natural to make some qualita-
tive assumptions, especially about how the outcomes of different games related.

We now give two specific assumptions about outcome correspondence along
the lines of Oesterheld and Conitzer (2022) and illustrated in Figure 1. These
assumptions are plausible in many settings. That said, we will not always
make these assumptions – we will indicate explicitly when we make any of these
assumptions.

The first assumption is that we can remove strictly dominated strategies
from any given game and obtain a game that will be played equivalently by the
representatives.

Assumption 1. Let Γ = (A1, ..., An,u) be a game. Let ai, a
′
i ∈ Ai s.t. ai strictly

dominates a′i. Then Γ ∼Φ (A1, ..., Ai−1, Ai − {a′i}, Ai+1, ..., An,u), where Φ is
defined by Φ(a) = ∅ if ai = a′i and Φ(a) = {a} otherwise.

The second assumption is that isomorphic games are played isomorphically.

Assumption 2. Let Γ = (A1, ..., An,u),Γ
′ = (A′

1, ..., A
′
n,u

′) be two isomorphic
games that do not contain any strictly dominated strategies. Let I be the set of
isomorphisms between Γ and Γ′. Then Γ ∼I Γ′, where I is defined by I(o) =
{Φ(o) | Φ ∈ I}.

We restrict the assumption to games without dominated actions, because
the dominated actions might break some of the isomorphism and thus narrow
down the set I. This seems undesirable.

We give some further plausible assumptions about outcome correspondence
in Section 5.1 and Appendix G.2.

4 Complexity results under general outcome cor-
respondence assumptions

Throughout this section, we study the following computational problem: Given
a (satisfiable) finite binary constraint structure, some partial order ⪰ over out-
comes, decide whether a particular (type of) or any safe improvement claim fol-
lows from the assumptions. We will show that this problem is co-NP-complete,
even under some further restrictions.
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At a very high-level, the argument is based on the close connection be-
tween SIs and inference on binary constraint structures. We give a very rough
sketch here: Consider the problem of finding a valid assignment of (G,D,A).
This problem is essentially a binary constraint satisfaction problem (CSP) and
therefore NP-complete. The complement of CSP is the problem of deciding
whether there is no valid assignment. Since this problem is the complement
of an NP-complete problem, this problem is co-NP-complete. The problem of
deciding whether A implies that Y is an SI on Y is essentially the problem of
deciding whether A implies that (X,Y,Φ), where Φ is maps each outcome of X
onto an at least as good outcome of Y . (Since ⪰ can be anything in general, Φ
can be any function.) This problem in turn is the same as the problem of de-
ciding whether there is no assignment that satisfies A, but not (X,Y,Ξ), where
Ξ is the complement of Φ, i.e., Ξ = DX ×DY −Φ. Therefore, deciding whether
A implies that (X,Y,Φ) is co-NP-complete.

We would like to refine our co-NP-completeness result a little further, how-
ever. One natural question is whether the correspondence between (the com-
plement of) binary CSP and reasoning about outcome correspondence persists
if we restrict attention to assumptions about outcome correspondences that one
might plausibly believe. For example, what happens if we exclude unsatisfiable
sets of assumptions A or assumptions A that imply irrational behavior (such
as mutual cooperation in the one-shot Prisoner’s Dilemma)? It turns out that
co-NP-completeness holds under some such restrictions on A (though cf. Sec-
tion 5 for conditions under which co-NP-completeness ceases to hold). What if
we restrict ⪰ to be aligned

We will include some restrictions on A below. However, since we can’t expect
to give a full account of what a plausible set A looks like, we here give a brief
account of what types of games we use for our reduction from (the complement
of) binary CSP. These games are sketched in Figure 2. Essentially, these are
games with n pure equilibria along the diagonal. We assume that the agents
successfully coordinate on a equilibrium (and thus play rationally in some sense)
but we don’t know which. Our assumption give us information about how the
agents select equilibria across games. From considering only the payoff matrices,
it is unclear how one would ever arrive at such judgments. However, we might
imagine further contextual information (à la Schelling or focal points Schelling,
1960, pp. 54–58) under which these outcome correspondences would be plausible.

To (partially) enforce plausibility of the assumptions in our formal result,
we define the following. Let G be a finite set of games. Let A1,2(G) be the set
of OCs that can be inferred from Assumptions 1 and 2 about G, including by
reasoning about games outside of G.

Theorem 3. The following decision problem is co-NP-complete: Given a finite
set of games G and some finite satisfiable set A of outcome correspondences
that includes A1,2(G), two games Γ,Γ′ ∈ G, and a preference ordering ⪰, decide
whether A implies that Γ′ is an SI on Γ. The same holds under the following we
restrict ⪰ to express one of the player’s utilities or Pareto preferences, and/or
if we consider strict and very strict S(P)I. The problem remains co-NP-hard if
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Figure 2: A type of outcome correspondence to which we can reduce binary
constraint satisfaction problems without producing wildly implausible outcome
correspondences.

we bound the sizes of of the games in G.
The proof can be found in Appendix J.
The co-NP-completeness results hinge on increasing the number of games

(variables) in G. For any fixed size of G, the problem is solvable in polynomial
time.

The problem of deciding whether there exists within G a pair of games s.t.
the first is an improvement on the second is also co-NP-complete, and so is the
problem of deciding whether for a given Γ ∈ G there exists another game Γ′

that is an SI on Γ. For details, see Proposition 25 in the appendix.
One interesting implication of the complexity results is that (assuming P̸=

NP) repeated application of inference rules like those in Lemma 2 are in general
insufficient for deriving all relevant SPIs. This is because repeated application
of such rules can be done in polynomial time. In Appendix K.3, we show
this formally. We also provide an example where the rules of Lemma 2 are
incomplete.

5 Completeness under natural assumptions about
assumptions about outcome correspondence

So far we have considered the problem of deriving SPIs under arbitrary assump-
tions. We have seen that the problem of inferring S(P)Is is co-NP-complete in
this case. In this section, we provide conditions under which inference as per
Lemma 2 is complete. We thus also obtain that under some condition S(P)Is
can be found in polynomial time.
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5.1 Some further natural assumptions about outcome cor-
respondence

To guide our results, we first give some additional natural assumptions about
outcome correspondence. We focus here on the structurally most interesting
examples of further assumptions. We give some further examples of assumptions
in Appendix G.

Decomposition/factorization Imagine the agents play a normal-form game
that consists of playing in parallel the game Stag Hunt and Chicken, i.e., they
each choose from the set of actions {Stag,Hare}×{Dare, Swerve} and the reward
is given by the sum of the rewards of the respective games. Then we might expect
that they play an action from {Stag} × {Dare, Swerve} if and only if they play
Stag in the Stag Hunt.

To formally state this, we first define product–sum games as follows. Let
Γ = (A1, ..., An,u) and Γ′ = (A′

1, ..., A
′
n,u

′) be n-player (normal-form) game.
Then define Γ ∗ Γ′ to be the game

(A1 ×A′
1, ..., An ×A′

n, ((a1, a
′
1), ..., (an, a

′
n)) 7→ u(a1, ..., an) + u′(a′1, ..., a

′
n)) .

Assumption 3 (Decomposition into sum–product games). Let Γ,Γ′ be n-player
games. Let I be the set of isomorphisms on Γ. Then Γ ∗ Γ′ ∼Φ Γ, where
Φ : ((a1, a

′
1), ..., (an, a

′
n)) 7→

S
Ξ∈I Ξ(a1, ..., an).

As a sanity check, note that the Nash equilibria of Γ ∗ Γ′ are simply the
combinations of Nash equilibria of Γ and Γ′. Although we find Assumption 3
plausible in many cases, it may not universally apply. For instance, imagine that
both Γ and Γ′ are about distributing one indivisible item between the agents.
It then seems plausible that in Γ ∗ Γ′, one agent receives the Γ item and the
other receives the Γ′ item. This option is, of course, not available if only Γ
is played. It’s also worth noting that various on first sight plausible-seeming
generalizations of Assumption 3 are problematic. For instance, if we play two
repeated games simultaneously (and we can use our observations in one of the
games to inform our choices in the other game), then the Nash equilibria of the
resulting game are different from the Nash equilibria of each of the individual
games.

Ordered outcomes and order-preserving correspondences Finally, we
give an example of a plausible outcome correspondence assumption that is
closely related to some ordering of the outcomes or pure strategies of the game.
In contrast to the above, we only give this assumption for a single game, because
it’s unclear how this assumption generalizes.

Consider the two normal-form games in Table 1. Roughly, both games model
the following interaction: $4 are on the table and Players 1 and 2 can choose
whether to demand $3, $2, or $1. If the demands are compatible (i.e., sum up
to at most $4), then they both receive their demands. Otherwise, they receive
some punishment. The difference between the two versions is that Player 1
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3 2 1

3 3, 1 −1,−1 −1,−1

2 2, 1 2, 2 −1,−1

1 1, 1 1, 2 1, 3

3 2 1

3 3, 1 −2,−1 −2,−1

2 2, 1 2, 2 −2,−1

1 1, 1 1, 2 1, 3

Table 1: An example of a game with a plausible order-preserving outcome
correspondence.

receives a harsher punishment in the “no-agreement” case in the right-hand
game, compared to the left-hand game.

Now it seems plausible that being more harshly punished for a failure to
agree on a split, should lead Player 1 to demand less aggressively, or at least
not more aggressively. That is, if Player 1 demands 2 in the left-hand game,
we would expect here to demand 1 or 2 in the right-hand game. Anticipating
that Player 1 will be less aggressive, Player 2 can be more aggressive (or least
equally aggressive) in the right-hand game.1

Ad Hoc Assumption 1. Let Γ and Γ′ be the left-hand and right-hand game
in Table Table 1. Let Φ1 : {1, 2, 3} → {1, 2, 3} : 1 7→ {1}, 2 7→ {1, 2}, 3 7→
{1, 2, 3} and Φ2 : {1, 2, 3} → {1, 2, 3} : 1 7→ {1, 2, 3}, 2 7→ {2, 3}, 3 7→ {3}. Then
Γ ∼(Φ1,Φ2) Γ

′.

Note that combined with Assumption 4, we get Γ ∼Φ Γ′, where Φ : (1, 3) 7→
{(1, 3)}, (2, 2) 7→ {(1, 3), (2, 2)}, (3, 1) 7→ {(1, 3), (2, 2), (3, 1)}.

5.2 Inference is complete if the outcome correspondence
assumptions are max-closed

We now give a sufficient condition under which inference is complete.

Definition 2 (P. G. Jeavons and Cooper 1995, Def. 2.5). Let G be a set of games
and A be a set of assumptions over G. We call A max-closed if there exists a
family of total orders (≥G)G∈G s.t. Each outcome correspondence Φ in A has
the following property: If (x1, y, 1), (x2, y2) ∈ Φ, then (max(x1, x2),max(y1, y2)) ∈
Φ.

P. G. Jeavons and Cooper (1995) prove that under max-closedness, satisfia-
bility of binary constraint structures is decidable in polynomial time. In particu-
lar, their proof shows that iterated application of the rules of Lemma 2 will infer
an empty outcome correspondence if and only if the binary constraint structure
is unsatisfiable. We generalize this result to show that iterated application of

1It’s worth noting that this intuition isn’t reflected in the Nash equilibria of the game.
The pure Nash equilibria are the same between the two games. In the mixed equilibria,
the players have to make each other indifferent. Of course, Player 2’s strategies for making
Player 1 indifferent are the same between the two games. Meanwhile, Player 1 is actually less
“aggressive” in the mixed equilibria! Smaller probabilities of higher demands are now needed
to make Player 2 indifferent between low and high demands.
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the rules of Lemma 2 is also complete for inferring outcome correspondences,
i.e., for deciding whether all satisfying assignments satisfy some OC, including
SPIs.

Theorem 4. Let G be a finite set of games and S be a set of OC assumptions
about G. Let S be max-closed. Then inference as per Lemma 2 is complete for
G, S. Consequently, inference on max-closed sets of assumptions S is solved in
polynomial time.

The proof can be found in Appendix D.
P. Jeavons, Cohen, and Gyssens (1995) provide a generalization of Defini-

tion 2 to partial orders under which satisfiability can still be decided in polyno-
mial time using repeated application of Lemma 2. It follows that inference of
OCs can also still be done in polynomial time under this condition. However,
repeated application of the rules of Lemma 2 is insufficient in this case. We
discuss this in detail in Appendix B.

To argue for the plausibility of the max-closedness condition being true about
natural assumptions about outcome correspondence, we first show that all but
one of our jointly satisfy the simple-overlap condition.

Proposition 5. Assumptions 1, 2 and 4 to 6 are each individually max-closed.
Any union of any subset of the four is also max-closed. Assumption 3 is not
max-closed. Ad Hoc Assumption 1 is not max-closed. Ad Hoc Assumption 1
intersected with Assumption 4 is max-closed.

5.3 Adding sum–product games retains completeness

Our completeness result (Proposition 5) so far excludes Assumption 3 and it also
excludes Ad Hoc Assumption 1 on its own. The problem is that if we have two
variables with linearly ordered domains and the constraints on those variables
are max-closed, then constraints on the product variable of the two need not be
max-closed. To address this, we will prove an additional result that says that
adding such product variables or replacing variables with their product does not
interfere with completeness.

Lemma 6. Let (X ,D,A) be any binary constraint structure. Let Xa, Xb ∈ X
with domains Da and Db. Then repeated inference as per Lemma 2 is complete
for the following binary constraint structures

a) (X ′,D′,A′) defined as follows: X ′ = X ∪ {Xab}; the domains D′ are as in
D and the domain Dab for Xab is Da ×Db;

A′ = A ∪ {(Xa, Xab, {(x, (x, y)) | x ∈ Da, y ∈ Db}),
(Xb, Xab, {(y, (x, y)) | x ∈ Da, y ∈ Db})}

b) (X̂ , D̂, Â) defined as follows: X̂ = X ∪ {Xab}− {Xa, Xb}; the domain for
Xab is Da × Db. The constraints Â are constructed from A as follows.
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First we remove the constraints involving Xa, Xb and keep the remain-
ing constraints. Then for each constraint (Xa, Y,Φ) we add a constraint
(Xab, Y, {((xa, xb), y) | (xa, y) ∈ Φ, xb ∈ Db}). We analogously adapt all
other constraints involving Xa and/or Xb.

With this result in hand, we can prove completeness of under all of our
assumptions.

Proposition 7. Let G be a finite set of games. Let S be any set of assump-
tions induced by some subset of Assumptions 1 to 3 and 4 to 6 and Ad Hoc
Assumption 1. Then inference as per Lemma 2 on S is complete.

5.4 Generalizing completeness to countably infinite sets
of assumptions about outcome correspondence

In some cases, the set of games under considerations G is infinite. For instance,
Oesterheld and Conitzer (2022) consider a setting in which the principals can
specify the utility functions of the agents. Assuming, for instance, arbitrary
fractions or decimal numbers can be used to specify the utility functions, there
are then (countably) infinitely many possible games to have the agents play.
Of course, it’s hard to say anything positive about the complexity of inferring
SPIs on general infinite binary constraint structures. But it’s useful to note that
the completeness of rules like those in Lemma 2 generalizes to infinite binary
constraint structures.

Theorem 8. Let A be a countable set of assumptions on some countable set
of games G. Let Γ,Γ′ ∈ G and Φ be such that S implies Γ ∼Φ Γ′. Then there
exists a finite set of games Gf containing Γ,Γ′ and finite set of assumptions Sf

over Gf such that Sf implies Γ ∼Φ Γ′.

Corollary 9. Let S be a countable set of outcome correspondence assumptions.
If the rules of Lemma 2 are complete for every finite subset of S, then they are
also complete for S.

5.5 Strengthening the complexity result of Oesterheld and
Conitzer’s (2022)

Oesterheld and Conitzer (2022) prove a hardness result for SPIs under a specific
set G and Assumptions 1 and 2. However, their result is about deciding whether
an SPI can be inferred with Lemma 2. Using our completeness results, we can
show that in this case inference as per Lemma 2 is equivalent to inference period
and so in particular we can prove the hardness of the regular inference problem.
To keep it brief, we don’t include any of the strict versions of the problems in
the below.

Theorem 10. The following decision problem is NP-hard: Given a game Γ,
decide whether there exists a subset game Γs of Γ s.t.:
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1. (Non-triviality:) If we fully reduce Γ and Γs using iterated strict domi-
nance, then Γ and Γs are not equal. (They are allowed to be isomorphic.)

2. Γ ∼Φ Γs is implied by Assumptions 1 and 5.
3. For all a in Γ, we have that u(Φ(a)) ≥ u(a).

6 Related work

Constraint satisfaction problem Technically, our work is most closely re-
lated to the literature on binary constraint satisfaction problems and in partic-
ular constraint propagation. We have used some ideas and results from that
literature, such as the NP-completeness of CSP and the max-closedness condi-
tion (P. G. Jeavons and Cooper, 1995; P. Jeavons, Cohen, and Gyssens, 1995).
Generally, our perspective differs in two ways from that in the CSP literature.
First, we are interested in inference problems on binary constraint structures,
as opposed to finding satisfying assignments. (More specifically, we are inter-
ested in inferring SI relations.) This inference problem is, of course, somewhat
different from the problem of finding satisfiable assignments, sometimes in sub-
tle ways (e.g., see Appendix B). Second, because we work in a specific domain
(strategic interactions), we are interested in specific types of constraints.

Prior work on safe Pareto improvements Conceptually, our work is of
course most closely related to prior work on SPIs, especially Oesterheld and
Conitzer (2022). Our basic setup and definition of safe (Pareto) improvement
generalizes the setup of Oesterheld and Conitzer by allowing considering ar-
bitrary assumptions about outcome correspondence, arbitrary interventions on
how the agents play the game and arbitrary preferences over outcomes. See
Appendix H for a detailed comparison of the setups.

Our complexity results are different from those of Oesterheld and Conitzer
(2022) and Oesterheld and Sauerberg (2024). For instance, the NP-hardness re-
sult of Oesterheld and Conitzer (Theorem 9) hinges on G being infinitely large
(or at least more than polynomially large as a function of the problem input
size). In contrast, our co-NP-hardness results consider finite, explicitly repre-
sented sets of games. The graph-isomorphism-hardness results of Oesterheld
and Sauerberg (2024), meanwhile, are due to the graph-isomorphism hardness
of deciding whether Assumption 2 applies to any given pair of games.

Prior work on SPIs has not considered the question of completeness of in-
ference as per Lemma 2 at all.
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