
15-418 Final Project Report

Connor Mowry (cmowry), Wenqi Deng (wenqid)

December 14, 2024

1 Title

Parallelizing Dinic’s Max-Flow Algorithm.

Connor Mowry (cmowry), Wenqi Deng (wenqid)

2 URL

https://www.andrew.cmu.edu/user/cmowry/418-final-project-website

3 Link to Git Repository

https://github.com/wenqiden/parallelized_dinics

4 Summary

This project focused on parallelizing Dinic’s max-flow algorithm to improve its
performance on both BFS and DFS phases. We leveraged OpenMP for shared
memory systems and MPI for distributed memory systems, exploring various
strategies to enhance scalability and efficiency.

5 Background

Dinic’s max-flow algorithm is a well-known method in graph theory for solving
maximum flow problems. It alternates between constructing a level graph using
Breadth-First Search (BFS) and finding blocking flows using Depth-First Search
(DFS). The BFS phase restricts DFS to only valid augmenting paths, improving
computational efficiency.

1

https://www.andrew.cmu.edu/user/cmowry/418-final-project-website
https://github.com/wenqiden/parallelized_dinics


Key Data Structures

• Adjacency List/Matrix: Represents the graph structure, where edges
and vertices are stored.

• Residual Graph: Tracks remaining capacities on edges after flow is
pushed.

Algorithm Overview

The algorithm operates in phases:

1. Level Graph Construction (BFS): This step identifies levels of the
graph to limit DFS exploration to valid augmenting paths. BFS oper-
ates by traversing the graph layer by layer, marking vertices with their
respective distances from the source.

2. Blocking Flow Computation (DFS): DFS is performed on the level
graph to find augmenting paths and push flow along these paths until no
further augmenting path exists.

Parallelization Potential

BFS:

• BFS is inherently data-parallel as vertices and edges can be processed
independently, making it suitable for parallelization.

• Optimizing BFS involves balancing workload across threads or processes
to avoid bottlenecks.

DFS:

• Unlike BFS, DFS phase in Dinic’s algorithm suffers from dependencies
due to its reliance on the state of residual capacities. Synchronization
mechanisms (e.g., locks) are necessary to manage these dependencies.

Applications

Dinic’s algorithm is widely used in fields such as:

2



• Network Optimization: Solving routing and bandwidth allocation prob-
lems.

• Image Segmentation: Identifying regions in images based on pixel con-
nectivity.

• Supply Chain Management: Optimizing resource distribution in lo-
gistics networks.

Diagrams illustrating the BFS and DFS processes, as well as 1D and 2D decom-
position strategies, will be included to enhance clarity and provide context.

Figure 1: Max-Flow Example

Figure 2: Solution to 1

Figure 3: Example level graph produced by BFS

3



Figure 4: Example of DFS on the level graph

6 Approach

Sequential Implementation

We began by implementing Dinic’s algorithm sequentially, closely following es-
tablished pseudocode to ensure correctness. This implementation served as the
baseline for all subsequent parallel versions.

OpenMP Implementations

1. BFS Parallelization:

• By Vertex: Each thread processes a subset of vertices in the frontier,
checking their neighbors and updating the next level. This approach
is simple and works well for graphs with dense edges and relatively
uniform vertex degrees.

• By Edge: Threads iterate over edges in the frontier, which min-
imizes load imbalance by distributing work more evenly when ver-
tex degrees vary widely. This method is particularly effective for
Erdős–Rényi graphs as they have a large number of edges.

4



Figure 5: OpenMP BFS By Vertex vs By Edge

2. DFS Parallelization:

• Forward Lock: Threads lock edges as they traverse paths, pre-
venting conflicts during capacity updates. Locks are released after
successfully pushing flow along a path.

• Reverse Lock: After reaching the sink, threads lock edges along
the path in reverse, compute the bottleneck capacity, and update
residual capacities. This approach allows partial progress even if
other threads modify capacities concurrently.

Figure 6: Forward Locking vs Reverse Locking

MPI Implementations

1. BFS Parallelization:

• 1D Partition: Vertices are distributed across processes, with each
process handling a subset of the graph. Synchronization is achieved
using MPI All-to-All to share information about the next frontier
among processes.

– DFS Implementation Tradeoff: Since processors need knowl-
edge of flows from DFS phase to do parallel BFS, we have two
options: either distribute the entire graph to all processors and
let each run DFS independently, or distribute only the relevant

5



nodes to each processor, have the root processor perform the
DFS, and then share the resulting flow with all processors.

(a) Single-Processor DFS: Running the DFS on one processor
required scattering the residual capacity matrix to all pro-
cessors after the DFS is completed. This introduced commu-
nication overhead but minimized memory usage.

(b) All-Processor DFS: Running the DFS redundantly on all
processors eliminated the need for communication but re-
quired each processor to maintain a full copy of the graph,
significantly increasing memory requirements. This might
also increase memory access overhead.

After testing both approaches, we determined that the single-
processor version of DFS was more efficient. This method re-
duced overall memory demands and maintained acceptable com-
munication overhead, making it the preferred choice for our im-
plementation, despite potential communication bottlenecks in
dense graphs.

• 2D Partition: The adjacency matrix is divided into blocks, assign-
ing both rows (vertices) and columns (edges) to processes. Processes
communicate only with those sharing a row or column, significantly
reducing communication overhead compared to 1D partitioning. This
strategy also balances memory usage more effectively across pro-
cesses. See figure 7 for difference between 1D and 2D partitioning.

Figure 7: 1D vs 2D Graph Partitioning

2. DFS Parallelization: Due to the difficulty of overcoming data depen-
dency in distributed memory systems and the lack of performance gains
from parallel DFS using OpenMP over the sequential version, we decided
to focus more on parallelizing BFS using MPI and run DFS in a single
thread.

6



Optimizations

To improve performance, we applied several optimization techniques:

• Task Granularity: Adjusted granularity in edge-based BFS to balance
thread workloads.

• Reduction Operations: Used reductions to merge results from threads
efficiently.

• Synchronization Minimization: Minimized locking in DFS to reduce
contention.

• Communication Strategies: Explored different MPI communication
patterns to optimize frontier updates.

These implementations were iteratively tested and refined to achieve optimal
performance for different graph types and sizes.

7 Challenge

The project faced several challenges in parallelizing both BFS and DFS phases
of Dinic’s algorithm. These challenges stemmed from the fundamental nature
of the algorithm and the constraints of parallel computing.

BFS Challenges

• Load Imbalance: Graphs with uneven degree distributions, such as
Barabási–Albert graphs, posed significant difficulties. To address this,
we implemented two versions of BFS in OpenMP. The first parallelized
over vertices in the frontier, while the second is parallelized over edges in
the frontier to minimize load imbalance. The edge-based approach partic-
ularly helped balance workloads in graphs with high-degree vertices, but
could potentially increase the scheduling and management overheads.

• Communication Overhead in MPI: In distributed memory systems,
synchronizing frontier updates across processes incurred substantial com-
munication costs, especially for large graphs. Reducing this overhead with-
out compromising correctness was a critical challenge.

7



DFS Challenges

• Data Dependencies: DFS inherently relies on the state of residual ca-
pacities. Concurrent updates to these capacities by multiple threads or
processes led to potential conflicts, requiring synchronization mechanisms.

• Synchronization Costs: Mechanisms such as edge locking introduced
overhead, limiting scalability. Implementations like forward locking and
reverse locking reduced conflicts but added their own performance trade-
offs.

MPI-Specific Challenges

• 1D vs. 2D Decomposition: In MPI, we can parallelize BFS by par-
titioning parts of the adjacency matrix for different processes to handle.
We can divide the graph by nodes (1D partition) or both nodes and edges
within single nodes (2D partition). While 2D decomposition offered bet-
ter load balancing and reduced memory footprints, its implementation
required more complex communication patterns. Identifying the optimal
decomposition strategy was non-trivial.

General Challenges

• Graph Representation: Choosing a graph representation that facili-
tated both efficient computation and effective parallelization was a recur-
ring challenge. Adjacency lists were memory-efficient but required more
complex access patterns, while adjacency matrices were simpler to paral-
lelize but memory-intensive.

8 Results

We measured the computation time for calculating the max flow in networks of
varying models and sizes, using both GHC and PSC machines. The time will
be recorded in milliseconds. OOM stands for out of memory.

On GHC machines:

1. Small Erdős–Rényi Graph (n=128, e=15481)

8



1 2 4 8
Sequential 0.208 NA NA NA

OpenMP BFS vertex 0.214 0.238 0.262 5.48
OpenMP BFS edge 0.408 0.403 0.301 0.289

OpenMP DFS forward lock 0.352 0.398 0.337 0.393
OpenMP DFS reverse lock 3.40 2.41 1.81 1.66

MPI BFS 1D Non-distributed 8.41 0.745 0.47 0.586
MPI BFS 1D Distributed 1.58 0.859 1.50 0.585
MPI BFS 2D Distributed 7.56 5.01 0.824 0.638

2. Small Barabási–Albert Graph (n=128, e=1694)

1 2 4 8
Sequential 0.103 NA NA NA

OpenMP BFS vertex 0.153 0.311 0.576 5.62
OpenMP BFS edge 1.13 0.234 1.08 3.84

OpenMP DFS forward lock 0.033 0.249 0.450 0.147
OpenMP DFS reverse lock 0.148 0.218 1.01 5.53

MPI BFS 1D Non-distributed 0.553 0.598 0.173 0.381
MPI BFS 1D Distributed 0.559 0.113 0.723 0.258
MPI BFS 2D Distributed 1.49 1.38 0.294 0.414

3. Small Grid Graph (n=121, e=440)

1 2 4 8
Sequential 0.051 NA NA NA

OpenMP BFS vertex 0.156 0.534 1.74 7.12
OpenMP BFS edge 1.36 1.92 3.76 0.793

OpenMP DFS forward lock 0.090 0.296 0.787 0.218
OpenMP DFS reverse lock 0.366 1.02 2.00 0.495

MPI BFS 1D Non-distributed 0.955 1.64 0.487 1.94
MPI BFS 1D Distributed 0.926 0.334 2.449 0.881
MPI BFS 2D Distributed 4.42 5.21 4.93 1.41

4. Medium Erdős–Rényi Graph (n=2048, e=3983314)

1 2 4 8
Sequential 67.8 NA NA NA

OpenMP BFS vertex 66.2 51.9 48.3 47.4
OpenMP BFS edge 124.1 71.1 44.5 31.5

OpenMP DFS forward lock 160.5 116.0 92.4 83.6
OpenMP DFS reverse lock 1676.7 1674.6 1201.6 1116.1

MPI BFS 1D Non-distributed 4608.9 1291.4 408.7 192.8
MPI BFS 1D Distributed 4582.9 1281.6 396.9 154.9
MPI BFS 2D Distributed 429.3 248.9 160.0 104.5

5. Medium Barabási–Albert Graph (n=2048, e=400670)

9



1 2 4 8
Sequential 4.61 NA NA NA

OpenMP BFS vertex 4.62 4.56 5.69 3.84
OpenMP BFS edge 59.0 37.2 22.4 16.1

OpenMP DFS forward lock 11.2 8.89 7.51 7.16
OpenMP DFS reverse lock 55.5 39.4 31.9 30.4

MPI BFS 1D Non-distributed 136.8 76.1 41.4 34.8
MPI BFS 1D Distributed 130.4 70.6 39.4 24.6
MPI BFS 2D Distributed 49.8 36.1 28.6 24.5

6. Medium Grid Graph (n=2025, e=7920)

1 2 4 8
Sequential 0.045 NA NA NA

OpenMP BFS vertex 0.133 0.396 0.415 0.702
OpenMP BFS edge 28.4 16.4 10.4 7.30

OpenMP DFS forward lock 0.128 0.216 0.222 0.255
OpenMP DFS reverse lock 0.644 0.577 0.538 0.621

MPI BFS 1D Non-distributed 1.47 1.67 0.491 1.59
MPI BFS 1D Distributed 1.52 0.348 0.376 0.757
MPI BFS 2D Distributed 13.9 11.9 8.10 6.71

7. Large Erdős–Rényi Graph (n=4096, e=15934812)

1 2 4 8
Sequential 232.5 NA NA NA

OpenMP BFS vertex 231.2 183.1 173.9 167.9
OpenMP BFS edge 388.1 228.3 147.1 103.8

OpenMP DFS forward lock 608.6 416.3 318.1 281.1
OpenMP DFS reverse lock 7560 6613 6442 6804

MPI BFS 1D Non-distributed 26928 7129 2097 861.1
MPI BFS 1D Distributed 26852 7119 2064 718.2
MPI BFS 2D Distributed 1423 768.9 515.5 362.5

8. Large Barabási–Albert Graph (n=4096, e=1595310)

1 2 4 8
Sequential 22.6 NA NA NA

OpenMP BFS vertex 22.8 18.3 17.1 17.2
OpenMP BFS edge 335.5 190.8 116.5 77.0

OpenMP DFS forward lock 44.8 37.2 32.5 32.2
OpenMP DFS reverse lock 304.7 246.0 189.5 188.3

MPI BFS 1D Non-distributed 1479.4 767.2 418.1 246.1
MPI BFS 1D Distributed 1472.8 761.2 409.0 228.9
MPI BFS 2D Distributed 269.8 186.0 142.0 114.5

10



9. Large Grid Graph (n=4096, e=16128)

1 2 4 8
Sequential 0.07 NA NA NA

OpenMP BFS vertex 0.193 0.430 0.478 0.636
OpenMP BFS edge 114.7 66.0 41.3 28.3

OpenMP DFS forward lock 0.140 0.229 0.178 0.217
OpenMP DFS reverse lock 0.836 0.827 0.917 0.983

MPI BFS 1D Non-distributed 2.94 2.54 0.527 2.38
MPI BFS 1D Distributed 2.987 0.519 0.523 0.888
MPI BFS 2D Distributed 53.5 39.9 30.1 23.9

Since the below test cases exceed the AFS quota on GHC machines, we did
benchmarking on PSC machines:

1. Extreme Erdős–Rényi Graph (n=8192, e=63743938)

1 2 4 8 16 32 64 128
Sequential 1284.5 NA NA NA NA NA NA NA

OpenMP BFS vertex 1348.2 931.3 793.8 733.3 793.4 810.5 823.8 854.8
OpenMP BFS edge 2025.3 1413.8 1223.9 817.4 879.7 954.8 771.3 783.1

OpenMP DFS forward lock 3535.5 2460.7 1841.3 1573.2 1893.9 1839.9 1791.6 1762.7
OpenMP DFS reverse lock 47954 34909 31844 27034 25403 86543 86407 149029

MPI BFS 1D Non-distributed 326551 84177 22876 7115 2971 2097 4251 OOM
MPI BFS 1D Distributed 325071 83085 21983 6502 2390 1288 1132 1162.6
MPI BFS 2D Distributed 10258 5478 3442 2185 1583 1174 1250 1644.4

2. Extreme Barabási–Albert Graph (n=8192, e=6381240)

1 2 4 8 16 32 64 128
Sequential 160.1 NA NA NA NA NA NA NA

OpenMP BFS vertex 158.6 121.5 103.0 100.1 124.4 149.5 151.4 120.4
OpenMP BFS edge 1753.4 1383.5 986.8 612.3 591.2 611.8 400.2 426.4

OpenMP DFS forward lock 347.2 270.4 226.3 210.6 259.4 303.2 297.5 221.5
OpenMP DFS reverse lock 3247.1 2640.3 2675.7 3345.8 3106.4 5328.0 9336.0 16240

MPI BFS 1D Non-distributed 18028 9089 4690 2545 1443 649.8 483.2 419.7
MPI BFS 1D Distributed 17826 8926 4561 2427 1334 529.2 273.5 226.5
MPI BFS 2D Distributed 1809 1306 976.8 821.7 704.1 652.6 657.9 656.9

3. Extreme Grid Graph (n=8190, e=32398)

11



1 2 4 8 16 32 64 128
Sequential 0.453 NA NA NA NA NA NA NA

OpenMP BFS vertex 0.735 2.509 2.55 0.828 2.31 8.83 9.27 407.6
OpenMP BFS edge 772.3 826.2 494.5 313.2 334.7 339.3 227.5 368.6

OpenMP DFS forward lock 1.62 2.94 3.53 3.77 4.34 5.89 6.78 53.5
OpenMP DFS reverse lock 5.83 8.53 10.2 11.2 15.6 16.8 16.7 38.6

MPI BFS 1D Non-distributed 2.86 2.48 2.05 2.74 3.54 6.51 15.8 31.1
MPI BFS 1D Distributed 2.90 3.78 4.64 7.45 12.3 25.5 15.4 31.5
MPI BFS 2D Distributed 479.7 354.9 296.04 277.8 263.3 264.6 283.2 309.8

4. Impossible Erdős–Rényi Graph (n=12040, e=99609033)

1 2 4 8 16 32 64 128
Sequential 1764.9 NA NA NA NA NA NA NA

OpenMP BFS vertex 1825.5 1391.2 1194.6 1114.2 1168.2 1204.2 1195.7 1490.0
OpenMP BFS edge 2546.9 1775.5 1564.7 1060.5 1105.2 1325.7 1124.0 1041.7

OpenMP DFS forward lock 5272.2 3586.0 2567.6 2033.0 2214.6 2219.8 2063.5 5729.1
OpenMP DFS reverse lock 80849 57050 51330 59283.9 42305 121861 143007 170746

MPI BFS 1D Non-distributed 478337 122531 33182 10394 4432 5350 OOM OOM
MPI BFS 1D Distributed 475758 120788 31946 9508 3515 1951 1748 1677.9
MPI BFS 2D Distributed 12342 6700 4323 2859 2138 1668 1716 1586.9

5. Impossible Barabási–Albert Graph (n=12040, e=9961472)

1 2 4 8 16 32 64 128
Sequential 250.1 NA NA NA NA NA NA NA

OpenMP BFS vertex 241.0 183.3 151.2 149.1 171.5 201.1 200.2 172.2
OpenMP BFS edge 2774.0 2371.1 1732.0 934.1 933.0 946.5 626.4 499.2

OpenMP DFS forward lock 574.0 409.0 342.1 309.7 387.1 425.6 451.9 299.3
OpenMP DFS reverse lock 5254.4 4784.1 4456.0 4732.6 5173.3 10112 8030.3 18067.8

MPI BFS 1D Non-distributed 34844 17476 8974.4 4835.9 2652.5 1095.4 727.1 562.7
MPI BFS 1D Distributed 34647 17229 8775.56 4593.7 2493.6 956.1 455.4 320.6
MPI BFS 2D Distributed 2838.0 1944.3 1492.4 1273.7 1101.2 1022.1 1024.9 1029.2

6. Impossible Grid Graph (n=10201, e=40400)

1 2 4 8 16 32 64 128
Sequential 0.630 NA NA NA NA NA NA NA

OpenMP BFS vertex 0.914 6.58 4.21 4.65 2.57 8.68 5.57 181.4
OpenMP BFS edge 1152.7 884.8 853.5 515.0 485.0 498.8 326.3 395.95

OpenMP DFS forward lock 2.17 3.97 5.87 6.31 5.79 7.42 8.00 55.0
OpenMP DFS reverse lock 6.80 10.5 15.1 20.0 21.4 21.6 13.45 58.2

MPI BFS 1D Non-distributed 3.73 3.42 2.57 3.21 4.01 7.37 16.3 37.9
MPI BFS 1D Distributed 3.82 4.54 5.10 7.90 12.9 26.0 16.2 33.2
MPI BFS 2D Distributed 719.3 526.6 430.5 422.3 428.6 441.2 417.2 447.5

12



9 Performance Graphs

GHC Benchmarks

13



14



15



PSC Benchmarks

16



17



10 Discussion

From the benchmarking results, we observed that:

1. OpenMP BFS

• In large and dense networks with more edges, parallelizing BFS in
OpenMP shows measurable performance improvements against se-
quential implementation that increase with the number of threads
up to 16. However, as the number of threads exceeds 16, it’s hard to
achieve further speedup. This is likely due to the limited number of
parallelizable tasks available, causing increased overhead from thread

18



management and synchronization, which reduces the effectiveness of
additional threads.

• In most test cases, parallelizing by vertex yields better performance
than parallelizing by edge. However, in the case of the Erdős–Rényi
networks, parallelizing by edge often outperforms the vertex-based
approach. This may be because the ER networks we tested have a
higher edge density compared to other networks, making the adja-
cency matrix representation we use in the edge-based approach more
efficient for these types of graphs.

2. OpenMP DFS

• The speedup from parallelizing the DFS phase compared to the se-
quential version was minimal in most test cases, which could be
caused by the high contention, synchronization, and overhead of
managing locks. However, there are noticeable performance improve-
ments when running with more threads versus a single thread in large
and dense networks.

• For most of the test cases, especially when there is a large number
of edges, the reverse lock approach performs worse than the forward
lock approach. This might be due to situations where some threads
make progress that does not contribute meaningfully to the overall so-
lution. For example, when another thread saturates one of the edges
in the paths other threads are currently exploring. These unproduc-
tive efforts waste computational resources and add synchronization
overhead.

3. MPI BFS

• Overall, the MPI implementation of BFS parallelization performs
worse than the OpenMP version, likely due to the high communica-
tion overhead involved in synchronizing nodes at the next level across
processes.

• In our 1D MPI implementation, running DFS redundantly on all pro-
cessors avoids communication overhead but requires each process to
maintain a copy of the entire graph. This can lead to out-of-memory
errors for large test cases or high process counts. Conversely, running
DFS on the root process reduces memory usage but introduces com-
munication overhead, as residual capacities must be scattered after
each DFS.

• In large and dense graphs, when using a large number of processes,
both 1D and 2D partitioning can outperform sequential implementa-
tions. This is primarily due to the efficient distribution of nodes and
edges across processes.

• 1D and 2D partitioning do not perform well with a small number of
processes because the workload is less evenly distributed, and each

19



process may handle a large portion of the graph, leading to higher
memory usage and reduced parallel efficiency. However, the perfor-
mance grows as the number of processes increases, distributing the
graph more evenly and reducing the per-process workload.

• Among MPI-based parallel BFS implementations, 2D partitioning
often outperforms 1D partitioning on large and dense graphs when
the number of processes is small, while 1D partitioning works better
for sparse graphs. This is potentially due to different graph repre-
sentations we used (adjacency matrix for 2D and adjacency list for
1D), leading to 2D partitioning having higher utilization with dense
graphs.

Approaches Settings Effects
Sequential Sequential Faster in small and sparse graphs
By Vertex OpenMP BFS Faster than sequential in large and dense

graphs
By Edge OpenMP BFS Faster than by vertex in very dense graphs
Forward Locking OpenMP DFS Slower than sequential, but exhibits speedup

compared to single thread
Reverse Locking OpenMP DFS Slower than forward locking
1D Partition MPI BFS Slower than OpenMP BFS; faster than 2D in

sparse graphs
2D Partition MPI BFS Slower than OpenMP BFS; faster than 1D in

dense graphs

Table 1: Summary of Approaches and Results

11 Work Distribution

The work is evenly distributed, with 50% assigned to Connor Mowry and 50%
to Wenqi Deng. Both of us collaborated on implementing the code. Besides
that, Connor primarily focused on algorithm design, while Wenqi concentrated
on generating tests and benchmarking.

20



Reference

1. https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc-student/
jonas_hafermas_zoya_masih_report.pdf

2. https://www.cs.cmu.edu/~15451-f24/lectures/lecture11-flow1.pdf

3. https://www.cs.cmu.edu/~15451-f24/lectures/lecture12-flow2.pdf

4. https://en.wikipedia.org/wiki/Parallel_breadth-first_search

21

https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc-student/jonas_hafermas_zoya_masih_report.pdf
https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc-student/jonas_hafermas_zoya_masih_report.pdf
https://www.cs.cmu.edu/~15451-f24/lectures/lecture11-flow1.pdf
https://www.cs.cmu.edu/~15451-f24/lectures/lecture12-flow2.pdf
https://en.wikipedia.org/wiki/Parallel_breadth-first_search

	Title
	URL
	Link to Git Repository
	Summary
	Background
	Approach
	Challenge
	Results
	Performance Graphs
	Discussion
	Work Distribution

