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1 Introduction

The purpose of these notes is to outline the spectrum and nature of the expected string
modes for both the toroidal and fixed end cases in 2+1 dimensions. Very general properties
will be used to deduce the expected pattern of degeneracies and level orderings.

2 Fixed end string levels

The first step in determining the energies of the stationary states of gluons in the presence
of a static quark and antiquark, fixed in space some distance r apart, is to classify the levels
in terms of the symmetries of the problem. In two spatial dimensions, such a system has
a reflection symmetry about the axis r̂ passing through the quark and the antiquark (the
molecular axis). Here, we shall denote the eigenvalue of this transformation by Λ which
can take values Λ = ±1. States which are symmetry (Λ = +1) under such a reflection
will be labeled as S states, and antisymmetric states (Λ = −1) will be labeled as A states.
Another symmetry is the combined operation of charge conjugation and spatial inversion
about the midpoint between the quark and the antiquark. Here, we denote the eigenvalue
of this transformation by η which can take values ±1. States which are even (odd) under
this parity–charge-conjugation operation are indicated by the subscripts g (u). Hence, the
low-lying gluon levels Λη are labeled Sg, Su, Ag, and Au.

Next, assume that the fixed ends of the string of flux lie along the y-axis. The location
of the string can be specified in terms of displacements x(y, t) in the x direction from the
y-axis at time t. The boundary conditions are x(0, t) = 0 and x(L, t) = 0 where L = r.
Furthermore, we assume that the displacements (and their first derivatives with respect to y
and t) are continuous and single-valued for each value of y and t; in other words, string con-
figurations which double-back on themselves or overhang the ends are disallowed (although
this assumption can be removed by parametrizing the string displacements differently).

The effective string action, without interactions, is taken to be

S =
∫

dt
∫ L

0

dy

[

1

2
ρ ẋ2 − 1

2
κx′2

]

, (1)
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where ρ is the linear mass density of the string, κ is the string tension, and

ẋ =
∂x

∂t
, x′ =

∂x

∂y
. (2)

The momentum canonically conjugate to x(y, t) is

π(y, t) =
∂L

∂ẋ
= ρ ẋ, (3)

so that the Hamiltonian is

H =
∫ L

0

dy
{

1

2ρ
π2 +

κ

2
x′2
}

, (4)

and the equal-time commutation relations are

[ x(y, t), π(y′, t) ] = iδ(y − y′). (5)

The system is solved by expressing the displacements in terms of their normal modes.
For fixed ends, the normal modes are standing waves sin(mπy/L) having energy mω for
positive integer m. Using such modes, we can introduce ladder operators:

x(y, t) =
∞
∑

m=1

1√
mωρL

sin
(

mπy

L

)

(

am e−imωt + a†m eimωt
)

, ω =
π

L

√

κ

ρ
. (6)

For fixed ends, these are standing waves having energy mω. Note that the displacement
operators are Hermitian, as they should be. The ladder operators satisfy the commutation
relations

[am, am′ ] = 0, [am, a
†
m′ ] = δmm′ . (7)

In order to show that the above commutation relations are consistent with the commutators
of Eq. 5, we need the Fourier series of the periodic Dirac δ-function. Recall the definition of
the Fourier series for a periodic function with period T :

f(y) =
a0
2
+

∞
∑

m=1

[

am cos
(

2πmy

T

)

+ bm sin
(

2πmy

T

)]

, (8)

am =
2

T

∫ c+T

c
dy f(y) cos

(

2πmy

T

)

, (9)

bm =
2

T

∫ c+T

c
dy f(y) sin

(

2πmy

T

)

. (10)

Here, the modes are sin(mπy/L) so we need T = 2L and can choose c = −L, even though
we are only interested in the range 0 ≤ y ≤ L. Each of the modes is odd in y, so any linear
combinations of the normal modes will be odd, so we can use a Fourier sine series:

f(y) =
∞
∑

m=1

bm sin
(

πmy

L

)

, (11)

bm =
2

L

∫ L

0

dy f(y) sin
(

πmy

L

)

. (12)
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If f(y) = sgn(y)δ(|y| − y′), which is odd in y, then bm = (2/L) sin(mπy′/L) if 0 < y′ ≤ L.
Hence,

δ(y − y′) =
2

L

∞
∑

m=1

sin
(

πmy

L

)

sin

(

πmy′

L

)

, for 0 < y ≤ L. (13)

The Hamiltonian is then given by, discarding an irrelevant (but infinitely large) constant,

H =
∞
∑

m=1

mω a†mam, ω =
π

L

√

κ

ρ
. (14)

Let |0〉 denote the ground state of the string, then the string eigenmodes are

∞
∏

m=1

(a†m)
nm

√
nm!

|0〉, (15)

where nm are the occupation numbers which take values 0, 1, 2, . . ..
We now wish to determine the symmetry properties of these states. Let PL/2 denote

spatial inversion about the point midway between the quark and the antiquark, and C
denote charge conjugation. The flux in the effective string has a direction associated with it
(except in SU2), so that charge conjugation simply effects a reversal of this direction. This
direction is also reversed under PL/2 so that CPL/2 is a symmetry of the system. Also, let
σy denote a reflection in the molecular axis (along the y-axis). The ground state satisfies

CPL/2 |0〉 = |0〉, (16)

σy |0〉 = |0〉. (17)

The string displacement transform according to

CPL/2 x(y, t) P†L/2C† = −x(L− y, t), (18)

σy x(y, t) σ
†
y = −x(y, t). (19)

Using Eq. 6 and the above transformation properties, one easily determines

CPL/2 a
†
m P†L/2C† = (−1)ma†m, (20)

σy a
†
m σ†y = −a†m, (21)

also using sin(mπ(L− y)/L) = −(−1)m sin(mπy/L).
Now act with the Hamiltonian on the string eigenstates:

H
∞
∏

m=1

(a†m)
nm |0〉 =

∞
∑

m′=1

m′ωa†m′am′

∞
∏

m=1

(a†m)
nm |0〉

=
∞
∑

m′=1





∏

m6=m′

(a†m)
nm



m′ωa†m′am′(a†m′)nm
′ |0〉

=
∞
∑

m′=1





∏

m6=m′

(a†m)
nm



nm′m′ω(a†m′)nm
′ |0〉

=

(

∞
∑

m′=1

nm′m′ω

)(

∞
∏

m=1

(a†m)
nm

)

|0〉,
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which tells us the energy of each eigenstate. Next, act with the two symmetry operators on
the string eigenstates:

σy
∞
∏

m=1

(a†m)
nm |0〉 =

∞
∏

m=1

(σy a
†
m σ†y)

nm |0〉 =
∞
∏

m=1

(−a†m)nm |0〉

=

(

∞
∏

m′=1

(−1)nm
′

)

∞
∏

m=1

(a†m)
nm |0〉,

CPL/2

∞
∏

m=1

(a†m)
nm |0〉 =

∞
∏

m=1

(CPL/2a
†
mP†L/2C†)nm |0〉

=
∞
∏

m=1

((−1)ma†m)nm|0〉 =
(

∞
∏

m′=1

(−1)m′n
m

′

)

∞
∏

m=1

(a†m)
nm|0〉.

Hence, if E0 denotes the energy of the ground state (with the above Hamiltonian, it has been
defined to be zero), then the eigenvalues E (energy), Λ, and η associated with the string
eigenstates are given by

E = E0 +
Nπ

r

√

κ

ρ
, (22)

N =
∞
∑

m=1

m nm, (23)

n =
∞
∑

m=1

nm, (24)

Λ = (−1)n, (25)

η = (−1)N . (26)

Using these properties, the orderings and degeneracies of the Goldstone string energy levels
and their symmetries are as shown in Table 1. Hence, for κ = ρ, the Nπ/r behavior and a
well-defined pattern of degeneracies and level orderings among the different channels form a
very distinctive signature of the onset of the Goldstone modes for the effective QCD string.

3 Toroidal string levels

A string without fixed ends which winds around a box with periodic (toroidal) boundary
conditions has different symmetry properties. Here we shall assume that the string loop
winds around the torus in the y-direction, and let L be the circumference of the torus in
this direction. Let the position of the string in the x direction be specified by x(y, t). Once
again, assume that the string is stiff enough that x(y, t) are single valued (no configurations
which double back on themselves). Of course, this assumption could be relaxed by labeling
the position along the string by some parameter other than y, but this is an unnecessary
complication for our purposes.

The effective string action is taken to be

ST =
∫

dt
∫ L

0

dy

[

1

2
ρ ẋ2 − 1

2
κx′2

]

, (27)
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Table 1: Low-lying string levels for fixed ends. The N = 2 level is two-fold degenerate, and
the N = 3, 4 levels are 3, 5-fold degenerate, respectively. The S(A) states are even (odd)
under reflections in the molecular axis. Subscripts g(u) indicate evenness (oddness) under
CPL/2, charge conjugation combined with spatial inversion about the midpoint between the
quark and the antiquark.

N = 0: Sg |0〉
N = 1: Au a†1|0〉
N = 2: S ′g (a†1)

2|0〉
Ag a†2|0〉

N = 3: A′u (a†1)
3|0〉

Su a†1a
†
2|0〉

A′′u a†3|0〉
N = 4: S ′′g (a†1)

4|0〉
A′g (a†1)

2a†2|0〉
S ′′′g a†1a

†
3|0〉

S ′′′′g (a†2)
2|0〉

A′′g a†4|0〉
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where ρ is the linear mass density of the string and κ is the string tension. The momentum
canonically conjugate to x is

π =
∂L

∂ẋ
= ρ ẋ, (28)

so that the Hamiltonian is

H =
∫ L

0

dy
{

1

2ρ
π2 +

κ

2
x′2
}

, (29)

and the equal-time commutation relations are

[ x(y, t), π(y′, t) ] = iδ(y − y′). (30)

Now define the “center of mass” and the total transverse momentum by

Q(t) =
1

L

∫ L

0

dy x(y, t), (31)

P (t) =
∫ L

0

dy π(y, t), (32)

which satisfy the equal-time commutation relations

[ Q(t), P (t) ] = i. (33)

The Hamiltonian can be diagonalized by expressing the string location and momentum in
terms of the normal modes, introducing ladder operators:

x(y, t) = Q+
t

ρL
P +

∑

m6=0

1√
2ρLΩm

(

am e−iΩmt+ikmy + a†m eiΩmt−ikmy

)

, (34)

where Q = Q(0), P = P (0) = P (t) since P is conserved, and

km =
2π

L
m, Ωm =

2π

L

√

κ

ρ
|m|. (35)

These operators satisfy the commutation relations

[am, am′ ] = 0, [am, a
†
m′ ] = δmm′ , (36)

[am, P ] = 0, [am, Q] = 0, [Q,P ] = i. (37)

In order to show that the above commutation relations are consistent with the commutators
of Eq. 30, set c = 0 and T = L in Eqs. 8-10 to show that

δ(y − y′) =
1

L
+

2

L

∞
∑

m=1

cos
(

2πm

L
(y − y′)

)

. (38)

Note that x(y, t) are Hermitian operators and satisfy the boundary conditions x(0, t) =
x(L, t) and x′(0, t) = x′(L, t). Satisfying both of these equations results in the 2ω energy

6



quantization, instead of ω = (π/L)
√

κ/ρ as with fixed ends. With periodic boundary condi-
tions, the normal modes are traveling plane waves having energy Ωm. Also note that Eq. 34
is consistent with Eq. 31 given that

Q(t) = Q+
t

ρL
P, (39)

since
∫ L
0 dy exp(2πimy/L) = 0 for non-zero integer m.

In terms of the ladder operators, the Hamiltonian is given by, discarding an irrelevant
constant,

H =
1

2ρL
P 2 +

∑

m6=0

Ωma
†
mam, Ωm =

2π

L

√

κ

ρ
|m|. (40)

The ground state satisfies
P |0〉 = 0. (41)

Since we are not interested in the simple transverse-translational modes, we work in the zero
transverse momentum sector and consider only the eigenstates

∏

m6=0

(a†m)
nm

√
nm!

|0〉. (42)

Next, consider how these operators transform under translations along the longitudinal y-
direction. Let Ty(b) denote the translation in the y-direction by length b. We require that

Ty(b) x(y, t) T
†
y (b) = x(y + b, t). (43)

From Eq. 34, we see that this means

Ty(b) a
†
m T †y (b) = e−ibkm a†m. (44)

Let Py denote the generator of such longitudinal translations Ty(b) = exp(−ibPy), then

Py a
†
m P †y = km a†m, (45)

which shows that each phonon mode has longitudinal momentum km.
Let PL/2 denote spatial inversion about the point (0, L/2) and C denote charge conjuga-

tion. The flux in the effective QCD string has a direction associated with it, so that charge
conjugation simply effects a reversal of this direction. This direction is also reversed under
PL/2 so that CPL/2 is a possible symmetry of the system. Also, let σy denote a reflection in
the y-axis. The ground state satisfies

Py |0〉 = 0, (46)

CPL/2 |0〉 = |0〉, (47)

σy |0〉 = |0〉. (48)

To determine the behavior of the operators a†m under these symmetry operations, one uses
Eq. 34 and the following transformation properties of the string coordinates:

CPL/2 x(y, t) P†L/2C† = −x(L− y, t), (49)

σy x(y, t) σ
†
y = −x(y, t). (50)
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Furthermore, we know that

CPL/2 Q P†L/2C† = −Q, (51)

CPL/2 P P†L/2C† = −P, (52)

CPL/2 Py P†L/2C† = −Py, (53)

σy Q σ†y = −Q, (54)

σy P σ†y = −P. (55)

Using Eq. 34 with the above transformation properties, one easily determines

CPL/2 a
†
m P†L/2C† = −a†−m, (56)

σy a
†
m σ†y = −a†m. (57)

The symmetries of the system are, thus, as follows. For states with zero total longitudinal
momentum, the symmetries are exactly the same as for the fixed end case. We denote these
levels using Sg(0), Su(0), Ag(0), Au(0), where the zero in parentheses indicates that these
levels correspond to states having zero longitudinal momentum. For non-zero longitudinal
momentum, CPL/2 is no longer a symmetry since it reverses the longitudinal momentum.
Hence, these levels may be labeled S(p), A(p). Here, p = ±1,±2,±3, . . . and corresponds to
longitudinal momentum 2πp/L. Note that the energy is independent of the sign (direction)
of the longitudinal momentum.

Hence, if E0 denotes the energy of the ground state (with the above Hamiltonian, it has
been defined to be zero), then the eigenvalues E (energy), longitudinal momentum kL, Λ,
and η (for the kL=0 states) associated with the string eigenmodes are given by

E = E0 +
2Nπ

L

√

κ

ρ
, (58)

kL =
2Mπ

L
, (59)

N =
∑

m6=0

|m| nm, (60)

M =
∑

m6=0

m nm, (61)

n =
∑

m6=0

nm, (62)

Λ = (−1)n. (63)

For zero-momentum states, we make even and odd CPL/2 states using symmetric and anti-
symmetric superpositions, respectively, under m→ −m.

Using these properties, the orderings and degeneracies of the Goldstone string energy
levels and their symmetries are as shown in Tables 2–3. Hence, for κ = ρ, the 2Nπ/L
behavior and a well-defined pattern of degeneracies and level orderings among the different
channels form a very distinctive signature of the onset of the Goldstone modes for the effective
QCD string.
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Table 2: Low-lying torelon string levels. Note that the signed integers refer to the phonon
mode. A positive integer indicates a mode with longitudinal momentum in the positive y-
direction, whereas a negative integer indicates a mode with oppositely directed longitudinal
momentum. The total longitudinal momentum of each level, in terms of the fundamental
quantum 2π/L, is indicated in parentheses. For the states having zero longitudinal momen-
tum, the levels which are even and odd under CPL/2 are indicated by subscripts g and u,
respectively. States which are even (odd) under reflection in the molecular axis are indicated
by S(A). The N = 1, 2, 3 energies are 2, 5, 10-fold degenerate, respectively.

N = 0: Sg(0) |0〉
N = 1: A(1) a†1|0〉

A(−1) a†−1|0〉
N = 2: A(2) a†2|0〉

A(−2) a†−2|0〉
S(2) (a†1)

2|0〉
S(−2) (a†−1)

2|0〉
Sg(0) a†1a

†
−1|0〉

N = 3: A(3) a†3|0〉
A(−3) a†−3|0〉
S(3) a†1a

†
2|0〉

S(−3) a†−1a
†
−2|0〉

A(3) (a†1)
3|0〉

A(−3) (a†−1)
3|0〉

S(1) a†−1a
†
2|0〉

S(−1) a†1a
†
−2|0〉

A(1) (a†1)
2a†−1|0〉

A(−1) a†1(a
†
−1)

2|0〉
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Table 3: The N = 4 torelon string levels. See Table 2 for a description of the notation used.
The N = 4 level is 20-fold degenerate.

N = 4: A(4) a†4|0〉
A(−4) a†−4|0〉
S(4) a†1a

†
3|0〉

S(−4) a†−1a
†
−3|0〉

S(4) (a†2)
2|0〉

S(−4) (a†−2)
2|0〉

A(4) (a†1)
2a†2|0〉

A(−4) (a†−1)
2a†−2|0〉

S(4) (a†1)
4|0〉

S(−4) (a†−1)
4|0〉

S(2) a†−1a
†
3|0〉

S(−2) a†1a
†
−3|0〉

A(2) a†1a
†
−1a

†
2|0〉

A(−2) a†1a
†
−1a

†
−2|0〉

S(2) (a†1)
3a†−1|0〉

S(−2) a†1(a
†
−1)

3|0〉
Sg(0) a†2a

†
−2|0〉

Sg(0) (a†1)
2(a†−1)

2|0〉
Au(0) ((a†1)

2a†−2 + (a†−1)
2a†2)|0〉

Ag(0) ((a†1)
2a†−2 − (a†−1)

2a†2)|0〉
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