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Abstract

In this paper, we study games of imperfect recall, such as the absent-minded
driver or Sleeping Beauty. We can study such games from two perspectives. From
the ex ante perspective (a.k.a. the planning stage) we can assess entire policies
from the perspective of the beginning of the scenario. For example, we can assess
which policies are ex ante optimal and which are Dutch books (i.e., lose money
with certainty when it would be possible to walk away with a guaranteed non-
negative reward). This perspective is conceptually unproblematic. The second
is the de se perspective (a.k.a. the action stage), which tries to assess individual
choices from any given decision point in the scenario. How this is to be done is
much more controversial. Multiple different theories have been proposed, both
for how to form beliefs and how to choose based on these beliefs. To resolve
such disagreements, multiple authors have shown results about whether particular
de se theories satisfy ex ante standards of rational choice. For example, Piccione
and Rubinstein (1997) show that the ex ante optimal policy is always “modified
multiself consistent”. In the terminology of the present paper (and others in this
literature), they show that the ex ante optimal policy is always compatible with
choosing according causal decision theory and forming beliefs according to gen-
eralized thirding (a.k.a. the self-indication assumption). In this paper, we aim to
give a complete picture of which of the proposed de se theories match the ex ante
standards. Our first main novel result is that the ex ante optimal policy is always
compatible with choosing according to evidential decision theory and forming be-
liefs according to generalized double-halfing (a.k.a. compartmentalized condition-
alization and the minimal-reference-class self-sampling assumption). Second, we
show that assigning beliefs according to generalized single-halfing (a.k.a. the non-
minimal reference class self-sampling assumption) can avoid the Dutch book of
Draper and Pust (2008). Nevertheless, we show that there are other Dutch books
against agents who form beliefs according to generalized single-halfing, regardless
of whether they choose according to causal or evidential decision theory.

Keywords: causal decision theory, evidential decision theory, Newcomb’s prob-
lem, self-locating beliefs, imperfect recall, Sleeping Beauty, absent-minded driver, an-
thropics, doomsday argument, self-sampling assumption, self-indication assumption,
observer selection effects
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Figure 1: A graphical description of the absent-minded driver (Example 1) in our for-
malism. The agent makes the same observation in s0 and s1 – in game-theoretic par-
lance, s0 and s1 are in the same information set. For simplicity, we therefore omit the
observation annotation.

1 Introduction
In this paper, we study single-player games of imperfect recall. In general, these are
sequential games in which the agent does not always remember past observations. We
illustrate this idea and some of its consequences using a well-known example: the
absent-minded driver, which Piccione and Rubinstein (1997) describe as follows.

Example 1 (Absent-minded driver (Piccione and Rubinstein, 1997)). “In order to get
home [a driver] has to take the highway and get off at the second exit. Turning at the
first exit leads into a disastrous area ([utility] 0). Turning at the second exit yields the
highest reward ([utility] 4). If he continues beyond the second exit, he cannot go back
and at the end of the highway he will find a motel where he can spend the night ([utility]
1). The driver is absentminded and is aware of this fact. At an intersection, he cannot
tell whether it is the first or the second intersection and he cannot remember how many
he has passed.” We illustrate this problem graphically (in the formalism introduced in
Section 2.1) in Figure 1.

If the agent had perfect recall, the agent would know whether he is at the first or
second exit and it would be clear what he should do: continue at the first exit and
get off at the second exit. Under imperfect recall (the driver being “absentminded”),
the problem becomes more interesting. The driver cannot distinguish between the two
exits and therefore has to choose in the same way at both intersections. It is easy to
see that if the agent can randomize, then the optimal policy must do so (to at least have
a chance of arriving home). (Specifically, as we calculate in Section 2.1, the optimal
policy is to continue with probability 2/3.)

There are many reasons why one might be interested in games of imperfect recall.
The assumption of imperfect recall is clearly realistic for humans. More generally,
agents that interacts with their environment via high-bandwidth channels (such as a
video stream from a camera) typically cannot have perfect memory. A second reason
to consider games of imperfect recall is that even when it is possible to remember ev-
erything, one can make the search for optimal policies more tractable by considering
imperfect-recall policies (Waugh et al., 2009; Ganzfried and Sandholm, 2014; Sand-
holm, 2015; Čermák, Bošanský, and Lisý, 2017).

A third motivation is that games of imperfect recall can be used as models of other
types of games and situations. For example, there is a close connection between single-
player games of imperfect recall and team games (Isbell, 1957; Piccione and Rubin-
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stein, 1997; Binmore, 1997; Detwarasiti and Shachter, 2005; Conitzer, 2019, Sect.
“Imperfect Recall”; Emmons et al., 2022) wherein a group of symmetric players max-
imize a shared objective but cannot freely communicate with one another and thus
cannot coordinate on symmetry-breaking strategies.1 Finding optimal Markov strate-
gies in multi-model (a.k.a. concurrent) (fully observable) Markov decision processes
(see, for example, Buchholz and Scheftelowitsch, 2019; Steimle, Kaufman, and Den-
ton, 2021; Su and Petrik, 2023) is also in part a problem of imperfect recall.

In the philosophy of science, the field of anthropics (also referred to as the study
of observation selection effects) has asked questions structurally similar to the ones
studied in this paper (see Bostrom, 2010, for an overview). For example, if one cos-
mological theory posits a large (perhaps even infinite) universe with many intelligent
agents and another predicts a small universe with few intelligent agents, should our
existence cause us to update toward the large-universe theory? Other arguments in an-
thropics that hinge on theories of self-location include the doomsday argument (first
made by Carter, 1983); fine-tuning arguments for the existence of God or a multiverse
(for an overview, see Friederich, 2021); the anthropic shadow argument which purports
to show that risk of human extinction is larger than we would naively expect (Ćirković,
Sandberg, and Bostrom, 2010); the simulation argument (Bostrom, 2003).

Ex ante (Latin for “from before”) optimality, as illustrated above for the absent-
minded driver, is the simplest normative notion of choice in scenarios of imperfect
recall. That is, one might assume the perspective from the beginning of the scenario
(a hypothetical planning stage, as Aumann, Hart, and Perry (1997) call it) and then
simply optimize the parameters of the policy. For example, in the absentminded driver,
we could imagine (in line with the original story of Piccione and Rubinstein, 1997) that
before stepping in his car, the driver knows what decisions he will face and also that
he will be absent-minded. Then he could reason about what probability of continuing
is optimal from this ex ante perspective. We will make this mathematically precise in
Section 2.1.

However, in this paper, we specifically study the more contentious de se (Latin for
“of oneself”) theories of choice in scenarios of imperfect recall. These theories address
how the agent should reason about her individual choices (or, as Aumann, Hart, and
Perry (1997) put it, how she should reason at the action stage). For example, how
should the absent-minded driver reason about his options (continuing versus exiting)
when facing an intersection? In particular, our theories will take a policy π as given and
specify whether the individual choices in π are rational, given that the agent otherwise
follows π (somewhat analogous to the concepts of Nash equilibrium and ratificationism
in game and decision theory). We will take such theories to consist of two components:

1. The first is a method of assigning self-locating probabilities: given a policy (e.g.,
given that I continue with probability 1/2 in the absent-minded driver setting) and
some observation (e.g., seeing an exit on the highway), what is the probability
that I am in a particular state? For example, in the absent-minded driver, if I
follow the (ex ante suboptimal) policy of continuing with probability 1/2 and that

1A recent line of machine learning research has studied such symmetric team games with the aim of
improving a system’s ability to coordinate with new teammates (i.e., other agents that it has not been trained
with), including humans (Hu et al., 2020; Treutlein et al., 2021).
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I see an exit on the highway, what probability should I assign to being at the
second exit? People disagree about how to answer such questions in games of
imperfect recall. In particular, in the above example, some would argue that the
answer should be 1/4, because the probability of seeing both exits is 1/2 and of the
two decision points in the two-exit trajectories, one, and thus 1/2 in relative terms,
is at the second exit. Others would argue that the answer should be 1/3, because
of the 1.5 expected number of decision points, 0.5, and thus 1/3 in relative terms,
are at the second exit. In Section 2.3, we formally define three different theo-
ries for assigning self-locating probabilities. We call them generalized thirding
(GT) (a.k.a. consistency (Piccione and Rubinstein, 1997) and the self-indication
assumption (Bostrom, 2010)), generalized single-halfing (GSH) (a.k.a. the (non-
minimal-reference-class) self-sampling assumption (Bostrom, 2010)), and gen-
eralized double-halfing (GDH) (a.k.a. Z-consistency (Piccione and Rubinstein,
1997), compartmentalized conditionalization (Meacham, 2008), the minimal-
reference-class self-sampling assumption (Bostrom, 2010), or simply “the Halfer
Rule” (Briggs, 2010)). GT gives the 1/3 answer in the above example, while both
GDH and GSH give the 1/4 answer in the above example. The names we use
are based on the probabilities they assign in the Sleeping Beauty problem (as
discussed at the beginning of Section 2.3).

2. The second component is a method for reasoning about the consequences of a
choice. Here we distinguish two theories that have been proposed in the lit-
erature: causal and evidential decision theory (CDT and EDT), terms loosely
inspired by the discussions in philosophical decision theory following the pub-
lication of Newcomb’s problem by Nozick, 1969. To illustrate how these two
differ in our context, take some policy for the absent-minded driver and imagine
that based on this policy, the agent assigns some probabilities to being at the two
different exits – for example, 3/4 to being at the first and 1/4 to being at the second
exit. Then CDT would assign an expected utility of 3/4 ·0+ 1/4 ·4 = 1 to exiting.
In contrast, EDT will generally revise its self-locating probabilities based on its
actions. For example, it assesses (the policy of deterministically) exiting to yield
an expected utility of 0 with certainty, reasoning: if I exit now, then this means
that I exit (and would have exited in the past) at every intersection. Hence, I
cannot be at the second intersection. We formally define these two theories in
Section 2.4.

In this paper, we evaluate each of the six possible combinations of these theories
separately. We refer to them as CDT+GT, CDT+GSH, and so on. For each of these
combinations, we then ask to what extent they agree with the ex ante optimal policy
and to what extent they avoid Dutch books, i.e., to what extent do these theories avoid
a sure loss when it is possible to walk away with a guaranteed non-negative payoff. We
will specify the questions we ask in more detail below.

Contributions As mentioned above, each of the six theories X specifies, for each
given policy π , whether the agent acts in agreement with X in all decision situations
(i.e., upon all observations). When this is the case, we call π compatible with theory
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GT CDT 3 ex ante optimal (Piccione and Rubinstein, 1997)
EDT 7 Dutch book (Briggs, 2010)

GDH CDT 7 Dutch book (Hitchcock, 2004)
EDT 3 ex ante optimal (Corollary 7)

GSH CDT
7 Dutch book (Draper and Pust, 2008, Sect. 5)EDT

GSH* CDT (3) no DB if actions don’t affect observations (Corollary 12)
7 no compatible policy (Appendix E.5)

7 Dutch book (Section 5.4.2)
EDT 7 Dutch book (Section 5.5)

Table 1: Is the ex ante optimal policy compatible with de se choice? If not, is some non-
Dutch-book policy compatible with de se choice? The answers depend on what theories
of de se choice we use and (for CDT+GSH*) on what type of scenarios we consider.
This table summarizes the answers given in the literature and in Sections 3 to 5 of
the present paper. The Dsymbol indicates a positive result, the 7 symbol indicates a
negative result, theD symbol in parentheses indicates a more limited positive result.
The “ex ante optimal” entries indicate that in all scenarios the ex ante optimal policy is
compatible with the respective theory. The “Dutch book” entries indicate that there is
a scenario in which all theories compatible with the respective theories are Dutch book
policies.

X. In Sections 3 to 5, we primarily ask the following two questions: Is the ex ante-
optimal policy compatible with X in all scenarios? Failing that, is there always a non-
Dutch-book policy compatible with X? That is, in scenarios where it is possible to
achieve a guaranteed non-negative payoff, is there a policy compatible with X that has
a non-negative payoff with positive probability? An overview of the answers to these
questions can be found in Table 1. As indicated in the table, previous work has already
given some of the answers. In this paper, we fill in the gaps that were left in the table
by the existing literature. Specifically, our contributions are the following.

• The ex ante optimal policy is always compatible with evidential decision theory
+ generalized double-halfing (Corollary 7). We thereby substantially generalize
a result by Briggs (2010).

• Draper and Pust (2008) give a Dutch book argument against (CDT/EDT+) gener-
alized single-halfing (GSH). Indeed, we find that their argument succeeds against
one version of GSH (Section 5.1). However, we take a second look at GSH and
find the following.

– Draper and Pust’s Dutch Book fails against an alternative plausible ver-
sion of GSH that we call GSH* (Section 5.2). Our diagnosis is that GSH’s
failure results from the following: When a random coin is flipped halfway
through the scenario, then GSH assigns different probabilities to this event
before versus after the event occurs. GSH* works by imagining that all ran-
domization in the scenario occurs at the beginning of the scenario. It then
applies GSH probability as usual. The idea is to thereby assign probabili-
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ties to random events more consistently. Note that the unique CDT+GSH*-
and EDT+GSH*-compatible policy in Draper and Pust’s scenario is still ex
ante suboptimal.

– We show that in each scenario in which history length is independent of the
agent’s choices (including Draper and Pust’s), there exists a CDT+GSH*-
compatible non-Dutch-book policy (Section 5.3).

– However, in general (i.e., if history length is allowed to depend on the
agent’s choices), there are scenarios in which the only CDT+GSH*-compatible
policy is a Dutch book (Section 5.4.2).

– For EDT+GSH*, on the other hand, there is a scenario with choice-inde-
pendent history length in which the only compatible policy is a Dutch book
(Section 5.5).

In Section 6, we discuss various conceptual issues raised by our results:
• Our positive results for CDT assume and hinge on the agent’s ability to inde-

pendently randomize at each decision point; our positive results for EDT do not.
That is, even if the agent is constrained to, for example, fully deterministic poli-
cies, EDT+GDH is still compatible under this restriction with the ex ante optimal
deterministic policy. For example, in the absent-minded driver the optimal de-
terministic policy is to always continue. This is compatible with EDT+GDH
restricted to deterministic policies, but not compatible with any natural version
of CDT.We discuss this difference in Section 6.1 and relate it analogous points
made in the literature on Newcomb-like problems.

• In Section 6.2, we discuss Conitzer’s (2015) Dutch book against EDT and how
our version of EDT avoids it. Again, we draw parallels to ideas from the litera-
ture on Newcomb-like decision problems.

• In general, any of the six de se theories of choice might permit multiple policies.
It is easy to see that in some scenarios (e.g., Example 4, which we already give
in Section 2.4.1), even a Dutch book policy is compatible with all six theories.
In Section 6.3, pose the question of whether an agent can avoid Dutch books,
or perhaps even reliably choose the ex ante optimal policy, while relying purely
on de se reasoning. This question has received little attention in the literature.
To show that the problem is hard, we demonstrate the failure of one natural ap-
proach to this problem. All theories of assigning self-locating beliefs that we
consider (GDH, GSH(*), GT) define an expected utility for each combination
of a policy and an observation o that is observed with positive probability. If,
say, the expected utility under π1 is higher than the expected utility under π2
conditional on every possible observation, we might expect the agent to never
follow policy π2. Unfortunately, as we show in Section 6.3, there are scenarios
in which some CDT+GT, EDT+GDH, and CDT+GSH*-compatible Dutch book
policy has strictly higher (GT/GDH/GSH) expected utility from all decision per-
spectives than all other (CDT+GT/EDT+GDH/CDT+GSH-)compatible policies.
We thereby generalize results by Aumann, Hart, and Perry (1997, Sect. 5) and
Korzukhin (2020).

Finally, in Section 7, we conclude with a summary of the higher-level takeaways
from our work and directions for future research.
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2 Preliminaries

2.1 Single-player games of imperfect recall
A (single-player) game of imperfect recall, or scenario, is a tuple (S,ST ,P0,O,ω,{Ao}o∈O,T,u),
consisting of: a finite set S of states; a set ST ⊆ S of terminal states; an initial state dis-
tribution P0 ∈ ∆(S− ST ); a set of possible observations O; a function ω : S− ST → O
mapping non-terminal states onto the observations made by the agent in that state;
for each observation o, a finite set Ao of possible actions that the agent can choose
from; a probabilistic, conditional transition mapping T that provides, for any current
non-terminal state s with observation ω(s) = o and any action a ∈ Ao taken by the
agent, a probability distribution T (· | s,a) over successor states; and a utility function
u : ST → R that maps terminal states onto real numbers.

As an example of a scenario, see the formalization of the absent-minded driver
problem in Figure 1. Note that in scenarios with |O| = 1, such as the absent-minded
driver, we generally leave the element of O nameless and omit notation as to what the
observation is in each state (i.e., we omit ω). Throughout this paper, we will provide
many more examples of scenarios of imperfect recall.

A (memoryless) policy is a probabilistic mapping π : O→ ∆(A) that determines,
for each observation o ∈O, a probability distribution π(· | o) over actions. A history of
the scenario is a finite sequence s0...sn of states where sn ∈ ST is a terminal state, and
s0, ...,sn−1 /∈ ST are non-terminal. Given a policy, the probability of a history is given
by P(s0...sn | π) = P0(s0)∏

n
i=1 (∑a∈A π(a | ω(si−1))T (si | si−1,a)).

Our scenarios are allowed to loop, i.e., a state may be visited multiple times. This
creates the possibility of infinite histories. Infinite histories create a few problems.
Most importantly, it is unclear how to generalize our theories of self-locating beliefs to
infinite histories. To avoid these problems, we assume away infinite histories. Specif-
ically, we assume throughout this paper that the game terminates with probability 1
when following any policy π from any state s ∈ S. That is, we assume that for all states
s and all policies π , we have that ∑

∞
n=1 ∑s1...sn P(s0s1s2...sn | s0 = s,π)= 1, where the in-

ner sum is over all possible histories. For simplicity, this assumption is a little stronger
than needed. Interestingly, to avoid infinite histories in expected utility calculations ev-
idential decision theory requires weaker assumptions than causal decision theory, see
Appendix A.

For any policy π , state s, and action a, define Qπ(s,a) :=∑
∞
n=1 ∑s1...sn P(s1 | s,a)P(s2...sn |

s1,π)u(sn) to be the expected utility of being in state s, choosing action a and then
following policy π . Define Qπ(s) := ∑a∈A π(a | ω(s))Qπ(s,a) to analogously be the
expected utility given that the current state is s and policy π is used. Finally, we use
Qπ(P0) := ∑s∈S P0(s)Qπ(s) for the expected utility if an initial state is sampled from P0
and the agent follows π .

There are many alternative ways to specify games of imperfect recall. The present
one resembles episodic, partially observable Markov decision processes (POMDPs) as
studied in machine learning. The substantial difference to episodic POMDPs is that
we restrict consideration to memoryless (sometimes also called stationary) policies,
i.e., policies that only depend on the current observation, as opposed to the history of
observations (cf. Littman, 1994; Li, Yin, and Xi, 2011). A more common represen-
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tation of imperfect recall games is the tree representation of extensive-form games in
game theory. In this setting, information sets take the role of the observations of our
setting. That is, to express that the agent cannot distinguish between state s or state s′,
we assign s and s′ the same observation, while in the extensive-form representation, s
and s′ would be in the same information set. There is also a close analogy between
games of imperfect recall (as studied in this paper), and common-payoff games with
symmetry constraints on strategies. To our knowledge, this similarity was first pointed
out by Isbell (1957) (cf. Piccione and Rubinstein, 1997; Binmore, 1997; Detwarasiti
and Shachter, 2005; Conitzer, 2019, Sect. “Imperfect Recall”; Emmons et al., 2022).

2.2 Two ex ante standards of rational choice
2.2.1 Ex ante optimal policies

Let Π ⊆ ∆(A)O be a set of policies. We call a policy π∗ ∈ Π ex ante optimal in Π if
π∗ ∈ argmaxπ∈Π Qπ(P0). The two most important cases of Π are Π = ∆(A)O, which
allows all mixed policies; and the set of the set of deterministic policies, which for
each observation choose some action with probability 1, denoted by Π = AO. When
considering the set of all mixed policies, we will refer to policies as (ex ante) locally
optimal, if they are local optima of the function ∆(A)O→ R : π 7→ Qπ(P0).

For illustration, we now calculate the ex ante optimal policies in the absent-minded
driver scenario (Example 1). First, among the two deterministic policies, the optimal
one is to always continue for a reward of 1. Next we calculate the optimal mixed
policy. For any p, let πp be the policy that continues with probability p and exits with
probability 1− p. The ex ante expected utility of πp is Qπp(s0) = P(s0s11 | πp) +

4P(s0s14) = p2 +4p(1− p). The unique local and global optimum of this polynomial
is p = 2/3. Hence, the unique globally and locally optimal policy is π2/3.

Ex ante optimality is the simplest plausible normative concept for scenarios of im-
perfect recall. That is, one may simply posit that agents should choose according to
some ex ante optimal policy π∗.2 In line with a number of previous works (Piccione and
Rubinstein, 1997; Hitchcock, 2004; Draper and Pust, 2008; Briggs, 2010; Armstrong,
2011), the question we ask in this paper is whether ex ante optimality is consistent with
what we will call de se theories of choice – where we imagine that the agent finds her-
self within the scenario, forms some (probabilistic) belief about the current state, and
chooses based on this belief.

2.2.2 Dutch books

A weaker standard of rationality is to avoid so-called Dutch books. Throughout this
paper, a Dutch book policy is a policy that receives a negative payoff with probabil-
ity 1 when there exists a different policy that guarantees a non-negative reward with
probability 1.

2Armstrong (2011) explicitly argues that even de se, agents should choose by finding and following an
ex ante optimal policy.
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Figure 2: A graphical description of Lewis’ variant of the Sleeping Beauty scenario
(Example 2) in our formalism.

Definition 1. Let E be a game of imperfect recall in which there is a policy that has
a non-negative payoff with probability 1. Then we call a policy π for E a Dutch-book
policy if it has a negative payoff with probability 1, i.e., if for all histories s0...sn of E ,
P(s0...sn | π)> 0 =⇒ u(sn)< 0.

2.3 Three theories of assigning self-locating probabilities
In this section, we describe three theories of assigning self-locating probabilities. We
start with a canonical example for distinguishing them. The basic version of the ex-
ample – which resembles an absent-minded driver scenario with the policy fixed to
continuing with probability 1/2 – was first given by Piccione and Rubinstein (1997, Ex-
ample 5); the Sleeping Beauty story was introduced to the literature by Elga (2000).
The specific variant of the below scenario (in which Beauty is told in the afternoon
which day it is) was introduced by Lewis (2001).

Example 2 (Sleeping Beauty). Beauty falls asleep on Sunday. A group of researchers
conduct the following experiment on her. First, they flip a fair coin. Regardless of
the outcome of the coin, Beauty is woken up on Monday morning. However, if the
coin comes up Tails, they put her back to sleep in the evening, erase any memory of
her awakening on Monday, and then wake her up for a second time on Tuesday. Upon
waking up, due to imperfect recall, Beauty cannot tell whether it is Monday or Tuesday.
Later she is told what day it is (but not how the coin came up). Two questions arise:
1. Upon waking up, what probability should Beauty assign to the coin having come up
Heads? 2. Upon being told that it is Monday, what probability should Beauty assign
to the coin having come up Heads? A graphical description of this problem in our
formalism is given in Figure 2.

On the first question, some – so-called halfers believe the answer is 1/2 – and others
believe the answer is 1/3 – thirders. The simplest argument for the halfer position is
that Beauty wakes up regardless – hence, waking up is no evidence about the coin flip’s
outcome. The simplest argument for the thirder position is that in expectation exactly
one third of the times that Beauty is awakened, she is awakened after the coin has come
up Heads.

What about the second question? Here, too, two different answers have been given:
1/2 and 2/3. Thirders, i.e., people who answer the first question with 1/3, tend to give the
1/2 answer. After all, in expectation, exactly one half of the times that Beauty is told that
it is Monday, the coin has come up Heads. Halfers, on the other hand, are split between
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the two positions. Halfers who give the 1/2 answer for a second time are called double-
halfers; we call halfers who give the 2/3 answer single-halfers. The simplest argument
for double-halfing is the same as the above argument for halfing: regardless of how
the coin comes up, Beauty is told at some point that it is Monday. Hence, observing
that it is Monday is no evidence either way. The argument for single-halfing is that
the hypothesis that the coin came up Heads predicts twice as well that Beauty observes
that it is Monday as the hypothesis that the coin came up Tails. It would therefore seem
that a Bayesian reasoner should update toward the Heads hypothesis.

In the rest of this section, we provide procedures that generalize double-halfing,
single-halfing, and thirding, respectively, to assign self-locating probabilities in any
given scenario of imperfect recall.

2.3.1 Generalized double-halfing

We start by describing a principle that generalizes double-halfing. This way of belief
formation was first introduced as “Z-consistency” by Piccione and Rubinstein (1997,
Sect. 5). It is referred as compartmentalized conditionalization by Meacham (2008),
as the minimal-reference class self-sampling assumption by Bostrom (2010), or simply
“The Halfer Rule” by, e.g., Briggs (2010).

We first describe generalized double-halfing (GDH) verbally in reference to our
model. Our goal will be to assign – given some observation o – a probability to any
statement of the form, “the true history is s0...sn and the current time step is i” for any
history s0...sn and i = 0,1, ...,n− 1. For short, we write this statement as: “i-th in
s0...sn”. To assign such probabilities, we in general (e.g., in the absent-minded driver,
though not in Sleeping Beauty) need to know the agent’s policy – otherwise we cannot
even assign a non-self-locating probability to s0...sn. Overall, the probabilities of inter-
est are therefore of the form PGDH(i-th in s0...sn | π,o). Alternatively, we can think of
GDH as assigning probabilities PGDH(s0...sn | π,o), since in any history s0...sn, we will
take GDH to (uncontroversially) split probability mass equally among all time steps in
s0, ...,sn in which o is observed (cf. Briggs, 2010, Sect. 2.3, and refereinces therein).
The crux of GDH is that PGDH(s0...sn | π,o) simply equals P(s0...sn | π,o), which we
define to be the non-self-locating probability of s0...sn conditional on the fact that o is
observed at least once.

For the formal definition, define #(o,s0...sn) :=∑
n−1
i=0 1 [ω(si) = o] to be the number

of times o is observed in s0...sn. Further, note that for any history s0, ...,sn, if ω(si) = o
for some i ∈ {0, ...,n−1}, then

P(s0...sn | π,o) =
P(s0...sn | π)

∑s′0...s
′
k:∃ j:ω(s′j)=o P(s′0...s

′
k | π)

,

and otherwise, P(s0...sn | π,o) = 0.

Definition 2. Let o be observed with positive probability under policy π . Then for
all s0...sn and i = 0,1, ...,n−1, define PGDH(i-th in s0...sn | π,o) = 0 if ω(si) 6= o, and
PGDH(i-th in s0...sn | π,o) = P(s0...sn | π,o)/#(o,s0...sn) otherwise.
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2.3.2 Generalized single-halfing

We move on to generalized single-halfing (GSH). GSH is also known as the (non-
minimal reference class) self-sampling assumption (Bostrom, 2010). (Our version of
GSH is, in our formalism, a maximum reference class version of the self-sampling
assumption.) Generalized single-halfing is also assumed in the so-called doomsday
argument (Carter, 1983). Thus, most versions of the doomsday argument contain GSH-
like calculations, though usually without fully acknowledging their contentiousness.

Like GDH, GSH is most naturally described as assigning probabilities to state-
ments of the form, i-th in s0...sn. A natural interpretation of GSH is that it uses a
prior P(i-th in s0...sn | π) = 1/nP(s0...sn | π), which resembles the GDH probabilities.
But then GSH performs a Bayes-like update. Recall that Bayes’ theorem states that
P(x | y,z) = P(x | z)P(y | x,z)/(∑x′ P(x′ | z)P(y | x′,z)). Replacing x with the hypothe-
sis i-th in s0...sn, y with the fact that I am observing o, and z with the fact that the agent
follows π , we obtain the following definition of GSH.

Definition 3. Let o be observed with positive probability under policy π . Then for all
histories s0...sn and i = 0,1, ...,n−1, define PGSH(i-th in s0...sn | π,o) = 0 if ω(si) 6= o,
and

PGSH(i-th in s0...sn | π,o) =
1
n P(s0...sn | π)

∑s′0...s
′
k
∑ j:ω(s′j)=o

1
k P(s′0...s

′
k | π)

.

Further, define PGSH(s | π,o) := ∑s0...sn ∑i : si=s PGSH(i-th in s0...sn | π,o).

From the definition, it is easy to verify that GDH and GSH are equivalent in single-
observation scenarios such as the absent-minded driver.

Proposition 1. In any single-observation (|O|= 1) scenario, GDH and GSH are equiv-
alent, i.e., for all histories s0, ...,n, policies π , observations o, and time steps i ∈
{0, ...,n−1}, PGDH(i-th in s0...sn | π,o) = PGSH(i-th in s0...sn | π,o).

2.3.3 Generalized thirding

Finally, we describe generalized thirding (GT). GT was first given by Piccione and
Rubinstein (1997, Sect. 5) as “consistency”; Bostrom (2010) calls it the self-indication
assumption. To calculate PGT(s | π,o), the agent asks: what fraction of the times that
I observe o is s the current state? In other words, if the agent observes o and wants to
assign a probability to being in a particular state s with ω(s) = o, then GT dictates that
she divide the expected number of times that s occurs by the expected number of times
that o is observed.

To give a formal definition, we need some additional notation. Define #(s,s0...sn) :=
∑

n
i=01 [si = s] to be the number of occurrences of s in the history s0...sn, and Cπ(s) :=

∑s0...sn P(s0...sn | π)#(s,s0...sn) to be the frequency of s under policy π , i.e., the ex-
pected number of times s occurs under policy π . Then, Cπ(o) := ∑s∈S−ST : ω(s)=o Cπ(s)
is defined as the expected number of times that o is observed.

Definition 4. Let o be observed with positive probability under policy π . Then PGT(s |
π,o) := 0 if s ∈ ST or ω(s) 6= o, and PGT(s | π,o) :=Cπ(s)/Cπ(o) otherwise.
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Contrary to our definitions of GSH and GDH, the above definition does not assign
probabilities PGT(i-th in s0...sn | π,o). Such probabilities can easily be defined.3 How-
ever, we will not need them throughout the rest of this paper. Conversely, we could
define GDH probabilities PGDH(s | π,o) but we will not need these either. This asym-
metry is due the fact that we will couple GT only with causal and GDH only with
evidential decision theory.

2.4 De se choice using self-locating beliefs
How an agent chooses in a scenario of imperfect recall depends on how she assigns
probabilities (i.e., on whether she uses GDH, GSH, GT, or something else). But as
others – including Piccione and Rubinstein (1997) – have pointed out, it also depends
on how an agent reasons about her choices. In particular, when choosing in response to
some observation o, should she take into account that whatever distribution over actions
she chooses now, she will also choose (and will have chosen in the past) in response
to observing o at other decision points? This can be illustrated with the absent-minded
driver case (Piccione and Rubinstein, 1997; cf. Schwarz, 2015), but we will use the
following simpler example.

Example 3. Consider a variant of the Sleeping Beauty problem in which we skip the
states in which Beauty is told what day it is (s′HMo,s

′
TMo,s

′
TTu). Also, on each awak-

ening, the agent is offered a bet that pays −1 if the coin came up Heads (the single-
awakening branch) and 2/3 if the coin came up Tails. We give a graphical description
of this scenario in our framework in Figure 3.

Clearly, the ex ante optimal policy in this problem is to (always) accept the bet,
because ex ante, accepting pays −1 with 50% probability and 2 · 2/3 = 4/3 with 50%
probability. But what happens if the agent reasons not ex ante but de se, i.e., using
self-locating beliefs?

We focus on the case where the agent uses GDH or GSH, which (regardless of
the agent’s policy) assign a probability of 1/2 to Heads–Monday (sH,Mo), and 1/4 to
Tails–Monday (sT,Mo) and Tails–Tuesday (i.e., to being either in sT,Tu,a, or sT,Tu,r).
Given these probabilities, how should the agent choose? There seem to be two plausible-
looking but conflicting lines of reasoning, which we will associate with causal and
evidential decision theory (CDT and EDT), respectively:

(CDT) With probability 1/2 the coin came up Heads, in which case accepting the bet
costs me 1. With the remaining probability 1/2, I’m in the Tails branch, in which
case – regardless of what I do in the other Tails branch awakening – accepting
the bet earns me an extra 2/3 relative to not accepting it. Since a 50% probability
loss of 1 outweighs a 50% probability gain of 2/3, I should reject the bet.

(EDT) With probability 1/2 the coin came up Heads, in which case accepting the bet
gives a payoff of −1. With the remaining probability 1/2, I’m at one of the two
decision points in the Tails branch. If I accept the bet, then at the other decision
point I will also accept. Hence, in the Tails branch, accepting earns me 4/3. Since

3As usual, PGT(i-th in s0...sn | π,o) = 0 if ω(si) 6= o. Otherwise, PGT(i-th in s0...sn | π,o) = P(s0...sn |
π)/Cπ (o).
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Figure 3: A graphical description of Example 3 in our formalism.

a 50% probability gain of 4/3 outweighs a 50% probability loss of 1, I should
accept the bet.

Piccione and Rubinstein (1997) discuss these two different styles of reasoning in
their seminal work. Arntzenius (2002) is to our knowledge the first to make the con-
nection to CDT versus EDT. But a few papers since have implicitly assumed CDT or
EDT. For example, Draper and Pust (2008, Sect. 4) and Briggs (2010, Sect. 3.2) point
out that Hitchcock’s (2004) analysis implicitly assumes CDT.

Having to choose between CDT and EDT, and between GT, GSH, and GDH, we
have six theories for choice under imperfect recall to consider. However, we omit defi-
nitions and discussions of EDT+GT and CDT+GDH. Earlier work has shown, conclu-
sively in our view, that these two combinations are vulnerable to Dutch books (Hitch-
cock, 2004, Sect. 6; Briggs, 2010, Sect. 3.3). Under the present agenda, we therefore
have little more to say about CDT+GDH and EDT+GT.

2.4.1 Evidential decision theory + generalized double- and single-halfing

To define EDT+GDH and EDT+GSH, we first note that our methods of assigning self-
locating beliefs immediately allow us to assign expected utilities conditional on an
observation and a policy.

Definition 5. For any policy π , we define the GDH/GSH expected utility, conditional
on o being observed, as EUGDH/GSH(π,o) := ∑s0...sn ∑

n−1
i=0 PGDH/GSH(i-th in s0...sn |

π,o)u(sn).

The crux of EDT relative to CDT is that it evaluates a distribution α ∈ ∆(A) by
the expected utility EUGDH/GSH(πo→α ,o) for some policy πo→α that chooses α upon
observing o. After all, choosing α upon the current observation of o is (definitive)
evidence that the agent chooses α whenever she observes o.

But what happens if our scenario has multiple distinct observations that each oc-
cur with positive probability? Then, to evaluate a distribution α to play upon ob-
serving o, we need to calculate some expected utility EUGDH/GSH(πo→α ,o) where
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πo→α(· | o) = α – but what should be the rest of πo→α ? In principle, when evalu-
ating a distribution α upon o, the agent might form beliefs about her choice for other
observations o′. However, upon observing o′, she also needs to form beliefs about
what she would do in o. We thus run into a variant of the circularity problem of multi-
ple agents reasoning about one another. In principle, a rational agent should be able to
deal with such problems in general, including in game-theoretic cases where the other
agent has different goals. Unfortunately, it would be difficult and contentious to define
a general procedure here (cf. Sections 6.2 and 6.3).

To avoid the circularity, we take inspiration from the concept of Nash equilibrium
in game theory and ratificationism in decision theory (Jeffrey [1965] 1983, Sect. 1.7;
Weirich, 2016, Sect. 3.5; Bell et al. 2021); an analogous method has also been used
by Piccione and Rubinstein (1997) to formalize CDT in games of imperfect recall. We
take any policy π and then merely ask for each observation (that occurs with positive
probability given π): assuming the agent follows π for all observations other than o, is it
optimal as judged by EDT+GDH/GSH to play π(· | o) upon observing o? This gives us
a necessary condition for a policy π to be knowingly followed by an EDT+GDH/GSH
agent.

For the formal definition, we need the following notation. For any policy π , any
observation o ∈ O, and any distribution α ∈ ∆(A), define πo→α to be the policy that is
like π , except that upon observation o, it chooses according to distribution α . Formally,
for all a ∈ A, we let πo→α(a | o) = α(a) and for all o′ 6= o, πo→α(a | o′) = π(a | o′).

Definition 6. We say that a policy π ∈ Π is compatible with EDT+GDH/EDT+GSH
as restricted to Π if for all o ∈ O that are observed with positive probability under π ,
π(· | o) ∈ argmaxα∈∆(A) : πo→α∈Π EUGDH/GSH(πo→α ,o).

Our calculations for Example 3 provide a first example of EDT+GDH/GSH rea-
soning. As a second example, we calculate the EDT+GDH/GSH-compatible policies
in the absent-minded driver (Example 1). By Proposition 1, GSH and GDH give the
same results in the absent-minded driver, so we only consider GDH. The calculation
provides intuition for the proofs of our positive results in Section 4. Because there
is only one possible observation in the absent-minded driver, for notational simplicity
we drop the observation as an argument of EUGDH and PGDH. Letting πp again be the
policy that continues with probability p, EDT+GDH requires that the agent continues
with a probability from argmaxp∈[0,1] EUGDH(πp). By definition, EUGDH(πp) equals

PGDH(0-th in s00 | πp) ·0+PGDH(0-th in s0s14 | πp) ·4+PGDH(1st in s0s14 | πp) ·4
+PGDH(0-th in s0s11 | πp) ·1+PGDH(1st in s0s11 | πp) ·1

= P(s0s14 | πp) ·4+P(s0s11 | πp) ·1.

Clearly, this is exactly the ex ante expected utility of πp. Thus, the ex ante optimal
policy π2/3 (see Section 2.2.1) is the unique EDT+GDH/GSH-compatible policy.

In both the absent-minded driver and Example 3, only the ex ante optimal policy
is EDT+GDH/GSH compatible. We now give a simple scenario in which there are
multiple compatible policies, one of which is a Dutch book policy (and thus also ex
ante suboptimal).
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Figure 4: A graphical formalization of Example 4.

Example 4. On Monday, Alice is offered $10. However, if she accepts, this causes a
time bomb to be hidden somewhere in her house. On Tuesday, Alice does not remember
whether she accepted the offer on Monday (and therefore does not know whether a
bomb is hidden in her house). Alice can now decide whether to buy equipment at
a price of $20 to find and defuse the bomb. (This equipment is 100% effective.) If
a bomb was placed and she does not defuse it, the explosion will cause damages to
Alice’s house costing $100,000 to repair. A graphical description of this problem in
our formalism is given in Figure 4.

Clearly, the optimal policy for this problem is to reject the offer on Monday and to
not buy the equipment on Tuesday, thus resulting in a certain payoff of $0.

However, consider the policy π̃ that accepts the offer on Monday and buys the
equipment on Tuesday. This policy loses money with certainty, but is EDT+GDH/GSH
compatible. Intuitively, if Alice on Monday believes that on Tuesday she will buy the
equipment, then by accepting the offer she earns an extra $10; and if on Tuesday Alice
believes that on Monday she accepted, then she better defuse the bomb.4 We thus
conclude the following.

Proposition 2. In Example 4, there exists a EDT+GDH/GSH-compatible Dutch book
policy.

For most of this paper, we will not be concerned with whether there exist compat-
ible Dutch book policies; we will primarily consider whether there are good (i.e., ex
ante optimal or at least non-Dutch-book) compatible policies. However, since multiple
policies might be EDT+GDH/GSH compatible, our definition will in general not fully
answer the question of what policy an EDT+GDH/GSH agent does or should follow.
We will discuss this multiplicity of compatible policies more in Section 6.3.

4There is also a third EDT+GDH/GSH-compatible policy: accepting on Monday with probability 1/5,000,
and defusing on Tuesday with probability 1− 1/10,000. When following this policy, the EDT+GDH/GSH
agent is indifferent among all probability distributions on both Monday and Tuesday. Readers familiar with
game theory will notice a similarity to the structure of the set of Nash equilibria in many games.
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2.4.2 Causal decision theory + generalized thirding/single-halfing

We now define causal decision theory (CDT) + GT (as per Piccione and Rubinstein
(1997), who refer to it as “modified multiselves consistency”) and CDT+GSH.Many
of the ideas here are analogous to those in the previous section. First we will define
EUGT/GSH(π,o,a) to be the expected utility under GT/GSH probabilities of observing
o, choosing a now and otherwise following π , including in other instances of observing
o. We take a policy as given and then ask whether for all o that occur with positive
probability, π(a | o) is positive only for actions a that maximize EUGT/GSH(π,o,a).

Definition 7. For any policy π , any observation o ∈ O observed with positive prob-
ability, and any a ∈ A, define EUGT/GSH(π,o,a) := ∑s∈S PGT/GSH(s | π,o)Qπ(s,a).
We say that a policy π ∈ ∆(A)O is CDT+GT/GSH compatible if for all o ∈ O that
are observed with positive probability under π , and all a∗ s.t. π(a∗ | o) > 0, a∗ ∈
argmaxa∈A EUGT/GSH(π,o,a).

Note that, in contrast to our definition in the case of EDT, it is sufficient to define the
causal expected value of taking some action a ∈ A deterministically. We could define
the causal expected utility of a probability distribution α ∈∆(A) as EUGT/GSH(π,o,α)=

∑a∈A α(a)EUGT/GSH(π,o,a).5 However, it is then easy to see that choosing a distribu-
tion α maximizes EUGT/GSH(π,o,α) if and only if all a ∈ A with α(a)> 0 maximize
EUGT/GSH(π,o,a). We will not define CDT under a restricted set of policies (cf. Sec-
tion 6.1).

Like EDT, CDT allows for multiple compatible policies, e.g., in Example 4.

Proposition 3. In Example 4, a Dutch book policy is compatible with CDT+GT and
with CDT+GSH.

A similar result is due to Korzukhin (2020). Specifically, he gives a variant of
Sleeping Beauty in which some policy π̃ is compatible with CDT+GT (but neither
with EDT+GDH nor with CDT+GSH) and loses money with certainty. We also give
a single-observation case with a CDT+GSH- and CDT+GT-compatible Dutch book
policy in Section 6.1, based on Conitzer’s (2015) “Three Awakenings” case. (As we
will see in Corollary 8, in single-observation scenarios, only (and exactly) the ex ante-
optimal policies are EDT+GDH/GSH compatible.)

3 Ex ante optimal policies are compatible with causal
decision theory + generalized thirding

In this section, we review Piccione and Rubinstein’s (1997, Proposition 3) result that
in every scenario the ex ante optimal policy is compatible with causal decision theory
+ generalized thirding. While Piccione and Rubinstein give a monolithic proof of this
result, we first give a characterization of CDT+GT-compatible policies (Theorem 4).
From the characterization, Piccione and Rubinstein’s result then follows (Corollary 5).

5The analogous equality does not hold for EDT, i.e., in general EUGT/GSH(πo→α ,o) is not necessarily
equal to ∑a∈A α(a)EUGT/GSH(πo→a,o). The absent-minded driver serves as an example.
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We prove these results in Appendix C. All proofs follow the main ideas in Piccione and
Rubinstein’s proof.

We first define the derivatives of Qπ(P0) w.r.t. π(a | o). We define these in a way
that takes into account that (infinitesimally) increasing π(a | o) must be accompanied
by (infinitesimally) decreasing some of the other probabilities in π(· | o) to make sure
that π(· | o) remains a probability distribution. We here let all other probabilities in
π(· | o) decrease infinitesimally and uniformly. We thus define the derivative as follows.

Definition 8. Let π be a policy, a be an action and o be an observation. Then for all
ε > 0 define πε,a,o(a′ | o′) = π(a′ | o′) if o′ 6= o; πε,a,o(a′ | o′) = (1− ε)π(a′ | o′) if
o′ = o and a′ 6= a; and πε,a,o(a′ | o′) = (1− ε)π(a′ | o′)+ ε if o′ = o and a′ 6= a. Then
define d

dπ(a|o)Qπ(P0) := limε↓0(Qπε,a,o(P0)−Qπ(P0))/ε .

Note that if π(a | o) = 1, then d
dπ(a|o)Qπ(P0) = 0. It turns out that the derivatives

of Qπ(P0) are closely related to the causal expected utilities. For the following, de-
fine EUGT(π,o) := ∑a∈A π(a | o)EUGT(π,o,a) to be the CDT+GT expected utility of
following π upon observing o.

It turns out that we can characterize CDT+GT in terms of the derivatives.

Theorem 4. A policy π ∈ Π = ∆(A)O is CDT+GT compatible if and only if for all
o ∈ O and a ∈ A, d

dπ(a|o)Qπ(P0)≤ 0.

Theorem 4 can be viewed as a version of the policy gradient theorem in the theory
of reinforcement learning (Jaakkola, Singh, and Jordan, 1994, Theorem 1; Sutton et al.,
1999, Theorem 1)

This characterization implies the following important corollary.

Corollary 5 (Piccione and Rubinstein, 1997). Let π be a globally ex ante optimal
strategy from Π = ∆(A)O. Then π is CDT+GT compatible.

Briggs (2010, Sect. 3.4 and 3.5) and Conitzer (2015b, Sect. 4) give related results.
Their results require some restrictions on the game structure but allow the stronger
conclusion that the CDT+GT-compatible policies are exactly the ex ante optimal ones
(cf. the discussion of these results by Korzukhin, 2020).

4 Ex ante optimal policies are compatible with EDT +
generalized double-halfing

In this section, we prove novel positive results for EDT+GDH. Again, we first give a
characterization of EDT+GDH-compatible policies (Theorem 6). From this character-
ization, it follows directly that every ex ante optimal policy is EDT+GDH compatible.
We then give two further interesting corollaries. The first is that in scenarios with
|O|= 1, the EDT+GDH-compatible policies are exactly the ex ante optimal ones. The
second is that all EDT+GDH-compatible policies are also CDT+GT compatible.

Theorem 6. Let Π ⊆ ∆(A)O. A policy π ∈ Π is EDT+GDH compatible in Π if and
only if for all o ∈ O,α ∈ ∆(A) s.t. πo→α ∈Π we have that Qπ(P0)≥ Qπo→α

(P0).
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As a consequence of Theorem 6, ex ante optimal policies are EDT+GDH compati-
ble.

Corollary 7. Let Π be any set of policies for E and let π be ex ante optimal in Π. Then
π is compatible with EDT+GDH restricted to Π.

Briggs (2010, Sect. 3) gives a related result. It assumes some restrictions on the
game structure and under these restrictions, the EDT+GDH policy (like the CDT+GT
policy) is unique (cf., again, the discussion of these results by Korzukhin, 2020).

Theorem 6 and the equivalence between GDH and GSH on single-observation sce-
narios (Proposition 1) also directly imply the following.

Corollary 8. Let E be a scenario that has only one observation (i.e., |O| = 1). Let
Π ⊆ AO. Then a policy π ∈ Π is ex-ante optimal if and only if π is compatible with
EDT+GDH/GSH restricted to Π.

Note that the same could not be said of CDT+GT, as shown by, e.g., Aumann, Hart,
and Perry (1997, Sect. 5), Conitzer’s (2015) “Three Awakenings” (cf. our Example 8),
and Korzukhin (2020).

With the help of Theorems 4 and 6, we can also obtain the following result.

Corollary 9. If a policy is EDT+GDH compatible (without any policy restriction), it
is CDT+GT compatible.

Since Corollary 8 does not hold true for CDT, the converse of Corollary 9 also does
not hold.

5 On generalized single-halfing

5.1 Draper and Pust’s Dutch book argument against single-halfing
We start by describing a version of Draper and Pust’s Dutch book argument against
single-halfing.6 We will specifically focus on CDT+GSH. We give a Dutch book
against EDT+GSH in Section 5.5.

Example 5 (adapted from Draper and Pust, 2008, Sect. 5). As a base scenario, take
Example 2 but imagine that Beauty is told immediately upon waking up what day it is.
On Sunday, Beauty is offered a bet that costs $15 and pays $30+ε if the coin comes up

6This version differs from Draper and Pust’s in two ways. First, we added small extra payoffs (+ε) to
make sure that single-halfers strictly prefer the choices that lead them to get Dutch-booked. Second, the
bet offered on Monday costs $18 as opposed to $20. As we will see below, this is just low enough for
generalized single-halfers, as defined in this paper (Definition 3), to have to accept this bet. If the bet cost
$20, generalized single-halfers would reject it and the Dutch book would not work against our version of
GSH. This is because adding an extra decision point on Sunday changes the GSH probabilities of Heads and
Tails (at least as defined in Definition 3) on Monday from the usual (2/3,1/3) to (3/5,2/5).

We think this is not an oversight on Draper and Pust’s part. Instead, we think that they assume a gen-
eralization in which the Sunday observation is in a different reference class than the Monday and Tuesday
observations. Roughly, this means that the existence of the Sunday observation is viewed as relevant to
updating on Monday and Tuesday. See Bostrom (2010) for a discussion of reference classes.
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Tails. On Monday, Beauty is offered a bet that costs $18 and pays $30+ ε if the coin
came up Heads (i.e., if she awakes only on Monday and not on Tuesday). If the coin
comes up Tails, she is awakened again on Tuesday, with no relevant decision to make.

If Beauty accepts both bets, then she loses $3− ε with certainty. But Draper and
Pust argue that in both decision situations, single-halfers prefer accepting the bets (in-
dependent of what is chosen at the other decision point). Indeed, Draper and Pust’s
argument is compatible with our formalism and the definition of CDT+GSH in Defini-
tion 7. Consider the formalization of Example 5 in Figure 5. Upon observing that it is
Sunday, Beauty knows that the current state is sSu, and it is easy to see that regardless of
π , Qπ(sSu,accept)> Qπ(sSu, reject). Upon observing that it is Monday, since Beauty’s
beliefs depend on π and for mixed π she might assign positive probability to multiple
states. For simplicity assume that π accepts the offer with probability 1 on both Mon-
day and Sunday. Then omitting the normalizing constants, we obtain PGSH(sH,Mo,a |
mo,πaccept)=PGSH(1st in sSusH,Mo,a−5 |mo,πaccept)∼ 1/2 ·1/2 = 1/4 and PGSH(sT,Mo,a |
mo,πaccept) = PGSH(1st in sSusT,Mo,asT,Mo,a,a−5 |mo,πaccept)∼ 1/2 · 1/3 = 1/6; all other
histories have probability zero under this policy. To renormalize we have to divide
by the sum, i.e., by 1/4+ 1/6 = 5/12. We thus get that the single-halfer’s probabilities
of Heads and Tails given that it is Monday are PGSH(sH,Mo,a | mo,πaccept) = 3/5 and
PGSH(sT,Mo,a |mo,πaccept) = 2/5, respectively. Hence, the causal expected utility of ac-
cepting relative to rejecting is 3/5 · (12+ ε)− 2/5 ·18 = 3ε/5. Hence, CDT+GSH accepts
the second bet. With the help of Draper and Pust we have thus shown the following.

Proposition 10 (Draper and Pust, 2008). There is a scenario in which the only CDT+GSH-
compatible policy is a (deterministic) Dutch book policy.

Example 5 is not a Dutch book against evidential decision theory + GSH as defined
in this paper. We show and discuss this in Appendix E.1.

5.2 How single-halfers can avoid Draper and Pust’s Dutch book
We now defend single-halfing against Draper and Pust’s Dutch book. In particular,
we argue that single-halfers should strictly prefer to reject the bet on Sunday! This
may be surprising since accepting the Sunday bet seems unproblematic. For instance,
accepting the Sunday bet is ex ante optimal. Our approach will therefore not address
the concern of ex ante suboptimality: we will have the agent reject the Sunday bet and
accept the Monday bet, which is ex ante suboptimal. In the following we first give the
argument informally and then make it formal.

Imagine you are the subject of Example 5 and that it is Sunday. You will be put
to sleep momentarily and the fair coin will be flipped in a few hours. Should you
believe that the probability of Heads/Tails is 50%? Following the general pattern of the
single-halfer’s argument, you might think the following: Under the hypothesis that the
coin will come up Heads, I will have two observation moments, one of which is that I
observe that it is Sunday. If the coin will come up Tails, I will have three observation
moments, one of which is that I observe that it is Sunday. Thus, the Heads hypothesis
better predicts that it is Sunday. Thus, observing that it is Sunday should update me
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Figure 5: A graphical formalization of Example 5 (adapted from Draper and Pust,
2008, Sect. 5). In this formalization, the only CDT+GSH-compatible policy is accept-
ing the bet on both Sunday and Monday, which is a Dutch book.
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towards the Heads hypothesis. In particular, I should not bet at (close to) even odds
that the coin will come up Tails.7

We now want to make the argument formal. First, we can easily verify that GSH (as
defined in Definition 3) indeed updates toward the Heads histories, even upon observ-
ing that it is Sunday. For simplicity, consider again the policy π that accepts both bets
with probability 1. Then in the same way as above, we obtain that the single-halfer’s
probabilities of Heads and Tails given that it is Sunday are PGSH(0-th in sSusH,Mo,a−5 |
su,πaccept)= 3/5 and PGSH(0-th in sSusT,Mo,asT,Mo,a,a−5 | su,πaccept)= 2/5, respectively.

So why does Draper and Pust’s Dutch book work against CDT+GSH? The prob-
lem lies in how CDT as defined in Definition 7 uses the GSH probabilities. When CDT
observes that it is Sunday, it uses GSH probabilities to determine the probabilities of
different states (not histories). In this particular case with the formalization in Figure 5,
the observation that it is Sunday uniquely determines the current state to be sSu, regard-
less of whether we use GSH or something else. For calculating the expected utilities
of different actions in this state, CDT+GSH (like CDT+GT) simply uses Qπ(sSu,a),
which does not take any further input from GSH and in particular does not take into
account GSH’s belief that the coin will come up Heads with probability 3/5 not 1/2.

One approach to fix this would be to try to modify the values Qπ(s,a) in such a way
that they incorporate the single-halfer’s probabilities. We here use a different approach.
Since CDT does take into account GSH’s probabilities over states, we will modify the
formal representation of the scenario in such a way that all probability judgments made
by GSH are reflected in the GSH probabilities assigned to states (while in the above
scenario, some of them are only visible in the probabilities assigned to histories). In
particular we will do this (both in this specific example and in general) by giving a
formalization of the scenario in which all randomization happens in the beginning. We
will then apply CDT+GSH as per Definition 7.

So consider the alternative version of the scenario in Figure 6. In this version it is
determined at random at the very beginning of the scenario whether the coin comes up
Heads or Tails. Thus, when the agent chooses whether to accept the Sunday bet or not,
the outcome of the coin flip is already encoded as part of the state. It is easy to verify
that PGSH(sH,Su | su,πaccept) = 3/5 and PGSH(sT,Su | su,πaccept) = 2/5. Thus, in this new
scenario, CDT+GSH strictly prefers rejecting the bet on Sunday and thereby avoids the
Dutch book.

5.3 Characterization and partial Dutch-book immunity of CDT+GSH*
Generalizing the insight of the previous section, we now describe a general theory
CDT+GSH* that assumes that all randomization happens at the beginning of the sce-
nario. We show that this version avoids Dutch books when the agent cannot affect the
length of the history.

We first define formally what it means for a scenario to randomize only in the
beginning.

7This line of argument would not work if we considered a version of the self-sampling assumption in
which the Sunday observation is in its own reference class. As noted in footnote Footnote 6, this is plausibly
what Draper and Pust had in mind.
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Figure 6: An alternative formalization of Example 5 (adapted from Draper and Pust,
2008, Sect. 5), in which all randomization (in the environment) happens at the very
beginning. In this formalization, the only CDT+GSH-compatible policy is to reject the
bet on Sunday and accept the bet on Monday. While this policy is ex ante suboptimal,
it is not a Dutch book.

22



Definition 9. We say that a scenario E randomizes only in the beginning if T (s′ | s,a)
is 0 or 1 for all s,s′ ∈ S and all a ∈ Aω(s).

For any given scenario, we could now define CDT+GSH* as the application of
CDT+GSH to a version of the given scenario that randomizes only in the beginning.
To do so, we would need to specify how to turn a given scenario into one that only
randomizes in the beginning. We do not do this here, because it is intuitive but formally
cumbersome. Instead, we will assume that the scenario is already provided in a format
that randomizes in the beginning. Thus, for now the discussion of CDT+GSH* is, in
effect, a discussion of CDT+GSH as applied to scenarios that only randomize in the
beginning.

How is CDT+GSH* supposed to deal with policy randomization? If random state
transitions cause problems, do random policies cause the same problems? The answer
is yes and we address this in detail in Section 5.4. The positive results in this section
assume that either the policy is deterministic, or that the agent’s choices do not affect
the length of the history (which makes policy randomization unproblematic for GSH).

Definition 10. Let E be a scenario that randomizes only in the beginning. We say that
history length is choice independent in E if for each s0 with P0(s)> 0, there is a natural
number len(s0) s.t. for all π , ∑s1...slen(s0)

P(s0s1...slen(s0) | π,s0) = 1, where the sum is
over all histories of length len(s0).

In words, history length is choice independent in E if the initial state uniquely
determines the length of the history independently of the agent’s choices.

The key realization now is that if history length is choice independent, (CDT+)GSH
is like (CDT+)GT, except that gives lower weight to utilities achieved in longer histo-
ries.

Theorem 11. Let E be a scenario that randomizes only in the beginning and where his-
tory length is choice-independent. Let Ê be the scenario that is equal to E , except that
P̂0(s0)∼ P0(s0)/len(s0). Then any (potentially mixed) policy is CDT+GSH-compatible
in E if and only if it is CDT+GT-compatible in Ê .

Note that one could equivalently state Theorem 11 in terms of dividing the utilities
rather than the priors by the length of the history. Armstrong (2011) observes a similar
connection between GSH and “copy-altruistic average utilitarianism”.

As an immediate consequence of Theorem 11 and Theorem 4, we can character-
ize CDT+GSH compatibility in such scenarios in terms of the policy derivatives of
Qπ(P̂0). Moreover, Theorem 11 implies the following Dutch book avoidance result for
CDT+GSH*.

Corollary 12. Let E be a scenario that randomizes only in the beginning and where
history length is choice-independent. Then there exists a CDT+GSH-compatible non-
Dutch-book policy for E .

5.4 CDT+GSH* fails when choices affect history length
What happens if we the agent’s choices affect the length of the history, as in the absent-
minded driver? We will argue that natural generalizations of the ideas from the previous
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sections don’t save CDT+GSH* from Dutch books.

5.4.1 Random choices pose the same problem as random state transitions

It is natural to suspect that if the agent’s choices can affect the history length, policy
randomization causes the same problems as exposed by the Dutch book of Draper and
Pust (2008) (Section 5.1). Roughly, the problem of CDT+GSH (as per Definition 7) in
Draper and Pust’s case is that the environment flips a coin midway through the scenario
and the coin flip determines the history length, then CDT+GSH assigns different prob-
abilities to the coin flip’s outcome before versus after the coin is flipped. The following
result shows that the same problem arises if the agent flips a coin midway through.

Proposition 13. There is a scenario that randomizes only in the beginning and in which
all CDT+GSH-compatible policies are Dutch books.

Because this result is unsurprising and the example needed for proving it is rela-
tively complicated, we only prove this result in Appendix E.3. We will then also show
in Appendix E.4 how moving the agent’s policy randomization to the beginning of the
scenario solves the example given in Appendix E.3.

5.4.2 Viewing random choices as predetermined fails – A Dutch book against
CDT+GSH*

A natural conclusion might be: CDT+GSH* should not only imagine that all random-
ization in the environment happens in the beginning. When its choices affect the length
of the history, it should also view its own random choices as determined at the very be-
ginning of the scenario. Put in another way, if the agent intends to use ten coin flips to
determine her choices, perhaps she should view the outcome of these ten coin flips as
determined at the very beginning of the scenario, and her choices as merely accessing
the results of these coin flips.

To be more precise, we will imagine that for any scenario E and any policy π for
E , we construct some scenario E π which is like E except that there is an action aπ

that implements π by accessing some feature of the state that is determined at random.
To determine whether π is CDT+GSH* compatible we can then ask: is the policy of
always choosing aπ CDT+GT compatible in E π ? In Appendix E.4, we show how this
approach solves the example that we use to prove Proposition 13.

Unfortunately, this approach does not seem to work in general. In general, there
need not even exist a policy that is CDT+GSH* compatible in this sense. We discuss
this in Appendix E.5. More importantly, we here give a scenario in which the only
CDT+GSH* compatible policy is a Dutch book. We want to emphasize that we think
this is not a failure of our particular formal approach (of moving all randomization to
the beginning) but of the very idea behind CDT + generalized single-halfing.

Example 6. First the agent faces a choice between a0 and a1 three times. She cannot
distinguish between these three situations, retains no memory of how often she has
already faced the choice or of what her choices were. Her rewards are determined by
the number of times she chooses a1 in these situations as follows: 0 7→ 0,1 7→ 1,2 7→
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−1,3 7→ −ε . Here, ε is some small but positive number, e.g., ε = 1/100. Afterward, if a1
was chosen exactly once (for a reward of 1) the agent faces the same decision problem
between a0 and a1 another K times (for some large K). The agent’s choices in these K
situations do not affect her final reward – her reward remains 1.

We now argue informally that Example 6 is a Dutch Book against CDT+GSH*; see
Appendix E.7 for a detailed, rigorous analysis. Clearly, the policy of always playing
a1 is CDT+GSH* compatible. It is left to argue that no other policy is CDT+GSH*
compatible. To do so, we will argue that regardless of what policy π the agent fol-
lows, CDT+GSH* recommends deviating to play a1. In short, the CDT+GSH* agent
believes, regardless of its policy, that conditional on the choice between a1 and aπ mat-
tering at all, she is unlikely (specifically with probability approaching 0 as K goes to
∞) to be on track to play a1 exactly once if she plays aπ . Instead, conditional on her
choices mattering, following the policy (playing aπ ) will likely lead to a1 being played
either 0 or 2 times. This is because for all policies π , the (ex ante, non-self-locating)
probability of playing a1 exactly once is never much bigger than the probability of
playing a1 zero or two times. Specifically, as we show in Appendix E.7, the probabil-
ity of playing a1 exactly once is at most 3/2 times the probability of playing a1 zero
or two times. Since the branch in which a1 is played exactly once contains many ad-
ditional inconsequential decision situations, the CDT+GSH* agent believes it is very
likely (probability approaching 1 as K→ ∞) that if her choice matters at all she is on
track (by playing aπ ) to play a1 zero or two times. Given this belief, CDT recommends
playing a1 over playing aπ or a0.

5.5 A new Dutch book against evidential decision theory + GSH*
EDT+GSH as discussed in this paper avoids Draper and Pust’s Dutch book, both in
its basic form (see Appendix E.1) and in the variant that moves randomization to the
beginning of the scenario (Figure 6). Nonetheless, there are simple Dutch book sce-
narios for EDT+GSH in which the strategy that partially saves CDT+GSH cannot even
partially save EDT+GSH. In particular, there are Dutch book scenarios where actions
do not affect the agent’s future observations.

Proposition 14. There is a scenario that only randomizes in the beginning, where the
length of histories is choice independent and where the only policy compatible with
EDT+GSH is a (deterministic) Dutch book policy.

Example 7. Let ε > 0. The researchers flip a fair coin. On Sunday, Beauty is offered
a bet that wins $1− ε if the coin came up Heads and loses $1−2ε if the coin came up
Tails. The researchers then put Beauty to sleep. If the coin came up Tails, then Beauty
is awoken once on Monday and again on Tuesday (without being told what day it is).
If the coin came up Heads, then Beauty is awoken once on Monday (without being told
what day it is). However, she is awoken again on Tuesday and told that it is Tuesday
and that the coin has come up Heads. In Tails–Monday, Tails–Tuesday and Heads–
Monday, Beauty is offered a choice between accepting and rejecting a bet. In the Tails
branch, Beauty has to accept twice for the bet to become into effect once. This second
bet loses $1 if the coin comes up Heads and wins $1− 3ε if the coin comes up Tails.
For a graphical description of this scenario in our formalism, see Figure 7.
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Figure 7: A graphical formalization of Example 7.

Since there are now equally many observations regardless of the agent’s choices
or the outcome of the coin flip, it seems clear that on Sunday Beauty should believe
that the coin came up Heads/Tails with probability 50%. Thus, EDT+GSH requires
accepting the bet on Sunday (in agreement with the ex ante view and all other com-
binations of EDT and CDT with GT, GDH and GSH). Upon waking up and being
offered the second bet, GSH assigns equal probabilities to the states Tails–Monday,
Tails–Tuesday and Heads–Monday and thus a probability of 2/3 to Tails. If Beauty
also uses EDT, then accepting with probability p increases her GSH-expected utility
by 2/3p2($1−3ε)− 1/3p($1−2ε) relative to not accepting. For small enough (but still
positive) ε , the only global maximum of this function is p = 1. Hence, EDT+GSH re-
quires accepting the second bet also. But of course, accepting both bets yields a certain
payoff of −ε , while always rejecting yields a certain payoff of 0.
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6 Discussion

6.1 CDT needs randomization
Our main positive result for EDT+GDH (Corollary 7) applies even if we restrict the
agent to, for example, the set of deterministic policies. Our main positive compatibil-
ity results for CDT+GT and CDT+GSH(*) (i.e., Corollary 5 (Piccione and Rubinstein,
1997) and Corollary 12), on the other hand, only apply in the case of unrestricted
randomization (i.e., they require that Π = ∆(A)O). Indeed, this ability to random-
ize is necessary for CDT. There are scenarios with imperfect recall (e.g., the absent-
minded driver) in which no deterministic policy is compatible with any natural version
of CDT+GT. Furthermore, there are scenarios with imperfect recall in which the only
deterministic policy consistent with CDT+GT or CDT+GSH* is a Dutch book policy:

Proposition 15. There is a scenario in which history length is choice independent and
the only deterministic CDT+GT/CDT+GSH-compatible policy is a Dutch book policy.

We prove Proposition 15 with the following variant of Conitzer’s (2015) “Three
Awakenings”:

Example 8. The agent faces a choice between a0 and a1 three times. She cannot
distinguish between these three situations, retains no memory of how often she has
already faced the choice or of what her choices were. Each choice of a1 decreases her
reward by 1. However, if she chooses a1 exactly once or all three times, her reward is
increased by 2. Thus, if she never chooses a1, her reward is 0; if she chooses a1 exactly
once, her reward is 1; if she chooses a1 exactly twice, her reward is −2; and if she
chooses a1 all three times, her reward is −1.

The ex ante optimal randomized policy is to play a1 with probability 1/2−1/(2
√

2)≈
0.15, which (by Corollaries 5 and 7) is compatible with CDT+GT and EDT+GDH. The
optimal deterministic policy is to always play a0. This is compatible with EDT+GDH
restricted to deterministic policies (by Corollary 7). However, it is clearly not consis-
tent with CDT+GT; given that the agent otherwise uses the policy of playing a0 with
probability 1, it would be better to play a1 (once). However, the other determinis-
tic policy of always playing a1 is CDT+GT compatible; given that the agent follows
this policy, choosing a2 once decreases the reward from −1 to −2. However, always
choosing a1 is a Dutch book policy.

How CDT and related theories require and deal with randomization has been dis-
cussed in other contexts (e.g. Richter, 1984; Harper, 1986; Skyrms, 1986; Levinstein
and Soares, 2020; Oesterheld and Conitzer, 2021, Sect. IV.1). It is outside the scope
of this paper to judge whether the assumption of being able to randomize is reasonable
or what conclusions can be drawn from CDT’s failure in the absence of the ability to
randomize.

6.2 Conitzer’s Dutch book against evidential decision theorists
Conitzer (2015a) claims to provide a Dutch book involving imperfect recall against
EDT. Specifically, he provides a scenario in which he claims, translated to our termi-
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nology, that the only EDT compatible policy (regardless of self-locating beliefs) is a
Dutch book. This seems to contradict our Corollary 7. What is going on?

The reason why our analyses differ is that Conitzer considers a version of EDT that
differs subtly from the one we define in Section 2.4.1. We first describe the difference
abstractly and then illustrate it using an example. First, recall from our definition that
conditional on a policy π and an observation o, EDT evaluates the value of any distri-
bution α ∈ ∆(A) via the expected value of πo→α . That is, the the EDT(+GDH) agent
considers that if she chooses α upon o now, then on all other instances of observing o
(including past ones), she also will choose and will have chosen α . For all other o′ 6= o,
on the other hand, we imagine that choosing α upon o gives no evidence about choice
in o′. Conitzer gives a case in which it is very plausible that o1→ α also implies that
o2 → α for two different observations o1,o2, because o1 and o2 are symmetric in the
game.

We now illustrate this using an example. Because Conitzer’s case is somewhat
complicated, we give a simpler example that illustrates the same mechanism. The
cost of the simplification is that in our example Conitzer’s interpretation of EDT+GDH
uniquely selects a policy that is merely ex ante suboptimal, as opposed to being a Dutch
book policy.

Example 9. We use the same three equiprobable branches as in Example 10. Again,
at each observation of x or y, the agent is offered a bet on whether branch Z is realized.
However, contrary to the previous version, the two offers in branch Z are now made
and accepted independently. That is, if the agent accepts twice in branch Z, then she
wins the bet twice; and if she accepts once, she wins the bet once. Also, the bet is now
at somewhat worse than even odds. Specifically, it pays 2/3 in branch Z and pays −1 in
branch X/Y. The game is represented graphically in Figure 8.

Clearly, the unique ex ante optimal policy for this scenario is to always reject for
a certain payoff of 0. Conitzer claims, translated to our example, that EDT+GDH
recommends accepting the bet. The key idea is that an EDT agent should take her
choice upon observing x as definitive evidence about her choice upon observing y (and
vice versa). This is due to the combination of two reasons.

1. The observations x and y and the bets made in them are symmetric.
2. The bets are resolved independently, the payoffs are additive between the bets.

Thus, if, say, the agent were hard-wired to make a particular choice in y, it seems
that a choice in x can be made without knowing what the choice would be in y.

Although both also apply to Conitzer’s original case, note that Conitzer only makes
the symmetry point. However, symmetry between two observations alone arguably
does not imply that an agent needs to choose the same for both observations, see Ap-
pendix B.

If she takes her choice in x as conclusive evidence of her choice in y, then her
expected utility calculation changes. Again, branch X and Z are equally probable upon
observing x. By accepting, the agent decreases her reward in branch X relative to not
accepting by 1. But in branch Z, she now increases her utility by 4/3 (not just 2/3),
because if she is in branch Z and she accepts, she accepts twice for a reward of 4/3.
Whereas, if she is in branch Z and she rejects, she rejects twice for a reward of 0. A
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Figure 8: A graphical formalization of Example 9.

gain of 4/3 outweighs an equally probable loss of 1. Thus, the EDT agent accepts the
bet in x and by the same argument also in y.

The general cause of failure of the EDT agent as considered in Conitzer’s argument
is a discrepancy between decision points that the agent can “evidentially control”, and
decision points about which the agent thinks, “I might be this decision point”. In
Example 9, upon observing x, the agent (as considered in Conitzer’s argument) believes
that she has evidential control over her choice for y in branch Z, but she does not think
that she might currently be observing y (in branch Z). Interestingly, this discrepancy
problem is common in Newcomb-like problems (without imperfect recall) and results
in both CDT and EDT choosing ex ante-suboptimal policies. Newcomb’s problem
(Nozick, 1969) itself is an example in which CDT’s choice (two-boxing) is an ex ante
suboptimal policy. Now imagine that the way that the predictor in Newcomb’s problem
arrives at its predictions by creating a precise copy of the agent and having the copy
make a choice between one- and two-boxing. Arguably, the CDT agent should then
assign equal probability to being the copy versus the original. If (as assumed in the
present paper) the agent’s goal is independent of whether he is the original or the copy,
CDT recommends one-boxing.8 Note that the formalism of Section 2.1 can only model
the latter version of Newcomb’s problem. Similarly, one can give Newcomb-like cases
in which EDT does not give the ex ante optimal policy9, and we can similarly “save”

8As far as we are aware, this argument for why CDT agents might one-box in Newcomb’s problem has
not been discussed in much detail in the literature. However, it is briefly mentioned by Neal (2006, p. 12f.);
as well as various various blog posts (e.g., Aaronson, 2005; Taylor, 2016).

9To our knowledge, the oldest such case is a version of Newcomb’s problem in which both boxes are
transparent (first proposed, we believe, by Gibbard and Harper, 1981, Sect. 10; for further discussion, see
Gauthier, 1989; Drescher, 2006, Sect. 6.2; Arntzenius, 2008, Sect. 7; Meacham, 2010, Sect. 3.2.2). Other
such examples include Parfit’s (1984) hitchhiker (Barnes, 1997), XOR Blackmail (Levinstein and Soares,
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EDT by having the agent identify with anything in the environment that can be used to
predict the agent.10

6.3 The multiplicity of compatible policies
As we have seen (e.g., in Examples 4 and 8) and as other authors have also discussed
(e.g. Aumann, Hart, and Perry, 1997; Korzukhin, 2020), there are scenarios in which
multiple policies are compatible with the theories defined in Section 2.4. We and others
have showed that the ex ante optimal policies are among the CDT+GT and EDT+GDH
compatible policies. We should draw some satisfaction from these results. However,
we might also wonder whether de se reasoning on its own can – even in the face of a
multiplicity of compatible policies – arrive at an ex ante optimal policy, without ever
explicitly assuming an ex ante perspective. This paper has not discussed this question
much so far; and we are unaware of any work that proposes solutions to this problem.

Note that the multiplicity of compatible policies is a bigger problem for CDT than
it is for EDT. First, by Corollary 8, in the single-observation case (|O|= 1), EDT+GDH
and EDT+GSH face no multiplicity problem. CDT+GT, on the other hand, faces such
a problem even in the single-observation case (as demonstrated in Example 4 and also
shown by, e.g., Aumann, Hart, and Perry, 1997, Sect. 5, and Korzukhin, 2020). This
matters especially if we believe that the single-observation case is particularly impor-
tant. For example, in the literature on Newcomb-like problems, it has sometimes been
argued that we should limit our expectations of CDT and EDT to individual decisions,
and that we should not expect them to make good recommendations when applied to
multiple different decision situations (see Oesterheld and Conitzer, 2021, Sect. IV.3 and
references therein). Second, by Corollary 9 the set of EDT+GDH compatible policies
is a subset and in many cases a strict subset of the set of CDT+GT compatible policies.
Nevertheless, both EDT and CDT face a problem of multiplicity when |O|> 1.

We would her like to join Aumann, Hart, and Perry, 1997 and Korzukhin (2020)
in raising awareness for the problem of the multiplicity of compatible policies. We
do this by showing that an intuitively compelling approaches leads to bad policies. At
each decision perspective o ∈ O, an agent can not only evaluate her choices at that
decision point; she can also evaluate entire policies π , most naturally by calculating
expected utilities EUGSH/GDH/GT(π,o) and comparing them across policies π . The
different decision perspectives might disagree in their preferences over entire policies.
So in particular if in each o the agent played from the, say, CDT+GT-compatible pol-
icy that maximizes EUGT(π,o), then the agent will in general not follow a CDT+GT-
compatible policy. (We give an example in Appendix G.) In general, it is unclear
how rational agents resolve such disagreement across decision perspectives. This dif-
ficulty resembles the difficulty of equilibrium selection in game theory. However, we
might expect that, for example, if all decision perspectives agree that some CDT+GT-
compatible policy π is better than another CDT+GT-compatible policy policy π ′, then
a CDT+GT agent would not follow π ′. This resembles the use of Pareto optimality as
a goal in multi-agent interactions. The idea is more natural in single-player scenarios

2020, Sect. 2) and Yankees vs. Red Sox (Arntzenius, 2008; Ahmed and Price, 2012, pp. 22-23).
10Again, we are not aware of any detailed discussion of this idea in the literature, but again the point has

been made at least in a blog post (Treutlein, 2017).
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of imperfect recall, however, since we might expect the different decision perspectives
of a single player to be better at coordinating. For a success story of this approach,
consider Example 4. In this example, both (accept,defuse) and (reject,not defuse)
are consistent with CDT+GT and EDT+GDH. However, at both decision points, Al-
ice prefers (reject,not defuse) over (accept,defuse) (regardless of whether she uses
EUGDH, EUGSH or EUGT to judge policies). Thus, without using any ex ante perspec-
tive, de se decision theories can avoid the certain loss in this scenario. Unfortunately,
the following result shows that such reasoning can lead the agent badly astray.

Theorem 16. There is a scenario E with the following properties.
• E only randomizes in the beginning and the agent’s choices do not affect her

future observations. (In particular, history length is choice independent.)
• There is a CDT+GT-, CDT+GSH- and EDT+GDH-compatible deterministic

Dutch book policy π̃ .
• For all EDT+GDH/CDT+GT/CDT+GSH-compatible policies π other than π̃

and all observations o, EUGDH/GT/GSH(π̃,o)> EUGDH/GT/GSH(π,o).

Note that the first item means that this scenario is relatively unproblematic for
CDT+GSH (see Theorem 11).

Aumann, Hart, and Perry (1997, Sect. 5) provide a single-observation scenario with
a similar property w.r.t. only CDT+GT. By removing the Sunday bet from Korzukhin’s
(2020) scenario, we obtain another single-observation scenario with a similar property
w.r.t. CDT+GT. (Corollary 8 implies that multiple observations are necessary to obtain
this kind of result for EDT+GDH.)

For simplicity, we first give a scenario that proves the theorem only for EDT+GDH
and CDT+GT (and not for CDT+GSH*). In Appendix H, we then extend the scenario
to also apply to CDT+GSH*.

Example 10. At the beginning, the scenario randomizes uniformly between three pos-
sibilities: X) The agent observes x once. Y) The agent observes y once. Z) The agent
observes x once and then y once. Upon observing x or y, the agent chooses from three
actions: bet, pay, and pass. By choosing bet, they accept a bet on being in branch X or
Y at slightly better than even odds. Specifically, for each time they bet, they obtain 1 if
branch X or Y is realized and they lose 2/3 if branch Z is realized. By choosing pay, they
lose some small amount ε > 0. However, if branch Z is realized and the agent chooses
to pay exactly once, they end up with a payoff of −100. Choosing to pass has no con-
sequences in and of itself. A graphical description of this problem in our formalism is
given in Figure 9.

In this game, the two observations x and y are symmetric. This is done to keep our
descriptions and arguments brief. It is inessential and all the same points apply if we
introduce a minor asymmetry, e.g., if we increased the probability of branch X by 1%
and correspondingly decreased the probability of branch Y by 1%. We mention this
because symmetry of observations has been a central feature in (alleged) counterexam-
ples given in previous work (see Section 6.2).

We now show that Example 10 has the properties claimed in Theorem 16. First
notice that always passing ensures a non-negative reward. Our compatible Dutch book
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policy π̃ is the one that pays in both situations. Its expected utilities are EUGDH/GT(π̃,x)=
EUGDH/GT(π̃,y) = −3ε/2. (Since no observation is ever made twice in any history,
GDH and GT probabilities coincide in this problem.)

We now go through the list of other CDT+GT-compatible policies. (By Corollary 9,
all EDT+GDH-compatible policies are CDT+GT-compatible. Hence, it is enough to
consider the CDT+GT-compatible policies.) We start with the only other determinis-
tic compatible policy πbet, which is to bet in both x and y. This is also the ex ante
optimal policy. However, upon observing x or y, the GDH/GT expected utility is
EUGDH/GT(πbet,x) = EUGDH/GT(πbet,y) = 1/2 · 1+ 1/2 · (−4/3) = −1/6, which is less
than −3ε/2 for small enough ε .

What mixed compatible policies are there? To answer this question, notice first
that CDT+GT never recommends passing. Regardless of what policy the agent uses
in the other decision situation, it is always better (as judged by CDT+GT) to bet than
to pass. Hence, we are left to find a policy that randomizes between bet and pay in
at least one of x and y. For a randomized policy to be CDT+GT-compatible, it must
induce indifference between bet and pay. This means that the agent must randomize
in both decision situations (x and y) (since without randomization in x/y the agent
is not indifferent in y/x). By symmetry between x and y, the distribution needed for
indifference is the same in x and y. Thus, the third and last CDT+GT-compatible policy
is some πp that bets with probability p and pays with probability 1− p in both x and
y. It is easy to see that EUGDH/GT(πp,x/y) can be written as a convex combination
of the analogous expected utilities for four different deterministic policies, namely the
four different policies that map x and y to bet and pay.11 It is easy to see that from
all decision perspectives the utility of paying in both x and y is strictly greater than the
utility of the three other deterministic policies. Thus, it is also greater than their convex
combination.

7 Conclusion
Together with a body of existing work, the present paper shows which de se meth-
ods of choice abide ex ante standards of rational choice. We find that causal decision

11In this specific case, this can be formally verified as follows:

EUGT(πp,x) =
1
2
(p+(1− p)(−ε))

+
1
2
(p2(−4/3)+2p(1− p)(−100)+(1− p)2(−2ε))

=
1
2
(p2 + p(1− p)+ p(1− p)(−ε)+(1− p)2(−ε))

+
1
2
(p2(−4/3)+2p(1− p)(−100)+(1− p)2(−2ε))

= p2(1/2+ 1/2(−4/3))+ p(1− p)(1/2 ·1+ 1/2(−100))

+(1− p)p(1/2(−ε)+ 1/2(−100))+(1− p)2(1/2(−ε)+ 1/2(−2ε))

= p2EUGT(πbet,x)+ p(1− p)EUGT((x 7→ bet,y 7→ pay),x)

+(1− p)pEUGT((x 7→ pay,y 7→ bet),x)+(1− p)2EUGT(π̃,x).
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Figure 9: A graphical formalization of Example 10.
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theory works when combined with generalized thirding (a.k.a. consistency and the
self-indication assumption), while evidential decision theory works when combined
with generalized double-halfing (aka Z-consistency, the minimum-reference class self-
sampling assumption). Other combinations are in general vulnerable to Dutch books.
An important negative result is that generalized single halfing a.k.a. the self-sampling
assumption is in general vulnerable to Dutch books, whether combined with CDT
or EDT. This is especially important considering that single-halfing is intuitively ap-
pealing and has been used in a number of anthropic arguments, including the famous
doomsday argument. The present work (in accord with Draper and Pust (2008)) sug-
gests that we reject these arguments.

While our work aims to give a complete analysis of de se versus ex ante rational
choice, it nonetheless opens many avenues for further work. Throughout this paper,
we have found connections between foundational areas of self-locating beliefs (and
anthropics) and the decision theory of Newcomblike problems: the main results show
(in line with Briggs, 2010) suggests that positions on Newcomb’s problem (one- ver-
sus two-boxing) commit ourselves to positions on the Sleeping Beauty problem and
vice versa; in Section 6.1 we point out that both in Newcomb-like problems and games
of imperfect recall, CDT hinges on randomization in a way that EDT does not; in
Section 6.2, we connected Conitzer’s alleged imperfect recall counterexample to EDT
to alleged Newcomblike (perfect recall) counterexamples to CDT and EDT; in Ap-
pendix A, we show how, like some Newcomblike porblems, CDT is sensitive to im-
possible counterfactuals in a way that EDT isn’t. We believe that future work will
benefit from understanding Newcomblike problems through games of imperfect recall
and vice versa.
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A Why CDT requires additional assumptions about the
scenario to be well-defined

To define ex ante expected utility and EDT, we need to assume that for all policies π ,
the probability that a terminal state is reached at some point is 1. More formally, we
need to assume that

∑
s0...sn

P(s0...sn | π) = 1,

where the sum is over all histories that end in some terminal state sn. Figure Figure 10
gives a minimal example of a scenario that we exclude by this assumption. In this sce-
nario, it is unclear how one would assess (ex ante or otherwise) the policy of choosing
b with probability 1.

As noted in the main text, CDT requires stronger assumptions to be well defined. To
illustrate this requirement, consider the scenario of Figure 11. First notice that for each
policy, a terminal state is reached with probability 1. (To see this, distinguish between
the policy that takes b with probability 1 and all other policies.) Hence, we can without
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Figure 11: In this scenario, the ex ante expected utilities of all policies are well defined,
but one of the causal expected utilities (namely, Q always b(s0,a)) is undefined.

problem assign ex ante expected utilities Qπ(s0) to all policies. (In particular, the ex
ante expected utility of a policy that plays a with probability p is simply p.) It is easy to
verify that EDT can also be applied to this scenario without trouble. In fact, the proof
of our results about EDT+GDH in Section 4 only require that the scenario ensures that
∑s0...sn P(s0...sn | π) = 1 and not the stronger assumption given in the main text.

For CDT, on the other hand, the scenario of Figure 11 spells trouble. Consider the
policy of always choosing b. To determine whether this policy is CDT compatible,
we need to calculate a value Qalways b(s0,a), i.e., the expected utility of choosing a in
s0, assuming the agent will always play b otherwise. However, this expected utility
is undefined: if the agent follows a in s0 and then always plays b, the infinite history
s0s1s1s1... will be realized and no terminal state will be reached. If the agent assigned,
say, a utility of 0 to infinite histories, then always b would not be CDT compatible; in
fact, the scenario would have no compatible policy.

Because of scenarios such as this one, we restrict attention in the main text to sce-
narios in which the Q values are well defined, i.e., to scenarios in which even if the
agent deviates from any given policy once, a terminal state will be reached with proba-
bility 1. Note that, for simplicity, the main text makes the slightly stronger assumption
that for every state s, policy π , and action a, choosing a in s and then following π

reaches a terminal state with probability 1 (even if s is reached with probability 0 given
π).

CDT is unable to pass judgment in situations that are unproblematic from an ex
ante or EDT perspective. Is this an argument against CDT? This question is beyond the
scope of this paper, but we note that this problem relates to a general critique of CDT:
CDT gives weight to events and counterfactuals that the agent knows are impossible.
For example, in Newcomb’s problem with an infallible predictor, CDT considers (and
gives weight to) what happens if the predictor predicts two-boxing and the agent one-
boxes (see, e.g., Solomon, 2021).12 Similarly, in the scenario of Figure 11, CDT gives
weight to the event that it chooses b with probability 1 but chooses a.

12Also see a blog post by Oesterheld (2017).
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Figure 12: A scenario in which it is beneficial for an agent to follow an asymmetric
policy, i.e., a policy that chooses differently in o1 and o2, despite the fact that o1 and o2
are symmetric.

B On the benefits of asymmetric choice in symmetric
situations

In this short section, we argue that de se rational agents might make asymmetric choices
in a pair of observations that are symmetric to one another. Consider the scenario in
Figure 12. In this scenario, the agent chooses twice between a and b, once she makes
this choice in o1 and once in o2. She receives a reward of 1 if she chooses a once and
b once – regardless of whether she chooses a in o1 and b in o2 or vice versa. If she
chooses a twice her payoff is −10, and if she chooses b twice her utility is 0. The
two situations o1 and o2 are symmetric in the following sense: if we take a policy π

and construct a new policy π ′ with π ′(· | a) = π(· | b) and π ′(· | b) = π(· | a), then
Qπ ′(s0) = Qπ(s0). (In the graph of Figure 12, this symmetry between o1 and o2 is not
so apparent. To make them appear more symmetric in the graph, we could first let the
scenario decide at random whether o1 or o2 is the first observation.) Of course, the two
optimal strategies break this symmetry and choose a in one of the two observations
and b in the other. We find it plausible that (without having to commit to or otherwise
select such a policy ex ante), a rational agent would be able to break this symmetry by
having some general convention with herself. For example, alphabetical order suggests
the strategy of playing a in o1 and b in o2.

C Proofs of Lemma 17, Theorem 4 and Corollary 5
Recall our definition of derivatives with respect to the policy:

Definition 8. Let π be a policy, a be an action and o be an observation. Then for all
ε > 0 define πε,a,o(a′ | o′) = π(a′ | o′) if o′ 6= o; πε,a,o(a′ | o′) = (1− ε)π(a′ | o′) if
o′ = o and a′ 6= a; and πε,a,o(a′ | o′) = (1− ε)π(a′ | o′)+ ε if o′ = o and a′ 6= a. Then
define d

dπ(a|o)Qπ(P0) := limε↓0(Qπε,a,o(P0)−Qπ(P0))/ε .

Lemma 17. For any o observed with positive probability, d
dπ(a|o)Qπ(P0)=Cπ(o)(EUGT(π,o,a)−

EUGT(π,o)).
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We here give some rough intuition for why this result holds. The left-hand side
of the equation asks: What happens if we increase the probability of playing a in o
by some small but positive ε? It is helpful to focus on the case where π(a | o) = 0,
i.e., where π would otherwise never take action a when observing o. The crucial idea
is that as ε → 0, the probability that πε,a,o plays a multiple times in o diminishes at
a rate on the order of ε2. In contrast, the probability that πε,a,o plays a just once
diminishes at a rate on the order of ε . Therefore, the effect of infinitesimally increasing
the probability of playing a in o is dominated by the effect of playing a exactly once,
while otherwise following π , as compared to always following π . Assuming that there
is a single deviation, the probability that such a deviation happens at any particular state
s with ω(s) = o is proportional to Cπ(s), the frequency with which s occurs under π , as
ε→ 0. Thus, the expected effect of selecting a once in o is EUGT(π,o,a)−EUGT(π,o).
The factor of Cπ(o) reflects the fact that for any given ε the probability that there is a
deviation at all – and thus the size of the derivative – is proportional to the expected
number of times that o is observed under π .

From Lemma 17, we directly obtain the following result.

Proof. For this proof, define T (si+1 | si,π) := ∑a∈A π(a | ω(si))T (si+1 | si,a).
By definition, we need to consider 1/ε(Qπε,a,o(P0)−Qπ(P0)) as ε goes to 0 from

above. We will focus on the minuend,

1/εQπε,a,o(P0) = 1/ε ∑
s0...sn

P0(s0)

(
n−1

∏
i=0

T (si+1 | si,πε,a,o)

)
u(sn)

In the left sum, for si with ω(si) = o, T (si+1 | si,πε,a,o) = εT (si+1 | si,a) + (1−
ε)T (si+1 | si,π). We can multiply the left side out. Writing and working with this
sum would be quite complicated. So instead we describe it. Roughly, we can sort the
summands by the order of ε (the exponent of ε), which intuitively is the number of
times in the history that the ε-probability deviation from π occurs. So the order 0 term
is simply

1/ε ∑
s0...sn

(1− ε)#(o,s0...sn)P(s0)

(
n−1

∏
i=0

T (si+1 | si,π)

)
u(sn)

For small ε , this makes up the vast majority of 1/εQπε,a,o(P0). However, these terms
will cancel out with the corresponding summands for s0...sn in Qπ(P0).

The order 1 term is

∑
s0...sn,k : ω(sk)=o

(1− ε)#(o,s0...sn)−1P(s0)T (sk+1 | a,sk)

(
∏
i6=k

T (si+1 | π,si)

)
u(sn).

Note that the ε probability of choosing a as opposed to choosing from π in sk is can-
celed out by 1/ε. As ε → 0, (1− ε)#(o,s0...sn)−1→ 1 for all s0, ...,sn. Hence the order 1
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term converges to

∑
s0...sn,k : ω(sk)=o

P(s0)T (sk+1 | a,sk)

(
∏
i 6=k

T (si+1 | π,si)

)
u(sn)

= ∑
s∈S : ω(s)=o

∑
prefix s0...sk : sk=s

(
k−1

∏
i=0

T (si+1 | π,si)

)
︸ ︷︷ ︸

=Cπ (s)

∑
sk+1...sn

T (sk+1 | a,sk)

(
n

∏
i=k+1

T (si+1 | π,si)

)
u(sn)︸ ︷︷ ︸

=Qπ (a,s)

= ∑
s∈S : ω(s)=o

Cπ(s)Qπ(a,s).

In the higher order terms, ε occurs with an exponent of at least 2, or at least 1 after
canceling out with the multiplication by 1/ε. Thus, these terms become arbitrarily small
as ε → 0.

We conclude that

1/ε(Qπε,a,o(P0)−Qπ(P0))→ ∑
s∈S : ω(s)=o

Cπ(s)(Qπ(a,s)−Qπ(s))

Finally, notice that this sum is by Definition 4 equal to

∑
s∈S : ω(s)=o

Cπ(o)PGT(s | π,o)(Qπ(s,a)−Qπ(s))

=Cπ(o)(EUGT(π,o,a)−EUGT(π,o))

Lemma 17 implies the following.

Theorem 4. A policy π ∈ Π = ∆(A)O is CDT+GT compatible if and only if for all
o ∈ O and a ∈ A, d

dπ(a|o)Qπ(P0)≤ 0.

Theorem 4 in turn directly implies Corollary 5 – clearly the derivative at a global
optimum must be non-positive in all directions.

Corollary 5 (Piccione and Rubinstein, 1997). Let π be a globally ex ante optimal
strategy from Π = ∆(A)O. Then π is CDT+GT compatible.

D Proofs of Theorem 6 and Corollary 9
Theorem 6. Let Π ⊆ ∆(A)O. A policy π ∈ Π is EDT+GDH compatible in Π if and
only if for all o ∈ O,α ∈ ∆(A) s.t. πo→α ∈Π we have that Qπ(P0)≥ Qπo→α

(P0).
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Proof. Let π be a policy. Note that neither side of the claimed equivalence puts any
restrictions on what π does in observations that are made with probability 0; we only
need to consider o that are observed with positive probability. EDT+GDH compatibil-
ity means that for all o observed with positive probability in π , it is

π(· | o) ∈ argmax
α∈∆(A) : πo→α∈Π

∑
s0...sn

n−1

∑
i=1

PGDH(i-th in s0...sn | πo→α ,o)u(sn).

First note that if o is observed at least once in s0...sn, it is

P(s0...sn | πo→α ,o) =
P(s0...sn | πo→α)

P(o | πo→α)
,

where P(o | πo→α) is the probability that o is observed at least once given that policy
πo→α is used.

We thus get that

argmax
α∈∆(A) : πo→α∈Π

∑
s0...sn

n−1

∑
i=1

PGDH(i-th in s0...sn | πo→α ,o)u(sn)

= argmax
α∈∆(A) : πo→α∈Π

∑
s0...sn with o

∑
i : ω(si)=o

P(s0...sn | πo→α)

#(o,s0...sn)P(o | πo→α)
u(sn),

where the first sum on the right-hand side is over all histories that give rise to observa-
tion o at some point. Dividing by the number of agents with observation o in a history
and summing over all times at which o is observed cancel each other out, such that this
equals

= argmax
α∈∆(A) : πo→α∈Π

1
P(o | πo→α)

∑
s0...sn with o

P(s0...sn | πo→α)u(sn).

Now note that P(o | πo→α) is constant in α , i.e., the probability that you observe o at
least once cannot depend on what you would do when you observe o. Thus, the argmax
equals

argmax
α∈∆(A) : πo→α∈Π

∑
s0...sn with o

P(s0...sn | πo→α)u(sn).

Finally, this argmax equals

argmax
α∈∆(A) : πo→α∈Π

∑
s0...sn

P(s0...sn | πo→α)u(sn).

This is because ∑s0...sn without o P(s0...sn | πo→α)u(sn) is constant across α . Thus, we can
add this term and this argmax remains the same. By definition, we have thus derived
that π is EDT+GDH compatible if and only if for all o that are observed with positive
probability,

π(· | o) ∈ argmax
α∈∆(A) : πo→α∈Π

Qπo→α
(P0),

as claimed.
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Corollary 9. If a policy is EDT+GDH compatible (without any policy restriction), it
is CDT+GT compatible.

Proof. We prove the contrapositive, i.e., that every policy that is not compatible with
CDT+GT is also not compatible with EDT+GDH. So let π be any policy that is not
compatible with EDT+GDH. Then by Theorem 4, there is an o ∈ O observed with
positive probability when following π and an action a ∈ A s.t. d/dπ(a | o)Qπ(P0) >
0. Hence, for sufficiently small ε , Qπε,a,o(P0) > Qπ(P0). By Theorem 6, π is not
EDT+GDH compatible.

E Proofs on single-halfing

E.1 EDT+GSH avoids the Dutch book in Example 5
We here show that EDT+GSH avoids the Dutch book in Example 5, even if we use the
formalization of Figure 5.

For now, let π be a policy that accepts the second bet.

EUGSH(a | su,π) =PGSH(0-th in sSusH,Mo,a | πsu→a)(−15)
+PGSH(0-th in sSusH,Mo,asH,Tu,a,r | πsu→a)(15+ ε)

Now again PGSH(0-th in sSusH,Mo,a | πsu→a) = 3/5 and PGSH(0-th in sSusH,Mo,asH,Tu,a,r |
πsu→a) = 2/5. Thus, EUGSH(a | su,π) < 0. Clearly, EUGSH(r | su,π) = 0. Thus, if π

rejects te bet on Monday/Tuesday, EDT+GSH prefers rejecting the bet on Sunday. It
can easily be shown that more.

This result is again contrary to Draper and Pust’s analysis. The underlying differ-
ence is that we use a version of GSH with a single reference class, cf. Footnote 6.

E.2 Proofs of Theorem 11 and Corollary 12 and Proposition 19
For any prefix history s0...si, i.e., any history that doesn’t end in a terminal state, define

PGT(s0...si | π,o) :=
P(s0...si | π)

Cπ(o)

to be the generalized thirder’s probability of being in state si after the prefix history
s0...si−1 occurred.

We will also use the random variable H for the history of the scenario. For any
history s0....sn (that ends in a terminal state sn ∈ ST as usual), we define len(s0...sn) = n
to be the (observation) length of the history.

We now first prove a result about CDT+GSH. This result will establish the sim-
ilarity between CDT+GSH and CDT+GT, without assuming that the scenario is first
transformed to randomize only in the beginning.

Lemma 18. Let π be a policy. Then π is CDT+GSH-compatible if and only if for all
o that are observed with positive probability, π(· | o) assigns positive probability only
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to actions from

argmax
a∈A

∑
prefix s0...si : ω(si)=o

PGT(s0...si | π,o)E
[

1
len(H)

| s0...si,π

]
Qπ(si,a).

Proof. By Definition 7, CDT+GSH requires that for all o that are observed with posi-
tive probability, the agent choose from

argmax
a∈A

∑
s∈S

PGSH(s | o,π)Qπ(s,a).

Now we can fill in the definition for PGSH, omitting the normalizing denominator, which
is constant across s:

argmax
a∈A

∑
i,s0...sn : ω(si)=o

1
n

P(s0...sn | π)Qπ(si,a).

Now notice that P(s0...sn | π)=PGT(s0...si | π,o)P(si+1...sn | π,si)Cπ(o), where P(si+1...sn |
π,si) is the probability that the following states are si+1...sn when the current state is
si and the agent uses policy π . Since Cπ(o) is constant w.r.t. what the argmax and sum
are over, we can omit it. Hence, the above argmax is equal to

∑
i,s0...sn : ω(si)=o

1
n

PGT(s0...si | π,o)P(si+1...sn | π,si)Qπ(s,a)

= ∑
prefix s0...si : ω(si)=o

PGT(s0...si | π,o)

(
∑

si+1...sn

1
n

P(si+1...sn | π,si)

)
Qπ(s,a).

Clearly, this is equal to the desired argmax term.

While the above lemma talks about CDT+GSH in general, we can now apply the
lemma to CDT+GSH* to obtain Theorem 11 and Proposition 19.

CDT+GSH* and CDT+GT are equivalent via an analogous transformation if we
restrict attention to deterministic policies. Let E be a scenario that randomizes only
in the beginning and let π be a deterministic policy. Then notice that each initial state
s0 of E uniquely and deterministically determines what history will be played. Let
lenπ(s0) denote the length of that history.

Proposition 19. Let E be a scenario that randomizes only in the beginning and let
π be a deterministic policy. Let Ê be the scenario that is equal to E , except that
P̂0(s0) ∼ P0(s0)/lenπ(s0). Then π is CDT+GSH-compatible in E if and only if π is
CDT+GT-compatible in Ê .

Proof. In the following we distinguish between PE
GT and PÊ

GT, which are the generalized
thirder’s distributions over states in E and Ê , respectively. We use PE and PÊ , and CE

π

and CÊ
π analogously. By Lemma 18, π is CDT+GSH-compatible in E if and only if for
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all o, supp(π(· | o)) is a subset of

argmax
a∈A

∑
prefix s0...si : ω(si)=o

PE
GT(s0...si | π,o)E

[
1

len(H)
| s0...si,π

]
Qπ(si,a)

= argmax
a∈A

∑
prefix s0...si : ω(si)=o

PE
GT(s0...si | π,o)/lenπ(s0)Qπ(si,a)

Now notice that

PÊ
GT(s0...si | π,o) =

PÊ (s0...si | π)
CÊ

π (o)

=
P̂0(s0)T (s1 | π,s0)...T (si | π,si−1)

CÊ
π (o)

=
P0(s0)T (s1 | π,s0)...T (si | π,si−1)/lenπ(s0)

CÊ
π (o)∑s′0

P0(s′0)/lenπ(s′0)

=
PE (s0...si | π)/lenπ(s0)

CÊ
π (o)∑s′0

P0(s′0)/lenπ(s′0)

The denominator is constant across s0...si and a. Moreover, CE
π (o) is also constant

across s0...si and a. Thus, we can rewrite the argmax as follows:

argmax
a∈A

∑
prefix s0...si : ω(si)=o

PE
GT(s0...si | π,o)/lenπ(s0)Qπ(si,a)

= argmax
a∈A

∑
prefix s0...si : ω(si)=o

PÊ
GT(s0...si | π,o)Qπ(si,a)

= argmax
a∈A

∑
s : ω(s)=o

PÊ
GT(s | π,o)Qπ(s,a).

Overall we have no shown that π is CDT+GSH-compatible in E if and only if for all
o, supp(π(· | o)) is a subset of

argmax
a∈A

∑
s : ω(s)=o

PÊ
GT(s | π,o)Qπ(s,a),

i.e., if and only if π is CDT+GT compatible in Ê .

Theorem 11. Let E be a scenario that randomizes only in the beginning and where his-
tory length is choice-independent. Let Ê be the scenario that is equal to E , except that
P̂0(s0)∼ P0(s0)/len(s0). Then any (potentially mixed) policy is CDT+GSH-compatible
in E if and only if it is CDT+GT-compatible in Ê .

Proof. This is proved in exactly the same way as Proposition 19.

Corollary 12. Let E be a scenario that randomizes only in the beginning and where
history length is choice-independent. Then there exists a CDT+GSH-compatible non-
Dutch-book policy for E .
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Figure 13: A graphical formalization of Example 11.

Proof. Consider the ex ante optimal policy π∗ for E as defined in Theorem 11. By
Corollary 5, π∗ is CDT+GT compatible in Ê . By Theorem 11, π∗ is thus CDT+GSH
compatible in E . It is easy to see that π∗ cannot be a Dutch Book.

E.3 Why CDT+GSH needs to view policy randomization as prede-
termined

In Section 5, we have eliminated CDT+GSH’s vulnerability to Dutch books by having
it imagine that all randomization occurs at the beginning of the scenario. We illus-
trated the need for this by using Draper and Pust’s (2008) Dutch book. However,
strictly speaking, based on their scenario we can only show that CDT+GSH needs to
imagine that the scenario only randomizes in the beginning. But in our definition of
CDT+GSH*-compatibility as applied to some mixed policy π , we imagine that all re-
sults of π’s randomization are determined in the very beginning of the scenario and that
the agent (by playing some action aπ ) merely accesses these actions that were sampled
at the very beginning of the scenario. In this section, we show why this is necessary. In
particular, we show a scenario in which the scenario is completely deterministic and in
which the only CDT+GSH-compatible policy is mixed and loses money with certainty.

Proposition 13. There is a scenario that randomizes only in the beginning and in which
all CDT+GSH-compatible policies are Dutch books.

Example 11. The scenario proceeds in three parts.
1. At the very beginning, the agent is offered to end the scenario for a price of ε .
2. The agent then plays the following coordination game against herself. She faces

the same choice twice. If she chooses differently in the two situations, she re-
ceives a reward of 1. She cannot distinguish between these two situations, retains
no memory of whether she has already faced the choice or of what her choice
was (if any). If the agent fails to coordinate in part 2, she faces an additional N
situations without having to make a (relevant) decision.

3. The agent is offered a bet that pays−5 if she failed to coordinate in part two and
pays 1 if she succeeded in coordinating.

The scenario is visualized in our formalism in Figure 13.

We now argue that Example 11 proves Proposition 13. The first two points are
easy. Clearly the scenario’s state transitions are deterministic – in fact, even the initial
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distribution is deterministic. Furthermore, the deterministic policy of always rejecting
achieves a reward of 0 with certainty.13

We now argue that all CDT+GSH-compatible policies accept the offer in s0 with
probability 1 and thus lose money with certainty. To do so, assume for contradic-
tion that a policy π is CDT+GSH-compatible but rejects in s0 with positive probability.
Then o1 and o3 are observed with positive probability. It is easy to verify that regardless
of what π does in other observations, CDT+GSH compatibility then requires that the
agent randomizes uniformly in o1. Consequently, s3,s and s3, f occur with equal proba-
bility. However, because s3, f only occurs in very long histories, a GSH agent believes
conditional on observing o3 that it is in s3,s with overwhelming probability, specifically
(using the fact that π randomizes uniformly in o1) PGSH(s3,s | π,o3) = 26/27. Thus, to
be CDT+GSH compatible, π has to accept upon observing o3. Now in s0, the expected
value of rejecting is 1/2 · 2+ 1/2 · (−5) = −3/2. Since this is less than −1, the agent
strictly prefers accepting in s0, contradicting the assumption that the agent rejects with
positive probability in s0.

E.4 How CDT+GSH* solves Example 11
We now show how CDT+GSH* avoids the Dutch book of Example 11. Specifically,
we show that the policy π of rejecting in o0, mixing uniformly in o1 and accepting in
o3 is CDT+GSH*-compatible. Note that this is not the optimal policy – the optimal
policy rejects in o3. In fact, while this policy is not a Dutch book policy, its ex ante
expected utility is actually worse than the Dutch book policy of paying the price of ε

in s0.
First, what does the modified scenario look like? First, we add an action aπ that

corresponds to following the policy π described above in any given situation. Thus,
in o0, aπ is equivalent to rejecting the offer, and in o3, aπ is equivalent to accepting
the offer. Upon observing o2, i.e., when playing the coordination stage of the game,
π randomizes. As always, CDT+GSH* works by moving this randomization to the
beginning of the scenario. Thus, there are now four different initial states. The initial
state encodes what choices will result from playing aπ . For example, if the initial
state s0,r,a is selected, then following choosing aπ will result in playing r on the first
observation of c and will result in playing a on the second observation of o1. Because
π samples uniformly, the initial state is also selected uniformly by the scenario. Note
that after the agent has made a choice upon a first observation of o1, the scenario only
remembers the actual choice made, not the one that would have been made, had the
agent played aπ . For instance, the state s2,r,a indicates that the agent has played r upon
her first observation of c, and that playing aπ now (i.e., upon her second observation of
o1) will result in playing a. Consequently, this state can not only be reached by playing
aπ in s1,r,a, but also by playing r in s1,r,a or s1,a,a. The complete formal model is given
in Figure 14.

It is easy to verify that in this new model, the policy of always playing aπ is
CDT+GSH-compatible. We omit a detailed calculation and only provide some notes

13Note that the ex ante optimal policy is to reject in part 1, mix uniformly upon observation o1, i.e., in the
coordination game in part 2, and to reject the bet upon observation o3 in part 3, for an expected payoff of 1/2.
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here. First, the expected utility calculation upon observing o3 is essentially the same
as in the original scenario. Second, GSH’s belief in short histories (and thus in its
ability to successfully coordinate) now also affects the GSH probabilities over states
conditional on o1 and on the policy of always playing aπ . In particular, conditional on
o1, GSH assigns most probability to the states s1/2,a,r and s1/2,r,a. Between these four
states, the GSH probabilities are uniform. Of course, this consistency (in its belief in
short histories) is the whole point of CDT+GSH*. However, it has the odd consequence
that CDT+GSH strictly prefers aπ over both a and r. The strictness of this preference is
harmless for the present scenario, because it is a strict preference in the right direction
– we want aπ to be CDT+GSH compatible. However, it illustrates a mechanism that
we will see is CDT+GSH*’s downfall in Section 5.4.2. Finally, CDT+GSH*’s most
obvious divergence from CDT+GSH occurs when observing o0. CDT+GSH*, again,
has high confidence in short histories and thus successful coordination throughout the
scenario, even upon observing o0. In particular, upon observing o0 GSH is confident in
this new model that it is in either s0,a,r or s0,r,a. Since the agent’s reward in these two
states is 2 under following aπ , CDT+GSH prefers rejecting the offer.

E.5 Is there always a CDT+GSH* compatible policy?
In the main text, we show that CDT+GSH* can be Dutch-booked, i.e., there exists
a scenario in which the only policy compatible with CDT+GSH* is a Dutch book.
Here we ask another question: Do CDT+GSH*-compatible policies always exist? The
answer to this question is complicated. CDT+GSH* as defined in the main text does
not always have a compatible policy.

We here give a scenario in which there is no policy is CDT+GSH* compatible if
we take CDT+GSH* to move policy randomization to the beginning of the scenario. It
turns out that even the absent-minded driver is such a scenario. We here give a simpler
example in which it is easier to see why CDT+GSH* fails.

Example 12. First the agent faces a choice between a0 and a1 twice. She cannot
distinguish between these two situations, retains no memory of whether she has already
faced the choice or of what her choice was (if any). Her reward is 1 if she plays a0
and a1 exactly once each, and 0 otherwise. If a1 was chosen exactly once, for a reward
of 1, then the agent makes K further observations. (K = 1 works in this case, but it is
useful to imagine that K is very large.) The agent’s choices in these K situations do not
affect her final reward – her reward remains 1. Figure 15 illustrates this scenario in
our formalism.

We first offer an intuition for why this scenario spells trouble for CDT+GSH*.
Afterward, we will make the argument more formal.

Imagine for now that the agent follows an ex ante optimal policy π of mixing uni-
formly upon observing o1 (and behaving arbitrarily upon observing o2). (The argument
applies in similar form to non-uniformly mixing upon o1 as well. We will give the for-
mal argument below for arbitrary mixing.) We will argue that π is not compatible with
CDT+GSH*.

First, we consider GSH*’s beliefs given the policy π . Upon seeing o1, GSH* should
believe that it is failing to “anti-coordinate” with itself. That is, according to GSH* the
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Figure 14: An alternative model of Example 11 in which the policy π of rejecting in s1,
mixing uniformly in c and accepting in b can be followed by deterministically playing
aπ .
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Figure 15: A graphical illustration of Example 12 in our formalism.
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agent should assign high probability (probability approaching 1 as K approaches in-
finity) that the agent plays either a0 twice or a1 twice if it follows the policy π under
consideration. After all, in case of success only a small fraction of the agent’s obser-
vations are o1, while in case of success the agent only observes o1. Between these
two possibilities (playing a0 twice and playing a1 twice), GSH* distributes probability
mass equally.

Now CDT enters the picture. For π to be CDT+GSH* compatible, CDT cannot
upon observing o1 favor playing a0 or a1 over following π . But with near 50% proba-
bility (approaching 50% as K→ ∞), playing, for example, a1 increases utility from 0
to 1, namely in the case where following π leads to failure by playing a0 twice. With
near 50% probability (approaching 50% as K → ∞), the agent would have played a1
anyway. The probability that playing a1 makes things worse, meanwhile, is very small
(approaching zero as K → 0). Hence, CDT+GSH* recommends a1 over following π

and so π is not CDT+GSH* compatible.
We now make this argument about CDT+GSH* formal. Let π be a policy that

plays a1 with probability p upon observing o1. For CDT+GSH*, we have to construct
a new version of the model of Figure 15 in which all randomization happens at the
beginning of the scenario. In this case, this means moving the agent’s randomization
to the beginning of the scenario. We give this new model in Figure 16. The model has
a new action aπ which represents following π but in a way that accesses the result of
randomization conducted at the beginning of the scenario. Thus, the new model has
four initial states that encode what choices will result from playing aπ . For example,
the initial state s0,1,1 is the state where playing aπ results in a1 being played on both
observations of o1. Since p is the agent’s probability of playing a1, P0(s0,1,1) = p2.
Similarly, the initial state s0,1,0 encodes the fact that playing aπ will result in a1 on the
first observation of o1 and in a0 on the second observation of o1. Thus, P0(s0,1,0) =
p(1− p).

The second states encode the action that was in fact played in the first state (either
by playing aπ or by directly playing a0 or a1). They also encode what happens when
aπ is played, which is carried over from the initial state. For example, s1,0,1 is the state
in which a0 was played in the first state (potentially via playing aπ in s0,0,1) and where
playing aπ will result in playing a1.

We now calculate the GSH probabilities in this new model under the assumption
that the agent always plays aπ . Leaving out the normalizing constants, the probabilities
are

PGSH(s0,1,1 | o1,always aπ) = PGSH(s1,1,1 | o1,always aπ) ∼ p2

2

PGSH(s0,0,0 | o1,always aπ) = PGSH(s1,0,0 | o1,always aπ) ∼ (1− p)2

2

PGSH(s0,0,1 | o1,always aπ) = PGSH(s1,0,1 | o1,always aπ) ∼ (1− p)p
2+K

PGSH(s0,1,0 | o1,always aπ) = PGSH(s1,1,0 | o1,always aπ) ∼ p(1− p)
2+K

.
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Figure 16: A alternative graphical illustration of Example 12 in our formalism. In
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followed by taking the action aπ deterministically.
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Normalizing the probabilities, it is easy to see that

PGSH({s0,1,1,s1,1,1,s0,0,0,s1,0,0} | o1,always aπ)→ 1 as K→ ∞.

This is a more formal version of our earlier claim that GSH* assigns high probability
to failure.

Using this probability distribution for the model in Figure 16, we can now show that
the policy π is not CDT+GSH* compatible by showing that the deterministic policy of
always playing aπ is not CDT+GSH compatible in the new model. Assume without
loss of generality that p ≤ 1/2, i.e., that a1 is chosen with probability at most 1/2 upon
observing o1. (The other case can be handled analogously.) Omitting normalizing
constants, the CDT+GSH expected utility of playing a1 upon observing o1 is

∑
s∈S

PGSH(s | o1,always aπ)Qaπ
(s,a1)∼ 2

≥1/4︷ ︸︸ ︷
(1− p)2

2
−2

≤1︷ ︸︸ ︷
(1− p)p

2+K
≥ 1

4
− 2

2+K
.

Meanwhile, the expected utility of going along with aπ under omission of the same
normalizing constant is

∑
s∈S

PGSH(s | o1,always aπ)Qaπ
(s,aπ)∼ 4

≤1︷ ︸︸ ︷
(1− p)p

2+K
≤ 4

2+K
.

For large enough K (specifically, K ≥ 11), 1/2− 2/2+K > 4/2+K. That is, if we make
K large enough, then upon observing aπ , CDT+GSH strictly prefers (at least) one of
the available actions (a1 if p ≤ 1/2, a2 if p ≥ 1/2) over playing aπ . Thus, no policy is
CDT+GSH* compatible.

E.6 An odd fix to ensure the existence of CDT+GSH*-compatible
policies (and avoid Dutch books?)

The above counterexample hinges on the idea that for a policy π to be CDT+GSH*
compatible, aπ has to be CDT+GSH compatible in the scenario where aπ is a deter-
ministic implementation of π . We now give an alternative definition under which, we
will argue, CDT+GSH*-compatible policies do always exist.

First, for every policy π , let Eπ be the environment in which the agent can choose
aπ to follow π deterministically. Further, let EUEπ

GSH be the GSH expected utility in Eπ .
We could now define π to be CDT+GSH* compatible if for all o, π assigns positive
probability only to actions from

argmax
a∈A

EUEπ

GSH(aπ ,o,a).

This definition solves Example 12. The policy of mixing uniformly is CDT+GSH
compatible in this sense.

In fact, CDT+GSH*-compatible policies in this new sense always exist. This can
be established by a standard argument (used by Nash (1950) to prove the existence of
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Nash equilibria). First notice that EUEπ

GSH(aπ ,o,a) is continuous in π . Now consider
the set-valued function f that maps each π to the set of policies π ′ that for each o only
choose from the above argmax. From the continuity of EUEπ

GSH(aπ ,o,a), it follows that
f is a so-called Kakutani function. From Kakutani’s fixed-point theorem, it follows
that there is policy π such that π ∈ f (π). By definition, this policy π is CDT+GSH*
compatible in the above sense.

We do not know whether this method avoids Dutch book arguments in general.
In any case, we do not find this alternative version of CDT+GSH* as conceptually

appealing as the original version. If the agent prefers some action a over following the
policy aπ , then it seems there is no sense in which it is rational to follow aπ . Therefore,
we view this idea as more of a technical curiosity.

E.7 A more formal analysis of our Dutch book against CDT+GSH*
(Example 6)

In this section, we give a more formal analysis of Example 6. We first recall the exam-
ple here.

Example 6. First the agent faces a choice between a0 and a1 three times. She cannot
distinguish between these three situations, retains no memory of how often she has
already faced the choice or of what her choices were. Her rewards are determined by
the number of times she chooses a1 in these situations as follows: 0 7→ 0,1 7→ 1,2 7→
−1,3 7→ −ε . Here, ε is some small but positive number, e.g., ε = 1/100. Afterward, if a1
was chosen exactly once (for a reward of 1) the agent faces the same decision problem
between a0 and a1 another K times (for some large K). The agent’s choices in these K
situations do not affect her final reward – her reward remains 1.

First, we analyze this problem from the ex ante perspective, as well as the perspec-
tive of CDT+GT. Obviously, the agent can guarantee a non-negative payoff for herself
by never playing a1. It is also easy to see that the globally optimal strategy is to play
a1 with some small positive probability aimed at obtaining the maximum reward of 1
with a much higher chance than obtaining the reward of −1. Specifically, the expected
utility of the policy πp that chooses a1 with probability p is

Qπp(s0) = 3p(1− p)2−3p2(1− p)− ε p3.

For ε = 1/10, the ex ante optimal policy is to play a1 with probability

p = 1/59
(

30−
√

310
)
≈ 0.210054.

By Corollary 5, this policy is also CDT+GT-compatible; and by Corollary 8 it is the
only EDT+GDH-compatible policy. It is easy to see that another CDT+GT-compatible
strategy is to play a1 with probability 1. A third CDT+GT-compatible policy can be
found at the second zero of the derivative of Qπp(s0), which is also the global minimum
of Qπp(s0). Specifically, this point is at

p = 1/59
(

30+
√

310
)
≈ 0.806895.
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We now show that the only CDT+GSH*-compatible strategy in Example 6 is to
play a1 with probability 1, which loses money with probability 1. First, it is easy to see
that the policy of playing a1 with probability 1 is CDT+GSH* compatible. It is left to
show that no other policy is CDT+GSH*-compatible.

Recall that to evaluate a policy π that plays a1 with probability p < 1, we construct
deterministic scenario Ê d

π , in which the actions of π is rolled out beginning and encoded
in the initial state. We then ask whether always playing aπ – which takes the actions
encoded in the state – is compatible with CDT+GSH. We will show that if p < 1, the
agent prefers a1 over playing aπ , conditional on playing aπ in all other states.

Consider the following two kinds of states that the agent may be in:

1. States with the following property:

• Always playing aπ leads to playing a1 once.
• Playing a1 (as opposed to aπ ) in this state, while otherwise following aπ ,

leads to a1 being played twice.

2. States with the following property:

• Always playing aπ leads to playing a1 either 0 or 2 times.
• Playing a1 (as opposed to aπ ) in this state, while otherwise following aπ ,

leads to a1 being played 1 or 3 times.

Under the first type of state, playing a1 substantially (by 2) decreases utility relative
to playing aπ . Under the second type of state, playing a1 substantially (by 1 or 1−
ε) increases utility relative to playing aπ . In all other states, it makes no difference
whether the agent plays a1 or aπ .

Finally, to see that aπ is not CDT+GSH*-compatible, we argue that (for large K),
GSH assigns much higher probability to the second type than the first, for all π . To
do so, notice first that the ratio of the GT probabilities of the first and second kind of
states is bounded above – in other words, the GT probability of being in the first kind of
state can only be made to be larger than than the GT probability of the second type of
state by at most some fixed factor, regardless of the agent’s policy. This is intuitive, but
semi-formally this is because the probability of zero or two (utility-relevant) a1s being
played is (1− p)3 +3p2(1− p), while the probability of exactly one utility-relevant a1
being played is 3p(1− p)2. We can than see that the ratio is bounded as follows:

3p(1− p)2

(1− p)3 +3p2(1− p)
=

3p(1− p)
(1− p)2 +3p2 ≤

3

≤1/4︷ ︸︸ ︷
p(1− p)

(1− p)2 + p2︸ ︷︷ ︸
≥1/2

≤ 3
2
.

However, if we use GSH probabilites instead of GT probabilities, then the first type of
states receive a penalty of 3/K+3 relative to the second kind of states. Thus, as K→ ∞,
GSH assigns arbitrarily low probability to being in the first type of state. It follows that
for large enough K, CDT+GSH* recommends playing a1 regardless of the policy.
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F A de se criterion for Dutch books
The following result provides a de se criterion for whether a given policy π is a Dutch
book.

Proposition 20. Let X be any one of GDH, GSH, GT. A policy π is a Dutch book if
and only if

• For all o observed with positive probability under π , PGDH/GSH/GT(s0...sn | o,π)>
0 =⇒ u(sn)< 0; and

• there is a policy π0 s.t. for all observations o observed with positive probability
under π0, PGDH/GSH/GT(s0...sn | o,π0)> 0 =⇒ u(sn)≥ 0.

Proposition 20 follows directly from the following lemma.

Lemma 21. For any history s0...sn and policy π , the following two statements are
equivalent:

• P(s0...sn | π)> 0.
• There exists o∈O that is observed with positive probability s.t. PGDH/GSH/GT(s0...sn |

π,o)> 0.

Proof. By definition, a policy π is a Dutch book policy if and only if it yields negative
reward with probability 1 and there is another policy π0 that yields non-negative reward
with probability 1. It is easy to see from the definitions of GDH, GSH and GT that
PGDH/GSH/GT(s0...sn | o,π)> 0 implies that P(s0...sn | π)> 0. That is, all three of our
methods for assigning self-locating beliefs assign positive probability only to histories
that are in fact possible under the given policy. Furthermore, it is easy to see that if
P(s0...sn | π)> 0, then PGDH/GSH/GT(s0...sn | o,π)> 0.

While Proposition 20 provides a purely de se criterion for avoiding Dutch books, its
relevance to expected utility maximizers in particular is unclear, since it is a criterion
about possible outcomes and not about expected utilities.

G A disagreement in preferences over policies between
different decision points

In this section, we describe a decision scenario in which the two decision perspectives
disagree about which compatible policy is best.

Proposition 22. There exists a decision scenario with two CDT+GT-, CDT+GSH- and
EDT+GDH-compatible policies π1,π2 and observations o1,o2 observed with positive
probability under both π1,π2 s.t.

EUGT(π1,o1)> EUGT(π2,o1) and EUGSH(π1,o1)> EUGSH(π2,o1)

and EUGDH(π1,o1)> EUGDH(π2,o1)

but

EUGT(π1,o2)< EUGT(π2,o2) and EUGSH(π1,o2)< EUGSH(π2,o2)

and EUGDH(π1,o2)< EUGDH(π2,o2).
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Example 13. On Monday, Alice can choose to take $2 or refrain. With 50% Alice is
offered the same choice again on Tuesday. With the remaining 50%, Alice is woken
up on Tuesday without facing a choice. On Tuesday, Alice does not remember her
Monday choice, but she always knows whether it is Monday or Tuesday. If Alice is
indeed offered the $2 twice and she refrains on both occasions from taking the $2, she
receives $5. We formalize this in our framework in Figure 17.

We will only consider the following two deterministic policies: always refrain, and
always take. Clearly, always taking is ex ante optimal and ex ante strictly better than al-
ways refraining. Moreover, both policies are CDT+GT-, CDT+GSH- and EDT+GDH-
compatible. It is easy to verify that conditional on observing mo, all our theories assign
equal probability to sH,mo and sT,mo. Hence, EUGT/GSH/GDH(always take,mo) = 3,
while EUGT/GSH/GDH(always refrain,mo) = 2.5. Upon facing a choice on Tuesday
(i.e., upon observing T ), it is easy to see that regardless of theory for self-locating
beliefs, the agent assigns probability 1 to being in sT,tu,r if she always refrains and
probability 1 to sT,tu,t if she always takes. Hence, EUGT/GSH/GDH(always take,T ) = 4,
while EUGT/GSH/GDH(always refrain,T ) = 5.

H Extending Example 10 to cover CDT+GSH
Theorem 16. There is a scenario E with the following properties.

• E only randomizes in the beginning and the agent’s choices do not affect her
future observations. (In particular, history length is choice independent.)

• There is a CDT+GT-, CDT+GSH- and EDT+GDH-compatible deterministic
Dutch book policy π̃ .

• For all EDT+GDH/CDT+GT/CDT+GSH-compatible policies π other than π̃

and all observations o, EUGDH/GT/GSH(π̃,o)> EUGDH/GT/GSH(π,o).
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Example 10. At the beginning, the scenario randomizes uniformly between three pos-
sibilities: X) The agent observes x once. Y) The agent observes y once. Z) The agent
observes x once and then y once. Upon observing x or y, the agent chooses from three
actions: bet, pay, and pass. By choosing bet, they accept a bet on being in branch X or
Y at slightly better than even odds. Specifically, for each time they bet, they obtain 1 if
branch X or Y is realized and they lose 2/3 if branch Z is realized. By choosing pay, they
lose some small amount ε > 0. However, if branch Z is realized and the agent chooses
to pay exactly once, they end up with a payoff of −100. Choosing to pass has no con-
sequences in and of itself. A graphical description of this problem in our formalism is
given in Figure 9.

As promised, we now extend Example 10 to apply to CDT+GSH(*) as well. (Note
again that the present scenario is relatively unproblematic for CDT+GSH (as per The-
orem 11), and that on this scenario CDT+GSH and CDT+GSH* as discussed in Sec-
tion 5 are equivalent.) It is easy to see that in Example 10, the set of CDT+GSH-
compatible policies also consists of πbet, πpay, and some mixed policy πp. The problem
is that EUGSH(πbet,x/y) = 2/3 ·1+1/3 ·(−4/3) = 2/9. Thus, in Example 10, CDT+GSH*
actually prefers the ex ante optimal policy over the Dutch book.

Nonetheless, we can use a very similar scenario for CDT+GSH*. We only need
to adjust the odds of the bet to account for CDT+GSH* assigning lower probability to
branch Z. Specifically, if the bet paid, e.g., 1 in branch X/Y and −4/3 in Z, then ac-
cepting in x and y is still CDT+GSH*-compatible (and accepting the bet is still always
preferred by CDT+GSH* to passing). At the same time, it is then EUGSH(πbet,x/y) =
2/3 · 1+ 1/3(−8/3) = −2/9 < −4ε/3 = 2/3(−ε)+ 1/3(−2ε) = EUGSH(π̃,x/y) (for small
enough ε), as desired. It’s easy to see that the rest of the argument works out as it does
for CDT+GT and EDT+GDH in Example 10.

Of course, Theorem 16 claims that there is a scenario that works for all three the-
ories simultaneously. If we do modify the odds of the bet as suggested in the previous
paragraph, then πbet ceases to be CDT+GT- or EDT+GDH-compatible. A simple so-
lution to this is that we offer the bet of the previous paragraph as an alternative to
the bet in Example 10, while increasing the stakes to make CDT+GSH* prefer tak-
ing the new bet over taking the old bet, despite the odds of the new one being worse.
Formally, we add an action betGSH that provides a reward of 3 in branch X and Y
and a reward of −4 in Z. Then the expected reward of the new bet, as judged by
CDT+GSH, is 2/3 · 3− 1/3 · 4 = 2− 4/3 = 2/3, while the expected reward of the old
bet is 2/3 ·1− 1/3 · 2/3 = 4/9.

58


	1 Introduction
	2 Preliminaries
	2.1 Single-player games of imperfect recall
	2.2 Two ex ante standards of rational choice
	2.2.1 Ex ante optimal policies
	2.2.2 Dutch books

	2.3 Three theories of assigning self-locating probabilities
	2.3.1 Generalized double-halfing
	2.3.2 Generalized single-halfing
	2.3.3 Generalized thirding

	2.4 De se choice using self-locating beliefs
	2.4.1 Evidential decision theory + generalized double- and single-halfing
	2.4.2 Causal decision theory + generalized thirding/single-halfing


	3 Ex ante optimal policies are compatible with causal decision theory + generalized thirding
	4 Ex ante optimal policies are compatible with EDT + generalized double-halfing
	5 On generalized single-halfing
	5.1 Draper and Pust's Dutch book argument against single-halfing
	5.2 How single-halfers can avoid Draper and Pust's Dutch book
	5.3 Characterization and partial Dutch-book immunity of CDT+GSH*
	5.4 CDT+GSH* fails when choices affect history length
	5.4.1 Random choices pose the same problem as random state transitions
	5.4.2 Viewing random choices as predetermined fails – A Dutch book against CDT+GSH*

	5.5 A new Dutch book against evidential decision theory + GSH*

	6 Discussion
	6.1 CDT needs randomization
	6.2 Conitzer's Dutch book against evidential decision theorists
	6.3 The multiplicity of compatible policies

	7 Conclusion
	A Why CDT requires additional assumptions about the scenario to be well-defined
	B On the benefits of asymmetric choice in symmetric situations
	C Proofs of Lemma 17, Theorem 4 and Corollary 5
	D Proofs of Theorem 6 and Corollary 9
	E Proofs on single-halfing
	E.1 EDT+GSH avoids the Dutch book in Example 5
	E.2 Proofs of Theorem 11 and Corollary 12 and Proposition 19
	E.3 Why CDT+GSH needs to view policy randomization as predetermined
	E.4 How CDT+GSH* solves Example 11
	E.5 Is there always a CDT+GSH* compatible policy?
	E.6 An odd fix to ensure the existence of CDT+GSH*-compatible policies (and avoid Dutch books?)
	E.7 A more formal analysis of our Dutch book against CDT+GSH* (Example 6)

	F A de se criterion for Dutch books
	G A disagreement in preferences over policies between different decision points
	H Extending Example 10 to cover CDT+GSH

