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Abstract

Newcomblike decision problems have been studied extensively in the
Decision Theory literature, but they have so far been largely absent in the
Reinforcement Learning literature. In this paper we study value-based re-
inforcement learning algorithms in the Newcomblike setting, and answer
some of the fundamental theoretical questions about the behaviour of such
algorithms in these environments. We show that a value-based reinforce-
ment learning agent cannot converge to a policy that is not ratifiable. This
gives us a powerful tool for reasoning about the limit behaviour of agents
– for example, it lets us show that there are Newcomblike environments in
which a reinforcement learning agent cannot converge to any optimal pol-
icy. We show that a ratifiable policy always exists in our setting, but that
there are cases in which a reinforcement learning agent normally cannot
converge to it (and hence cannot converge at all). We also prove several
results about the possible limit behaviours of agents in cases where they
do not converge to any policy.

1 Introduction
In reinforcement learning, the Markov Decision Process (MDP) is the canonical
formalisation of a decision problem. However, there are broad classes of deci-
sion problems that cannot be satisfactorily formalised as MDPs. Consider the
following two examples:

Newcomb’s Problem (Nozick, 1969): There are two boxes in front of you;
one opaque box, and one transparent box, and you can see that the transparent
box contains $1,000. You can choose to either take only the opaque box, or to
take both the opaque box and the transparent box. The boxes have been placed
in this room by an agent who can predict your policy; if he believes that you
will take only the opaque box then he has put $1,000,000 in the opaque box,
and if he believes that you will take both boxes then he has left the opaque box
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empty. Do you take one box, or two?

Death in Damascus (Gibbard and Harper, 1976): Death will come for
you tomorrow. You can choose to stay in Damascus (where you are currently)
or you can flee to Aleppo. If you are in the same city as Death tomorrow, you
will die. Death has already decided which city he will go to — however, he can
predict your policy, and has decided to go to the city where he believes that you
will be tomorrow. Do you stay in Damascus, or flee to Aleppo?

These two problems are examples of Newcomblike decision problems. A de-
cision problem is Newcomblike if the actions of the decision maker can provide
evidence about things that they cannot causally influence (or, more precisely,
if they provide more evidence than what is provided by their causal impact).
For example, in Newcomb’s Problem the action taken by the decision maker
provides evidence about the content of the opaque box, even though it cannot
causally influence the content of the opaque box. If a situation is Newcomblike
then this is typically (but not necessarily) because the procedure that the de-
cision maker uses to make decisions is available to other actors. It is often not
possible to formalise Newcomblike problems as MDPs.

Newcomblike problems are well-studied in the field of Decision Theory, but
they have so far received little direct attention in the Reinforcement Learn-
ing literature. However, Newcomblike problems may be relatively common for
reinforcement learning agents deployed in certain kinds of environments. For
example, an agent whose source code is available to other actors can easily find
itself in Newcomblike situations (cf. the literature on program equilibriums, e.g.
Tennenholtz, 2004; Oesterheld, 2019b). Newcomblike decision problems can
also occur when agents can encounter copies of themselves. For example, an
agent who is playing the Prisoner’s Dilemma against an identical copy of itself
is in a situation that is very closely analogous to Newcomb’s Problem (Brams,
1975; Lewis, 1979). More generally, game-theoretic situations can in some cases
be Newcomblike (cf. Gauthier, 1989, Section XI). We believe that if an agent is
deployed in a complex, open-ended environment that the designer of the agent
does not fully control then this environment may in many cases be Newcomblike
(Cavalcanti, 2010, Section 5; Oesterheld, 2019a, Section 1; Conitzer, 2019). It
is therefore important to have a good theoretical understanding of how different
algorithms will behave in such cases.

In this paper we analyse how value-based model-free reinforcement learning
agents behave when they are placed in Newcomblike environments. In Section
2 we demonstrate that such algorithms can only converge to a policy that is
ratifiable – that is, to a policy π for which all actions taken by π have optimal
expected reward when following π.

In Section 3, we discuss the convergence properties of agents in Newcomblike
situations, and show that there are cases where value-based agents must fail to
converge.

When policies do not converge, then sometimes the action frequencies con-
verge nonetheless. In Section 4, we establish some conditions on any action
frequency that an agent could converge to. We show that there are decision
problems and agents where even the action frequencies do not converge.
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1.1 Newcomblike Decision Processes
MDPs are unable to model many Newcomblike decision problems in a satisfac-
tory way. We therefore propose an alternative framework: let a Newcomblike
Decision Process (NDP) be a tuple 〈S,A, T,R, γ〉 where

• S is a finite set of states;

• A is a finite set of actions;

• T : S ×A× (S  A) S is a nondeterministic transition function;

• R : S × A × S × (S  A)  R is a nondeterministic reward function,
which we assume to be bounded; and

• γ ∈ [0, 1) is a discount factor.

A policy π : S  A is a function that nondeterministically maps states to
actions. We use π(a | s) to denote the probability of taking action a in state
s while following the policy π. T and R are functions from states, actions,
and policies. In other words, they allow the outcome of a decision to depend
on the distributions from which the agent draws its actions, rather than just
the state and the action that is in fact taken. Also note that T (s, a, π) and
R(s, a, s′, π) are defined even if π(a | s) = 0. We say that an NDP is a Bandit
NDP if it has only one state. We will sometimes use R(s, a, π) as a shorthand
for R(s, a, T (s, a, π), π), and we will sometimes omit the state from T , R, and π
for Bandit NDPs. Moreover, we normally let γ = 0 for Bandit NDPs.

This framework makes it easier to formalise Newcomblike problems. For
example, Newcomb’s Problem can be formalised as the following Bandit NDP:

• S = {s}

• A = {aone-boxing, atwo-boxing}

• R(aone-boxing, π) =

{
0 with probability π(atwo-boxing)
10 w.p. π(aone-boxing)

R(atwo-boxing, π) =

{
5 w.p. π(atwo-boxing)
15 w.p. π(aone-boxing)

We here suppose that the content of the transparent box is worth a utility of
5, and that content of the opaque box is worth either a utility of 10 or 0. We
also assume that the predictor chooses whether or not to put any money in
the opaque box by sampling from the policy of the decision maker, instead of
predicting its actions perfectly.1

We say that an NDP is continuous if T and R are continuous in the policy.
In this paper we work mainly with continuous NDPs. This is in part because
it is technically convenient, and in part because we believe it is likely to be the
case in many situations.2

1In most versions of Newcomb’s Problem, the predictor directly predicts the action of the
decision maker. However, this version of the problem can be modeled as a regular MDP –
after all, the transition probabilities of an MDP could represent non-causal dependencies. The
key difference between NDPs and MDPs is therefore not Newcomblikeness per se, but rather
the dependence of the transition probability on the policy (be that dependence causal or not).
However, in practice, one would imagine that difference to be closely connected with issues of
causality.

2For example, even if the environment has direct access to the source code of the agent,
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1.2 Reinforcement Learning Agents
We consider value-based reinforcement learning agents. Such agents have two
main components; a Q-function S × A → R that predicts the expected future
discounted reward conditional on taking a particular action in a particular state,
and a bandit algorithm that is used to select actions in each state based on the
Q-function. Given a policy π, we use qπ(a | s) to denote the true expected future
discounted reward conditional on taking action a in state s while following the
policy π (and conditional on all subsequent actions being chosen by π). A
model-free agent will update Q over time to make it converge to qπ for some
π. If Q is represented as a lookup table the agent is said to be tabular. The
theoretical analysis in this paper will focus on tabular agents, but many of the
results should apply to non-tabular agents.

The Q-values can be updated in different ways. One method is to use the
update rule

Qt+1(at | st)← (1− αt(st, at))Qt(at | st)+
αt(st, at)(rt + γmax

a
Qt(a | st+1)),

where at is the action taken at time t, st is the state visited at time t, rt is the
reward obtained at time t, and αt(s, a) is a learning rate. This update rule is
known as Q-learning (Watkins, 1986). Another widely used update rule is

Qt+2(at | st)← (1− αt(st, at))Qt+1(at | st)+
αt(st, at)(rt + γQt+1(at+1 | st+1)).

This update rule is known as SARSA (Rummery and Niranjan, 1994). Yet
another common update rule is Expected SARSA, which replaces Qt(at+1 | st+1)
with Ea∼π[Qt(a | st+1)] in the SARSA update rule (van Seijen et al., 2009). For
the purposes of this paper it will not matter significantly how the Q-values are
computed, as long as it is the case that if an agent converges to a policy π in
some NDP and explores infinitely often then Q converges to qπ. We will later
see that this is the case for Q-learning, SARSA, and Expected SARSA.

There are also several different bandit algorithms. Two types of agents that
are widely used in practice and that we will refer to throughout the paper are
softmax agents and ε-Greedy agents. The policy of a softmax agent with a
sequence of temperatures βt ∈ R+ is given by:

πt(a | s) =
exp(Qt(a | s)/βt)∑

a′∈A exp(Qt(a′ | s)/βt)
.

Unless otherwise stated we assume that βt → 0. The policy of an ε-Greedy
agent with a sequence of exploration probabilities εt ∈ [0, 1] is given by:

πt(a | s) =

{
1− εt if a= arg maxa′∈AQt(a

′ | s)
εt/(|A| − 1) otherwise.

Unless otherwise stated we assume that εt → 0. We assume that ε-Greedy breaks
ties for argmax, so that there is always some a ∈ A such that π(a | s) = 1− εt.

it may in general not be feasible to extract the precise action probabilities from the code.
However, it is always possible to estimate the action probabilities by sampling. If this is done
then T and R will depend continuously on the policy.
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We say that an agent is greedy in the limit if with probability converging to 1 it
takes an action that maximises Q, and we say that it explores infinitely often if
it in the limit takes every action in every state infinitely many times. A softmax
agent or ε-Greedy agent can be both greedy in the limit and explore infinitely
often if βt and εt go to 0 at the right rate.

1.3 Some Initial Observations
We here make some simple observations about the setting that we will use
to prove and understand the results throughout this paper. First, note that a
continuous NDP always has a policy π for which the expected discounted reward
E[R | π] is maximised, since E[R | π] exists and is continuous in π, and since
the set of possible policies is a compact set. Also note that an NDP in which T
or R is discontinuous may not have any optimal policy.

We can also note that some NDPs (unlike MDPs) have no deterministic
optimal policy. To see this, consider again the Death in Damascus problem.
We can formalise this problem as an NDP 〈S,A, T,R, γ〉 in the following way:
S = {s}, A = {aDamascus, aAleppo}, and

R(aDamascus, π) =

{
0 w.p. π(aDamascus)
10 w.p. π(aAleppo)

R(aAleppo, π) =

{
10 w.p. π(aDamascus)
0 w.p. π(aAleppo)

We here suppose that escaping Death is worth a utility of 10, and that meeting
one’s fate is worth a utility of 0. We also assume that Death chooses which city
to go to by sampling from the same random policy as the agent (as opposed to
predicting the agent’s action perfectly, which is the case in the original version
of the problem). In this NDP, the policy that goes to each city with equal
probability outperforms all deterministic policies.

Note also that the Bellman optimality equation does not hold for NDPs.
This equation states that for any MDP 〈S,A, T,R, γ〉 and any s ∈ S we have
that vπ∗(s) equals

max
a∈A

(∑
s′∈S

P (T (s, a)=s′)(E [R(s, a, s′)] + γvπ∗(s
′))

)
,

where π∗ is the policy that maximises expected discounted reward, and vπ∗(s)
is the expected discounted future reward when visiting s and following π∗ (Bell-
man, 1957). One might suppose that the same relationship should hold in NDPs,
if T and R are parameterised by π∗. However, this is not the case. To see this,
consider Newcomb’s problem, as formalised in Section 1.1.

2 Ratifiability
If a reinforcement learning algorithm in the limit only takes the actions with
the highest Q-values and it converges to some policy π∞, then it is clear that
all actions that π∞ assigns positive probability to must have equal expected
utility given π∞. Otherwise, the Q-values would eventually reflect the differ-
ences in expected utility and the agent would move away from π∞. Similarly,
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if the algorithm explores sufficiently often, the actions that are taken with limit
probability 0 cannot be better given π∞ than those taken by π∞. After all, if
they were better, the agent would have eventually figured this out and assigned
them large probability.

This condition on π∞ resembles a well-known doctrine in philosophical de-
cision theory: ratificationism (see Weirich, 2016, for an overview). One form of
ratificationism is based on a distinction between a decision – what the agent
chooses – and the act that is selected by that decision. Very roughly, ratifi-
cationism then states that a decision is rational only if the acts it selects have
the highest expected utility given the decision. For instance, in Newcomb’s
Problem a decision to take one box would usually not be seen as ratifiable, be-
cause given that decision, the agent would rather perform the act of taking two
boxes. In philosophical decision theory, concepts of causality are often invoked
to formalise the difference between the decision, the act, and their respective
consequences. Our setup, however, has such a differentiation built in: we will
view the policy as the “decision” and the action sampled from it as the “act”.

2.1 Strong Ratifiability
As hinted earlier, slightly different versions of the concept of ratifiability are rel-
evant depending on how much exploration a learning algorithm guarantees. We
start with the stronger version, which more closely resembles what philosophers
mean when they speak about ratifiability.

Definition 1. Let M ⊆ S be a set of states. A policy π is strongly ratifiable on
M if supp(π(· | s)) ⊆ arg maxa∈A qπ(a | s) for all s ∈M .

In Newcomb’s Problem there is only one strongly ratifiable policy, namely
to take both boxes with probability 1. In Death in Damascus there is also just
one strongly ratifiable policy, and that is to go to each city with probability
1/2. There can also be more than one strongly ratifiable policy. For example, if
you play the Coordination Game of Table 1 against an opponent who samples
his action from the same policy as you then there are three strongly ratifiable
policies; to select action a with probability 1, to select action b with probability
1, and to select a with probability 1/3 and b with probability 2/3.

a b
a 2,2 0,0
b 0,0 1,1

Table 1: The Coordination Game

Theorem 2. Let A be a model-free reinforcement learning agent, and let πt
and Qt be A’s policy and Q-function at time t. Let A satisfy the following in a
given NDP 〈S,A, T,R, γ〉:

• A is greedy in the limit, i.e. for all δ > 0, P(Qt(πt(s)) ≤ maxaQt(a |
s)− δ)→ 0 as t→∞.

• A’s Q-values are accurate in the limit, i.e. if πt → π∞ then Qt → qπ∞ .
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Then if A’s policy converges to π∞ then π∞ is strongly ratifiable on S.

In Appendix A we show that the Q-values of a tabular agent are accurate in
the limit in any continuous NDP if the agent updates its Q-values with SARSA,
Expected SARSA, or Q-learning, given that the agent explores infinitely often
and uses appropriate learning rates. This means that such an agent can only
converge to a (strongly) ratifiable policy, if it converges to any policy at all.
Moreover, since we would expect most well-designed agents to have accurate
Q-values in the limit, this result should apply very broadly. Using Kakutani’s
fixed-point theorem, it can be shown that every continuous NDP has a ratifiable
policy.

Theorem 3. Every continuous NDP has a strongly ratifiable policy.

Of course, the fact that a ratifiable policy always exists does not necessarily
mean that a reinforcement learning agent must converge to it — we will consider
the question of whether or not this is the case in Section 3. It is also worth noting
that a discontinuous NDP may not have any strongly ratifiable policy.

It is a topic of ongoing discussion among philosophical decision theorists
whether (strong) ratifiability should be considered a normative principle of ra-
tionality, see Weirich (2016, Section 3.6) for details. In general, the policy π
that maximises E[R | π] may or may not be ratifiable. For example, in Death
in Damascus the optimal policy is to go to each city with equal probability, and
this policy is also ratifiable, but in Newcomb’s Problem the optimal policy is to
take one box with probability 1, and this policy is not ratifiable. Hence there
are NDPs in which most reinforcement learning agents cannot converge to the
policy that maximises E[R | π]. In fact, by scaling the payoffs in Newcomb’s
Problem we can obtain an NDP in which the only ratifiable policy is arbitrarily
bad compared to the optimal policy.

2.2 Weak Ratifiability
We have seen that with sufficient exploration, the limit policy π∞ (if it ex-
ists) must be strongly ratifiable. We will now show that even without infinite
exploration, π∞ must still satisfy a weaker notion of ratifiability.

Definition 4. Let M ⊆ S be a set of states. A policy π is weakly ratifiable on
M if qπ(a | s) is constant across a ∈ supp(π(s)) for all s ∈M .

Theorem 5. Same conditions as theorem 2, but where A’s Q-values are only
required to be accurate in the limit for state-action pairs that A visits infinitely
many times. Then π∞ is weakly ratifiable on the set of states that are visited
infinitely many times.

What makes this a weak version of ratifiability is that it does not put any
requirements on the expected utility of actions that π∞ does not take, it merely
says that all actions that π∞ takes with positive probability must have the same
(actual) q-value. As a special case, this means that all deterministic policies are
weakly ratifiable. This result may therefore be of limited interest.
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Figure 1: The triangle shows the space of possible policies in the Repellor
Problem, parameterised by the probability they assign to each of the three
actions. Plotted against this space is the expected direction in which a softmax
agent would change its policy if playing a particular policy.

3 Non-Convergence of Policies
We have shown that most reinforcement learning algorithms can only converge
to (strongly) ratifiable policies. We will now consider the question of whether
or not they always converge to a policy at all. We find that this is not the case.

3.1 Theoretical Results
It should be clear that there are NDPs in which an ε-Greedy agent cannot con-
verge to any policy. Most agents (including ε-Greedy agents) can only converge
to strongly ratifiable policies. Moreover, in some NDPs all strongly ratifiable
policies are mixed strategies that an ε-Greedy agent cannot express (Death in
Damascus is an example of such an NDP). An ε-Greedy agent could therefore
not possibly converge to any policy in these NDPs.

There are also NDPs in which a (slow-cooling) softmax agent cannot con-
verge to any policy. As an example, consider a Bandit NDP with three actions
a1, a2, a3, and where the rewards R(ai, π) have expectations

π(ai+1) + 4·133·π(ai)1

[
∀j:π(aj)≥

1

4

]∏
j

(
π(aj)−

1

4

)
. (1)

For i = 3, we here let ai+1 = a1. We also require that the rewards are stochastic
with a finite set of outcomes such that the empirical Q-values are never exactly
equal between different actions. We call this the Repellor Problem.

Theorem 6. Let A be an agent that plays the Repellor Problem, explores in-
finitely often, and updates its Q-values with a learning rate αt that is constant
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across actions, and let πt and Qt be A’s policy and Q-function at time t. Assume
also that for j 6= i, if πt(ai), πt(aj) both converge to positive values, then

πt(ai)− πt(aj)
Qt(ai)−Qt(aj)

→
a.s.
∞ (2)

as t→∞. Then πt almost surely does not converge as t→∞.

Line 2 is satisfied, for example, for softmax agents with a temperature con-
verging to 0. Recall also that e.g. Q-learning and SARSA are equivalent for
Bandit NDPs (if γ = 0).

3.2 Empirical Results
Empirically, it seems to be the case that softmax agents converge (to strongly
ratifiable policies) in many NDPs, provided that the temperature decreases suf-
ficiently slowly. To illustrate this we will use Asymmetric Death in Damascus,
which is a version of the Death in Damascus problem where you assign a utility
of 5 to dying in Aleppo. This version of the problem is due to Egan (2007),
and is described by the decision matrix in Table 2. We use Asymmetric Death
in Damascus, instead of the original version, to make it easier to distinguish
between the case where an agent converges to the ratifiable policy and the case
where it simply picks each action equally often as a default.

Death goes to
Damascus

Death goes to
Aleppo

Stay in Damascus 0 10
Flee to Aleppo 10 5

Table 2: Asymmetric Death in Damascus

As before, we assume that Death chooses which city to go to by sampling
from your policy. This NDP has only one (strongly) ratifiable policy, namely to
go to Aleppo with probability 2/3 and Damascus with probability 1/3. Figure
2 shows the probability of converging to this policy with a softmax agent and
a plot of the policy on one run. We can see that this agent reliably converges
provided that the cooling is sufficiently slow.

However, there are also fairly natural games in which it seems like soft-
max agents cannot converge. The Repellor Problem was constructed to make
Theorem 6 as easy as possible – a more natural example is Loss-Averse Rock-
Paper-Scissors (LARPS), the problem of playing Rock-Paper-Scissors against
an opponent that selects each action with the same probability as you, and
where you assign utility 1 to a win, 0 to a draw, and -10 to a loss. This game
is described by the payoff matrix in Table 3.

The only strongly ratifiable policy in LARPS is to take each action with equal
probability, and hence we know that a softmax agent cannot converge to any
policy other than this policy. However, this policy appears to be unstable. We
thus conjecture that slow-cooling softmax agents do not converge in LARPS. We
have unfortunately not been able to prove this formally, but Figure 3 presents
some empirical data which corroborates the hypothesis.
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Rock Paper Scissors
Rock 0 -10 1
Paper 1 0 -10
Scissors -10 1 0

Table 3: Loss-Averse Rock-Paper-Scissors

4 Convergence of Action Frequencies
We have seen that there are some NDPs in which some reinforcement learning
algorithms cannot converge to any policy. But if they do not converge to any
policy, what does their limit behaviour look like? This is the question that
we will now consider. In particular, we will examine whether these algorithms
must converge to taking each action with some limit frequency, and what sorts
of frequencies they can converge to.

4.1 Possible Frequencies in the Bandit Case
In this section we establish a number of conditions that must be satisfied for a
frequency to be a possible limit action frequency of a value-based agent. We con-
sider agents that converge to deterministic behaviour (such as ε-Greedy agents).
We limit our analysis to the Bandit case (with γ = 0).

Let PΣ
t : A → [0, 1] be the frequency with which each action in A is taken

in the first t steps (for some agent and some Bandit NDP). Note that PΣ
t is a

random variable. By the law of large numbers,

PΣ
t (a)− 1

t

t∑
i=0

πi(a) →
t→∞ a.s.

0. (3)

Let πa be the policy that takes action a with probability 1, and let qa = qπa .

Theorem 7. Assume that there is some sequence of random variables (εt ≥ 0)t
s.t. εt →

t→∞ a.s.
0 and for all t ∈ N it is∑

a∗∈arg maxaQt(a)

πt(a
∗) ≥ 1− εt. (4)

Let PΣ
t → pΣ with positive probability as t → ∞. Then across all actions

a ∈ supp(pΣ), qa(a) is constant.

This condition is vaguely analogous to weak ratifiability, and is proven in
roughly the same way as Theorem 2.

Theorem 8. Same assumptions as Theorem 7. If |supp(pΣ)| > 1 then for all
a ∈ supp(pΣ) there exists a′ ∈ A s.t. qa(a′) ≥ qa(a).

This condition is an instability condition. Say that multiple actions are
taken with non-zero limit frequency, and that action a has the highest Q-value
at time t. Then for other actions to be played with positive limit frequency,
other actions must at some point be believed to be optimal again (since the
probability of exploration goes to zero). Hence they cannot all be worse when
explored while mainly playing a, since a could otherwise be played forever.
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Theorem 9. Same assumptions as Theorem 7. Let U be the Q-value qa(a)
which (by Theorem 7) is constant across a ∈ supp(pΣ). For any a′ ∈ A −
supp(pΣ) that is played infinitely often, let frequency 1 of the exploratory plays
of a′ happen when playing a policy near elements of {πa | a ∈ supp(pΣ)}. Then
there is a ∈ supp(pΣ) such that qa(a′) ≤ U ; or it is qa′(a′) < U .

This condition puts a requirement on actions a′ that are played with a limit
frequency of zero. Roughly, there must be some explanation for why such actions
usually have low Q-values. One possibility is that exploration is done only
finitely many times. Moreover, if the exploration mechanism is “rigged” in such
a way that a′ is mostly played when playing policies outside the proximity of
{πa | a ∈ supp(pΣ)} then the behaviour of some zero-limit-frequency policies
might lead to low Q-values. If exploration of a′ is spread out more naturally
then all but frequency zero of that exploration will happen near elements of
{πa | a ∈ supp(pΣ)}, and so a′ may not be played with positive frequency if
exploring a′ near some of the elements of {πa | a ∈ supp(pΣ)} makes a′ look
poor. If that is not the case then a′ will periodically seem optimal, which means
that it can only be played with frequency zero if it is quickly learned to be
suboptimal when it is played with high probability.

4.2 When is Frequency Convergence Possible?
We believe that there are NDPs in which an ε-Greedy agent cannot converge
to any limit action frequency. Specifically, let N be the NDP that formalises
LARPS as described in Section 3.1, and suppose than an ε-Greedy agent has
finished some number of episodes in N . Let fR denote the fraction of past time
steps at which aR was estimated to be the best action, and similarly for fP and
fS . If we plot the expected direction of change for ~f = 〈fR, fP , fS〉 we obtain
the plot Figure 4. It is presumably not possible to converge to a point that is
not an attractor point, and since there is no attractor in this graph, we hence
believe that an ε-Greedy agent cannot converge to any limit action frequency in
this NDP. We have, however, not been able to prove this formally.

We have experimental data to support this argument – Figure 5 depicts
five runs of ε-Greedy in LARPS. We can see that the agents oscillate between
different actions, and that the periods increase in length. This means that
there (probably) are cases where not even the action frequencies of an ε-Greedy
agent converge. Note that this argument applies specifically to tabular ε-Greedy
agents, and does not necessarily extend to all reinforcement learning agents that
cannot converge to mixed policies.

5 Related Work

5.1 Learning Nash Equilibria
If you are playing a symmetric game against an opponent who draws his ac-
tions from the same distribution as you then any policy π is ratifiable if and
only if 〈π, π〉 is a Nash equilibrium (cf. Joyce and Gibbard, 1998, Section 5,
on the relationship between Nash equilibria and ratifiability). There is a large
body of existing work on learning in the game-theoretic setting. For example,
“fictitious play” (due to Brown, 1951) is when some number of players play a
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game repeatedly, and in each round play the best response against the empirical
distribution over actions taken by their opponent — this is largely analogous
to using reinforcement learning. Fudenberg and Levine (1998, Chapter 2) show
that fictitious play can only converge to a Nash equilibrium, and that if ficti-
tious play enters a Nash equilibrium it will stay there for all subsequent rounds.
It has also been shown that fictitious play can fail to converge (Shapley, 1964).
However, there are many special cases in which convergence is guaranteed, in-
cluding two-player zero-sum games (Robinson, 1951) and generic 2 × 2 games
(Miyasawa, 1961).

5.2 Learning and Newcomblike problems
Other authors have discussed what type of behavior various learning algorithms
give rise to in Newcomblike problems. The most common setup is one in which
the learner assigns – as she arguably should – values directly to policies, or more
generally to that which the agent chooses. It is then usually shown that (among
the policies considered) the agent will converge to taking the one with the highest
Q-values, or, in decision-theoretical terms, the one with the highest evidential
expected utility (Albert and Heiner, 2001; Mayer, Feldmaier, and Shen, 2016;
Oesterheld, 2018). This contrasts with our setup, in which the learner selects
policies but assigns values to actions. Another more sophisticated setting was
studied by Oesterheld (2019a).

6 Discussion and Further Work
We have seen that many of the key assumptions of common reinforcement learn-
ing techniques break in the NDP setting. In particular, we have seen that
value-based reinforcement learning algorithms can fail to converge to any pol-
icy in some NDPs, and that when they do converge, they can only converge to
ratifiable policies. Philosophers have discussed whether ratifiability should be
considered to be a sound normative principle. Note that (as philosophers have
pointed out) the policy π that maximises expected discounted reward E[R | π]
is not in general ratifiable. We have also examined the limit action frequencies
that agents can converge to (even when the policies do not converge). Still, there
are NDPs in which many agents cannot converge even to any such frequency.
We gave some results on what limit frequencies are possible. These results are
much weaker than our results on policy convergence, because the exact frequen-
cies depend on the details of the learning algorithm. A loose connection to
ratifiability can still be drawn.

Overall, established decision-theoretical ideas can be used to understand and
formally describe the behavior of “out-of-the-box” reinforcement learning agents
in NDPs. However, their behaviour is in general not desirable. They may
fail to converge, or they might only be able to converge to suboptimal policies.
These algorithms are therefore inappropriate for the Newcomblike setting, which
means that there is a need for new kinds of algorithms that explicitly take into
account the potential effects of the policy itself.

Throughout the paper, we have noted specific open questions related to our
results. For instance, can the results in Section 4.1 be generalised beyond the
Bandit setting? There are also many topics and questions about our setting
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that we have not touched on at all. For instance, our experimental results
indicate that convergence often is slow (considering how simple the given prob-
lems are). It might be desirable to back up this impression with theoretical
results. We have only studied simple value-based model-free algorithms. Other
reinforcement learning algorithms (e.g., policy-gradient or model-based algo-
rithms) may give rise to different considerations. Finally, there are further ways
in which we could generalize our setting. One example is to introduce partial
observability and imperfect memory into the NDPs. This has been studied in
game and decision theory (Piccione and Rubinstein, 1997; Elga, 2000), but re-
cently – under the name memoryless POMDP – also in reinforcement learning
(Azizzadenesheli, Lazaric, and Anandkumar, 2016; Steckelmacher et al., 2018;
cf. Conitzer, 2019). What makes this especially appealing in the NDP context
is that problems related to imperfect memory relate closely to Newcomblike
problems (Briggs, 2010; Schwarz, 2015). It could also be interesting to more
extensively study the properties of discontinuous NDPs.
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A Q-value convergence
We here show that if a tabular agent converges to a policy π∞ in a continuous
NDP then Qt converges to qπ∞ , assuming that the agent updates its Q-values
in an appropriate way. To prove this we will use the following lemma:

Lemma 10. Let 〈ζt, δt, Ft〉 be a stochastic process where ζt, δt, Ft : X → R
satisfy

δt+1(x) = (1− ζt(xt)) · δt(xt) + ζt(xt) · Ft(xt)

with xt ∈ X and t ∈ N. Let Pt be a sequence of increasing σ-fields such that ζ0
and δ0 are P0-measurable and ζt, δt and Ft−1 are Pt-measurable, t ≥ 1. Then
δt converges to 0 w.p. 1 if the following conditions hold:

1. X is finite.

2. ζt(xt) ∈ [0, 1] and ∀x 6= xt : ζt(x) = 0.

3.
∑
t ζt(xt) =∞ and

∑
t ζt(xt)

2 <∞ w.p. 1.

4. Var{Ft(xt) | Pt} ≤ K(1 + κ‖δt‖∞)2 for some K ∈ R and κ ∈ [0, 1).

5. ‖E{Ft | Pt}‖∞ ≤ κ‖δt‖∞ + ct, where ct → 0 w.p. 1 as t→∞.
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where ‖.‖∞ is a (potentially weighted) maximum norm.

Proof. See Singh et al. (2000).

We say that a Q-value update rule is appropriate if it has the following form;

Qt+1(at | st)← (1− αt(at, st)) ·Qt(at | st) + αt(at, st) · (rt + γ · v̂t+1(st+1)),

where v̂t(s) is an estimate of the value of s, and if moreover

lim
t→∞

E
[
v̂t(s)−max

a
Qt(a | s)

]
= 0.

Q-learning is of course appropriate. Moreover, SARSA and Expected SARSA
are also both appropriate, if the agent is greedy in the limit. Note that since R
is bounded, Qt(a | s) has bounded support. This means that if for all δ > 0,
P(Qt(πt(s) | s) ≤ maxaQt(a | s) − δ) → 0 as t → ∞, then Ea∼πt [Qt(a | s)] →
maxaQt(a | s) as t→∞.

Theorem 11. In any continuous NDP 〈S,A, T,R, γ〉, if a tabular agent con-
verges to a policy π∞ then Qt converges to qπ∞ , if the following conditions hold:

1. The agent updates its Q-values with an appropriate update rule.

2. The update rates αt(a, s) are in [0, 1), and for all s ∈ S and a ∈ A we
have that

∑
t αt(a, s) =∞ and

∑
t αt(a, s)

2 <∞ w.p. 1.

Note that condition 2 requires that the agent takes every action in every
state infinitely many times

Proof. Let

• X = S ×A

• ζt(a, s) = αt(a, s)

• δt(a, s) = Qt(a | s)− qπ∞(a | s)

• Ft(a, s) = rt + γv̂t+1(st+1)− qπ∞(a | s)

Since S and A are finite, and since R is bounded, we have that condition 1 and 4
in Lemma 10 are satisfied. Moreover, assumption 2 of this theorem corresponds
to condition 2 and 3 in Lemma 10. It remains to show that condition 5 is
satisfied, which we can do algebraically:
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‖E{Ft | Pt}‖∞

= max
s,a

∣∣∣∣∣E[rt + γv̂t(st+1)− qπ∞(a | s)
]∣∣∣∣∣

= max
s,a

∣∣∣∣∣E[rt + γmax
a′

Qt(a
′ | st+1)− qπ∞(a | s)+

γv̂t(st+1)− γmax
a′

Qt(a
′ | st+1)

]∣∣∣∣∣
≤max

s,a

∣∣∣∣∣E[rt + γmax
a′

Qt(a
′ | st+1)− qπ∞(a | s)

]∣∣∣∣∣+
max
s,a

∣∣∣∣∣E[γv̂t(st+1)− γmax
a′

Qt(a
′ | st+1)

]∣∣∣∣∣
Note that the second term in this expression is bounded above by

max
s

∣∣∣∣∣E[v̂t(s)−max
a

Qt(a | s)
]∣∣∣∣∣

Let us use kt to denote this expression. Since the Q-value update rule is appro-
priate we have that kt → 0 as t→∞. We thus have:

= max
s,a

∣∣∣∣∣E[rt + γmax
a′

Qt(a
′ | st+1)− qπ∞(a | s)]

∣∣∣∣∣+ kt

We can now expand the expectations, and rearrange the terms:

= max
s,a

∣∣∣∣∣ ∑
s′∈S

P(T (s, a, πt) = s′)(E[R(s, a, s′, πt)] + γmax
a′

Qt(a
′ | s′))

−
∑
s′∈S

P(T (s, a, π∞) = s′)(E[R(s, a, s′, π∞)] + γmax
a′

qπ∞(a′ | s′))

∣∣∣∣∣+ kt

= max
s,a

∣∣∣∣∣ ∑
s′∈S

P(T (s, a, π∞) = s′)(E[R(s, a, s′, πt)] + γmax
a′

Qt(a
′ | s′)

−E[R(s, a, s′, π∞)]− γmax
a′

qπ∞(a′ | s′))

+
∑
s′∈S

(P(T (s, a, πt) = s′)−P(T (s, a, π∞) = s′)) ·X

∣∣∣∣∣+ kt

where X = E[R(s, a, s′, πt)] + γmaxa′ Qt(a
′ | s′). Let dt(s, a) be the second

term in this expression, and let bt(s, a, s′) = E [R(s, a, s′, πt)]−E [R(s, a, s′, π∞)].
Since πt → π∞, and since T and R are continuous, we have that bt(s, a, s′)→ 0
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and dt(s, a)→ 0 as t→∞ (for any s, a, and s′). We thus have:

= max
s,a

∣∣∣∣∣ ∑
s′∈S

P(T (s, a, π∞) = s′)

(
γmax

a′
Qt(a

′ | s′)− γmax
a′

qπ∞(a′ | s′) + bt(s, a, s
′)
)

+ dt(s, a)

∣∣∣∣∣+ kt

≤ γmax
s,a

∣∣∣Qt(a | s)− qπ∞(a | s)
∣∣∣+ max

s,a,s′

∣∣∣bt(s, a, s′) + dt(s, a) + kt

∣∣∣
= γmax

s,a

∣∣∣δ(s, a)
∣∣∣+ ct = γ‖δt‖∞ + ct

where ct = maxs,a,s′
∣∣∣bt(s, a, s′) + dt(s, a) + kt

∣∣∣. This means that

‖E{Ft | Pt}‖∞ ≤ γ‖δt‖∞ + ct

where γ ∈ [0, 1) and ct → 0 as t → ∞. Thus by lemma 10 we have that Qt
converges to qπ∞ .

B Proof of Theorem 2
Theorem 2. Let A be a model-free reinforcement learning agent, and let πt
and Qt be A’s policy and Q-function at time t. Let A satisfy the following in a
given NDP 〈S,A, T,R, γ〉:

• A is greedy in the limit, i.e. for all δ > 0, P(Qt(πt(s)) ≤ maxaQt(a |
s)− δ)→ 0 as t→∞.

• A’s Q-values are accurate in the limit, i.e. if πt → π∞ then Qt → qπ∞ .

Then if A’s policy converges to π∞ then π∞ is strongly ratifiable on S.

Proof. Let πt → π∞ and hence Qt → qπ∞ . For strong ratifiability, we have to
show that for all actions a′ and states s, if a′ is suboptimal (in terms of true q
values) given π∞ in s, then π∞(a′ | s) = 0.

If a′ is suboptimal in this way, then there is δ > 0 s.t.

qπ∞(a′ | s) ≤ max
a

qπ∞(a | s)− δ.

Thus, since Qt → qπ∞ , it is for large enough t,

Qt(a
′ | s) ≤ max

a
Qt(a | s)−

δ

2
.

By the greedy-in-the-limit condition, πt(a′ | s) → 0. Because πt → π∞, it
follows that π∞(a′ | s) = 0, as claimed.

C Proof of Theorem 3
Lemma 12 (Kakutani’s Fixed-Point Theorem). Let X be a non-empty, com-
pact, and convex subset of some Euclidean space Rn, and let φ : X → 2X be
a set-valued function s.t. φ has a closed graph and s.t. φ(x) is non-empty and
convex for all x ∈ X. Then φ has a fixed point.
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Proof. See Kakutani (1941).

Theorem 3. Every continuous NDP has a strongly ratifiable policy.

Proof. Let N = 〈S,A, TN , RN , γ〉 be a continuous NDP, and let Nπ be the MDP
〈S,A, TNπ , RNπ , γ〉 that is obtained by fixing the dynamics in N according to
π – that is, TNπ (s, a) = TN (s, a, π), and RNπ (s, a, s′) = RN (s, a, s′, π). Let
φN : (S  A) → 2(S A) be the set-valued function s.t. φN (π) is the set of all
policies that are optimal in Nπ. We will show that the graph of φN is closed
and apply Kakutani’s fixed point theorem.

Suppose (πi) is a sequence of policies converging to π0 and suppose λi ∈
φN (πi) is a sequence converging to λ0. For all sufficiently large i, supp(λ0) ⊆
supp(λi) (as the state and action spaces are finite). Therefore for sufficiently
large i, λ0 ∈ φN (πi). By the continuity with respect to π of E[R | λ0] in Nπ,
λ0 ∈ φN (π0). Therefore, the graph of φN is closed.

The domain of φN is a non-empty, compact, convex subset of Euclidean
space. Any MDP always has an optimal policy, and so φN (·) is non-empty.
Since Nπ is an MDP φN (π) is a set of deterministic policies and all their con-
vex combinations, and so φN (·) is convex. Hence, by Kakutani’s Fixed Point
Theorem, there must be a π s.t. π ∈ φN (π). Then π is strongly ratifiable in N .
Hence every continuous NDP has a strongly ratifiable policy.

D Proof of Theorem 6
To prove Theorem 6, we first need to prove the following lemma.

Lemma 13. Let Xt be a non-negative discrete stochastic process, indexed by
t, and let Ft denote the history upto time t. Suppose Xt is bounded, i.e. there
exists B such that Xt ≤ B, and further that |Xt+1 −Xt| < B/t. Suppose also
that there exists ε > 0 and b > 0 such that whenever Xt < b,

Var(Xt+1|Ft) ≥
ε

t2
(5)

and
E[Xt+1|Ft]−Xt ≥ 0. (6)

Then P(Xt → 0) = 0.

Proof. Let an = 22n and define the following sequences of events. Firstly, letting
sn denote 2n

√
4B2

∑∞
t=an+1

1
t2 ,

An =
{
Xan+1

> sn
}

(7)

and
A′n = An ∨ {∃t ∈ [an, an+1] s.t. Xt ≥ b} , (8)

which tell us that at some point after time an, but not after an+1, the value of
Xt isn’t very small and secondly

Bn = {Xt < b∀t ≥ an} . (9)

This event is useful because it is implied by convergence to 0 and tells us that
Equation 6 can be applied.
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We will show that two properties hold. Firstly that P(A′n ∧ Bn ∧ {Xt →
0}) ≤ 2−2n and secondly that P(A′n|Fan) ≥ 2/5 for all sufficiently large n.

From the second of these properties, and the fact that A′n is Fan+1
measur-

able, it is immediate by the argument of the Borel-Cantelli Lemma that, almost
surely, A′n occurs infinitely often (i.o.) i.e. for infinitely many n. From this
and the fact that Xt → 0 =⇒ (Bn∀n sufficiently large) we can deduce the
following

P(Xt → 0) = P(Bn ∧ {Xt → 0}∀n sufficiently large) (10)
= P((A′n ∧Bn ∧ {Xt → 0}) i.o.) (11)
≤ P(∃n > m s.t. A′n ∧Bn ∧ {Xt → 0}) (12)

≤
∞∑
n=m

P(A′n ∧Bn ∧ {Xt → 0}). (13)

It is immediate from the first fact that this sum is convergent, and thus it must
converge to zero as m→∞, but m was arbitrary so P(Xt → 0) = 0.

We now prove the first property. Note that if Bn occurs then A′n can only
occur if An occurs. Thus P(A′n ∧Bn ∧ {Xt → 0}) ≤ P(Bn ∧ {Xt → 0}|An). To
see this is small, we consider an augmentation of Xt given by

Yt =

{
Xt t ≤ an+1

Yt−1 + (Xt −Xt−1)− E[Xt −Xt−1] t > an+1.
(14)

Note that this process is a martingale (for t > an+1), i.e. E[Yt+1|Ft] = Yt for
all t > an+1, and that if Bn occurs then Yt ≤ Xt for all t (by Equation 6). As
Y is a martingale E[Yt|Fan+1

] = Yan+1
. Furthermore we can compute as follows

Var(Yt|Fan+1
) = E[(Yt − Yan+1

)2|Fan+1
] (15)

= E[(

t−1∑
r=an+1

Yr+1 − Yr)2|Fan+1 ] (16)

= E[

t−1∑
r=an+1

t−1∑
s=an+1

(Yr+1 − Yr)(Ys+1 − Ys)|Fan+1 ] (17)

=

t−1∑
r=an+1

t−1∑
s=an+1

E[(Yr+1 − Yr)(Ys+1 − Ys)|Fan+1
]. (18)

As Y is a martingale we have that this final expectation is zero unless r = s.
To see this assume WLOG that r > s and note that

E[(Yr+1 − Yr)(Ys+1 − Ys)|Fan+1 ] = E[E[(Yr+1 − Yr)(Ys+1 − Ys)|Fr]|Fan+1 ]
(19)

= E[E[(Yr+1 − Yr)|Fr)(Ys+1 − Ys)|Fan+1
]
(20)

= E[0(Ys+1 − Ys)|Fan+1 ] (21)
= 0. (22)
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Putting these together, along with the fact that Yr+1−Yr ≤ 2B/r (which follows
from the similar bound on difference in X), we get that

Var(Yt|Fan+1) =

t−1∑
r=an+1

E[(Yr+1 − Yr)2|Fan+1 ] (23)

≤ 4B2
∞∑

r=an+1

r−2. (24)

Thus, for all t ≥ an+1, by Chebyshev’s inequality,

P(Yt < 0|An) ≤ P(|Yt − Yan+1
|>Yan+1

|An) (25)

≤ P
(
|Yt − Yan+1

|>sn|An
)

(26)

≤
Var(Yt|Fan+1)

s2
n

(27)

≤ 2−2n. (28)

Whilst by the final property if Bn occurs and Xt → 0 then Yt < η for all
sufficiently large t for all η > 0. Thus P(Bn ∧ {Xt → 0}|An) ≤ 2−2n and
P(A′n ∧Bn ∧ {Xt → 0}) ≤ 2−2n.

We now prove that P(A′n+1|Fan+1
) ≥ 2/5 for sufficiently large n, where

we have replaced n by n + 1 for convenience. We again define Yt exactly as
for the previous property and note again that it is a martingale and that, for
t ≥ an+1, 4B2/t2 ≥ Var(Yt+1|Ft) ≥ ε/t2. Thus we can apply the martingale
central limit theorem (Hall and Heyde, 1980, Theorem 5.4) to conclude that,
setting σ2

n = Var(Yan+1
− Yan |Fan), the distribution conditioned on Fan+1

of
(Yan+2 − Yan+1)/σn+1 converges to a standard normal distribution as n → ∞.
Let Z have a standard normal distribution.

P(Yan+2
> sn+1)

=P((Yan+2
− Yan+1

)/σn+1 > (sn+1 − Yan+1
)/σn+1)

=P((Yan+2
− Yan+1

)/σn+1 > (sn+1 −Xan+1
)/σn+1)

≥P((Yan+2
− Yan+1

)/σn+1 > sn+1/σn+1)

→P(Z > lim
n→∞

sn+1/σn+1)

=P(Z > 0) =
1

2

Where the limit in the probability was zero because sn+1 = O(2n+1−3·2n+1

)
and σn+1 = Ω(2−3·2n). Finally note that, Xt ≥ Yt for all t ≤ an+2 unless the
event {∃an+1 ≤ t ≤ an+2s.t.Xt ≥ b} occurs. So for sufficiently large n either
{∃an+1 ≤ t ≤ an+2s.t.Xt ≥ b} or, with probability at least 2/5, An+1 occurs.
Therefore, for sufficiently large n, P(A′n+1|Fan+1) ≥ 2/5 and the proof is com-
plete.

Theorem 6. Let A be an agent that plays the Repellor Problem, explores in-
finitely often, and updates its Q-values with a learning rate αt that is constant
across actions, and let πt and Qt be A’s policy and Q-function at time t. Assume
also that for j 6= i, if πt(ai), πt(aj) both converge to positive values, then

πt(ai)− πt(aj)
Qt(ai)−Qt(aj)

→
a.s.
∞ (2)
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as t→∞. Then πt almost surely does not converge as t→∞.

Proof. We first need to establish the fact that (1/3, 1/3, 1/3) is the only strongly
ratifiable policy. First, if π(aj) ≤ 1/4 for some j then E [R(ai, π)] = π(ai+1). It
is easy to see that for this reward function, there is no strongly ratifiable policy
other than the symmetric (1/3, 1/3, 1/3).

The other case of π(aj) > 1/4 for all j is harder. Finding strongly ratifiable
policies in this range gives rise to the following system of polynomial equations,
constrained to p1, p2, p3 ∈ [1/4, 1]:

p1 + 4 · 133p2

(
p1 −

1

4

)(
p2 −

1

4

)(
p3 −

1

4

)
= x

p2 + 4 · 133p3

(
p1 −

1

4

)(
p2 −

1

4

)(
p3 −

1

4

)
= x

p3 + 4 · 133p1

(
p1 −

1

4

)(
p2 −

1

4

)(
p3 −

1

4

)
= x

p1 + p2 + p3 = 1

Although this is non-trivial, it can be solved by computer algebra system.3 For
completeness, we would like to give a more human argument here. Consider the
simpler system

p1 +Kp2 = p2 +Kp3 = p3 +Kp1 (29)
p1 + p2 + p3 = 1 (30)

Note that for p1, p2, p3 to satisfy the original system of equations, it has to
satisfy the above system of equations for a particular K > 0. It turns out that
even without knowing K, the unique solution to this equation system is the
symmetric p1 = p2 = p3. To prove this, assume that the three are not the same.
WLOG we can assume that p1 is among the maxima of {p1, p2, p3}. Then we
can distinguish two cases: First, imagine that p1 ≥ p2 ≥ p3, where at least one
of the two inequalities is strict. Then because K > 0, it is p1 +Kp2 > p2 +Kp3,
contradicting the first equality in line 29. Second, imagine that p1 ≥ p3 ≥ p2,
where at least one of the inequalities is strict. Then it is p2 +Kp3 < p3 +Kp1,
contradicting the second equality in line 29. In conclusion, it must be p1 = p2 =
p3 as claimed.

Now that we have shown that (1/3, 1/3, 1/3) is the only strongly ratifiable
policy, we can conclude by Theorem 2, that πt almost surely does not converge
to any policy other than (1/3, 1/3, 1/3). It now only remains to show that πt
almost surely does not converge to (1/3, 1/3, 1/3).

To show that πt cannot converge to (1/3, 1/3, 1/3), we will analyze the his-
tory of what we will call relative (empirical) Q-values, which we will denote by
Dt(aj , ai) = Qt(aj)−Qt(ai). In order to converge to (1/3, 1/3, 1/3), the relative
Q-values must all converge to 0. In particular, it has to be

Xt :=
∑

ai,aj :i<j

|Dt(aj , ai)| → 0, (31)

3For example, in Mathematica, the following code identifies the unique solu-
tion (1/3, 1/3, 1/3): Solve[(4*13ˆ3) * p1 * ((p1-1/4)*(p2-1/4)*(p3-1/4)) + p2 ==
(4*13ˆ3) * p2 * ((p1-1/4)*(p2-1/4)*(p3-1/4)) +p3 == (4*13ˆ3) * p3 * ((p1-1/4)
* (p2-1/4)*(p3-1/4)) + p1 && p1+p2+p3==1 && p1>=1/4 && p2>=1/4 && p3>=1/4,
p1,p2,p3]
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as t→∞.
We will show, however, that these values almost surely do not converge to

0 if the policies converge to (1/3, 1/3, 1/3). Roughly, we show that when the
relative Q-values are close to 0 and the agent acts according to a policy that is
close to (1/3, 1/3, 1/3), the Q-values will in expectation be updated toward the
action that is currently most likely to be taken. Thus for large enough t, Xt

will always increase in expectation. With some other easy-to-verify properties
of Xt, we can then apply Lemma 13, which gives us that almost surely the Xt

do not converge to 0 as t→∞.
In order to prove that E [Xt | Ft−1] − Xt−1 > 0 for large enough t and

assuming Xt is close to 0 and πt close to (1/3, 1/3, 1/3), let a∗ ∈ arg maxa πt(a).
Because of stochasticity of the rewards and by line 2, it is πt(a∗) > 1/3 for large
enough t. Further, let a− ∈ arg mina πt(a). It is πt(a−) ≤ 1/3. Finally, let
ε = πt(a

∗)− πt(a−).
The Xt − Xt−1 can be seen as the sum of three differences |Dt(aj , ai)| −

|Dt−1(aj , ai)|. We start with the difference for a∗ and a−. It is

E
[
|Dt(a

∗, a−)| | Ft−1

]
− |Dt−1(a∗, a−)|

= αt
(
E [R(a∗, πt)]− E

[
R(a−, πt)

])
− αt

(
Qt−1(a∗)−Qt−1(a−)

) (32)

Now, assuming that π is close enough to (1/3, 1/3, 1/3) that π(aj) ≥ 1/4+1/13
for all j, it is

E [R(a∗, πt)]− E
[
R(a−, πt)

]
(33)

= π(a∗+1)− π(a−+1) + (π(a∗)− π(a−)) · 4 · 133
∏
j

(
π(aj)−

1

4

)
(34)

≥ −ε+ 4ε (35)

It is left to estimate the other summands in the expectation of Xt −Xt−1.
Consider any pair of actions ai, aj with i > j. Because |Dt(ai, aj)| = |Dt(aj , ai)|,
we can assume WLOG that Qt−1(ai) > Qt−1(aj), which for large enough t also
means πt(ai) > πt(aj). Thus, by similar reasoning as before,

E [|Dt(ai, aj)| | Ft−1]− |Dt−1(ai, aj)|
= αt (E [R(ai, πt)]− E [R(aj , πt)])− αt (Qt−1(ai)−Qt−1(aj)) .

(36)

and
E [R(ai, πt)]− E [R(aj , πt)] ≥ −ε. (37)

Thus, overall for large enough t we have

E [Xt | Ft]−Xt−1 (38)

≥ αtε− αt

 ∑
ai,aj :i<j

Qt−1(ai)−Qt−1(aj)

 (39)

By line 2, ε outgrows the differences in Q-values and therefore this term will be
positive for all large enough t, as claimed.
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E Proof of Theorem 7
Theorem 7. Assume that there is some sequence of random variables (εt ≥ 0)t
s.t. εt →

t→∞ a.s.
0 and for all t ∈ N it is∑

a∗∈arg maxaQt(a)

πt(a
∗) ≥ 1− εt. (4)

Let PΣ
t → pΣ with positive probability as t → ∞. Then across all actions

a ∈ supp(pΣ), qa(a) is constant.

Proof. Consider any a ∈ supp(pΣ) that is played with positive frequency. Be-
cause exploration goes to zero, almost all (i.e. frequency 1) of the time that
a is played must be from πt playing a with probability close to 1. Therefore,
whenever PΣ

t →
t→∞

pΣ it is

Qt(a) →
t→∞ a.s.

qa(a). (40)

Thus qa(a) must be constant across a ∈ supp(pΣ), since otherwise the actions
with lower values of qa(a) could not be taken in the limit.

F Proof of Theorem 8
Theorem 8. Same assumptions as Theorem 7. If |supp(pΣ)| > 1 then for all
a ∈ supp(pΣ) there exists a′ ∈ A s.t. qa(a′) ≥ qa(a).

Proof. Let |supp(pΣ)| > 1 and suppose that ∃a ∈ supp(pΣ) s.t.

∀a′ ∈ A− {a} : qa(a′) < qa(a). (41)

Policies close to πa are almost surely played infinitely often. Every time T this
happens we have that QT (a) ≥ QT (a′) for all a′ ∈ A − {a}. Now it is easy
to see that if 41 holds, then there is a K s.t. every such time T , there is a
chance of at least K that for all t ≥ T it is Qt(a) > Qt(a

′) for all a′ ∈ A− {a}.
Hence almost surely supp(pΣ) = {a}, which contradicts the assumption that
|supp(pΣ)| > 1.

G Proof of Theorem 9
Theorem 9. Same assumptions as Theorem 7. Let U be the Q-value qa(a)
which (by Theorem 7) is constant across a ∈ supp(pΣ). For any a′ ∈ A −
supp(pΣ) that is played infinitely often, let frequency 1 of the exploratory plays
of a′ happen when playing a policy near elements of {πa | a ∈ supp(pΣ)}. Then
there is a ∈ supp(pΣ) such that qa(a′) ≤ U ; or it is qa′(a′) < U .

Proof. Suppose there is an a′ ∈ A − supp(pΣ) for which both are false, i.e.
qa(a′) > U for all a ∈ supp(pΣ), and qa′(a′) ≥ U . Frequency 1 of the time that a′
is played is when the policy is near an element of {πa | a ∈ supp(pΣ)∪{a′}}, and
soQt(a′) converges to some convex combination of qa(a′) for a ∈ supp(pΣ)∪{a′}.
Therefore, in the limit Qt(a′) is bigger than U . But that is inconsistent with a′
being played with frequency 0.
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Figure 2: The upper figure plots the probability of Softmax converging to the
mixed strategy in Death in Damascus given βn = n−α against α. More accu-
rately it is a plot of the fraction of runs which assigned a Q-value of at least
5.5 to the action of going to Aleppo after 5000 iterations. These are empiri-
cal probabilities from 20,000 runs for every α that is a multiple of 0.025 and
510,000 for each α that is a multiple of 0.005 between 0.5 and 0.55. Notice the
“kink” at α = 0.5. Based on our experiments, this kink is not an artefact and
shows up reliably in this kind of graph. The bottom figure shows how the action
probabilities evolve over time for a single run (chosen to converge to the mixed
strategy) for α = 0.3.
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Figure 3: This figure shows five runs of a softmax agent in LARPS, and plots
π(arock) against the total number of episodes played. The agent’s Q-values are
the historical mean rewards for each action, and βt = 1/ log t.

Figure 4: The dynamics of LARPS.
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Figure 5: This figure shows five runs of an ε-Greedy agent in LARPS, and plots
the proportion of past episodes in which the agent played “rock” against the
total number of episodes played. The agent’s Q-values are the historical mean
rewards for each action, and its ε-value is 0.01.
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