Introduction

- Proper scoring rules can be used to incentivize experts or train models to accurately report beliefs.
- Contrary to the standard setup, we consider a case in which the reported prediction influences the outcome of the prediction.
- E.g., public predictions about whether there will be a bank run can themselves influence whether there will be a bank run.
- We show that in this setting, reports maximizing expected score generally do not reflect an expert’s beliefs.
- We give bounds on the inaccuracy of such reports.
- For binary predictions, if the influence of the expert’s prediction on the outcome is bounded, there are scoring rules that make optimal reports arbitrarily accurate.
- However, this is impossible for predictions over more than two outcomes.
- By choosing the right machine learning setup, models can be trained to make honest predictions.

Problem setting

- Special case of performative prediction (Perdomo et al., 2020).
- Expert reports prediction \(p \in \Delta([N]) \).
- Outcome is sampled using distribution/belief \(q = f(p) \in \Delta([N]) \).
- Expert is scored according to \(S(p, q) \) for strictly proper scoring rule \(S \).
 - A prediction \(p^* \) is performatively optimal if it maximizes \(S(p, f(p)) \) w.r.t. \(p \).
 - A prediction \(p^* \) is a fixed point if \(f(p^*) = p^* \).

- Assume the expert reports performative optima.
- We treat fixed points as honest predictions since fixed points equal experts’ beliefs after the prediction has been made.

Application to AI safety

- Oracles AIs – AIs that only make predictions – have been proposed as a safe AI design (Armstrong et al., 2012; Armstrong, 2013; Bostrom, 2014, Ch. 10).
 - Simple objective
 - Realistic – could be based on LLMs
 - Sufficient for some tasks
 - Non-agentic: does not try to achieve goals in the world
- Question for our project: If the oracles’ predictions influence the world, does it have incentives to do so?

Proper scoring rules

- A scoring rule maps a prediction \(p \in \Delta([N]) \) and an outcome \(y \) onto a score \(S(p, y) \):
 - Example 1: Quadratic (a.k.a. Brier) scoring rule (in the binary prediction case):
 \[S(p, y) = y(1-p)^2 + (1-y)p^2 \]
 - Example 2: Logarithmic scoring (a.k.a. cross-entropy loss):
 \[S(p, y) = (1-y)\log(p) + y \log(1-p) \]
- A scoring rule is strictly proper if for any given \(q \), \(S(p, q) \) is uniquely maximized at \(p=q \).

Preferences over fixed points

- Proposition 4: Extreme points are favored over points in the convex hull.
- Which outcomes are favored depends on the scoring rule (cf. Shi et al 2009).

Bounds

- Theorem 3 & 4 (binary prediction version; see paper for general bounds): Assume \(f \) is L-Lipschitz, define \(G(p) := S(p, p) \) and assume \(G \) is twice differentiable. Let \(p \) be a performance optimum and \(p^* \) be a fixed point. Then
 \[\text{Inaccuracy: } |p - f(p)| \leq L \cdot G(p) \]
 \[\text{Distance from fixed points: } |p - p^*| \leq \frac{L \cdot G(p)}{(1-L)G'(p)} \text{ assuming } L < 1 \]
- Theorem 5 & 7: The bounds can be made arbitrarily small using exponential scoring rules but only in the binary prediction case. In higher dimensions, the bounds cannot be made arbitrarily small.

Fixed points via ML methods and alternative notions of rationality

- What would happen in ML training? (Now \(f(p) \) is a ground truth distribution.)
- Repeated gradient ascent: \(p^{k+1} = p^* + \alpha \Delta_{\text{LLM}} f(p^k, S(p^k, y)) \).
- Proposition 2: Repeated gradient ascent leads to fixed-point predictions [cf. Perdomo et al., 2020].
- Similar results for online learning, no-regret learning, prediction markets.
- These settings hopefully lead to safer oracles since they don’t incentivize optimizing \(f(p) \).

Related work

- Our setting could be considered a special case of performative prediction (Perdomo et al., 2020).
 - Performative prediction focuses on arbitrary model classes and on minimizing a given loss function.
 - We instead take a mechanism design perspective, asking which scoring rules incentivize honest predictions. Honesty and inaccuracy only make sense in our probabilistic prediction setting.
- Other related fields: Scoring rules, decision scoring rules and decision markets, epistemic decision theory, honest and truthful AI.