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Abstract

We consider a setting in which a principal faces a decision and asks an external expert for
a recommendation as well as a probabilistic prediction about what outcomes might occur if
the recommendation were implemented. The principal then follows the recommendation and
observes an outcome. Finally, the principal pays the expert based on the prediction and the
outcome, according to some decision scoring rule. In this paper, we ask the question: What
does the class of proper decision scoring rules look like, i.e., what scoring rules incentivize
the expert to honestly reveal both the action he believes to be best for the principal and the
prediction for that action? We first show that in addition to an honest recommendation,
proper decision scoring rules can only incentivize the expert to reveal the expected utility of
taking the recommended action. The principal cannot strictly incentivize honest reports on
other aspects of the conditional distribution over outcomes without setting poor incentives
on the recommendation itself. We then characterize proper decision scoring rules as ones
which give or sell the expert shares in the principal’s project. Each share pays, e.g., $1 per
unit of utility obtained by the principal. Owning these shares makes the expert want to
maximize the principal’s utility by giving the best-possible recommendation. Furthermore,
if shares are offered at a continuum of prices, this makes the expert reveal the value of
a share and therefore the expected utility of the principal conditional on following the
recommendation. We extend our analysis to eliciting recommendations and predictions
from multiple experts. With a few modifications, the above characterization for the single-
expert case carries over. Among other implications, this characterization implies that in
generic mechanisms no expert should be able to “short-sell” shares in the principal’s project
and thereby profit if the project goes poorly.

1 Introduction

Consider a firm that is about to make a major strategic decision. It wishes to maximize the expected
value of the firm. It hires an expert to consult on the decision. The expert is better informed than
the firm, but it is commonly understood that the outcome conditional on the chosen course of action
is uncertain even for the expert. The firm can commit to a compensation package for the expert;
compensation can be conditional both on the expert’s predictions and on what happens (e.g., in
terms of the value of the firm) after a decision is made. (The compensation cannot depend on
what would have happened if another action had been chosen.) The firm cannot or does not want
to commit to an arbitrary mapping from expert reports to actions: once the report is made, the
firm will always choose the action that maximizes expected value, according to that report. What
compensation schemes will incentivize the expert to report truthfully? One straightforward solution
is to give the expert a fixed share of the firm at the outset. Are there other schemes that also reward
accurate predictions? What compensation schemes are effective if the firm can consult multiple
experts?

Our approach to formalizing and answering these questions is inspired by existing work on
eliciting honest predictions about an event that the firm or principal cannot influence. In the single-
expert case, such elicitation mechanisms are known as proper scoring rules (Brier, 1950; Good, 1952,
Section 8; McCarthy, 1956; Savage, 1971; Gneiting and Raftery, 2007). Formally, a scoring rule for



prediction s takes as input a probability distribution P̂ reported by the expert, as well as the actual
outcome ω, and assigns a score or reward s(P̂ , ω). A scoring rule s is proper if the expert maximizes
his1 expected score by reporting as P̂ his true beliefs about how likely different outcomes are. The
class of proper scoring rules has been characterized in prior work [e.g., Gneiting and Raftery, 2007,
Section 2]. This characterization also provides a foundation for the design of proper scoring rules that
are optimal with respect to a specific objective and potentially under additional constraints (Osband,
1989; Neyman, Noarov, and Weinberg, 2020; Hartline et al., 2020). Work on proper scoring rules
has also contributed to work on eliciting information from multiple experts via so-called prediction
markets [e.g., Hanson, 2003; Pennock and Sami, 2007]. For example, in a market scoring rule, agents
successively update the probability estimate, and an agent that updated the estimate from P̂t to
P̂t+1 is eventually rewarded s(P̂t+1, ω) − s(P̂t, ω). Alternative designs, which resemble real-world
securities markets, let experts trade Arrow-Debreu securities that each pay out a fixed amount –
say, $1 – if a given event happens, and $0 otherwise. Then, at any point, the price at which this
security trades can be seen as the current market consensus of the probability that the event takes
place. There is a close correspondence between Arrow-Debreu securities markets and market scoring
rules (Hanson, 2003; Hanson, 2007; Pennock and Sami, 2007, Section 4; Chen and Pennock, 2007;
Agrawal et al., 2009; Chen and Vaughan, 2010).

Contributions In this paper, we derive a similar characterization of what we call proper decision
scoring rules – scoring rules that incentivize the expert to honestly report the best available action
in addition to making an honest prediction. We introduce our setup and the concept of propriety in
detail in Section 2. We show that proper decision scoring rules cannot give the expert strict incen-
tives to report any properties of the outcome distribution under the recommended action other than
its expected utility (Section 3). Intuitively, rewarding the expert for getting anything else about the
distribution right will make him recommend actions whose outcome is easy to predict as opposed to
actions with high expected utility. Hence, the expert’s reward can depend only on the reported ex-
pected utility for the recommended action. Next we show that the scoring rule must be affine. Using
these results, we then obtain four characterizations of proper decision scoring rules (Section 5), two
of which are analogous to existing results on proper affine scoring, including the characterizations
of proper scoring rules by Gneiting and Raftery (2007) and the generic characterization of proper
affine scoring rules by Frongillo and Kash (2014). One of the other two characterizations (Theo-
rem 5.6, which we have not seen anywhere in this form for affine scoring), has an especially intuitive
interpretation: the principal offers shares in her project to the expert at some pricing schedule. The
price schedule does not depend on the action chosen. Thus, given the chosen action, the expert is
incentivized to buy shares up to the point where the price of a share exceeds the expected value of
the share, thereby revealing the principal’s expected utility. Moreover, once the expert has some
positive share in the principal’s utility, he will be (strictly) incentivized to recommend an optimal
action. In Section 7, we discuss the implications of our characterization for mechanism for eliciting
decision-relevant mechanisms from multiple experts. Finally, we discuss related work in Section 8.

2 Setup

Throughout most of this paper, we consider the following setup.
A principal faces a choice from a finite set A of at least two actions. Decisions stochastically give

rise to outcomes from a finite set Ω. The principal would like to choose an action that maximizes
the expectation of a utility function u : Ω → R. Before making a choice, she privately observes the
value of an evidence variable E, which has values in some finite, non-empty set H. The principal

1Following convention, the principal is grammatically female (pronouns “she/her/hers”) and the expert is gram-
matically male (pronouns “he/him/his”) throughout this paper.



knows neither the distributions over Ω arising from any a ∈ A, conditional on any e ∈ H, nor the
distribution of E.

To make a choice, the principal consults an expert. The expert does have probabilistic beliefs.
Specifically, he believes E to be distributed according to some Q ∈ ∆(H). Furthermore, for each
e ∈ H and a ∈ A, he believes that the outcome will be distributed according to P (· | e, a) ∈ ∆(Ω) if
e is observed and action a is taken.

The principal asks the expert for a report α ∈ AH . We will call this the expert’s recommendation.
The principal’s intention is for the expert to report α such that for all e, α(e) maximizes the
principal’s utility given the expert’s belief P , i.e.,

α(e) ∈ arg max
a∈A

E [u(O)] :=
∑
ω∈Ω

P (ω | a, e)u(ω). (1)

for all e ∈ H. We call such recommendations α honest. However, the expert can report any α ∈ AH ;
the principal is not able to directly determine whether a submitted recommendation is honest.

The principal further asks the experts to report a conditional outcome prediction P̂α ∈ ∆(Ω)H .
The principal’s intention is for the expert to report P̂α s.t. for all e ∈ H,ω ∈ Ω,

Pα(ω | e) = P (ω | e, α(e)).

We analogously call this the honest prediction for the recommendation α. Note that a prediction
can only be honest relative to a recommendation and that honesty is defined even for dishonest rec-
ommendations. Again, the expert can submit any P̂α ∈ ∆(Ω)H and the expert cannot immediately
determine whether the prediction is honest.

Further, the principal asks the expert for an evidence prediction Q̂ ∈ ∆(H). The principal’s
intention is for the expert to honestly report Q̂ = Q, though again the principal cannot directly
verify honesty.

Once the expert has submitted his report (α, P̂α, Q) and the principal observes E = e ∈ H, the
principal chooses the recommended action α(e). He then observes an outcome ω.

To incentivize the expert to report honestly, the principal rewards the expert using a decision
scoring rule (DSR) s : ∆(H)×∆(Ω)H ×H × Ω → R, which maps the expert’s evidence prediction
Q̂, conditional outcome prediction P̂α, the true evidence e, and the true outcome ω onto a score
s(Q̂, P̂α, e, ω).

The question we ask in this paper is what DSRs incentivize the expert to report honestly. We
define this formally as follows.

Definition 1. We say that a DSR s is proper if for all beliefs P (· | ·, ·) ∈ ∆(Ω)H×A and all possible
recommendations α̂ ∈ AH and predictions P̂α ∈ ∆(Ω)H we have

EE∼Q,O∼P
[
s(P̂α, E,O) | E, α̂(E)

]
≤ EE∼Q,O∼P [s(Q,Pα∗ , E,O) | E,α∗(E)]

for some honest recommendation α∗.

Our goal is to to characterize proper DSRs. However, while this propriety implies that the expert
has no bad incentives, it does not require that the expert has any good incentives. For example, any
constant s is proper. We might therefore be interested in the structure of strictly proper DSRs, i.e.,
ones where inequality 1 is strict unless (α̂, Q, Pα) is an honest report. As we will see (Lemma 3.3),
no DSR is strictly proper in this sense. In the following we therefore define partially strict versions
of propriety.

Definition 2. We say that a proper s is strictly proper w.r.t. the recommendation if for all beliefs
P (· | ·, ·) ∈ ∆(Ω)H×A, Q ∈ ∆(H) and all possible reports (α, Q̂, P̂α) with dishonest recommendation
α, there exists an honest report (α∗, Q, Pα∗) s.t.

EE∼Q,O∼P
[
s(P̂α, E,O) | E, α̂(E)

]
< EE∼Q,O∼P [s(Pα∗ , E,O) | E,α∗(E)] .



Example 1 (Linear scoring rules). Let c ∈ RH≥0. Then s : (Q,Pα, e, ω) 7→ ceu(ω) is proper. If
furthermore, ce > 0 then s is strictly proper w.r.t. the recommendation for e.

A natural interpretation of this DSR is that the principal gives the experts fixed numbers of
shares in her project that pay, say, $1 per unit of utility obtained by the principal if a particular
evidence e is observed.

Definition 3. We say that a proper s is strictly proper w.r.t. the evidence distribution if for all
beliefs P (· | ·, ·) ∈ ∆(Ω)H×A and all possible reports (α, Q̂, P̂α) with Q̂ 6= Q, there exists an honest
report (α∗, Q, Pα∗) s.t.

EE∼Q,O∼P
[
s(P̂α, E,O) | E, α̂(E)

]
< EE∼Q,O∼P [s(Pα∗ , E,O) | E,α∗(E)] .

Example 2 (Brier’s (1950) scoring rule for evidence prediction). Consider the scoring rule

s(Q̂, P̂α, e, ω) = 2Q̂(e)−
∑
e′∈H

Q̂(e′)2.

This is Brier’s quadratic scoring applied for scoring Q̂ as a prediction of e. It can be shown that s
defined in this way is proper and strictly proper w.r.t. the evidence prediction. (In fact any strictly
proper scoring rule for prediction (as defined and characterized by, e.g., Gneiting and Raftery, 2007,
Section 2) is strictly proper w.r.t. the evidence prediction when transferred in this way.) Of course,
it is not strictly proper w.r.t. anything else, because the score does not depend on Pα, ω at all.

We could combine Examples 1 and 2 to obtain a DSR that is proper and strictly proper w.r.t.
recommendations and evidence predictions. The next example illustrates the troubles that arise
when we aim for an analogous strict propriety w.r.t. the outcome prediction. (As noted above, we
will show in Section 3 that these troubles cannot be overcome.)

Example 3 (Misapplying Brier’s (1950) scoring rule for outcome prediction). For simplicity, imagine
that H = {e} and we use the following scoring rule

s(Q̂, P̂α, e, ω) = 2P̂α(ω)−
∑
ω′∈Ω

P̂α(ω′)2.

Once again, this is Brier’s scoring rule. However, this time it is applied to the submitted outcome
prediction. Again it can be shown that to maximize his expert score, the expert has to submit
P̂α = Pα honestly. Nevertheless, a DSR s defined in this way is not proper, because to maximize
his expected score, the expert has to recommend an action α(e) s.t. the true distribution Pα(e) is
easy to predict (in the sense of having a high Brier score under honest prediction). For instance,
suppose that Ω = {ω1, ..., ωm}, that the optimal action a∗ leads to the uniform distribution Oa∗ =
1
m ∗ ω1 + ... + 1

m ∗ ωm, while a′ leads to a bad outcome deterministically, Oa′ = 1 ∗ ω1. Then the
expert will (assuming m > 1) always prefer recommending the suboptimal a′, since

E
[
s(Q̂, Pa′ , E,Oa′)

]
= 1 >

1

m
=

2

m
−
∑
w′∈Ω

1

m2
= E

[
s(Q̂, Pa∗ , E,Oa∗)

]
.

Definition 4. We say that s is strictly proper w.r.t. the means if it is proper and for all beliefs P,Q
and all reports (α,Q, P̂α) with honest evidence prediction for which there is e with

EO∼P̂α [u(O) | e] 6= EO∼P [u(O) | e, α(e)] ,

the report (α,Q, Pα) with honest conditional outcome prediction Pα,

EE∼Q,O∼P
[
s(Q, P̂α, E,O) | E, α̂(E)

]
< EE∼Q,O∼P [s(Pα∗ , E,O) | E,α∗(E)] .



3 Only means matter

Next, we prove that if a DSR is to be proper, it can only strictly incentivize the expert to be honest
about the optimal (recommended) actions and the expected utility of those recommended actions.
That is, proper scoring rules can be strictly proper w.r.t. the recommendation, the means and the
evidence prediction, but nothing else. For example, proper scoring rules cannot strictly incentivize
the expert to honestly reveal the variance of the utility given that the recommended action is taken.
First, we need two simple lemmas.

Lemma 3.1. If s is proper, then EE∼Q,O∼Pα [s(Q,P,E,O)] is continuous in P,Q in the set of P,Q
with full support.

Lemma 3.2. Let s be a proper DSR and Pα, P
′
α′ ∈ ∆(Ω)H be s.t. for all e ∈ H

min
ω∈Ω

u(ω) < EO∼Pα [u(O) | e] = EO∼P ′
α′

[u(O) | e] < max
ω∈Ω

u(ω). (2)

Then
EE∼Q,O∼Pα [s(Q,Pα, E,O)] = EE∼Q,O∼Pα′ [s(Q,Pα′ , E,O)] . (3)

It is worth noting that the proof is based on the lack of “space” in the set R of possible scores.
We could imagine experts who maximize a lexicographic score. Then our result only shows that the
lexically highest value of the scores – under honest reporting – of two equally good recommendations
must be the same. But the lexically lower values could be given according to some scoring rule
for prediction (such as the quadratic scoring rule) and thus make the expert prefer one of two
recommendations with equal expected utility for the expert.

Note also that the lemma only shows that the expected scores across realizations of E under
honest report of Pα, Pα′ are the same. For individual realizations e, the expected scores can be
different, as the following example shows.

Example 4. Define s as follows. Based on the reported Q̂, P̂α a special e∗ will be determined in a
way described below. We then let s(Q̂, P̂α, e, ω) = u(ω) for e 6= e∗ and s(Q̂, P̂α, e

∗, ω) = 2u(ω). In
the “giving shares” interpretation, explained after Example 1, the expert receives a single share and
a share that only pays for e∗. Let e∗ be selected from arg maxe EO∼P̂α [u(O) | e] Q̂(e). Importantly,

ties are broken based on P̂α, for example, by the entropy of P̂α(· | e). Note that such s is proper,
because EO∼Pα [u(O) | e]Q(e) is the value of an extra share for e to the expert. Under this proper
DSR, two different, honestly reported α, Pα and α′, Pα′ may then differ in their expected scores for
e, e′, if they both claim e, e′ to both be in the above argmax but the tie is broken differently for Pα
versus Pα′ .

We now get to the main result of the present section: aside from degenerate cases, the expert
does not change his expected score by misreporting P̂α (relative to truthfully reporting Pα), as long
as P̂α gives the accurate means and does not assign zero probability to any outcome that is in fact
possible.

Lemma 3.3. Let s be a proper DSR, Q ∈ ∆(H) and Pα, P̂α ∈ ∆(Ω)H be s.t. for all e ∈ H

min
ω∈Ω

u(ω) < EO∼Pα [u(O) | e] = EO∼P̂α [u(O) | e] < max
ω∈Ω

u(ω) (4)

and supp(Pα(· | e)) ⊆ supp(P̂α(· | e)). Then

EE∼Q,O∼Pα [s(Q,Pα, E,O)] = EE∼Q,O∼Pα
[
s(Q, P̂α, E,O)

]
. (5)

Next we show that in a proper DSR, the expert’s score can (aside from degenerate cases) only
depend on the utility of the outcome obtained, and not on the outcome itself.



Lemma 3.4. Let s be a proper DSR and ω1, ω2 ∈ Ω be two outcomes with u(ω1) = u(ω2). Let
Q ∈ ∆(H), Pα ∈ ∆(Ω)H be s.t. for all e ∈ H

min
ω∈Ω

u(ω) < EO∼Pα [u(O) | e] < max
ω∈Ω

u(ω). (6)

Further, let ω1, ω2 ∈ supp(P̂α(· | e)) for some e ∈ H. Then

s(Q,Pα, e, ω1) = s(Q,Pα, e, ω2). (7)

Because of Lemmas 3.3 and 3.4, we will therefore limit our attention in the following to scoring
rules s : ∆(Ω)×RH ×H ×R→ R that take as input a vector of reported expected utilities µ̂ ∈ RH
(instead of the full distribution P̂α) and the utility y ∈ R of the outcome obtained (instead of the
outcome ω ∈ Ω itself).

To simplify notation throughout the paper, we adopt a slightly unusual convention for reporting
the conditional means. Specifically, we take an honest report of means to be

µ̂e = µe := EE∼Q,O∼Pα [1 [E=e]u(O)] = Q(e)EO∼Pα [u(O) | e] , (8)

where we will call µe the true means. In words, we would like the expert to report for each e the
expected utility if the principal only received utility in the case that E = e. Of course, since the
expert reports both Q̂ and µ̂, we can translate a reported mean of µ̂e for e into the more traditional
notion of conditional expected utility by dividing by Q̂(e), except for the degenerate case Q̂(e) = 0.

4 Non-negative affinity

Lemma 4.1. Let s be a proper DSR. Then there are functions fY : ∆(H)×RH → RH≥0, fE : ∆(H)×
RH → RH , g : ∆(H)× RH → R, s.t. for all Q̂, µ̂, e, y,

s(Q̂, µ̂, e, y) = fY (Q̂, µ̂)ey + fE(Q̂, µ̂)e + g(Q̂, µ̂).

We are essentially claiming that s is affine in the true Q,µ – see below. Note that we could do
away with the function g and incorporate it into fE . However, below it will be useful to separate
the two.

Corollary 4.2. Let s be a proper scoring rule specified via fY , fE , g as per Lemma 4.1. Then for
all reports Q̂, µ̂ evidence variables E distributed according to Q and all means Y with true means µ,

E
[
s(Q̂, µ̂, E, Y )

]
= (fE(Q̂, µ̂), fY (Q̂, µ̂))(Q,µ) + g(Q̂, µ̂).

Note that to obtain that the expectation of s is affine in (Q,µ), it is necessary that µ follows our
convention. Without the convention, we would get a non-linear term (the products of Q(e) and the
standard expected utility of Y given e). For the rest of the paper it is essential that we can work
with linear terms.

Corollary 4.2 allows us to introduce some additional simplifying notation. For a fixed scoring
rule s with functions fY , fE , g we let f = (fY , fE) and s(Q̂, µ̂, Q,µ) := f(Q̂, µ̂)(Q,µ) + g(Q̂, µ̂),
which in turn by Corollary 4.2 is the expected score under true means µ and E ∼ Q.

5 Characterizations

So far we have established that (up to edge cases) proper decision scoring rules are affine in the true
evidence distribution Q and the true means µ. The question of characterizing affine scoring rules



Theorem 5.1

f(Q̂, µ̂)((Q,µ)− (Q̂, µ̂)) + F (Q̂, µ̂)

Theorem 5.2

f(Q̂, µ̂)((Q,µ)− (Q̂, µ̂)) +
∫ (Q̂,µ̂)

0
f(z)dz + C

Theorem 5.5

f(Q̂, µ̂)(Q,µ)− g̃(f(Q, µ̂))

Theorem 5.6

f(Q̂, µ̂)(Q,µ)−
∫
f|[0,(Q̂,µ̂]]

f−1(q)dq + C

Theorems A.3 and A.6

Theorem A.8

Theorems A.3 and A.6

Figure 1: An overview of our characterizations of proper decision scoring rules and their relations

has been considered before in different settings. In particular, Frongillo and Kash (2014) study the
question in its generic form. Also, proper scoring rules for prediction are trivially affine in the true
distribution. Thus, characterizing proper scoring rules for prediction (as done by, e.g., Gneiting and
Raftery, 2007) is another special case of characterizing proper affine scoring rules. We can therefore
apply existing ideas to characterize proper decision scoring rules. We do this in Section 5.1, obtaining
two different characterizations. In Section 5.2, we then give two other characterizations that we have
not seen in this form before. We find one of them (Theorem 5.6) to be particularly intuitive. In
Figure 1, we give an overview of our characterizations and how they are related via some of the
generic convex analysis results of Appendix A.

5.1 Characterization à la Gneiting and Raftery (2007) and Frongillo and
Kash (2014)

Theorem 5.1. Let s be a DSR. Then s is proper if and only if there exist functions f : ∆(H−i)×
RH−i → RH−i × RH−i≥0 and F : ∆(H−i)× RH−i → R s.t.

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)((Q,µ)− (Q̂, µ̂)) + F (Q̂, µ̂), (9)

where F is convex and f is a subgradient of F .

This follows directly from our affinity results in Section 4 combined with the general charac-
terization of linear scoring rules by Frongillo and Kash (2014). For completeness, we expand the
relevant parts of the proof of their result in the appendix.

As noted by Gneiting and Raftery (2007) and Frongillo and Kash (2014), we can use Theorem A.3
to obtain the following alternative characterization.

Theorem 5.2. Let s be a DSR. Then s is proper if and only if there is a cyclically monotone
increasing function f : ∆(H)× RH → RH × RH≥0, C ∈ R,b ∈ ∆(H)× RH s.t.

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)((Q,µ)− (Q̂, µ̂)) +

∫ (Q̂,µ̂)

b

f(z)dz + C. (10)

The integral here is a path integral, as discussed in Appendix A.

Example 5. We obtain the simplest proper DSR that is strict w.r.t. evidence prediction and means

by setting f(Q̂, µ̂) = (Q̂, µ̂) (and C =
∫ b

0
f(z)dz), which yields

s(Q̂, µ̂, e, y) = Q̂(e) + µ̂ey −
1

2

∑
e′∈H

Q̂(e′)2 + µ̂2
e′ .

Note that the scoring of Q̂ is exactly the Brier scoring rule of Example 2.



5.2 Offering different quantities of shares – the inverse of f as a pricing
schedule

Lemma 5.3. Let s be a proper DSR with s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)µ− g(Q̂, µ̂) for all µ̂,µ. Then for
all (Q̂1, µ̂1), (Q̂2, µ̂2), f(Q̂1, µ̂1) = f(Q̂1, µ̂2) =⇒ g(Q̂1, µ̂1) = g(Q̂1, µ̂2).

By Lemma 5.3, any DSR can be interpreted as a set of offers of getting f(Q, µ̂) shares at a
price of g(Q, µ̂). By reporting a (Q̂, µ̂), the player accepts exactly one of these offers. Instead of
having the expert report µ̂, we will imagine that the expert chooses one of the offers by choosing a
quantity q(= f(Q̂, µ̂)) ∈ im(f) of Arrow-Debreu securities in different evidence values e and shares
in the principal projects that pay conditional on different e. (The set im(f) ⊆ RH × RH≥0 is the
set of possible quantity vectors available for sale.) Of course, there may be multiple true vectors of
expected utilities µ under which the expert prefers the same quantity q. However, by Lemma 5.3,
the quantity q of shares uniquely determines the price. (If there were multiple prices, the expert
would always choose the lowest price.) We define g̃(q) = g(f−1(q)) to be the (by Lemma 5.3 unique)
price of q shares.

Lemma 5.4. Let g̃ be the quantity-price function of a proper DSR. Then g is convex.

Now for any q, f−1(q) ⊆ ∆(H) × RH is the set of true mean vectors (Q,µ) under which it is
rational for the expert to select q. Note that even if we had not defined f and had instead viewed
our scoring rule as a list of offers of q shares for a price of g̃(q), we could define f−1 as the function
that infers beliefs from the choice of q. It is left to show that f−1 must be a (set-valued) subgradient
of the pricing function g̃. This is an easy task. Notice that for all q0,q

q0f
−1(q0)− g̃(q0) ≥ qf−1(q0)− g̃(q), (11)

where in case f−1(q0) is multi-valued, the inequality should be understood as applying to each pair
of an element of the left set and and an element of the right set. This exactly expresses the property
of f−1: Whenever the true (Q,µ) is from f−1(q0), the expert (weakly) prefers buying q0 (over any
other quantity q). Now rearranging Ineq. 11 gives g̃(q) ≥ g̃(q0) + f−1(q0)(q − q0). With this, we
get the following characterization.

Theorem 5.5. Let s be a DSR. Then s is (strictly) proper if and only if there are f, g̃ s.t.

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)(Q,µ)− g̃(f(Q, µ̂)), (12)

where f : RH → RH≥0, g̃ : im(f)→ R is (strictly) convex and f−1 is a subgradient of g̃.

Theorem 5.6. Let s be a DSR. Then s is (strictly) proper if and only if there is cyclically monotone
increasing f : ∆(H)→ RH → RH × RH≥0, C,b s.t.

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)(Q,µ)−
∫
f|[b,(Q̂,µ̂]

f−1(q)dq + C. (13)

Note that this is a path integral again. Since f|[b,(Q̂,µ̂] might not be a continuous path and f−1

may not be single-valued, we need a minor extension of the notion of path integral, see Appendix A.5.
We now have a few different ways of proving this: Theorem 5.6 follows immediately from The-

orem 5.5 and Theorem A.3 (which states that up to a constant a convex function is equal to the
path integral over its subgradient). Theorem 5.6 also follows immediately from Theorem 5.2 and
Theorem A.8 (the result on the integral of the inverse). Finally, for a direct proof we could modify
our direct proof of Theorem 5.2. Roughly, instead of proving Lemma D.3, we could directly derive
the integral-of-the-inverse shape, using parts of the proof of Lemma D.3 and the beginning of the
proof of Theorem A.8 (cf. footnote 3).



6 Characterizations for special cases

6.1 Principal without private evidence (|H| = 1)

As noted in the discussion in Section 2, in most single-expert scenarios the principal would simply
reveal all her private evidence to the expert before asking the expert for a prediction. Mathematically,
this is the case where |H| = 1. We can here write DSRs as functions s : R × R → R : µ̂, y 7→
s(µ̂, y). Since functions from R → R are cyclically monotone increasing if and only if they are
monotone increasing, and because the path integral becomes the regular Riemann integral, one
of our characterizations (Theorem 5.2) becomes especially simple in that it does not require any
concepts that are beyond an introductory course in analysis:

Corollary 6.1. A DSR s(µ̂, y) for the case |H| = 1 is proper if and only if there is a monotonically
non-decreasing function f : R→ R≥0 and C ∈ R s.t.

s(µ̂, y) = f(µ̂)(y − µ̂) +

∫ µ̂

0

f(x)dx+ C.

Moreover, s is strictly proper w.r.t. the recommendation if f > 0 and strictly proper w.r.t. the mean
if and only if f is strictly monotonically increasing.

We also give the |H| = 1 version of Theorem 5.6:

Corollary 6.2. A DSR s(µ̂, y) for the case |H| = 1 is proper if and only if there is a monotonically
non-decreasing function f : R→ R≥0 and C ∈ R s.t.

s(µ̂, y) = f(µ̂)y −
∫ f(µ̂)

f(0)

f−1(z)dz + C.

Moreover, s is strictly proper w.r.t. the recommendation if f > 0 and strictly proper w.r.t. the mean
if and only if f is strictly monotonically increasing.

In terms of techniques used, this looks as innocent as Corollary 6.1. Note, however, that we do
require the extensions of Appendix A.5 for the integral to be well-defined if f is discontinuous or
not strictly increasing.

7 Multiple experts

Besides eliciting from a single expert, we are interested in designing mechanisms for eliciting infor-
mation for decision making from multiple experts, perhaps akin to real-world prediction markets.
We are here interested in generic mechanisms, that is, mechanisms that work regardless of how the
experts’ information is structured. We will show by a revelation principle-type result that such
mechanisms are characterized by proper decision scoring rules. Thus, our results (in particular, the
characterizations from Section 5) characterize generic proper mechanism for eliciting information for
decision making.

7.1 Expert information structure

Again, we consider a principal who selects from a set of actions A. After she has taken an action,
an outcome from Ω is obtained. The principal would like to select the action that maximizes the
expectation of the value of some utility function u : Ω → R. This time the principal consults n
different experts and (to keep things simple) does not have any private evidence of her own. Again,
she asks for information, then takes the best action given the information submitted and finally
rewards the experts based on the submitted information and the outcome obtained.



When it comes to the format and reporting of information, however, switching to the multi-expert
setting poses a few additional challenges compared to the single-expert setting. First, of what types
are the beliefs and reports of the experts? We do not want to simply let each expert’s beliefs be
some conditional probability distribution ∆(Ω)A again, because it would be unclear how one would
aggregate these beliefs. Again, we make use of a standard solution from the economic literature:
the common prior model.

We assume that each expert i = 1, .., n has access to a private piece of information from some set
Hi. The experts (and principal) share a common prior Q ∈ ∆(H) over H :=×i

Hi. For simplicity,
we assume that Q(e) > 0 for all e ∈ H so that the experts cannot contradict each other. We imagine
also that the experts (and principal) share a common conditional distribution P ∈ ∆(Ω)A×H , which
for any action a ∈ A and evidence vector e ∈ H specifies a probability distribution P (· | a, e) over
outcomes given that e is observed and action a is taken. As a report, each expert – after observing
ei ∈ Hi – submits êi ∈ Hi and the principal chooses an action that is best given the reported
evidence, i.e., an action from optP (ê) := arg maxa∈A EP [u(O) | ê, a].

7.2 Truthful mechanisms

In general, a mechanism for a given private information structure is a special type of game Γ of n
players in which each player observes some ei ∈ Hi, at some point an action a ∈ A is selected, and
an outcome ω ∼ P (· | e1, ..., en, a) is observed. Each player i’s payoff function can be arbitrarily
determined by Γ. We will denote it by ui (not to be confused with u, which we will continue to use
to denote the principal’s utility function).

We say that a mechanism is truthful for a given information structure if the game has a Nash
equilibrium σ s.t. in σ an optimal action (i.e., an element from arg maxa∈A EP [u(O) | e, a], where
e ∈ H is the true observed information) is selected. For strict propriety, we could add additional
restrictions. For example, for strict propriety w.r.t. evidence prediction, we could require that there
is an interpretation function that takes a trajectory of the game as an argument and in σ accurately
returns each player i’s distribution Qi(· | ei) ∈ ∆(H−i); and further require that if any player
i deviates from σi in a way that misleads the interpretation function, player i’s payoff decreases
strictly relative to σ.

Proper DSRs as characterized in this paper can be used in various ways to construct generic
truthful mechanisms. Here is one example of such a setup:

Example 6. Take proper DSRs s1, ..., sn, where si : ∆(H−i) × RH−i × H−i × Ω → R. As usual
when considering such a scoring rule, each expert i is asked to submit a recommendation function
αi : H−i → A, an evidence prediction Q̂i and a collection of means µ̂i ∈ RH−i . In addition, each
expert submits ei itself. The principal then feeds into each submitted αi the vector e−i of evidence
values submitted by the other experts. Of the resulting n recommendation, she selects one, say,
according to majority vote (with arbitrary tie-breaking), and an outcome with utility y is obtained.
Each expert i then receives the score si(Q̂i, µ̂i, e−i, y). This scoring system is proper for every
information structure, i.e., honest reporting is always a Nash equilibrium of this game.

It is also easy to come up with truthful mechanisms that score quite differently, at least in some
situations. Here is one such example:

Example 7. The information structure is as follows. There are two experts. With probability
1/2, Expert 1 observes what the best action is. Otherwise, he observes nothing. Expert 2 observes
(with probability 1) for each action a the outcome distribution P (· | a) ∈ ∆(Ω). The principal asks
both experts to report their private information. If Expert 1 submits a recommendation â ∈ A,
the principal always follows that recommendation to obtain an outcome ω. Expert 1 is paid in
proportion to u(ω), and Expert 2 is paid using the Brier score for his outcome prediction for â (cf.
Example 3). If, on the other hand, Expert 1 provides no recommendation, the principal follows



Expert 2’s recommendation and rewards him using a proper DSR for the |H| = 1 case. This
mechanism is truthful for the information structure outlined.

The example shows that if one expert reports a definitive claim that cannot be overruled by some
other expert, the principal can potentially score the latter expert in ways that do not correspond to
proper DSRs.

7.3 Proper DSRs characterize truthful mechanisms in generic situations

Definition 5. We say that an information structure is generic for i under observation of H ′−i ⊆ Hi

if player i’s private evidence can imply any distribution Qi over H ′−i and any family of distributions
(P (· | e−i, a))a,e−i .

Theorem 7.1. Let Γ in NE σ be a proper mechanism for an information structure that is generic
for i under observation of H ′−i. Then the following is a proper decision scoring rule:

∆(H−i)×∆(Ω)∆(H−i)×A ×H−i × Ω→ R : (Q̂i, P̂i, e−i, ω) 7→ ui(σ, (e−i, (Q̂i, P̂i)), ω). (14)

We now give some intuition for the core of the genericism condition above and for what the
theorem says. Intuitively, in an elicitation process it can happen that players −i honestly make
some definitive claim that they are certain cannot be overruled by whatever player i reports. If this
happens, then Theorem 7.1 does not apply and, depending on the exact nature of the definitive
information, the mechanism might be able to reward i in specific ways that violate propriety in
general, see Example 7. Our theorem applies when players −i provide information that is tentative
and leaves open (if only with small probability) that player i can hold any belief about what the
best action is and what the outcome distribution over actions is.

Of course, situations like Example 7 may well occur – that is, in some cases at least some of
the consulted experts can supply only a specific type of information and can therefore be scored in
problem-specific ways. Also, the extreme assumption of e−i leaving everything open is usually not
realistic, either. Most of the time, experts may well be able to definitely rule out various absurd
reports. Nevertheless, we find that Theorem 7.1 operates on a useful model.

7.4 Some conclusions about how to design realistic mechanisms

We can now draw conclusions from these results about what kind of characteristics any proper
mechanism for eliciting information for decision making from multiple experts must have in generic
situations. For instance, as in the single-expert case, it shows that we cannot incentivize experts to
– along with an honest recommendation – reveal anything other than the expected utility of taking
the recommended action. Further, no expert may profit from the failure of the principal’s project.
If we imagine the principal to be a firm maximizing its value, then no expert can be allowed to
short-sell shares in the firm. In the rest of this section, we consider another, multi-expert-specific,
desirable property that as a consequence of our results we cannot obtain.

We might like to reward experts in proportion to how much their report updates the principal’s
beliefs. This is one of many desirable properties of prediction markets: experts (or traders) are
rewarded based on how far they can move the market probabilities toward the truth. For example,
an expert who at any point simply agrees with the market probabilities (because he has no relevant
private information) can earn no money (in expectation). An expert who updates the market
probability for an event from, say, 0.5 to 0.1 receives a high score in expectation (assuming 0.1
represents his true beliefs over the outcome of the random event). Rewarding experts for their
impact on the market probability has many advantages. For instance, it sets an incentive to acquire
relevant information. Therefore, we might want an elicitation mechanism for decision making –
perhaps a kind of decision market (see Section 8.3) – to similarly reward experts for submitting
evidence that yields large (justified) changes in the principal’s beliefs.



However, from our results it follows immediately that a number of types of changes cannot be
rewarded at all. An expert’s score cannot depend on how much the trader’s report moves the
distributions for suboptimal actions. Experts also cannot be rewarded for changing what action is
recommended. Generally, if two pieces of information e1

i , e
2
i ∈ Hi have the same implications for

the expected utility given the best action (and make the same predictions about what evidence the
other experts submit), the expert receives the same expected score from honestly reporting e1

i and
honestly reporting e2

i . This is the case even if e1
i affects what the best action is and implies wild

changes to the distributions of all actions while e2
i does not change the principal’s beliefs at all. In

particular this implies that a generic strictly proper DSR gives positive expected rewards even to
experts i whose private evidence Ei turns out to be of no value to the principal.

How can the principal make sure that despite these impossibilities, experts with more useful
information receive higher scores? The only way out, it seems, is to reward experts based on the ex
ante value of their information. That is, pay expert i (in shares or constant reward) in proportion
to how much the principal would be willing to pay to learn Ei. One could also use the willingness
to pay given that one already knows or will know E−i. In the extreme case, one could even give a
constant score of 0 to experts whose value of information is zero. (The mechanism would then not
quite satisfy our generic notion of strict propriety anymore.) This way, obtaining Ei is incentivized
to the extent that Ei is useful to the expert.

8 Related work

8.1 Othman and Sandholm (2010)

As far as we can tell, Othman and Sandholm (2010) are the first to consider designing proper
decision scoring rules as considered in our paper. They study a simplified case in which |Ω| = 2 and
|H| = 1. Note that the two-outcome-case is special because the mean of a binary random variable
fully determines its distribution. In Section 2.3.2, they give a characterization of differentiable
proper decision scoring rules. A generalization to differentiable scoring rules s(Q̂, µ̂, Q,µ) is given
in Appendix E.

8.2 Chen, Kash, Ruberry, et al. (2014)

Chen, Kash, Ruberry, et al. (2014) also characterize scoring rules for decision making (an alternative
proof of this characterization is also given by Frongillo and Kash, 2014, Section E.1). Their setting
is more general than ours in that they allow arbitrary decision rules. That is, they allow principals
who do not choose the best action, but, for instance, randomize over the best few actions with
probabilities depending on the expert’s prediction. Randomizing over all actions in particular, even
if not uniformly, allows any proper scoring rule for mere prediction to be used to construct strictly
proper scoring rules for decision making (Chen, Kash, Ruberry, et al., 2014, Section 4).

They also characterize a much larger class of scoring rules: they merely require that the expert
honestly reports the probability distribution that the recommendation gives rise to and allow scoring
rules which strictly incentivize misreporting what the best action is. For principals who (like those in
our setting) deterministically choose the best action according to the expert’s report, their result is
especially easy to derive and understand. To elicit an honest report about the probability distribution
resulting from taking the expert’s recommended action, the principal can use any (strictly) proper
scoring rule for mere prediction (as defined and characterized by, e.g., Gneiting and Raftery, 2007,
Section 2). As an example, consider the quadratic (Brier) scoring rule (Example 3).

Chen, Kash, Ruberry, et al. (2014, Section 5) do also consider the goal of characterizing prefer-
ences over lotteries for which making the best recommendation can be incentivized. But they do not
give a characterization of proper decision scoring rules for expected utility-maximizing principals or



of what information can be extracted along with the best action.2

8.3 Decision markets

As far as we are aware, most work on eliciting decision-relevant information from multiple agents
has focused on designing prediction-market-like mechanisms or “decision markets” (as opposed to
considering the class of direct-revelation mechanisms discussed in this paper) (e.g. Berg and Rietz,
2003; Hanson, 1999, 2002, 2006, 2013, Section IV). Othman and Sandholm (2010, Section 3) are
the first to point out incentive problems with this model. Our impossibility results can be seen as
an extension of their result (though we have limited attention to mechanisms which guarantee full
information aggregation, which may not a be a primary goal for the design of decision markets).
Inspired by Othman and Sandholm’s proof that decision markets sometimes set poor incentives,
Teschner, Rothschild, and Gimpel (2017) conduct an empirical study in which human subjects took
the roles of the experts (or “traders”) to show that strategic reporting may not be a problem in
decision markets in practice. Chen et al. (2011; 2014) show that by randomizing over all actions
(potentially with a strong bias toward the optimal action) decision markets can, in some sense, be
made to be analogous to prediction markets.

8.4 Direct elicitation of properties

Typically, when designing scoring rules for prediction (without the recommendation component)
the goal is to elicit entire probability distributions over outcomes. But a recent line of work has
explored the direct elicitation of particular properties of the distribution without eliciting the entire
distribution (e.g. Abernethy and Frongillo, 2012; Bellini and Bignozzi, 2015; Gneiting, 2011; Lam-
bert, Pennock, and Shoham, 2008). Of course, in principle, one could elicit entire distributions and
would thereby elicit all properties. But eliciting, say, a single-valued point forecast may be required
“for reasons of decision making, market mechanisms, reporting requirements, communications, or
tradition, among others” (Gneiting, 2011, Section 1). Lemma 3.3 gives another reason to study
scoring rules for eliciting just the expected utility, albeit with the additional requirements that the
expected score under honest reporting must be the same for two variables with equal mean (Lemma
3.2) and that the expected score under honest reporting must be increasing in the true mean of
the random variable. Results from the literature on property elicitation can also be used to replace
parts of the proof of our main result.
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A Background: convex analysis

All of our characterizations in Section 5 refer to either the concepts of convex functions and their
subgradients; or the concepts of cyclic monotonicity and path integrals. We introduce these concepts
and their relation here. Except for the ideas in Appendix A.5 (which is still based on well-known
existing results), all of the below is known.

A.1 Convex functions and subgradients

A set M ⊆ Rn is convex if for all x,y ∈ M and p ∈ [0, 1], tx + (1 − t)y ∈ M. In particular, Rn is
convex for all n ∈ N and the set of probability distributions over any finite outcome space is convex.
Further, the Cartesian product of two convex sets is convex.

Definition 6 (Convex function). A function F : M → R on a convex set M is convex if for all
x,y ∈ Rn and p ∈ (0, 1),

F (px + (1− p)y) ≤ pF (x) + (1− p)F (y).

We call F strictly convex if the inequality is strict for all x,y, p.

Definition 7 (Subgradient). Let F : Rn → R be a function. We call f : Rn → Rn a subgradient
function of F if for all x0,x ∈ Rn,

F (x) ≥ F (x0) + f(x0)(x− x0). (15)

Lemma A.1. If a function F has a subgradient, F is convex.

Proof. Let z := px + (1− p)y and f be F ’s subgradient. Then

F (px + (1− p)y) = F (z) + f(z)(px + (1− p)y − z)

= p(F (z) + f(z)(x− z)) + (1− p)(F (z) + f(z)(y − z))

≤
Ineq. 15

pF (x) + (1− p)F (y).
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A.2 Convex functions are path integrals of their subgradients

Theorem A.2 (Rockafellar, 1970, Corollary 24.2.1). Let ζ : R → R be convex with subderivative
ζ ′ : R→ R. Then for all x, y ∈ R,

ζ(y)− ζ(x) =

∫ y

x

ζ ′(t)dt. (16)

This can be seen as a version of the fundamental theorem of calculus. Of course, the latter
theorem is usually used to calculate a definite integral by finding the antiderivative of the function
the integral is over. We will use it in the other direction, however, to replace a function with an
integral over its subderivative.

Define [x1,x1] := {x1 + t(x2 − x1) | t ∈ [0, 1]} to be the line from x1 to x2.

Theorem A.3. Let f : Rn → Rn be the subgradient of some function F : Rn → R. Then for all
x1,x2 ∈ R., ∫ x2

x1

f(z)dz = F (x2)− F (x1), (17)

where the path integral is path-independent.

Similarly, this result is analogous to the fundamental theorem of calculus for line integrals (a.k.a.
the gradient theorem). While Rockafellar (1970) only gives the single-dimensional version of the
result, Theorem A.3 is easy to derive from the single-dimensional version as has been noted before
(e.g. Frongillo and Kash, 2014, Appendix A, Fact 3).

Proof. For any x1,y2 ∈ Rn we can consider the restriction of f to . Using Lemma A.2, we get∫
Lx1,x2

f(z)dz+

∫
Lx2,x3

f(z)dz = F (x2)−F (x1) +F (x3)−F (x2) = F (x3)−F (x1) =

∫
Lx1,x3

f(z)dz

as claimed.

A.3 Cyclic monotonicity

Definition 8. A function f : M ⊆ Rn → Rn is called cyclically monotone increasing if for all
sequences x0, ...,xn ∈M with n ≥ 1,

f(x0)(x1 − x0) + f(x1)(x2 − x1) + ...+ f(xn−1)(xn − xn−1) + f(xn)(x0 − xn) ≤ 0. (18)

We call f is strictly cyclically monotone increasing if this inequality is strict unless x0 = ... = xn.

Lemma A.4. A function f : M ⊆ Rn → Rn is cyclically monotone increasing if and only if for all
z0, ..., zn ∈M ,

f(z1)(z1 − z0) + f(z2)(z2 − z1) + ...+ f(zn)(zn − zn−1) + f(z0)(z0 − zn) ≥ 0. (19)

Proof. Multiplying Ineq. 18 by −1 yields

f(x0)(x0 − x1) + f(x1)(x1 − x2) + ...+ f(xn−1)(xn−1 − xn) + f(xn)(xn − x0) ≥ 0. (20)

Choosing xn = z0, xn−1 = z1, ..., x0 = zn, we obtain

f(zn)(zn − zn−1) + f(zn−1)(zn−1 − zn−2) + ...+ f(z1)(z1 − z0) + f(z0)(z0 − zn) ≥ 0. (21)

And this is the same as Ineq. 19, except that the order of the first n summands is reversed.



Lemma A.5. Let f : Rn → Rn be cyclically monotone increasing. Then f is path-independently
integrable.

Proof. First, note that for any µa,µb, each of the n entries of n are monotone on the line Lµa,µb . It
follows that the components of f are integrable on Lµa,µb . (E.g., Rudin 1976, Theorem 6.9.) Hence,
f is (path-)integrable on Lµa,µb .

It is left to show path-independence, i.e., that for closed curves γ,∫
γ

f(x)dx = 0.

This can be seen as follows. Because f , is cyclically monotone increasing, it is for all µ1, ...,µk ∈ Rn,

k∑
i=0

f(µi)(µi − µi−1) ≥ 0 ≥
k∑
i=0

f(µi−1)(µi − µi−1). (22)

Now, because f is integrable, if we let the cycle µ1, ...,µk become arbitrarily fine approximations of
γ, the left and right sum converge to the integral along γ and therefore to the same value. By Ineq.
22, that value must be 0.

A.4 A function is a subgradient if and only if it is cyclically monotone
increasing

Theorem A.6 (Rockafellar, 1970, Theorem 24.8). Let f : Rn → Rn. Then there is a function F
such that f is a subgradient function of F if and only if f is cyclically monotone increasing.

A.5 Path integral of the inverse

Besides taking integrals along lines [a,b] ⊆ Rn, we would like to take curve integrals along functions
γ : [a,b]→ Rn. In particular, we want to take them along functions γ that are cyclically monotone
increasing, but not necessarily continuous.

To make this well-defined we first extend γ to a set-valued function γ̄ such that γ̄([a,b]) is a
curve. So let γ be discontinuous at x ∈ [a,b]. Specifically imagine that there is a δ > 0 s.t. for all
ε > 0,

‖γ(x + ε(b− a))− γ(x)‖ > δ,

i.e., that γ jumps immediately after x. Imagine further that γ is continuous in the other direction
from x. Then define

γ̄(x) := [γ(x), lim
ε↓0

γ(x + ε(b− a))]

If γ jumps to the left or on both sides of x, we define γ̄(x) analogously. If γ is continuous at x, we
simply let γ̄(x) = {γ(x)}.

We can now define the path integral in almost the usual way via partitioning the curve γ̄. So
for each n let yn,0, ...,yn,n ∈ f̄([a,b]) that are ordered in the natural way. Further let yn,0, ...,yn,n
become arbitrary fine as n→∞. We then consider limits

n∑
i=1

g(yn,i)(yn,i − yn,i−1)

as n→∞. If these limits exist and are the same for all all partitions, we call that limit∫
γ

g(x)dx.



Figure 2: An illustration of Theorem A.8 for n = 1.

We have now slightly extended the notion of curves for curve integrals. Next, we would like to
take integrals of the form ∫

f|[a,b]

f−1
|[a,b](y)dy,

where f|[a,b] is the restriction of f to the line [a,b] and f−1
|[a,b] : f([a,b]) is its inverse. This presents

another small technical difficulty, which is that f|[a,b] need not be injective and thus f−1
|[a,b] may be

set-valued. We will deal with this by tie-breaking to get a single-value. We will see that in our
context it does not matter which value is chosen.

Lemma A.7. Let f be cyclically monotone increasing. Then for all y,a,b, f−1
|[a,b](y) is a line

segment/interval.

Theorem A.8. Let f : Rn → Rn be cyclically monotone increasing and a,b ∈ Rn. Then∫
f|[a,b]

f−1
|[a,b](y)dy = bf(b)− af(a)−

∫ b

a

f(x)dx. (23)

For strictly monotone, continuous functions f : R → R and regular Riemann integrals, this is
a well-known and intuitive result (see, e.g., Key, 1994, Theorem 1). We generalize this result in
two (novel, as far as we know) ways. The first is that we allow f to be only weakly monotone and
discontinuous. As long as we keep n = 1, the result remains intuitive and we give the typical type of
illustration in Figure 2. The integral over f from a to b is here just the yellow area under the curve.
The integral over f−1 is simply the green area under the curve of f−1 from f(a) to f(b). Together,
the two curves must equal the area demarcated by the red line, which is equal to bf(b) − af(a).
We further generalize the theorem by allowing multi-dimensional path integrals. Unfortunately, it
is much harder to provide analogous pictures for the higher-dimensional case.

Proof. Consider any sequence of partitions yn,0, ...,yn,n of the path f̄|[a,b] as specified above. First,
take a sequence of partitions xn,0, ...,xn,n of [a,b] (ordered in the natural way), s.t., for each n ∈
N, i ∈ {0, ..., n}, yn,i ∈ f̄(xn,i).



First, it is

n∑
i=1

f−1(yn,i)(yn,i − yn,i−1)−
n∑
i=1

xn,i(yn,i − yn,i−1)→ 0 as n→∞.

Note that the left-hand side is the “Riemann sum” for f−1 on the path f . Intuitively, this just
means that whenever f−1(yn,i) has multiple values, it doesn’t matter which one we pick and so we
can assume that we pick a specific xi as per the above partition of [a,b]. This fact follows from
Lemma A.7.

Furthermore, it is

n∑
i=1

xn,i(yn,i − yn,i−1)−
n∑
i=1

xn,i(f(xn,i)− f(xn,i−1))→ 0 as n→∞.

Now, we can rewrite this as

n∑
i=1

xn,i(f(xn,i)− f(xn,i−1))

=

n∑
i=1

xn,if(xn,i)− xn,i−1f(xn,i−1)−
n∑
i=1

(xn,i − xn,i−1)f(xn,i−1)

= xn,nf(xn,n)− x0,0f(x0,0)−
n∑
i=1

(xn,i − xn,i−1)f(xn,i−1)

→
n→∞

bf(b)− af(a)−
∫ b

a

f(x)dx,

as claimed.

B Proofs for Section 3

B.1 Proof of Lemma 3.1

Lemma 3.1. If s is proper, then EE∼Q,O∼Pα [s(Q,P,E,O)] is continuous in P,Q in the set of P,Q
with full support.

Proof. Because s is proper,

EE∼Q,O∼Pα [s(Q,P,E,O)] = max
Q̂∈∆(H),P̂α∈∆(Ω)H

EE∼Q,O∼Pα
[
s(Q̂, P̂α, E,O)

]
.

For fixed, Q̂, P̂α, the term

EE∼Q,O∼Pα
[
s(Q̂, P̂α, E,O)

]
is affine in Q,Pα. Hence, EE∼Q,O∼Pα [s(Q,P,E,O)] is the point-wise maximum of a set of affine
functions. It can be shown that the point-wise maximum of affine functions is convex. Finally, a
convex function defined on an open interval is continuous on that interval.

B.2 Proof of Lemma 3.2

Lemma 3.2. Let s be a proper DSR and Pα, P
′
α′ ∈ ∆(Ω)H be s.t. for all e ∈ H

min
ω∈Ω

u(ω) < EO∼Pα [u(O) | e] = EO∼P ′
α′

[u(O) | e] < max
ω∈Ω

u(ω). (2)



Then
EE∼Q,O∼Pα [s(Q,Pα, E,O)] = EE∼Q,O∼Pα′ [s(Q,Pα′ , E,O)] . (3)

Proof. Let ωL = arg minω∈Ω u(ω) and ωH = arg maxω∈Ω u(ω) (with ties broken arbitrarily). For
any p ∈ (0, 1)H , define Rp ∈ ∆(Ω)H to be the distribution where for all e ∈ H:

Rp(ωH | e) = pe (24)

Rp(ωL | e) = 1− pe (25)

Rp(ω | e) = 0 for all ω ∈ {ωL, ωH} (26)

Now consider any (non-extreme) Pα as well as Rp as defined above. For s to be proper it has to
be

EE∼Q,O∼Pα [s(Q,Pα, E,O)] ≥ EE∼Q,O∼Rp [s(Q,Rp, E,O)] (27)

whenever all the means of Rp are element-wise at most the means of Pα. The reverse inequal-
ity has to hold if the means of Rp are at at least as high the means of Pα. By continuity of
EE∼Q,O∼Rp [s(RQ,p, E,O)] as per Lemma 3.1, it follows that

EE∼Q,O∼Pα [s(Q,Pα, E,O)] = EE∼Q,O∼Rp [s(Q,Rp, E,O)] (28)

whenever Rp and Pα have the same means. The same line of reasoning applies to Pα′ with the same
means as Pα. Hence,

EE∼Q,O∼Pα [s(Q,Pα, E,O)] = EE∼Q,O∼Rp [s(Q,Rp, E,O)]

= EE∼Q,O∼Pα′ [s(Q,Pα′ , E,O)] ,

as claimed.

B.3 Proof of Lemma 3.3

Lemma 3.3. Let s be a proper DSR, Q ∈ ∆(H) and Pα, P̂α ∈ ∆(Ω)H be s.t. for all e ∈ H

min
ω∈Ω

u(ω) < EO∼Pα [u(O) | e] = EO∼P̂α [u(O) | e] < max
ω∈Ω

u(ω) (4)

and supp(Pα(· | e)) ⊆ supp(P̂α(· | e)). Then

EE∼Q,O∼Pα [s(Q,Pα, E,O)] = EE∼Q,O∼Pα
[
s(Q, P̂α, E,O)

]
. (5)

Proof. For p ∈ (0, 1] consider

P ′α =
1

1− p

(
P̂α − pPα

)
. (29)

Because supp(Pα(· | e)) ⊆ supp(P̂α(· | e)) for all e ∈ H, there is p ∈ (0, 1] so small that P̂α(ω |
e)− pPα(ω | e) is positive for all ω ∈ Ω, e ∈ H. Choose such a p for the rest of this proof. Dividing
by 1− p renormalizes such that P ′α ∈ ∆(Ω)H with

P̂α = pPα + (1− p)P ′α. (30)

Note that for all e, EO∼P ′α [u(O) | e] = EO∼P̂α [u(O) | e] = EO∼Pα [u(O) | e]. That is, P ′α, Pα, P̂α all
predict the same expected utility for each e.



Then

EP̂α
[
s(Q, P̂α, E,O)

]
(31)

= pEPα
[
s(Q, P̂α, E,O)

]
+ (1− p)EP ′α

[
s(Q, P̂α, E,O)

]
(32)

≤
s is proper

pEPα
[
s(Q, P̂α, E,O)

]
+ (1− p)EP ′α [s(Q,P ′α, E,O)] (33)

≤
s is proper

pEPα [s(Q,Pα, E,O)] + (1− p)EP ′α [s(Q,P ′α, E,O)] (34)

=
Lemma 3.2

EP̂α
[
s(Q, P̂α, E,O)

]
. (35)

Because the expression at the beginning is the same as the expression in the end, the weak in-
equalities in the middle must be equalities. Therefore, because p > 0, it must be the case that

EPα [s(Q,Pα, E,O)] = EPα
[
s(Q, P̂α, E,O)

]
.

B.4 Proof of Lemma 3.4

Lemma 3.4. Let s be a proper DSR and ω1, ω2 ∈ Ω be two outcomes with u(ω1) = u(ω2). Let
Q ∈ ∆(H), Pα ∈ ∆(Ω)H be s.t. for all e ∈ H

min
ω∈Ω

u(ω) < EO∼Pα [u(O) | e] < max
ω∈Ω

u(ω). (6)

Further, let ω1, ω2 ∈ supp(P̂α(· | e)) for some e ∈ H. Then

s(Q,Pα, e, ω1) = s(Q,Pα, e, ω2). (7)

Proof. If u(ω1/2) = EO∼Pα [u(O) | e], the result follows (almost) immediately from Lemma 3.3. Else,
there exists some ω3 ∈ supp(Pα(· | e)) and p ∈ (0, 1] s.t.

O1 | e = p ∗ ω1 + (1− p) ∗ ω3 (36)

O2 | e = p ∗ ω2 + (1− p) ∗ ω3 (37)

both have the same mean as Pα(· | e). Further, for e′ 6= e let O1/2 | e′ be distributed according to
Pα(· | e′). Let POi be the conditional distribution of Oi. Then

Q(e)ps(Q,Pα, e, ω1) +Q(e)(1− p)s(Q,Pα, e, ω3) + (1−Q(e))E [s(Q,Pα, E,O) | E 6= e]

= Q(e)E [s(Q,Pα, e, O1) | e] + (1−Q(e))E [s(Q,Pα, E,O1) | E 6= e′]

= E [s(Q,Pα, e, O1)]

=
Lemma 3.3

E [s(Q,PO1
, e, O1)]

=
Lemma 3.2

E [s(Q,PO2
, e, O2)]

=
Lemma 3.3

E [s(Q,Pα, e, O2)]

= Q(e)E [s(Q,Pα, e, O2) | e] + (1−Q(e))E [s(Q,Pα, E,O2) | E 6= e]

= Q(e)ps(Q,Pα, e, ω2) +Q(e)(1− p)s(Q,Pα, e, ω3) + (1−Q(e))E [s(Q,Pα, E,O) | E 6= e]

Since, Q(e), p > 0, it follows that s(Q,Pα, e, ω1) = s(Q,Pα, e, ω2) as claimed.



C Proofs for Section 4

C.1 Proof of Lemma 4.1

Lemma 4.1. Let s be a proper DSR. Then there are functions fY : ∆(H)×RH → RH≥0, fE : ∆(H)×
RH → RH , g : ∆(H)× RH → R, s.t. for all Q̂, µ̂, e, y,

s(Q̂, µ̂, e, y) = fY (Q̂, µ̂)ey + fE(Q̂, µ̂)e + g(Q̂, µ̂).

Proof. Fix any Q̂, µ̂, e. We will show that s(Q̂, µ̂, e, ·) is affine. Specifically we show this by showing
that for any random variable X over R with mean x it is

EX
[
s(Q̂, µ̂, e,X)

]
= s(Q̂, µ̂, e, x). (38)

From this, affinity follows immediately.
So take any variable X with mean x. Let E ∼ Q̂. Further, define new random variables Y, Ỹ

with Y |e = p ∗X + (1 − p) ∗ x′, Ỹ |e = p ∗ x + (1 − p) ∗ x′, where x′ ∈ R, p ∈ (0, 1] are chosen such

that Q̂(e)E [Y | e] = Q̂(e)E
[
Ỹ | e

]
= µ̂e. For e′ 6= e, let Y | e′ and Ỹ | e′ be equally distributed with

mean µ̂e′ . Then

Q̂(e)pE
[
s(Q̂, µ̂, e,X)

]
+ Q̂(e)(1− p)s(Q̂, µ̂, e, x′) + (1− Q̂(e))E

[
s(Q̂, µ̂, E, Y ) | E 6= e

]
(39)

= Q̂(e)E
[
s(Q̂, µ̂, e, Y )

]
+ (1− Q̂(e))E

[
s(Q̂, µ̂, E, Y ) | E 6= e

]
(40)

= E
[
s(Q̂, µ̂, e, Y )

]
(41)

= E
[
s(Q̂, µ̂, e, Ỹ )

]
(42)

= Q̂(e)E
[
s(Q̂, µ̂, e, Ỹ )

]
+ (1− Q̂(e))E

[
s(Q̂, µ̂, E, Ỹ ) | E 6= e

]
(43)

= Q̂(e)pE
[
s(Q̂, µ̂, e, x)

]
+ Q̂(e)(1− p)s(Q̂, µ̂, e, x′) + (1− Q̂(e))E

[
s(Q̂, µ̂, E, Ỹ ) | E 6= e

]
.(44)

Now, E
[
s(Q̂, µ̂, e,X)

]
= E

[
s(Q̂, µ̂, e, x)

]
follows directly from Q̂(e) > 0, p > 0 and

E
[
s(Q̂, µ̂, E, Y ) | E 6= e

]
= E

[
s(Q̂, µ̂, E, Ỹ ) | E 6= e

]
.

We have now shown that for fixed Q̂, µ̂, e, the function s(Q̂, µ̂, e, y) is affine in y. This means that
there are functions fY , fE s.t. s(Q̂, µ̂, e, y) = fY (Q̂, µ̂)ey + fE(Q̂, µ̂)e, as claimed (setting g = 0).

Finally, notice that for propriety fY must be non-negative – otherwise the expert would be
incentivized to recommend an action that minimizes expected utility.

C.2 Proof of Corollary 4.2

Corollary 4.2. Let s be a proper scoring rule specified via fY , fE , g as per Lemma 4.1. Then for
all reports Q̂, µ̂ evidence variables E distributed according to Q and all means Y with true means µ,

E
[
s(Q̂, µ̂, E, Y )

]
= (fE(Q̂, µ̂), fY (Q̂, µ̂))(Q,µ) + g(Q̂, µ̂).



Proof.

E
[
s(Q̂, µ̂, E, Y )

]
=

∑
e∈H

Q(e)E
[
s(Q̂, µ̂, e, Y ) | e

]
=

∑
e∈H

Q(e)E
[
fY (Q̂, µ̂)eY + fE(Q̂, µ̂)e + g(Q̂, µ̂) | e

]
=

∑
e∈H

Q(e)E
[
fY (Q̂, µ̂)eY | e

]
+Q(e)fE(Q̂, µ̂)e +Q(e)g(Q̂, µ̂)

= g(Q̂, µ̂) +
∑
e∈H

fY (Q̂, µ̂)eE [Q(e)Y | e] + fE(Q̂, µ̂)eQ(e)

= g(Q̂, µ̂) +
∑
e∈H

fY (Q̂, µ̂)eµe + fE(Q̂, µ̂)eQ(e)

= (fE(Q̂, µ̂), fY (Q̂, µ̂))(Q,µ) + g(Q̂, µ̂)

D Proofs for Section 5

D.1 Proof of Theorem 5.1

Theorem 5.1. Let s be a DSR. Then s is proper if and only if there exist functions f : ∆(H−i)×
RH−i → RH−i × RH−i≥0 and F : ∆(H−i)× RH−i → R s.t.

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)((Q,µ)− (Q̂, µ̂)) + F (Q̂, µ̂), (9)

where F is convex and f is a subgradient of F .

Proof. ⇐: We first show that scoring rules of the given form are indeed proper. Because f is non-
negative in those entries that are multiplied by µ, it is immediately obvious that – whatever (Q̂, µ̂)
is reported – the expert always weakly prefers reporting an optimal set of recommendations. Next,
let (Q,µ) be any true evidence distribution and means and (Q̂, µ̂) be any report. Then

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)((Q,µ)− (Q̂, µ̂)) + F (Q̂, µ̂) (45)

≤
Ineq. 15

F (Q,µ) (46)

= F (Q,µ) + f(Q,µ)((Q,µ)− (Q,µ)) (47)

= s(Q,µ, Q,µ). (48)

⇒: By Corollary 4.2, there are functions f, g s.t.

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)(Q,µ)+g(Q̂, µ̂) = f(Q̂, µ̂)(Q̂, µ̂)+g(Q̂, µ̂)+f(Q̂, µ̂)((Q, µ̂)−(Q̂, µ̂)). (49)

Now, define F (Q̂, µ̂) = f(Q̂, µ̂)(Q̂, µ̂) + g(Q̂, µ̂). It is left to show that for s to be proper, f must
be a subgradient function of F – the convexity of F follows from Lemma A.1.

For all (Q,µ) and (Q̂, µ̂), it is

F (Q,µ) = s(Q,µ, Q,µ) ≥
s proper

s(Q̂, µ̂, Q,µ) = F (Q̂, µ̂) + f(Q̂, µ̂)((Q,µ)− (Q̂, µ̂)). (50)

This is exactly the subgradient inequality (Ineq. 15).



D.2 Direct proof of Theorem 5.2

Theorem 5.2. Let s be a DSR. Then s is proper if and only if there is a cyclically monotone
increasing function f : ∆(H)× RH → RH × RH≥0, C ∈ R,b ∈ ∆(H)× RH s.t.

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)((Q,µ)− (Q̂, µ̂)) +

∫ (Q̂,µ̂)

b

f(z)dz + C. (10)

This section is dedicated to a direct proof of Theorem 5.2, without using any of the previous
results. While one of the components of the proof is somewhat of an arithmetic grind, we think that
the proof illustrates well how f uniquely determines g.

The key is the following lemma, which shows how the rate of change of g is related to the rate
of change of f .

Lemma D.1. Let s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)(Q,µ) − g(Q̂, µ̂) be an expectation of a DSR. Then s is
proper if and only if for all (Qa,µa), (Qb,µb),

(f(Qa,µa)− f(Qb,µb))(Qb,µb) ≤ g(Qa,µa)− g(Qb,µb) ≤ (f(Qa,µa)− f(Qb,µb))(Qa,µa). (51)

Further, s is strictly proper if and only if Ineq. 51 is strict (in both directions) whenever µa 6= µb.

Proof. DSR s is proper if and only if s(Qa,µa, Qb,µb) ≤ s(Qb,µb, Qb,µb). This is equivalent to
f(Qa,µa)(Qb,µb)− g(Qa,µa) ≤ f(Qb,µb)(Qb,µb)− g(Qb,µb), which in turn is equivalent to

(f(Qa,µa)− f(Qb,µb))(Qb,µb) ≤ g(Qa,µa)− g(Qb,µb). (52)

The other inequality is similarly equivalent to s(Qb,µb, Qa,µa) ≤ s(Qa,µa, Qa,µa).

Lemma D.2. Let f : Rn → Rn, g : Rn → R. If Ineq. 51 holds for all (Qa,µa), (Qb,µb), then f is
cyclically monotone increasing.

Proof. Let (Q1,µ1), ..., (Qn,µn), (Qn+1,µn+1) = (Q1,µ1). Then

n∑
i=1

(f(Qi+1,µi+1)− f(Qi,µi))(Qi,µi) ≤
Lemma D.1

n∑
i=1

g(Qi+1,µi+1)− g(Qi,µi) = 0,

as required.

The idea now is for given f , Ineq. 51 specifies g uniquely up to a constant, by considering (Qa,µa)
and (Qb,µb) that are infinitesimally close to one another.

Lemma D.3. Let f be cyclically monotone increasing. Then the set of functions defined by

g(Q̂, µ̂) = f(Q̂, µ̂)(Q̂, µ̂)−
∫ (Q̂,µ̂)

b

f(x)dx + C, (53)

for any C ∈ R,b ∈ ∆(H) × RH are exactly the functions that satisfy Ineq. 51 for all
(Qa,µa), (Qb,µb).

Proof. ⇐: First we show that if g satisfies Ineq. 51 for given f , g must be of the form in Eq. 53.
Fix any (Q̂, µ̂). For n ∈ N, let xn,0,xn,1, ...,xn,n be in [b, (Q̂, µ̂)]. Let these be ordered in the

natural way with xn,0 = b and xn,n = (Q̂, µ̂). For example, we could let xn,i = xn,i−1+((Q̂, µ̂)−b)/n
By telescoping, we can write:

g(Q̂, µ̂) = g(b) +

n∑
i=1

g (xn,i)− g (xn,i−1) . (54)



Since relative to any f , g can only be unique up to a constant, we will write C instead of g(b). From
Lemma D.1, it follows that

n∑
i=1

xn,i−1 (f (xn,i)− f (xn,i−1)) (55)

≤ g(Q̂, µ̂)− C (56)

≤
n∑
i=1

xn,i (f (xn,i)− f (xn,i−1)) (57)

for all n ∈ N>0.
We would now like to find g by taking the limit w.r.t. n → ∞ of the two series, where we let

the partitions (xn,i)i become arbitrarily fine as n → ∞. To do so, we will rewrite the two sums to
interpret them as the (right and left) Riemann sums of some function.3 It is

n∑
i=1

xn,i (f (xn,i)− f (xn,i−1)) (58)

=

n∑
i=1

xn,if (xn,i)− xn,i−1f (xn,i−1)−
n∑
i=1

(xn,i − xn,i−1)f (xn,i−1) (59)

= (Q̂, µ̂)f(Q̂, µ̂)− bf(b)−
n∑
i=1

(xn,i − xn,i−1)f (xn,i−1) . (60)

The last step is due to telescoping of the left-hand sum. Analogously,

n∑
i=1

xn,i−1 (f (xn,i)− f (xn,i−1)) (61)

=

n∑
i=1

xn,if (xn,i)− xn,i−1f (xn,i−1)−
n∑
i=1

(xn,i − xn,i−1)f (xn,i) (62)

= (Q̂, µ̂)f(Q̂, µ̂)− bf(b)−
n∑
i=1

(xn,i − xn,i−1)f (xn,i) . (63)

By Lemma A.5,

n∑
i=1

(xn,i − xn,i−1)f (xn,i−1) →
k→∞

∫ (Q̂,µ̂)

0

f(x)dx ←
n→∞

n∑
i=1

(xn,i − xn,i−1)f (xn,i) . (64)

So for k → ∞, the lower and upper bound on g(Q̂, µ̂) converge to the same value. Hence, g(Q̂, µ̂)
must be that value, i.e.

g(Q̂, µ̂) = C + (Q̂, µ̂)f(Q̂, µ̂)−
∫ Q̂,µ̂

0

f(x)dx, (65)

as claimed.

3In fact, we could immediately interpret them as Riemann sums of the function f−1, see Appendix A.5 and in
particular the proof of Theorem A.8.



⇒: Consider any (Q̂a, µ̂a) and (Q̂b, µ̂b). It is

g(Qa,µa)− g(Qb,µb)

= f(Qa,µa)(Qa,µa)−
∫ (Qa,µa)

b

f(x)dx− f(Qb,µb)(Qb,µb) +

∫ (Qb,µb)

b

f(x)dx

= (f(Qa,µa)− f(Qb,µb))(Qb,µb)− f(Qa,µa)((Qb,µb)− (Qa,µa))−
∫ (Qa,µa)

(Qb,µb)

f(x)dx.

Now let (xn,i)n,i be partitions of [(Qb,µb), (Qa,µa)] that become arbitrarily fine. Then

(f(Qa,µa)− f(Qb,µb))(Qb,µb)− f(Qa,µa)((Qb,µb)− (Qa,µa))−
∫ (Qa,µa)

(Qb,µb)

f(x)dx

= (f(xn,n)− f(xn,0))(xn,0)− f(xn,n)(xn,0 − xn,n)−
∫ xn,n

xn,0

f(x)dx

←
n→∞

(f(xn,n)− f(xn,0))(xn,0)− f(xn,n)(xn,0 − xn,n)−
n∑
i=1

f(xn,i−1)(xn,i − xn,i−1)

≥
cyc. mon.

(f(xn,n)− f(xn,0))(xn,0)

= (f(Qa,µa)− f(Qb,µb))(Qa,µb)

Together, Lemmas D.1 to D.3 imply Theorem 5.2.

D.3 Proof of Lemma 5.3

Lemma 5.3. Let s be a proper DSR with s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)µ− g(Q̂, µ̂) for all µ̂,µ. Then for
all (Q̂1, µ̂1), (Q̂2, µ̂2), f(Q̂1, µ̂1) = f(Q̂1, µ̂2) =⇒ g(Q̂1, µ̂1) = g(Q̂1, µ̂2).

Proof. If f(Q̂1, µ̂1) = f(Q̂2, µ̂2), but (WLOG) g(Q̂1, µ̂1) > g(Q̂2, µ̂2), then the expert would always
strictly prefer reporting (Q̂2, µ̂2) over reporting (Q̂1, µ̂1) – even when the true evidence distribution
and means are (Q̂1, µ̂1). This contradicts the propriety of s.

D.4 Proof of Lemma 5.4

Lemma 5.4. Let g̃ be the quantity-price function of a proper DSR. Then g is convex.

Proof. Let q1,q2,q ∈ im(f) be pairwise non-equal and p ∈ (0, 1) s.t. q = pq1 + (1− p)q2. Imagine
for contradiction that

pg̃(q1) + (1− p)g̃(q2) < g(q). (66)

Then the expert’s average/expected score of randomizing between buying q1 and q2 is always better
than buying q shares regardless of what the true means µ are:

p(q1(Q,µ)− g̃(q1)) + (1− p)(q2(Q,µ)− g̃(q2)) (67)

= (pq1 + (1− p)q2)(Q,µ)− (pg̃(q1) + (1− p)g̃(q2)) (68)

= q(Q,µ)− (pg̃(q1) + (1− p)g̃(q2)) (69)

>
Ineq. 66

q(Q,µ)− g̃(q). (70)

If the average of two numbers is above some number, then at least one of the two former numbers
is above the latter number, so for each (Q,µ), it must be

q1(Q,µ)− g̃(q1) > q(Q,µ)− g̃(q) or q2(Q,µ)− g̃(q2) > q(Q,µ)− g̃(q). (71)

This means that the expert never chooses to buy the quantity q, in contradiction to q ∈ im(f).



E A generalization of Othman and Sandholm’s (2010) char-
acterization

Consider the special case of differentiable DSRs. Since the subgradient is equal to the gradient for
differentiable convex functions, we could directly obtain characterizations of differentiable scoring
rules from Theorems 5.1 and 5.5. However, we here give a third characterization of differentiable
proper DSRs, which generalizes the characterization of differentiable proper DSRs for the case
|H| = 1, |Ω| = 2 of Othman and Sandholm (2010, Section 2.3.2).

Proposition E.1. Let s be a differentiable DSR. Then s is proper if and only if there are cyc. mon.
incr., differentiable f : ∆(H)× RH → RH × RH≥0 and differentiable g : RH → R s.t.

s(Q̂, µ̂, Q,µ) = f(Q̂, µ̂)(Q,µ)− g(Q̂, µ̂) (72)

with

(Q,µ)
d

dµe
f(Q,µ) =

d

dµe
g(Q,µ) (73)

(Q,µ)
d

dQ(e)
f(Q,µ) =

d

dQ(e)
g(Q,µ) (74)

for all e ∈ H, (Q,µ) ∈ ∆(Ω)× RH .

Proof. ⇒: By Corollary 4.2, there are functions f, g s.t. the expected scores are s(Q̂, µ̂, Q,µ) =
f(Q̂, µ̂)µ−g(Q̂, µ̂). First, we have already shown that f must be cyclically monotone (Lemma D.2).
Note that if s(Q̂, µ̂, e, y) is differentiable, so is the expected score s(Q̂, µ̂, Q,µ), because the linear
combination of differentiable functions is differentiable. Also, if s(Q̂, µ̂, Q,µ) is everywhere differen-
tiable, f, g must be everywhere differentiable.

For s to be proper, for each (Q,µ), s(Q̂, µ̂, Q,µ) has to be maximal at µ̂ = µ. Hence, for each
e, d

dµ̂e
s(Q̂, µ̂, Q,µ) = 0 at µ = µ̂. Now,

d

dµ̂e
s(Q̂, µ̂, Q,µ) = (Q,µ)

d

dµ̂e
f(Q̂, µ̂)− d

dµ̂e
g(Q̂, µ̂)

d

dQ̂(e)
s(Q̂, µ̂, Q,µ) = (Q,µ)

d

dQ̂(e)
f(Q̂, µ̂)− d

dQ̂(e)
g(Q̂, µ̂).

For this to be zero at (Q̂, µ̂) = (Q,µ), Equations 73 and 74 must hold, as claimed.
⇐: For the other direction, we provide a short but indirect argument. Notice first that any

cyclically monotonically increasing, differentiable f the derivatives of f , which in turn determine
uniquely via Equations 73 and 74 the derivatives of g, which in turn determine g uniquely up to a
constant. In sum, any cyclically monotonically increasing, differentiable f of the given type signature
determines a set of scoring rules that satisfy Equations 73 and 74 and that differ only by a constant.
Call this set of scoring rules Mf . By the proof of the other direction of the proposition above (⇒),
all proper DSRs with the given f are in this set. By our other characterization there are proper
DSRs for the given (cyclically monotonically increasing) f (whose fY entries are positive). Thus,
Mf contains at least one proper DSR. Since any pair of scoring rules in Mf differ only by a constant
and adding a constant preserves propriety, all scoring rules in Mf are proper.

We briefly show this is indeed equivalent to the characterization of Othman and Sandholm (2010)
in the |H| = 1, |Ω| = 2 special case. They characterize such differentiable proper scoring rules s as

ones where A) s(p, 1) > s(p, 0) and B) s′(p,1)
s′(p,0) = p−1

p for all p. A is equivalent to being able to write



s(p, 1) = f(p) − g(p) and s(p, 0) = −g(p) for some differentiable g and positive, differentiable f .
With that we can re-write B:

s′(p, 1)

s′(p, 0)
=
p− 1

p
⇔ f ′(p)− g′(p)

g′(p)
=
p− 1

p
⇔ g′(p) = pf ′(p), (75)

which is exactly the relationship between f ′, g′ stated in our Proposition E.1. Othman and Sandholm
seem to forget the necessity of s′(p, 1) > 0 (i.e., the monotonicity of s). Note that Othman and
Sandholm use different names for scoring rules. In particular, they use “f(p)” for s(p, 1) and “g(p)”
for s(p, 0).

Can Proposition E.1 be generalized to non-differentiable DSRs s, giving yet another style of
characterization? At least on first sight, this seems difficult, because if f could be discontinuous and
non-convex, making it unclear what concept could replace the derivative of f .
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